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3D visual-based tension control in strip-like deformable objects using a
catenary model

N. Roca Filella1, A. Koessler1,2, B.C. Bouzgarrou1 and J.-A. Corrales Ramon3

Abstract— In recent years, there has been a growing interest
in robotic manipulation of deformable objects. In order to
perform certain tasks, the robot must control the shape of the
object while taking care not to apply excessive stresses so as
not to deform it irreversibly. This is the case when extracting
elasto-plastic objects in strips from an industrial reel. In order
to control the mechanical stresses within the object, we propose
a vision-based control scheme to minimize tension by regulating
the angular velocity of a motorized reel on which they are
wound. In this paper, we propose a method, based on a catenary
model and visual feedback from a low-cost RGB-D camera, to
estimate the tension distribution along a rubber strip. Thus,
the control strategy aims to achieve a desired tension value by
varying the length of the suspended portion of the manipulated
strip. Simulation and experimental results validate the proposed
approach for strip-like objects of various dimensions.

I. INTRODUCTION

Deformation control of soft objects like fabrics, foam and
other elastic bodies is now a matter of ongoing research in
the field of robotic manipulation [1]. Their deformation is
generally modeled by introducing new degrees of freedom
(DOF), which makes control more challenging. Perception
based on vision, tactile or multi-modal sensing is hence used
to estimate these additional DOFs, which represent the state
of deformation of the object [2]. That allows closing the
control loop and ensures task achievement. Some methods,
known as model-free methods, do not require a model and
are based on perceived data, like position, angle, or shape,
decorrelated from the object parameters. In [3] visual data
are collected to estimate locally the deformation Jacobian
matrix, avoiding any model identification step. The work
of [4] uses both visual and force sensor for robotic cutting
of deformable objects. These methods avoid modeling the
dynamics of the objects in its environment but often need
a lot of input data if they are based on supervised learning
and are not very generalizable. Another solution is to use
a model that facilitates the description of the object. These
models can be classified in two main categories based on
their complexity.

Physical-based models: Based on mechanical equa-
tions, they are as close as possible to reality. The two main
models are Finite Element (FE) and Mass-Spring-Damper
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models. For instance, we can mention the research of [5] and
[6], which use such models in generic manipulation cases.In
[7] the desired actuator motions are computed in real-time
as an inverse solution of a FEM problem. The gripper’s
configuration is coupled to a FE model in [8] to perform
an open-loop shape control. These methods are physically
relevant and useful for changeable object shapes and material
behaviours. However, these physical models are not suitable
for varying mass objects (such as a strip that is unrolled from
a reel) and often requires a lot of nodes which is resource-
consuming. Recently, the work of [9] used low node count
FE models for shape control to reduce the computational
cost.

Geometry-based models: To overcome these draw-
backs, non-physical models can be used. In these approaches,
deformation is generally modeled using explicit mathemat-
ical formulations of object shape, which allow fast com-
putations within a control loop. The deformation is esti-
mated using geometrical features like positions, curvatures
or surfaces. In [10] a simple approach to track elongated
extended objects using Bézier curve is introduced. This
algorithm is fast and robust even with partially occluded
target. The deformation of the surface object is estimated in
[11] using non-uniform rational basis splines approximation
with a RGB-D camera. A shape control of isometrically
deforming objects with 2D camera is proposed in [12]. These
methods show a good balance between computational cost
and accuracy. However, most of these approaches do not
take material properties into account and only guarantee good
results for the controlled features.

For a deformable object, this is a crucial point in sev-
eral applications because stress must not increase beyond
the elastic limit, so that the material does not undergo a
plastic deformation. In this paper, we explore the field of
tension control which consists in setting and maintaining a
desired tension in an object to prevent damaging it while
manipulating it. The research of [13] and [14] exploits and
validates the use of a model for strip-like deformable objects,
based on a catenary curve. This geometry-based model can
be considered at the intersection of the two previous methods,
as it gives information on the tension in the object. These
works could be coupled to those of [15] to replace expensive
force sensor by a vision sensor in [13], but also in [16] where
a robot takes a deformable belt out of a bobbin using a F/T
sensor.

