
HAL Id: hal-03889808
https://hal.science/hal-03889808

Submitted on 8 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CASY: A CPU Cache Allocation System for FaaS
Platform

Armel Jeatsa-Toulepi, Boris Teabe, Daniel Hagimont

To cite this version:
Armel Jeatsa-Toulepi, Boris Teabe, Daniel Hagimont. CASY: A CPU Cache Allocation System for
FaaS Platform. 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid
2022), IEEE Computer Society; Technical Committee on Scalable Computing ACM SIGARCH, May
2022, Taormina, Italy. pp.494-503, �10.1109/CCGrid54584.2022.00059�. �hal-03889808�

https://hal.science/hal-03889808
https://hal.archives-ouvertes.fr

CASY: a CPU Cache Allocation System for FaaS
Platform

Armel Jeatsa, Boris Teabe, Daniel Hagimont
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/CCGrid54584.2022.00059

Abstract—Function as a Service (FaaS) has become a key
service in the cloud. It enables customers to conceive their appli-
cation as a collection of minimal serverless functions interacting
with each other. FaaS platforms abstract all the management
complexity to the client. This emerging paradigm is also attractive
because of its billing model. Clients are charged based on the
execution time of functions, allowing finer-grained pricing. There-
fore, executing functions as fast as possible is very important to
lower the cost.

Several research studies have investigated runtime optimiza-
tion in FaaS environments, but none have explored CPU cache
allocation. Indeed, CPU cache contention is a well-known issue
in software and FaaS is not exempt from this issue. Various
hardware improvements have been made to address the CPU
cache partitioning problem. Among other things, Intel has
implemented a new technology in their new processors that
allows cache partitioning: Cache Allocation Technology (CAT).
This technology allows allocating cache ways to processes, and
the usage of the cache by each process will be limited to the
allocated amount.

In this paper, we propose CASY (CPU Cache Allocation
SYstem), a system that performs CPU cache allocation for
serverless functions using the Intel CAT technology. CASY uses
machine learning to build a cache usage profile for functions
and uses this profile to predict the cache requirements based on
the function’s input data. Because the CPU’s cache size is small,
CASY integrates an allocation algorithm which ensures that the
cache loads are balanced on all cache ways. We implemented
our system and integrated it into the OpenWhisk FaaS platform.
Our evaluations show a 11% decrease in execution time for some
serverless functions without degrading the performance of other
functions.

Index Terms—FaaS, CPU Cache, Allocation

I. INTRODUCTION

Today, with the advent of cloud computing [1], we are
witnessing the emergence of new services such as Function
As A Service [2] (FaaS for short). The FaaS model allows
developers to create, run, and manage their applications as
a set of stateless functions, without having to maintain their
own infrastructure. The way FaaS work is as following: (1)
The developer uploads their function written in a programming
language supported by the FaaS platform (e.g. Java, Python,
JavaScript, etc.) which are then saved in a registry (the registry
is a kind of data base that saves the functions); (2) The
developer specifies a set of events (e.g. new records in a
database, reception of a specific request) that will trigger the
execution of the functions; (3) Each time an event happens,
the FaaS platform executes the corresponding function in a
sandbox, which can be a container such as Docker [3] or a light

virtual machine such as Firecracker [4]. There are several FaaS
platforms than can be either supplied by Cloud providers (e.g
google Cloud Functions [5]) or provided with a software that
can be deployed to adminstrate the execution of function (e.g
OpenWhisk [6]). In FaaS, most functions follow the Extract-
Transform-Load (ETL) [7] execution model, which can be
described as follows: (E) the function read the input data (e.g
an image, a sound record) from persistent storage; (T) the
function carries out computations on the data (e.g image pro-
cessing, audio encoding); and finally, (L) the function output
is stored in persistent storage. The ETL model motivates the
use of sandboxes for function executions in order to have an
isolated environment that contains all necessary dependencies.
Besides the serverless aspect of FaaS, its attractiveness also
comes from its billing system. Generally, with other types of
cloud service (IaaS, PaaS and SaaS), the billing is done based
on the execution time of the environment where the application
is executed (e.g. total runtime of the virtual machine), while
with FaaS the billing is done on the execution time of the
function.

In fact, the billing in FaaS is done at each function in-
vocation and is based on the total execution time [8], thus
providing a fine-grained billing system. A shorter execution
time for a function implies less cost. Therefore, execution time
is a key element in FaaS. Several research works investigated
approaches to reduce the execution time of functions. Many of
these works are interested in the execution environment, such
as optimization of container boot times [9], [10], whereas oth-
ers proposed elaborated cache systems for data to shorten the
loading step (the E step in ETL) before function execution [7],
[11]. In this work, we are interested in optimizing the CPU
cache in the context of FaaS execution.

Most CPUs use caches to speed up memory access. CPU
caches are fast memory components close to a CPU core con-
taining frequently-used memory entries [12]. Upon accessing
a memory location, the CPU first checks for its presence in the
cache and retrieves the data directly if present. Otherwise, the
CPU would have to request this data from the main memory.
To avoid cache misses, most modern CPUs use a hierarchy
of multiple caches. Cache levels further from the CPU (e.g.
L2/L3) are typically slower than those closer to the CPU, but
also much larger [12]. The first few levels of caches are often
local to each CPU core; the last cache level, aptly called the
last-level cache (LLC), is often instead shared across all cores
on the same CPU socket. An abusive use of the LLC by

https://doi.org/10.1109/CCGrid54584.2022.00059

an application running on one CPU core can lead to cache
contention. In FaaS, for density purpopes, multiple functions
are executed on the same server, thus sharing the same LLC.
Thus, if a function is abusively using the LLC, its activity
can lengthen the execution of other functions due to cache
contention. To address cache contention in the LLC, Intel
introduced a new technology known as Cache Allocation Tech-
nology [13], [14] (CAT for short), which provides software-
programmable control over the amount of cache that can be
used by a process, virtual machine or container. However,
no FaaS platform uses this CAT technology to allocate CPU
cache to functions. In this work, we propose a system named
CASY for CPU cache Allocation SYstem, that leverages CAT
to allocate the CPU cache to functions in a FaaS platform.

