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ABSTRACT

The bending and free vibration of porous functionally graded (PFG) beams resting on elastic foundations are ana-
lyzed. The material features of the PFG beam are assumed to vary continuously through the thickness according
to the volume fraction of components. The foundation medium is also considered to be linear, homogeneous, and
isotropic, and modeled using the Winkler-Pasternak law. The hyperbolic shear deformation theory is applied for
the kinematic relations, and the equations of motion are obtained using the Hamilton’s principle. An analytical
solution is presented accordingly, assuming that the PFG beam is simply supported. Comparisons with the open
literature are implemented to verify the validity of such a formulation. The effects of the elastic foundations, por-
osity volume percentage and span-to-depth ratio are finally discussed in detail.
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Nomenclature
k Volume fraction index
α Porosity volume fraction
KW Transverse coefficient of the foundation
KP Shear stiffness coefficient of the foundation
w Non-dimensional transverse displacement
rx Non-dimensional axial stress
sxz Non-dimensional transverse shear stress
x Non-dimensional natural frequencies

1 Introduction

Nowadays functionally graded materials (FGMs) are an alternative materials widely used in aerospace,
nuclear, automotive civil, biomechanical, mechanical, electronic, chemical, and shipbuilding industries.
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FGMs have been proposed, developed and successfully used in industrial applications since 1980’s [1].
FGMs are microscopically inhomogeneous and spatial composite materials which are usually composed
of two different materials such as a pair of ceramic-metal.

Several studies have been performed to analyze the mechanical responses of FG structures. Simsek et al.
[2] have investigated the free and forced vibration characteristics of an FG Euler–Bernoulli beam under a
moving harmonic load. Hu et al. [3] presented a parametric study on vibration and stability behavior of
the functionally graded ceramic-metal plate subjected to in-plane excitation. Akbaş [4] studied the wave
propagation of a functionally graded beam in thermal environments.

In FGM fabrication, micro voids or porosities can occur within the materials during the process of
sintering. This is because of the large difference in solidification temperatures between material
constituents [5]. Recently, Wattanasakulpong et al. [6] studied linear and nonlinear vibration problems of
elastically end restrained FG beams having porosities. Beg et al. [7] investigated exact third-order static
and free vibration analyses of functionally graded porous curved beam.

Structures resting on an elastic foundation are used in a variety of fields, including missile and rocket
launchers in the military and aerospace industries, various applications in technology, civil and
mechanical engineering, industry. Therefore, it is critical to include the superstructure-foundation-soil
interaction in modern structural design and analysis for the applications to be adequately served.

In the years that followed, scientists experimented with different soil continuity factors to make the
Winkler foundation model more realistic One of these models is the Winkler-Pasternak type foundation
model with two parameters which includes shearing layer and Winkler layer has been the most widely
utilized of these models [8]. The examination of bending and vibration of perfect/imperfect FG beams
resting the elastic foundation is still an attractive topic for scientists.

According to the preceding literature review, while numerous researchers have been performed for
mechanical behaviors of FG structures with or without elastic foundations, the number of studies on the
bending and free vibration of FG beams including the effects of two-parameter elastic foundations and
porosity simultaneously is still limited. Hence, the current study attempts to address the banding and free
vibration of imperfect FG beams resting on two-parameter elastic foundations. The impacts of the two-
parameter elastic foundation, porosity volume fraction, type of porosity models, and and span-to-depth
ratio, on the bending and fundamental natural frequency of the beams, are investigated in detail.

2 Refined Beam Theory for Functionally Graded Beams

2.1 Preliminary Concepts and Definitions
Consider a functionally graded beam with length L and rectangular cross section b × h, with b being the

width and h being the height as shown in Fig. 1. The beam is made of isotropic material with material
properties varying smoothly in the thickness direction.

2.2 Material Properties
Beam’s material is made from metal with a volume fraction Vm(z) and from ceramic with a volume

fraction Vc(z). The volume fraction of ingredient materials is distributed as the equations below:

VcðzÞ ¼ z

h
þ 1

2

� �k

; VmðzÞ ¼ 1� VcðzÞ; (1)
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where k is volume fraction index 0 ≤ k ≤ ∞. In case k = 0, the beam is made entirely from ceramic. When k =∞
the beam made completely from metal. Coefficient k defines the material distribution of the structure.