Proposed contributions: In this work, we introduce a
visual-based tension control scheme for strip-like deformable
objects, whose one end is grasped by a robot and the other
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Fig. 1. Control logic block diagram of our proposed method for visual-based tension control scheme.

is wound onto a reel. Using a low-cost RGB-D camera and
a 3D catenary model, the deformation state is estimated
without any contact by partial observation of the object. A
closed-loop tension control scheme managing the rotation of
the reel is then proposed to vary the length of linear objects in
real-time. Experiments regarding our use case are performed
in simulation, then on the real robotic system. A simplified
control logic block diagram is shown in Fig. 1.

II. TENSION ESTIMATION BY VISION

In this section, a catenary-based model is introduced. We
use a method to fit strip-like deformable objects in 3D space
and estimate the tension in the object. We evaluate the quality
of tension estimation in comparison with a force sensor.

A. Catenary-based model

A catenary is the curve that an idealized hanging chain or
cable assumes under its own weight (uniformly distributed)
when supported only at its ends [17]. The use of catenaries
was encouraged by the fact that this model gives useful
information on tension in the object. The model is well
suited for strip-like deformable objects, considering that the
thickness dob j and the width of a strip-like deformable object
are very small when compared to its length L, and assuming
zero bending stiffness. It is also assumed that no torsional
stress is applied, which allows us to reduce the representation
in a plane.

Let O(⃗x,⃗z) be the global frame in 2D space, E1 and E2
the ends of the catenary, Pi(xi,zi) any point in the curve and
Plow(xlow,zlow) the lowest point of the curve, as depicted in
Fig. 2.

The height hi = zi−zlow represents the sag at point Pi, and
li is the length of the segment of curve, from Plow to Pi. At
any point, the following catenary equation is verified [18]:

z = zlow + c
(

cosh
(

x− xlow

c

)
−1
)

(1)

where c = TH,i/µg is the catenary constant depending on
the shape of the strip. µ is the mass per unit length and
g= 9.81 m ·s−2 is the acceleration of gravity. This introduces
TH,i, the horizontal component of the total tension TT,i at
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Fig. 2. Representation of a catenary in the 2D space.

point Pi, as follows:

TH,i = µgc. (2)

According to Fig. 1, the vertical component is defined as
TV,i = TH,i tanΦi where Φi is the tangential angle formed by
the catenary at point Pi. We assume that for a infinitely small
change in x, dx, the infinitely small change in z is given by
dz=dx tanΦi and we have

TV,i = TH,i sinh
(

xi− xlow

c

)
= µgli (3)

where, by definition and for xi < xlow,

li =
∫ xlow

xi

√
1+
(

dz
dx

)2

dx

=−csinh
(

xi− xlow

c

)
. (4)

Considering that TT,i =
√

TH,i
2 +TV,i

2 and (1) , we have

TT,i = µgc

√
1+ sinh2

(
xi− xlow

c

)
= µgc

(
zi− zlow + c

c

)
= µg(c+hi) (5)
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Fig. 3. (a) object detection in color image, (b) down-sampled 3D point
cloud, (c) fitted catenary curve and (d) identified parameters.

As we can see, the total tension depends only on three
parameters of the catenary, µ , c and zlow, no matter the value
of xlow. From now, we consider changing it to a 3D object
being projected.

A model of 3D catenary is proposed in [19]. Its expression
at any point in the 3D camera frame C(⃗x′, y⃗′,⃗z) is as follows:

z = zlow + c
(

cosh
(

x′ cosθ − y′ sinθ −ρ sinθ

c

)
−1
)

(6)

where θ is the azimuth and ρ is the distance from the origin
when the 3D catenary is projected into the x′−y′ plane as a
straight line. For a transformation from 3D camera frame to
2D object frame, we use the variable substitution introduced
in [19]: x = x′ cosθ − y′ sinθ and xlow = ρ sinθ .

B. Object detection and 3D curve fitting

An RGB-D camera is positioned above the target object.
After the acquisition of the image, a depth thresholding is
processed to extract the foreground. A color segmentation
is then applied, and the relevant point cloud is extracted.
To reduce the computing cost, a 3D down-sampling is
performed. Finally, to eliminate noise in the detection, a 3D
clustering is applied using DB-SCAN algorithm [20].