Our CASY solution allocates the CPU Cache to functions
according to their needs. The building of such a system raises
two challenges: Challenge #1. How to determine the amount
of CPU cache needed by a function? Indeed, the LLC usage
of a function depends not only on its implementation, but
also on the input data. For example, a function will likely
not have the same cache requirement when processing a 100
KBytes file versus a 200 MBytes file. This element makes
cache allocation more complex. Challenge #2. How to allocate
the LLC to functions knowing that it is a limited resource? It
is very likely that the size of the LLC is not sufficient to satisfy
the LLC requirements of all running functions. Consequently,
the following question stands out: how to allocate the LLC to
these functions in other to get the fastest execution possible for
all functions? To answer these two challenges, CASY integrates
two components: (1) CASY ML, which is a machine learning
module that aims to build models that can predict the LLC
requirement of a function according to the input data, and
(2) a CASY cache allocator which is the component that
allocates LLC to functions according to their predicted cache
requirement and the current LLC load level.

CASY Machile Learning (ML). We leverage machine learn-
ing to determine the amount of LLC needed by a function
according to the input data. We define two types of function
with respect to the cache usage: Cache Sensitive functions (CS
for short) and Cache Insensitive functions (CI for short). CS
functions are impacted by CPU cache contention, whereas CI
functions undergo little or no impact on performance due to
cache contention. Note that a function can be both CS or CI
depending on the input data. Thus, for a given function with
a given input data file, the ML module allows to determine if
it is CS or CI and also to compute the amount of LLC needed
for the function. To do so, CASY ML builds ML models for
each function. We noticed from our study and also based on
previous work [7] that the memory and cache activity of a
function depends on the size of the input data. Thus, for a
function, its models was build using the size of the data as
input variable.

CASY Cache Allocator. The cache allocator is the module
that allocates the LLC to each function. After CASY ML
has computed the amount of LLC to allocate, the allocation
module allocates the LLC to the functions depending on their

needs and also the system load. Globally, the cache is divided
into ways and these ways can be shared among the cores
with CAT. The CASY cache allocator satisfies functions by
allocating the required number of ways but also ensure that
the global load is equally distributed on the cache ways. To
do so, the CASY cache allocator assigns a load to each cache
way which represents its occupation by functions. Each time a
new function is scheduled, the allocator allocates the least used
cache ways to this function, allowing the load to be distributed
equally over all cache ways.

We implemented our system and integrated it in the Open-
Whisk FaaS platform, and we thoroughly evaluated it with
various functions, such as functions that perform image and
video processing. In summary, the contribution of this paper
are as follows:

• we present CASY, a CPU cache allocation system target-
ing FaaS platforms which uses Intel CAT to allocate the
LLC to functions depending on the input data size;

• CASY uses ML models to predict the amount of CPU
cache needed by each function;

• CASY implements an allocation strategy that distributes
the load on LLC ways and guarantees good performances
to functions;

• we evaluated CASY with several functions, and we ob-
served a performance improvement of up to 11% for some
functions without degrading the performance of other
functions.

The rest of our article is organized as follows. Section II
presents the necessary background to understand our contribu-
tion. Section III presents our observations and motivations for
the creation of CASY. Sections IV to V present the design and
implementation of CASY. Section VI presents the evaluation
results. Section VII discusses the related works. Section VIII
concludes our paper.

II. BACKGROUND

In this section, we introduce all the necessary background
to understand our solution.

A. FaaS: Function-as-a-Service

Serverless computing is increasingly becoming a must-have
service for all cloud providers, and is turning into a popular
approach to deploy applications in the cloud. The setup of
a FaaS can be done on a private clouds with a server cluster
using frameworks such as OpenWhisk [6], OpenFaas [15], etc.
In this relatively new cloud service, users provide functions
written in languages such as Python, Javascript, Go, Java
etc., and these functions are executed by the FaaS platform.
This new paradigm greatly simplifies resource management
for applications.

In FaaS, the state of functions is not persistent across
invocations. Therefore, function definitions start by importing
and loading all code and data dependencies using the ETL
model (see Section I). Each function is executed in a sandbox,
which can be a container such as Docker [3], or a lightweight
VM such as Firecracker [4]. By encapsulating all of the

function state and any side-effects, the sandbox environment
provides isolation among multiple functions, and also allows
for concurrent invocations of the same function. The FaaS
platform is responsible for resource allocation to the sandbox.
Today, in most FaaS platforms such as OpenWhisk, the
scheduler is responsible for assigning each function to a server
for execution based on the CPU and memory available and
also from the availability of hot (pre-started) containers that
can quickly run the function. None of these platforms integrate
CPU cache allocation, even though this component can impact
function execution time as we have shown in Section III.

B. CAT: Cache Allocation Technology

The CAT technology is part of Intel’s Resource Director
Technology (RDT). It provides a way to allocate a given
amount of CPU cache to a process, virtual machine or
container. A operating system or hypervisor can use CAT
to protect important applications and virtual machines from
noises originating from cache usage fluctuations, and also to
implement resource prioritization. How does CAT work?

Intel CAT is used to allocate ways of the LLC. Therefore,
the allocation unit of CAT is a cache way. Each cache way can
be allocated to several processes. To carry out the allocation,
CAT introduces an intermediate structure called Class Of
Service (CLOS), which acts as a resource control plane in
which a number of ways can be associated and assigned to a
process. Each CLOS corresponds to a capacity mask (CBMs),
in which a 1 bit means that a process belonging to this CLOS
can allocate the specified cache way, and a 0 bit means the
opposite. This therefore allows to control the amount of cache
that a process in a CLOS can allocate. Several process can
be associated to the same CLOS. Depending on the CPU
architecture, it is only possible to define a limited number
of CLOS. For the hardware use in this paper, we were limited
to 8 CLOS and 11 ways (See Section VI for details).