The characteristic of material made beams are written

PðzÞ ¼ ðPc � PmÞ z

h
þ 1

2

� �k

þPm � Ppor (2)

In this study, two types of porosity are considered, some of them present an evenly distribution (called
hereafter Imperfect I), whereas the other one are characterized by an unevenly distribution (Imperfect II),
along the beam thickness direction (Fig. 2).

Figure 1: FGM Beam resting on a two parameters elastic foundation

Figure 2: Porosity models: (a) Evenly distributed porosities, (b) Unevenly distributed porosities

The various expressions of the porosity distribution are presented in the following equations:

Imperfect-I:

Ppor ¼ a
2
ðPc þ PmÞ (3)

Imperfect-II:

Ppor ¼ a
2

1� 2jzj
h

� �
ðPc þ PmÞ (4)

The material properties of FGM porous beam such as the elastic modulus E, the thermal expansion
coefficient β, and mass density ρ can be written, for the various porosity distribution models, as follows:

Imperfect-I:

EðzÞ
bðzÞ
qðzÞ

2
4

3
5 ¼

Ecm

bcm
qcm

2
4

3
5 z

h
þ 1

2

� �k

þ
Em

bm
qm

2
4

3
5� a

2

Ec þ Em

bc þ bm
qc þ qm

2
4

3
5 (5a)
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Imperfect-II:

EðzÞ
bðzÞ
qðzÞ

2
4

3
5 ¼

Ecm

bcm
qcm

2
4

3
5 z

h
þ 1

2

� �k

þ
Em

bm
qm

2
4

3
5� a

2
1� 2

jzj
h

� � Ec þ Em

bc þ bm
qc þ qm

2
4

3
5 (5b)

where

Ecm = Ec − Em, βcm = βc − βm, ρcm = ρc − ρm and the Poisson ratio ν(z) is assumed to be constant ν(z) = ν.

2.3 Kinematics and Constitutive Equations
The assumed displacement field is as follows:

uðx; z; tÞ ¼ u0ðx; tÞ � z
@wb

@x
� f ðzÞ @ws

@x
(6a)

wðx; z; tÞ ¼ wbðx; tÞ þ wsðx; tÞ (6b)

The strains associated with the displacements in Eqs. (6a) and (6b) are

ex ¼ e0x þ zkbx þ f ðzÞ ksx (7a)

cxz ¼ gðzÞ csxz (7b)

where

e0x ¼
@u0
@x

; kbx ¼ � @2wb

@x2
; ksx ¼ � @2ws

@x2
; csxz ¼

@ws

@x
(7c)

f ðzÞ ¼ h sinh
z

h

� �
� z cosh

1

2

� �
� 1

� �
; gðzÞ ¼ 1� df ðzÞ

dz
(7d)

By assuming that the material of FG beam obeys Hooke’s law, the stresses in the beam become

rx ¼ Q11ðzÞex and sxz ¼ Q55ðzÞcxz (8a)

where

Q11ðzÞ ¼ EðzÞ andQ55ðzÞ ¼ EðzÞ
2ð1þ mÞ (8b)

2.4 Equations of Motion
Hamilton’s principle is used herein to derive the equations of motion. The principle can be stated in

analytical form as [9]

Zt2
t1

ðdU þ dUef þ dV � dKÞdt ¼ 0 (9)

where t is the time; t1 and t2 are the initial and end time, respectively; δU is the virtual variation of the strain
energy; δUef the potential energy of elastic foundation; δV is the variation of work done by external forces;
and δK is the virtual variation of the kinetic energy. The variation of the strain energy of the beam can be
stated as