A 3D curve fitting method using non-linear least squares
is then implemented to fit the function to the point cloud.
It uses a Trust Region Reflective algorithm [21] which is
ideal for a bound-constrained minimization problem. Fig. 3
(a) shows that the strip is well detected in color image and
Fig. 3 (b) shows the point cloud before down-sampling and
clustering. Despite the significant depth noise, the identified
curve correctly fits to the point cloud in Fig. 3 (c). In Fig. 3
(d) the identified parameters are shown. Finally, the results
highlight that the proposed method does not need full object
perception, as seen in Fig. 3 (a) where both ends are not in
the color image.

C. Validation of the visual estimation

Once the parameters zlow, c, ρ and θ are estimated, the
strip-like object is reduced to a curve with a negligible width,
so (2), (3) and (5) can be used to estimate the tension.

We now make a comparison between the tension estimated
using the visual method and the one measured by two

Strip-like object µ kg ·m−1

1 0.132
2 0.106
3 0.037

TABLE I
MASS PER UNIT LENGTH OF THE MANIPULATED OBJECTS.

case 1 case 2 case 3 case 4
Object mean SD mean SD mean SD mean SD
1 (force) 0.77 0.001 0.88 0.001 1.12 0.001 3.48 0.011
1 (vision) 0.76 0.004 0.86 0.006 1.16 0.014 3.22 0.212

2 (force) 0.61 0.001 0.71 0.001 0.98 0.001 2.41 0.009
2 (vision) 0.61 0.003 0.70 0.008 0.99 0.019 2.45 0.159

3 (force) 0.22 0.001 0.26 0.001 0.36 0.001 1.20 0.011
3 (vision) 0.21 0.001 0.24 0.001 0.30 0.004 0.82 0.090

TABLE II
COMPARISON OF MEAN VALUE AND SD (IN N).

accurate force sensors (s-type load cells) with an announced
accuracy of ±0.1 percent for 10 N. We use the three objects
of Table I of length l = 0.90 and in four different cases:
|x1 − x2| = {0.74,0.79,0.84,0.89}. We compute the mean
values and standard deviations (SD) and the results are shown
in Table II. Even though small differences can be observed
between the two methods, our method is suitable for low
tension estimation.

For case 4, the object remains flat, even after being more
stretched and our method reaches its limit of validity. In that
case, a Force/Torque sensor can be used as an add-on tool
for the robot. Fig. 4 now shows a comparison between the
horizontal tension measured by a Robotiq FT300 F/T sensor
and the tension estimated with our method. We manually
rotate the reel to vary the length of the object during 50
acquisitions. Our proposed visual method seems to be more
stable thanks to the fitting step which smooth the values of
tension. When the object is flat, it becomes impossible to
estimate the correct value of parameters c with our visual
method, therefore we impose a maximum threshold for this
value and the F/T sensor gives better results.

In conclusion, the catenary model is well adapted espe-
cially when the object does not become flat. The precision
and efficiency of this novel perception method enables loop
closure for tension control. We will synthesize such a con-
troller, with an approach based on the formerly introduced
model.

III. CLOSED-LOOP TENSION CONTROL SCHEME

In this section, we present the control scheme to manipu-
late the strip-like object using the previous visual feedback.
The purpose is to control the angular velocity of the reel ω

to vary the length l of the object.

A. Tension control law synthesis

We assume that positions at both ends are known and that
E1 is fixed. It is, and stays, the highest point of the curve
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Fig. 4. Comparison of horizontal tension measured using the F/T sensor
(green) and the visual sensors (red).

during all the manipulation. This assumption implies that,
according to (5), the tension has a global maximum at this
point, as h1 = max(hi). E2 is grasped by the end-effector of
the robot. To simplify the notation in the following, both
TH,x1 and TT,x1 are represented by T . We denote T d the
desired tension and define Ṫ as:

Ṫ =
dT
dl

l̇ (7)

where l = l1− l2. The aim is to exponentially decrease the
error e = T d−T towards zero with the following control law
based on a first-order dynamic behavior:

ė+Ke = 0 (8)

with K > 0. Merging (7) and (8), we obtain the following
control law on l̇ to ensure that the tension converges towards
the desired tension:

l̇ =
dl
dT

(
u+ Ṫ d

)
(9)

with u = Ke. This leads to a rotational control of the reel
though ω = l̇/R, where R is the radius of the reel. After
that, the length of the strip-like object is modified, and so
the catenary too. We consider the desired tension remaining
constant over time, hence Ṫ d = 0.