III. MOTIVATION

To motivate the need for CPU cache allocation in FaaS
environments, we performed two evaluations: one on the
impact of cache contention on function execution time and one
on the impact of Intel CAT. The experimental environment is
the same as described in Section VI; the types of functions
used are also described in this section.

We executed 4 functions (Effect, Blur, Speech Recognition,
Resize) on a server in two scenarios: firstly, each function
is executed alone on the server; then the 4 functions are
executed simultaneously on the same NUMA node. To en-
sure no system overhead, the execution environments of the
functions are pinned to individual CPUs. The obtained results
are highlighted in Fig 1. We can notice that the execution
time of two functions: Blur and Speech Recognition decrease
by 37 % and 16% respectively, while others functions are less
impacted. As we will see later, this performance variation is
caused by cache contention from the two other functions Effect
and Resize. This motivates the need for a system that allows
to isolate the functions from each other.

Bl Eff Re SRe
0

35
70

105
140
175

Ti
m

e
(s

ec
)

Alone Collocated

Fig. 1. Execution time of 4 FaaS functions running alone and collocated.

We also executed our functions individually with different
data sizes while using Intel CAT to allocate various amounts
of cache. The results obtained are presented in Fig 2. We can
observe that for Blur, when the input size is 1.4 MBytes, the
function is impacted by the amount of cache allocated; but
when the input size is reduced, the function becomes less
sensitive to cache allocation. Regarding Speech Recognition,
this function stays sensitive to the cache regardless of the data
size. Conversely, Effect and Resize are insensitive to cache
allocation regardless of data size. The observations we can
make from these evaluations are:

• cache contention can impact the execution time of func-
tions;

• the use of the cache by functions depends on the input
data;

• a function can be cache sensitive with a particular input
data and insensitive with another. This behavior makes
the allocation of CPU cache resources more complex.

It therefore appears interesting to propose a system that allows
to allocate the CPU cache to functions, and this system should
be easily integrated to FaaS platforms.

IV. CONTRIBUTION

As an answer to the CPU cache allocation problem, we
CASY, a system which leverages machine learning to profile
the CPU cache behavior of functions and subsequently uses
the ML model to predict and allocate the CPU cache by using
the Intel CAT technology. Fig 3 depicts the overall architecture
of our system and the interaction flow with a FaaS platform.

A. Overview

Fig 3 shows the general architecture of CASY, which con-
sists of two main components (green boxes in Fig 3): CASY
ML and CASY Cache Allocator. The ML component performs
the machine learning part, i.e. learning and predicting the
amount of LLC cache needed for a function with a given input
data. To this end, it consists of two features: the profiler and
the predictor. The purpose of the profiler is to build models
for each function. Whenever a new function is stored in the
registry/data base (step ❶), the profiler fetches the functions
and executes it with various data sizes (step ❷) on a dedicated
server. These various runs allow building ML models for the
function; our models use the data size as an input variable.

1 3 5 7 9 11
ways

0
25
50
75

100
125
150

Ti
m

e
(s

ec
)

Blur

1 3 5 7 9 11
ways

0
5

10
15
20
25
30

Ti
m

e
(s

ec
)

Effect

1 3 5 7 9 11
ways

0
25
50
75

100
125
150

Ti
m

e
(s

ec
)

Resize

1 3 5 7 9 11
ways

0
80

160
240
320
400
480

Ti
m

e
(s

ec
)

Speech Recognition
1/4 1/2 3/4 full

Fig. 2. Impact of Cache allocation with CAT on function execution time with various input file sizes. 1/4, 1/2, 3/4 represents the file sizes as ratios of the
initial size which are 1.4 MBytes for Blur, 100 MBytes for Effect, 127 MBytes for Resize and 79 MBytes for Speech Recognition.

Profiler

Predictor

Cache
Allocator

SchedulerRegistry

1

2

3

6

5

4

FaaS Platform CASY Cache
Allocator

CASY ML

Function

Fig. 3. General architecture of CASY, including its components and its
interaction with a FaaS platform.

This operation is performed offline, i.e. without the occurrence
of the events which trigger the function. Once the models
are built, they are forwarded to the predictor (step ❸) for
future allocation. Each time a function is invoked (step ❹),
the FaaS platform scheduler addresses the predictor to provide
the required cache size (step ❺). Once the prediction is made,
the scheduler turns to the CASY cache allocator to configure
the execution environment (sandbox) of the function (step ❻).
The cache allocation is performed taking into account the
requirements of the function as well as the actual cache load.
In the rest of the sections, we detail the functioning of each
component of CASY.

B. CASY ML

Before presenting the ML module, it is necessary to recall
our classification of functions with respect to the CPU cache
usage. As we stated in Section I, we defined two classes of
functions, CI and CS:

• CS for functions sensitive to cache contention. These are
functions for which cache contention has a substantial
impact on their execution time. Their data fits in the LLC
cache and they perform very few cache misses.

• CI for functions insensitive to cache contention. In this
class, we distinguish two types of functions: those whose
data do not fit in the cache and thus pollute neighboring
workloads (cache-thrashing functions), and those that use
little cache and are thus not affected by cache contention.

It is important to note that a function can be CI or CS
depending on the input data. The class of a function is defined

accordilying with an input data. These two classes will be
useful for allocating cache ways.

The goal of the profiler is twofold: (1) to build a model that
can predict the number of cache ways required by a function
with a given input data, and (2) to build a model that can
specify whether a function is CI or CS. Regarding the first
goal, the profiler builds a ML model from prior executions of
the function with diverse datasets on a dedicated server. We
call this function profiling. The function profiling is performed
once and should be carried out on a free server to avoid cache
contention. We assume that generally a function is invoked
frequently and over a long time period. Hence, the cost of
profiling is minimal compared to the long term gain. In CASY,
we assume that whenever a function is registered, the client
may either provide a test dataset on which we can train and
build the model, or provide the type of input data in order
for CASY to generate the needed data. We observed from our
results and from previous work [7] that the input file size
is a sufficient property to capture the CPU cache behavior
of a function. The function profiling is performed following
Listing 1. It involves executing the function with various file
sizes (lines 12 and 13 of Listing 1) while reducing the number
of allocated cache ways (lines 11 and 12). The aim is to
identify, for each file size, the minimal number of ways that
allows obtaining the same level of performance as when the
function has full access to the cache (line 5). To this end,
we define a threshold (5% in our article) which represents
the level from which we consider that there is an impact on
the execution time. For a function with a given input file, we
progressively reduce the number of allocated cache ways and
define the lowest number of cache ways possible while staying
below the performance threshold. In line 14 we compute the
degradation (named ∆ in the listing) that we compare with
our threshold in line 10

Once this execution step is done, we then have for each
function a pair of values (size, nr), where size is the input
file size and nr is the associated minimal number of cache
ways. Subsequently, we use this value pairs to construct an ML
model. Our ML model uses the file size as an input variable
and returns the number of cache ways.

The second goal of the profiler is to build a model that can
predict the class of a function based on the input data size.
In order to do this, the profiler uses the cache sensitivity of a

Algorithm 1 Function profiling algorithm
1: func ← GETFUNCTION()
2: Lfiles ← GETINPUTFILELIST()
3: Nways ← GETMAXWAYS()
4: for file in Lfiles do
5: ALLOCATE(Nways)
6: ∆ ← 0
7: TRef ← GETEXECTIME(func, file)
8: size ← SIZEOF(file)
9: nb ← Nways + 1

10: while ∆ < Threshold and nb > 1 do
11: nb ← nb - 1
12: ALLOCATE(nb)
13: Tact ← GETEXECTIME(func, file)
14: ∆ ← TRef−Tact

TRef
× 100

15: end while
16: SETNBWAYS(size, nb+ 1)
17: end for

clos 0

clos 1

clos 2

clos 3

clos 4

clos 5

clos 6

clos 7

w
ay 1

w
ay 2

w
ay 3

w
ay 4

w
ay 5

w
ay 6

w
ay 7

w
ay 8

w
ay 9

w
ay 1

0

w
ay

 11

CI clos

CS clos

Default clos

Fig. 4. An example of a 8-CLOS configuration with a 11-way CPU.

function. We define the sensitivity S of a function f with a
particular input data d as the performance degradation when
the function has full access to the entire LLC compared to
when it has access to only one way of the cache. Equation 1
presents the formula for S with T

Nways

f(d) and T 1
f(d) being the

execution time with the full LLC and a single cache way
respectively.

Sf(d) =
TNmax

f(d) − T 1
f(d)

TNmax

f(d)

× 100 (1)

A function is said to be CI if its sensitivity is above a threshold
(we consider 5% to be a fairly significant degradation). For
each function, the results from different runs with various data
are used to build an ML model which will take as entry the
size of the data and classify them as CI or CS.

C. CASY Cache allocator

As we mentioned in Section II, the CPU architecture has a
fixed number of CLOS that can be set and number of LLC
ways that can be assigned. Consequently, it is important to
properly set up these CLOSes. On all servers, we statically

setup the CLOS configuration and associated cache ways. We
split our LLC into two chunks: one for the CI functions and
another for the CS functions. Let’s call Nways the total number
of cache ways available for a CPU and NCLOS the number of
CLOS that can be set. We split Nways into two chunks: NCI

and NCS where Nways = NCI + NCS . This setup aims at
keeping the CI functions and the CS functions separate in order
to reduce the cache contention. The rest of the configuration
deals with assigning ways to CLOS.

• For the NCI ways, they are set to single-way CLOS.
Since these functions are not impacted by the number of
allocated cache ways, their execution environments will
be configured with a single way.

• For the NCS ways, we configure the associated CLOS
following two rules: (1) the cache ways will be allocated
to the smallest possible number of CLOS and (2) the
CLOS will span as many as possible combinations with
the available ways.

• Finally, a default CLOS, which contains all cache ways,
will be defined for functions that do not have ML models.

To illustrate this, let’s consider an 11-way LLC for a CPU
architecture on which we can configure 8 CLOSes as shown
in Fig 4. Thus, if we decide to set three ways for CI functions
and eight for CS functions, we obtain the configuration shown
in Fig 4. Each CLOS for CI functions has a single way (see
Fig 4). As for the CLOS for CS functions, we have eight
remaining available cache ways. We configure the CLOS from
two to eight ways, where one way is used in a maximum of
three CLOSes. Finally, the CLOS 7 (the default CLOS) which
includes all cache ways will be used for functions not having
ML models.

The allocation of CLOSes to functions is done based on
the load on the CLOS and also the predicted number of ways
required for the function. Before presenting the allocation
heuristic, it is important to define three metrics: the weight
of a function, the load on a cache way and the load on a
CLOS. We define the weight of a function f with data d with
respect to a CLOS of NCOS ways in Equation 2. Pf(d) is the
number of ways that is provided by the predictor.

Wf(d) =
Pf(d)

NCOS
(2)

The load on a cache way is defined as the sum of all the
function weights that use this way. Equation 3 presents the
formula for calculating the load on a way.

Lway =

nbFunc∑
n=1

Wfi(d) (3)

The load of a CLOS is defined in Equation 4 and is the sum
of the loads of cache ways assigned to the CLOS.

LCOS =

nbWay∑
n=1

Lwayi (4)

Listing 2 presents our allocation heuristic. Each time a func-
tion is invoked, the scheduler queries the predictor, indicating
the function and the data size. Two cases are then possible:

• the models associated with the function are not available,
so the execution environment is simply set to the default
CLOS (line 5);

• the models exist and the predictor provides the number
of ways needed and the function class (line 3). This is the
interesting case that we detail in the following paragraph.

If the function is a CI, then its execution environment will
be configured with a CLOS that is dedicated to these functions
(line 9); otherwise, we use the CLOSes that are reserved for
CS (lines 11). We then compute the potential new load on
all cache ways with the new function weights (line 14), and
sort the list of CLOSes according to this new potential loads
(line 16).We then ensure that if there are several CLOSes with
a load less than 1, then among these CLOSes the one with
the highest load is chosen, to avoid choosing a CLOS with
more ways than necessary (line 18 to 21). If not, the selected
CLOS will be the one with the lowest load (line 23). At the
completion of the function execution, the loads of the CLOS
and ways are updated.