By now, the aim is to define the derivative of T with
respect to l, i.e. determine the influence of a small variation
of the length on the tension.

B. Control of the horizontal component

Controlling the horizontal component of the tension at E1
allows a control at any point of the object, as dTH,i/dx = 0.
The derivative of TH,1 with respect to l is defined as follows:

dTH,1

dl
= µg

dc
dl

. (10)

We now want to express dc/dl. By subtracting (1) at points
E1 and E2, we obtain

z2− z1 = c
(

cosh
(

x2− xlow

c

)
− cosh

(
x1− xlow

c

))
= 2csinh

(
x1 + x2−2xlow

2c

)
sinh(A) (11)

where A = (x2− x1)/2c. Using (4), we have

l = c
(

sinh
(

x2− xlow

c

)
− sinh

(
x1− xlow

c

))
= 2ccosh

(
x1 + x2−2xlow

2c

)
sinh(A) . (12)

If we divide (11) by (12) for l ̸= 0, we obtain

x1 + x2−2xlow

2c
= arctanh

(
z2− z1

l

)
. (13)

Integrating (13) into (12), we finally get

l

cosh
(

arctanh
(

z2− z1

l

)) = 2csinh(A) . (14)

One can verify that the left side of (14), denoted f1, depends
on l and the right side, denoted f2, depends on c. We hence
have the following derivative of c with respect to l:

dc
dl

=
d f1

dl
dc
d f2

(15)

where, by derivation,

d f1

dl
=

l√
l− (z2− z1)

√
l +(z2− z1)

(16)

and
d f2

dc
= 2sinh(A)− (2A)cosh(A) . (17)

From equation (3), we understand that the longer the
object is, the higher the vertical tension is. That means
that even if the object is sagging, it can be stretched at its
ends under its weight. The vertical tension hence becomes
impossible to ignore in our computations and we will now
focus on the control of the total tension.

C. Control of the total tension

We now express the derivative of TT,1 with regards to l.
From (5), we obtain:

dTT,1

dl
= µg

(
dc
dl

+
dh1

dl

)
. (18)

To express the derivative of h1 with respect to l, we use the
following decomposition:

dh1

dl
=

dh1

dc
dc
dl

(19)

Using (1) and (14) into h1, we obtain:

h1 = z1− zlow

= c(cosh(B)−1) (20)

where B =
x1− x2

2c
+ arctanh

(
z2− z1

l

)
. By derivation, we

have:
dh1

dc
= cosh(B)−1− csinh(B)

.

(
dl
dc

(
z2− z1

l2− (z2− z1)
2

)
+

x1− x2

2c2

)
(21)
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Finally, replacing (21) into (19), we have an equation for
(18) and we can integrate it into (9) to formulate a law
that controls the total tension, and not only the horizontal
component. From now on, we consider the total tension as
the servoed variable and drop the subscript, so that TT,1 is
now referred to as T1 in the following experimental analysis.

IV. SETUP OF THE APPLICATION

The simulation and the experimentation will be firstly
focused on the rubber strip-like object 2. As shown in Fig. 5,
an Intel RealSense D435 RGB-D camera is placed at C(0,0).
The point E2 is grasped and driven by a Universal Robots
UR10 robot while E1(−0.570,−0.120) is held fixed during
the manipulation. The rotating reel is motorized to adjust T1.
This first experiment Exp. 1 is divided in three phases:
• Phase 1: For 5 s, the robot stays in A so that the tension

settles around the initial desired tension.
• Phase 2: The robot drives E2 from A(−0.018,−0.258)

to B(0.197,−0.511) into the x− z plane in 5 s seconds
at an average velocity of v = 0.062 m.s−1.