Algorithm 2 Get the appropriate CLOS for a function
1: func ← GETFUNCTION()
2: size ← GETINPUTFILESIZE()
3: Pf , CL ← PREDICTNBWAYS(func , size)
4: if Pf == null then
5: SCLOS = GETDEFAULTCLOS()
6: return SCLOS

7: end if
8: if CL == ”CI” then
9: listclos ← GETCLOSLIST(“CI”)

10: else
11: listclos ← GETCLOSLIST(“CS”)
12: end if
13: listways ← GETALLWAYS(listclos)
14: listways ← ADDLOADWAYS(listways , func , Pf)
15: listclos ← UPDATEALLCLOSLOAD(listclos , listways)
16: listclos ← SORTBYLOAD(listclos)
17: for clos in listclos do ▷ listCLOS is sorted
18: if GETLOAD(clos) ≤ 1 then
19: SCLOS ← clos
20: end if
21: end for
22: if SCLOS== ”Null” then
23: SCLOS ← listclos[0]
24: end if

V. IMPLEMENTATION OF CASY

The main challenge of CASY implementation is to offer
a system that can be easily integrated with FaaS platforms.
That’s why we designed CASY as a standalone system that can
interface with FaaS platforms. CASY is fully implemented in
Python. The rest of this section will focus on the implemen-
tation of the two components of CASY and the integration in
Apache OpenWhisk.

A. CASY ML

This component consists of two features: the profiler and the
predictor. The profiler extracts functions from the registry or
database (Apache CouchDB in the case of Open Whisk) and
executes them with various input data. The profiling is done by
executing functions on a dedicated server, all this offline. We
suppose that a server will be dedicated to function profiling
when needed, or a NUMA node on the server. The profiling
data can be provided by the user or by CASY. CASY currently
has videos and images that can be used to train functions.
Regarding the ML, we used k-NN clustering as model with
scikit-learn library. Given that for the two models to be built
per function, it involved prediction towards discrete universes:
from 1 to the maximum number of ways and the selection
between CI and CS, we selected a supervised learning. It
should be noted that with the ML model (as with almost all
ML models) the more diverse the training data set is, the more
accurate the model will be. The evaluation section shows that
in our case, a relatively small set of training data allows us to
have a good level of accuracy with K-NN.

B. CASY Cache Allocator

This component is responsible for the configuration of
the execution environment. Currently, the implementation that
we have uses Intel pqos tool [16] to configure CLOS and
rdtset [16] to associate a CPU to a CLOS. This library allows
defining CLOS, ways associated with them, and also to link
CPUs to CLOS. Thus, on all servers, we use these libraries to
set up all CLOS and afterward, at function invocation, CASY
cache allocator add the selected CPUs to execute a function
to the CLOS designated by his algorithm. The current version
of CASY allows configuring CLOS for containers.

C. Integration into Apache OpenWhisk

Apache OpenWhisk is a very popular open source FaaS
manager. We describe the integration of CASY on this FaaS
management. Let’s start by introducing the main components
of OpenWhisk:

• a Nginx server which is the entry point for re-
quests/events;

• a controller that translates requests into function invoca-
tions, and includes a load balancer that chooses on which
server the function will be executed. The load balancer
also defines the configuration parameters of the execution
environment, i.e CPU pinning and amount of memory;

• a Kafka server that serves as a communication tool
between the controller and the invokers on servers;

• a CoucheDB (the registry) that contains functions;
The integration of CASY in such a system is quite simple,
as the CASY ML interacts with CoucheDB to extract the
functions, execute them, and save the training data. At the
Controller level, since it is the Load Balancer that decides
and configures the execution environment, we hacked the
invocation communication to know which functions are to be
executed and the input data size. Thus we can use the predictor
to determine the class and the number of required ways. Then,

based on the settings provided by the Load Balancer, i.e the
choice of the CPUs where the container is going to be pinned,
CASY allocator configures the affinity of this CPU with the
CLOS designated by its allocation algorithm.

VI. EVALUATION

In this section, we present the performance evaluation of
CASY. With these evaluations, we plan to answer the following
questions:

• what is the precision of CASY ML module?
• what is the improvement brought by CASY on the exe-

cution time?
• what is the Overhead of CASY?
Therefore, to evaluate CASY we proceeded in two main

steps: The validation of our ML model and the evaluation of
our allocation system.

A. Experimental setup

a) Hardware: We evaluated CASY on a server with the
characteristics described in Table I. The CPU of the server
has CAT and allows the configuration of 8 CLOS. We have
configured the CLOS as in Section IV.

Component Characteristics

CPU

Cores Intel(R) Xeon(R) Silver 4210R CPU
Level 1 cache 20×32KB, 8-ways
Level 2 cache 20×1MB, 16-ways
Level 3 cache Shared, 2×13.75MB, 11-ways

Memory 64 GBytes
Ethernet Intel X710 10GbE
Storage 1.0 TB HDD
OS Ubuntu 20.04.3, Linux kernel 5.4.0

TABLE I
HARDWARE CONFIGURATIONS.

b) Applications: We evaluated CASY using several func-
tions. Table II provides the list of functions used in our
experiments and their descriptions. We used the same deployed
functions as in papers dealing with performance in FaaS [7].

B. Machine Learning model validation

This step consists in verifying our prediction model accu-
racy. For each function specified above (in Table II), we per-
formed training with a set of files, 4 files with characteristics
listed in Table III, and then evaluate the prediction model with
10 different files. Table III presents the size of the files used

Function Description
Blur Takes as input a PNG image file and applies a

blur
Effect Takes as input an audio file in WAV format and

applies a sound effect
Resize Takes a high resolution video and return a lower

resolution video
Speech Recognition Takes an audio file and performs voice recogni-

tions

TABLE II
FUNCTION DESCRIPTIONS.

for each function as well as the number of ways detected as
required by our profiling algorithm for these various sizes. We
can observe that Effect and Resize functions always require
1 cache way. They are CI functions while Blur and Speech
Recognition have their cache demand varying with the input
file size. More particularly, Blur sees its requirement in the
number of ways increase from 1 to 7 while passing by 4.

Once the models are built the next step is to validate them.
To validate our models, we used the model to predict the
number of ways required with different file sizes and compared
the results to a run with full access to the LLC. Figure 5
presents the obtained results. Each bar plot represents a file
size used and the execution time obtained when the function
has full access to the cache and when it has access to the
amount predicted as needed. The number above each bar
represents the number of ways predicted by the models. We
can observe that for all the functions, the execution times with
CASY and with all the cache are identical. This means that the
number of cache ways predicted as required by CASY seems
to agree with the real needs for the applications. And also,
for all functions, the model has always been able to determine
the class of a function, that is; Blur and Speech Recognition
are CS and Effect and Resize are CI. We can observe a non-
proportionality between some file sizes and the execution time
for blur and speech recognition loads. This can be explained
simply by acknowledging that some large files have a lower
resolution and thus induced a shorter processing time.

Effect Blur
Size # Ways Size # Ways
26 MB 1 124 KB 1
51 MB 1 361 KB 1
76 MB 1 699 KB 4
100 MB 1 1.4 MB 7

Speech Recognition Resize
Size # Ways Size # Ways
40 MB 10 31 MB 1
79 MB 11 61 MB 1
118 MB 11 92 MB 1
157 MB 11 127 MB 1

TABLE III
REQUIERED AMOUNT OF CACHE FOR EACH TRAINING FILE SIZE FOR OUR

BENCHMARKS

C. Allocation evaluation

For the evaluation of our allocation algorithm, it was
necessary to replay execution scenarios of functions from a
datacenter. As we did not have such data, we implemented an
emulator that follows a probability distribution, the Poisson
distribution, to generate execution scenarios. In other words,
we used the Poisson distribution to generate the start time
of functions, and randomly choose the function to execute
and the file to use. The Table IV shows the various input
data sizes used with each function. We also present in the
table the acronym that we use on our figures. Thus, we
used our generator to generate scenarios involving 6, 10
and 20 functions running simultaneously with and without
CASY. Each scenario is executed 10 times and the presented

0.8 0.9 2.0 2.2 2.5 3.3 4.4 4.6 6.4 9.5
Size (MBytes)

0
35
70

105
140
175

Ti
m

e
(s

ec
)

4 4 7 7
7

7
7

7

7
7

Blur

56 61 71 81 91 101 112 122 132 142
Size (MBytes)

0
10
20
30
40
50

Ti
m

e
(s

ec
)

1 1 1 1 1 1 1 1 1 1

Effect

13 28 42 55 68 81 96 109 121 127
Size (MBytes)

0
35
70

105
140
175

Ti
m

e
(s

ec
)

1 1 1 1
1 1 1

1 1 1

Resize

56 61 71 81 91 101 112 122 132 142
Size (MBytes)

0
120
240
360
480
600

Ti
m

e
(s

ec
)

10
11 11

11 11

11 11 11 11

11Speech Recognition

Full Cache CASY

Fig. 5. ML model evaluations with all functions using various input file sizes

results are the average execution time of functions. Fig 6
shows the results for some of these scenarios. Let’s start
our analysis with the execution involving 6 functions (first
row of the figure). We can notice that Blur is the one that
shows an improvement with our solution. This improvement
is about 11% (red circles in the figure). Moreover, we can
also observe that Resize, which is executed with Blur, is
not impacted with CASY. This shows that CASY has been
able to identify that Resize is a CI function and to make an
allocation accordingly. Let’s continue our analysis with the
execution with 10 functions (second row on the figures). We
can notice that the function that has the most impact is still
Blur (7%) followed by Speech Recognition (5%). As we noted
in the previous section, Speech Recognition requires 11 cache
ways which is the total number available on our server. Thus,
the impact of our allocation system remains limited on this
benchmark. Finally, the last scenario is about the execution of
20 functions simultaneously (third row on the figure). We can
see that there are little improvements on the performance for
Blur and Speech Recognition. These improvements are less
than in the scenarios with fewer functions (6 and 10). This is
because the cache is a limited resource and the more they are
functions using the cache, the less the impact on allocating the
cache is perceptible. Nevertheless, we notice that CASY does
not lead to any performance degradation for other functions.

Acronym Configuration
Bl1 Blur with file size 4.6 MB
Bl2 Blur with file size 6.4 MB
Bl3 Blur with file size 9.5 MB
Re1 Resize with file size 37 MBytes
Re2 Resize with file size 67 MBytes
Re3 Resize with file size 127 MBytes
SRe1 Speech Recognition with file size 79 MBytes
Eff1 Effect with file size 100 MBytes

TABLE IV
FUNCTION WITH THE ASSOCIATED FILE SIZES AND ACRONYM

D. Overhead of CASY

The overhead of CASY comes mainly from the profiling,
as prediction and configuration of CLOS consume almost no
resources (CPU and memory). The function profiling process
is the most important overhead of CASY because it requires
running the function on a dedicated server (or on a dedicated
NUMA node on a server) with different file sizes. As afore-
mentioned, we consider that the lifetime of a function is quite
long and a function is most likely invoked several times. Thus,
we consider that this time needed for profiling is compensated
with the benefits that come from the CPU cache allocation.