• Phase 3: The robot stops for 5 seconds so that the
tension settles around the final desired tension

V. SIMULATION RESULTS

As the control law was already established, the choice of
the desired tension remains to be determined. But looking at
the equations, the choice of a reachable tension is not trivial.
In this section, we perform simulation to find adequate values
for desired tensions. Once this is done, we introduce the
tuning process and evaluate the impact of disturbances on
the control law, such as robot motion and radius variation.

A. Trajectory planning of the desired tension

For a given position of E1 and E2, it is possible to find
c given the length l by solving numerically the folowing
equation:

z2− z1−2csinh(A+B)sinh(A) = 0 (22)

found using (11) and (13). We likewise find xlow solving
numerically (11). Now that c and xlow are known, the tension
components according to l are presented in Fig. 6 (a) for
a given position and the evolution of the catenary can be
seen in Fig. 6 (b). We notice that the horizontal tension (in
orange) decreases with l increasing, while the vertical tension
(in green) increases. They hence have opposite behaviours

Fig. 6. (a) tensions according to l, (b) evolution of the catenary while l is
increasing.

while changing the length. It is then difficult to predict that
of the total tension. To overcome this, we propose an on-
line trajectory planning method for T d

1 . The Algorithm 1 is
dedicated to minimize T1(l) (i.e. to find the minimum of
the blue curve) so that, at each time, T d

1 = min(T1(l)). As
the robot has soft acceleration and deceleration, a smooth
variation of the desired tension is planned.

Algorithm 1: find T d
1 , the minimum of T1

1 Initialisation: T d
1 ← 10; dl← 0.05; l← || ⃗E1E2||+dl;

c0← 0.1; xlow,0← (x1 + x2)/2;
2 while l ≤ 3 do
3 c← f indc(l,x1,x2,z1,z2,c0) solving numerically

(22);
4 xlow← f indxlow(x1,x2,z1,z2,c,xlow,0) solving

numerically (11);
5 T1← computeTension(c,x1,xlow) using (5);
6 if T1 ≤ T d

1 then
7 T d

1 ← T1;
8 end
9 l← l +dl; c0← c; xlow,0← xlow;

10 end

B. Proportional gain tuning

To evaluate the impact of K in the control law, we choose
four different values: K = {1,3,6,9}. The results of tension
estimation and output control are presented in Fig. 7. The
error exponentially converges toward zero during phases 1
and 3, as expected. Regarding phase 2, the robot motion
causes a delay, that K = 1 cannot compensate. The high gain
K = 9 involves undesired oscillations. Finally, K = 3 and
K = 6 seems to be appropriate solutions.

C. Influence of a time-dependent radius

One can see that a constant radius has been chosen in the
control law. However the more the object is unwound, the
smaller the radius is. The radius is indeed a time-dependent
variable.

To include the thickness in the simulation, we multiply l̇
by (R−var)/R with var = β .dob j/2π the variation of radius

3214



Fig. 7. Estimated tension vs. computed velocity output.

Fig. 8. Estimated tension with different thickness of the object.

and where β is the rotational angle of the reel (initially,
β = 0). In Fig. 8, we compare the tension with different
values for thickness of the object: dob j = {0,0.01,0.05,0.1}
and for R = 0.148. The error due to the radius variation is
taken into account in the controller error when dob j ̸= 0.
The final target tension is reached shortly after, because l̇ is
smaller than it should be. Despite that small difference in
terms of speed of convergence, we assume that the radius
could be measured off-line before each experiment.

Positive results achieved during this simulation phase
encourage us to evaluate the fitting method and the proposed
control law in real settings.

VI. EXPERIMENTAL RESULTS

This section shows the tension control on the real system
described in Section IV. We present here a comparison with
the simulation use case, as well as novel experiments with
more varied robot arm trajectories and objects.

A. Comparison between simulation and experimental results

We performed experimental tension control for K =
{1,3,6} and we compare the results with the simulation
results in Fig. 9. Given the measurement accuracy of our
visual tension estimator, we decided to limit the output
control when the robot is not moving if |e| is smaller than
ε = 0.01 N. This solution helped our system to become more
stable and to converge towards the final desired tension for
K = 3 and K = 6 and the results are nearly the same as
the simulation ones. As expected, K = 1 is not sufficient for
a fast response. One can notice that the output for K = 6
presents some considerable oscillations.