VII. RELATED WORK

The studies related to our work were mainly carried out in
two areas: optimization of the last level cache management and
improvement of the start-up and execution time of functions
in FaaS environments.

a) Last Level Cache management: Intel’s Cache Alloca-
tion technology has opened the door to many possibilities for
optimizing processor cache management. The vast majority of
recent research targeting the improvement of processor cache
usage relies on this feature. [14] showed the benefits of using
CAT to protect Virtual Network Function (VNF) resources
against “Noisy Neighbor” effects, by deterministically prior-
itizing LLC resources between competing workloads. [17]
proposes dCAT, a dynamic cache management technology to
provide cache isolation with better performance. [18] proposes
CPpf , a prefetch aware LLC partitioning approach for im-
proving LLC management. [19] devises a cache allocation
scheme from an empirical analysis of different operators
and integrate a cache partition mechanism in a commercial
database management system. [20] introduces slice-aware
memory management scheme and proposes CacheDirector, a
network I/O solution that extends Direct Data I/O and places
the packet’s header in the slice of the LLC that is closest
to the relevant processing core. [13] proposes an approach
that automatically builds a prediction model for application

��� ��� ��� ��� ��� ���
�

��

��

���

���

���

�
��

�
��
�
�
�
��

��� ��� ��� ��� ��� ���
�

��

��

���

���

���

��� ��� ��� ��� ��� ���
�

��

��

���

���

���

��� ��� ��� ��� ��� ���
�

��

��

���

���

���

��� ��� ��� ��� ���� ��� ���� ��� ��� ���
�

��

��

���

���

���

�
��

�
��
�
�
�
��

��� ���� ���� ��� ��� ��� ��� ���� ��� ���
�

��

��

���

���

���

��� ��� ���� ��� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ���� ���

�����������

�

��

��

���

���

���

���

���

�
��

�
��
�
�
�
��

������� ����

Fig. 6. Allocation evaluation

performance changes with CAT, and a dynamic cache man-
agement technique that utilizes that prediction model and
intelligently partitions the cache resource to improve appli-
cation throughput. DCAPS [21] dynamically monitors and
predicts a multi programmed workload’s cache demand to
reallocate LLC given a performance target, and explores partial
sharing of a cache partition among programs to achieve cache
allocation at a finer granularity. A family of clustering-based
cache partitioning policies was proposed by [22] to address
fairness using CAT.

b) Reducing the start-up latency and execution time:
To reduce the start-up latency and the execution time of
a function, some works are interested in the start-up time
optimization of the execution environment, while others are
focussing on the scheduling of functions. [23] proposes a
greedy load balancing algorithm optimized for FaaS which
provides higher locality. OpenWhisk [24] also uses an op-
timized load balancing algorithm that considers locality and
container reuse to minimize both startup latency (cold start)
and execution time. [25] implemented three approaches that
reduce the number of cold starts while treating the FaaS
service as a black box. In these approaches, they use the
knowledge on the composition of functions to trigger the
provisioning of new containers before the application process
invokes the respective function. OFC [7] is an elastic in-
memory caching system for FaaS platforms, that estimates the
actual memory resources required by each function invocation
and hoards the remaining capacity to feed the cache, using

machine learning models adjusted for typical function input
data categories. [26] proposes a package-aware scheduling
algorithm that tries to assign functions that require the same
package to the same worker node, thereby increasing the hit
rate of the package cache and, consequently, reducing the start-
up latency of cloud functions. [27] proposes a function startup
technique, which restores snapshots of previously executed
function processes. FaaSRank [28] is a function scheduler
for serverless FaaS platforms based on information moni-
tored from servers and functions, which automatically learns
scheduling policies through experience using reinforcement
learning (RL) and neural networks. [29] proposes guidelines
for orchestrating massively parallel workloads using serverless
functions to reduce overheads. FnSched [30] is a function-level
scheduler designed to minimize provider resource costs while
meeting customer performance requirements, which works by
carefully regulating the resource usage of colocated functions
on each invoker, and autoscaling capacity by concentrating
load on few invokers in response to varying traffic. [31]
proposes a new cluster-level centralized and core-granular
scheduler for serverless functions which improves elasticity
and reduces interference.

c) Position of our work: The innovation of our work
compared to the existing one is that we combine LLC man-
agement with machine learning in a FaaS context. We take
advantage of the fact that FaaS functions are lightweight
environments with coherent cache usage, to classify them
according to their cache usage profile, and thus perform smart

cache allocation.

VIII. CONCLUSION

In this article, we introduced CASY, a solution for enhancing
the CPU cache allocation to functions in a FaaS platform.
CASY leverages ML to build CPU cache usage profiles for
functions according to the input data, and uses CAT to partition
cache. The function profiling is done by executing functions
with various data and on a dedicated server. Once the profiling
is done, CASY uses a classifier to build a model that can predict
the cache requirement of a function according to its input data.
CASY also proposes an algorithm for cache allocation which
allows a balanced spread of the loads on all the cache ways.
CASY is built as a system that can easily be integrated with
FaaS platforms. We evaluated the performance improvement
induced by CASY under multiple different scenarios and
showed that CASY can reduce the execution time of some
functions while maintaining the same execution time for other
functions.

ACKNOWLEDGMENTS

This work is supported by the French Agence nationale de
la recherche under the ANR WalkIn (ANR-20-CE25-0005)
project.

REFERENCES

[1] B. Hayes, “Cloud computing,” 2008.
[2] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary

review of enterprise serverless cloud computing (function-as-a-service)
platforms,” in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 2017, pp. 162–169.

[3] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[4] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th {usenix} symposium on networked
systems design and implementation ({nsdi} 20), 2020, pp. 419–434.

[5] D. Kelly, F. G. Glavin, and E. Barrett, “Serverless computing: Behind
the scenes of major platforms,” CoRR, vol. abs/2012.05600, 2020.
[Online]. Available: https://arxiv.org/abs/2012.05600

[6] M. Sciabarrà, Learning Apache OpenWhisk: Developing Open
Serverless Solutions. O’Reilly Media, 2019. [Online]. Available:
https://books.google.fr/books?id=gEqgDwAAQBAJ

[7] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget,
J. Kouam, R. Lachaize, J. Hwang, T. Wood, D. Hagimont,
N. De Palma, B. Batchakui, and A. Tchana, “Ofc: An opportunistic
caching system for faas platforms,” in Proceedings of the Sixteenth
European Conference on Computer Systems, ser. EuroSys ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
228–244. [Online]. Available: https://doi.org/10.1145/3447786.3456239

[8] A. AWS, “Amazon lambda pricing,” https://aws.amazon.com/lambda/
pricing/, 2021.

[9] A. Fuerst and P. Sharma, “Faascache: Keeping serverless computing
alive with greedy-dual caching,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 386–400.
[Online]. Available: https://doi.org/10.1145/3445814.3446757

[10] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My vm is lighter (and safer) than
your container,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 218–233. [Online]. Available:
https://doi.org/10.1145/3132747.3132763

[11] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez,
J. M. Hellerstein, and A. Tumanov, “Cloudburst: Stateful functions-
as-a-service,” Proc. VLDB Endow., vol. 13, no. 12, p. 2438–2452, jul
2020. [Online]. Available: https://doi.org/10.14778/3407790.3407836

[12] A. J. Smith, Design of CPU cache memories. Computer Science
Division, University of California, 1987.

[13] Y. Kim, A. More, E. Shriver, and T. Rosing, “Application performance
prediction and optimization under cache allocation technology,” in 2019
Design, Automation Test in Europe Conference Exhibition (DATE), 2019,
pp. 1285–1288.

[14] P. Veitch, E. Curley, and T. Kantecki, “Performance evaluation of cache
allocation technology for nfv noisy neighbor mitigation,” in 2017 IEEE
Conference on Network Softwarization (NetSoft), 2017, pp. 1–5.

[15] C. Kaewkasi, Docker for Serverless Applications: Containerize and
orchestrate functions using OpenFaas, OpenWhisk, and Fn. Packt
Publishing Ltd, 2018.

[16] “Intel(r) rdt software package,” https://github.com/intel/intel-cmt-cat/,
last Accessed: Dec 10, 2021.

[17] C. Xu, K. Rajamani, A. Ferreira, W. Felter, J. Rubio, and Y. Li,
“dcat: dynamic cache management for efficient, performance-sensitive
infrastructure-as-a-service,” 04 2018, pp. 1–13.

[18] J. Xiao, A. Pimentel, and X. Liu, “Cppf : a prefetch aware llc partitioning
approach,” 08 2019, pp. 1–10.

[19] S. Noll, J. Teubner, N. May, and A. Böhm, “Accelerating concurrent
workloads with cpu cache partitioning,” 04 2018, pp. 437–448.

[20] A. Farshin, A. Roozbeh, G. Jr, and D. Kostic, “Make the most out of
last level cache in intel processors,” 03 2019.

[21] Y. Xiang, X. Wang, Z. Huang, Z. Wang, Y. Luo, and Z. Wang, “Dcaps:
dynamic cache allocation with partial sharing,” 04 2018, pp. 1–15.

[22] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. Gómez, “Appli-
cation clustering policies to address system fairness with intel’s cache
allocation technology,” 09 2017, pp. 194–205.

[23] Y. Lee and S. Choi, “A greedy load balancing algorithm for faas
platforms,” in 2021 5th International Conference on Cloud and Big
Data Computing (ICCBDC), ser. ICCBDC 2021. New York, NY,
USA: Association for Computing Machinery, 2021, p. 63–69. [Online].
Available: https://doi.org/10.1145/3481646.3481657

[24] “Apache openwhisk is an open source, distributed serverless platform,”
https://openwhisk.apache.org/, last Accessed: Dec 10, 2021.

[25] D. Bermbach, A.-S. Karakaya, and S. Buchholz, “Using application
knowledge to reduce cold starts in faas services,” in Proceedings of the
35th Annual ACM Symposium on Applied Computing, ser. SAC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
134–143. [Online]. Available: https://doi.org/10.1145/3341105.3373909

[26] C. L. Abad, E. F. Boza, and E. van Eyk, “Package-aware scheduling
of faas functions,” in Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 101–106.
[Online]. Available: https://doi.org/10.1145/3185768.3186294

[27] P. Silva, D. Fireman, and T. E. Pereira, “Prebaking functions to warm
the serverless cold start,” in Proceedings of the 21st International
Middleware Conference, ser. Middleware ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1–13. [Online].
Available: https://doi.org/10.1145/3423211.3425682

[28] H. Yu, “Faasrank: A reinforcement learning scheduler for serverless
function-as-a-service platforms,” Ph.D. dissertation, University of Wash-
ington, 2021.

[29] D. Barcelona-Pons, P. Garcı́a-López, A. Ruiz, A. Gómez-Gómez,
G. Parı́s, and M. Sánchez-Artigas, “Faas orchestration of parallel
workloads,” in Proceedings of the 5th International Workshop on
Serverless Computing, ser. WOSC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 25–30. [Online].
Available: https://doi.org/10.1145/3366623.3368137

[30] A. Suresh and A. Gandhi, “Fnsched: An efficient scheduler for
serverless functions,” in Proceedings of the 5th International Workshop
on Serverless Computing, ser. WOSC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 19–24. [Online].
Available: https://doi.org/10.1145/3366623.3368136

[31] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Centralized core-
granular scheduling for serverless functions,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SoCC ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 158–164.
[Online]. Available: https://doi.org/10.1145/3357223.3362709

https://arxiv.org/abs/2012.05600
https://books.google.fr/books?id=gEqgDwAAQBAJ
https://doi.org/10.1145/3447786.3456239
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.14778/3407790.3407836
https://github.com/intel/intel-cmt-cat/
https://doi.org/10.1145/3481646.3481657
https://openwhisk.apache.org/
https://doi.org/10.1145/3341105.3373909
https://doi.org/10.1145/3185768.3186294
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1145/3366623.3368137
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1145/3357223.3362709

	Introduction
	Background
	FaaS: Function-as-a-Service
	CAT: Cache Allocation Technology

	Motivation
	Contribution
	Overview
	CASY ML
	CASY Cache allocator

	Implementation of CASY
	CASY ML
	CASY Cache Allocator
	Integration into Apache OpenWhisk

	Evaluation
	Experimental setup
	Machine Learning model validation
	Allocation evaluation
	Overhead of CASY

	Related Work
	Conclusion
	References