Fig. 9. Estimated tension vs. computed velocity output and real velocity.

B. Additional experiments

In this section, we propose to validate our controller in
different use-cases. For each experiment, we choose K = 3
in accordance with previous results. Here a description for
three new experiments:
• Exp. 2: After 5 s the robot arm follows circular trajec-

tory (3 laps) with increasing velocity: 0.1 m · s−1 (1st
lap), 0.15 m · s−1 (2nd lap) and 0.2 m · s−1 (3rd lap).
The acceleration is 0.3 m · s−2.

• Exp. 3: The robot follows a rectangle trajectory starting
at t = 0 s with a velocity of 0.25 m · s−1 and an
acceleration of 1.2 m · s−2. It was designed to measure
the impact of a bigger acceleration while the value of
T1 has not yet settled. Also, this is the experiment with
the largest distance between E1 and E2.

• Exp. 4: After 5 s, the robot goes back and forth and wait
for 1 s with a velocity of 1.2 m ·s−1 and a acceleration of
1.2 m · s−2 (5 repetitions). Probably, the robot does not
have time to reach this velocity but this experiment was
designed to see how the controller reacts when faced to
oscillations.

One can find the trajectory of each experiments and the
results of the tension control in Fig. 10. The root mean square
percentage error (RMSPE) and the maximal percentage error
ep,max while the robot is moving are presented in Table III.
The choice of a percentage error is motivated by the differ-
ence in scale between two objects. From Exp. 2, it can be
seen that increasing the velocity of the robot also increases
the tension overshoot. However, T1 still converges towards
the desired value once the motion is stopped. This behaviour
is also observed in Exp. 3, where the initial mismatch
in tension has no visible effect on the quality of tension
servoing. From this, we can conclude on the efficiency of
the proposed method, provided the dynamics of the robot
leading the motion are not too high.

C. Instability due to dynamics

The experimental analysis has shown the viability of the
proposed method. However, as the length increases a novel
problem appears: the object becomes more vulnerable to
oscillations caused by the variation of the output control.
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Fig. 10. Trajectory of each experiment and results of the tension control.

Object 1 Object 2 Object 3
Experiment RMSPE ep,max RMSPE ep,max RMSPE ep,max

1 0.92 3.55 1.00 3.97 1.33 3.83
2 (1st lap) 1.34 7.76 1.50 7.06 1.52 7.19
2 (2nd lap) 4.36 23.41 3.24 18.68 4.49 39.65
2 (3rd lap) 14.45 111.24 20.44 157.69 7.68 51.38
3 3.98 13.4 3.20 9.93 5.49 17.21
4 405.99 2718.31 X X 14.8 99.4

TABLE III
RMSPE AND ep,max FOR EACH EXPERIMENTS.

For Exp. 1-3, there was no notable difference in RMSPE
depending on the object. However, in Exp. 4, the system
performs way worse on the heavier object than on the lighter
one. We conclude that taking dynamics into account would
be a mandatory step in the future in order to deal with
lengthier and heavier objects. In that precise case, the use
of a FE model might be useful.

VII. CONCLUSION

In this work, we have proposed a closed-loop tension
control for strip-like deformable objects. A 3D catenary-
based model was used to estimate the internal tension of a
linear deformable object pulled by a robot. The control law
regulates the angular velocity of a reel onto which the object
is wound, in order to vary the object length and to ensure
the object is not stretched. In that way, we prevent the object
from an irreversible deformation. The proposed work has
been validated in simulation first. An algorithm of trajectory
planning for the desired tension has been implemented and
a gain tuning has been made. After that, we evaluated our
controller with several trajectories of the robot and several
parameters of the objects.

The proposed method gives a deformation state in real-
time using a low-cost RGB-D sensor instead of a dedicated
force sensor. The 3D fitting method allows an estimation
despite partial observation and results in smoothed feedback.
Finally, the catenary model is easy to identify, since the only
relevant parameter is the mass per unit length. Experimental

results have proven the capacity of the method to handle
various materials successfully.

Future works will focus on strip-like deformable objects
with higher thickness and significant bending stiffness. More-
over, the study of inertial effects would be necessary to
control the oscillations of the strips, especially for longer
objects and faster task execution.
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