1046 FDMP, 2023, vol.19, no.4



dU ¼
ZL

0

Zh
2

�h
2

ðrxdex þ sxzdcxzÞdzdx

¼
ZL

0

Nx
ddu0
dx

�Mb
x

d2dwb

dx2
�Ms

x

d2dws

dx2
þ Qxz

ddws

dx

� �
dx

(10)

where Nx, Mb
x , M

s
x and Qxz are the stress resultants defined as

ðNx; M
b
x ; M

s
xÞ ¼

Zh
2

�h
2

ð1; z; f ðzÞÞrxdz and Qxz ¼
Z h

2

�h
2

gðzÞsxzdz (11)

The variation of the potential energy of elastic foundation given by

dUef ¼
ZL

0

KW ðwb þ wsÞdðwb þ wsÞ � KP
@2ðwb þ wsÞ

@x2
dðwb þ wsÞ

� �
dx (12)

where KW and KP are the transverse and shear stiffness coefficients of the foundation, respectively.

The variation of work done by externally transverse load q can be expressed as

dV ¼ �
ZL

0

qdðwb þ wsÞdx (13)

The variation of the kinetic energy can be expressed as

dK ¼
ZL

0

Zh
2

�h
2

qðzÞ½ _ud _uþ _wd _w�dznsdx

¼
ZL

0

I0½ _u0d _u0 þ ð _wb þ _wsÞðd _wb þ d _wsÞ� � I1 _u0
dd _wb

dx
þ d _wb

dx
d _u0

� ��

þ I2
d _wb

dx

dd _wb

dx

� �
� J1 _u0

dd _ws

dx
þ d _ws

dx
d _u0

� �
þ K2

d _ws

dx

dd _ws

dx

� �

þJ2
d _wb

dx

dd _ws

dx
þ d _ws

dx

dd _wb

dx

� �	
dx

(14)

where dot-superscript convention indicates the differentiation with respect to the time variable t; ρ(z) is the
mass density; and (I0, I1, J1, I2, J2, K2) are the mass inertias defined as

ðI0; I1; J1; I2; J2; K2Þ ¼
Zh

2

�h
2

ð1; z; f ; z2; zf ; f 2ÞqðzÞdz (15)
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Substituting the expressions for δU, δUef, δV and δT from Eqs. (10), (12)−(14) into Eq. (9) and
integrating the displacement gradients by parts and setting the coefficients of δu0, δwb and δws to zero
separately, the following equations of motion are obtained:

du0:
dNx

dx
¼ I0€u0 � I1

d€wb

dx
� J1

d€ws

dx
(16a)

dwb:
d2Mb

dx2
þ qþ KP

d2ðwb þ wsÞ
dx2

� �
� KW ðwb þ wsÞ ¼ I0ð€wb þ €wsÞ þ I1

d€u0
dx

� I2
d2€wb

dx2
� J2

d2€ws

dx2
(16b)

dws:
d2Ms

dx2
þ dQxz

dx
þ qþ KP

d2ðwb þ wsÞ
dx2

� �
� KW ðwb þ wsÞ ¼ I0ð€wb þ €wsÞ þ J1

d€u0
dx

� J2
d2€wb

dx2
� K2

d2€ws

dx2
(16c)

Introducing Eq. (11) into Eqs. (16a)–(16c), the equations of motion can be expressed in terms of
displacements (u0, wb,ws) and the appropriate equations take the form

A11
@2u0
@x2

� B11
@3wb

@x3
� Bs

11

@3ws

@x3
¼ I0€u0 � I1

d€wb

dx
� J1

d€ws

dx
(17a)

B11
@3u0
@x3

� D11
@4wb

@x4
� Ds

11

@4ws

@x4
þ qþ KP

d2ðwb þ wsÞ
dx2

� �
� KW ðwb þ wsÞ

¼ I0ð€wb þ €wsÞ þ I1
d€u0
dx

� I2
d2€wb

dx2
� J2

d2€ws

dx2

(17b)

Bs
11

@3u0
@x3

� Ds
11

@4wb

@x4
� Hs

11

@4ws

@x4
þ As

55

@2ws

@x2
þ qþ KP

d2ðwb þ wsÞ
dx2

� �
� KW ðwb þ wsÞ

¼ I0ð€wb þ €wsÞ þ J1
d€u0
dx

� J2
d2€wb

dx2
� K2

d2€ws

dx2

(17c)

where A11, D11, etc., are the beam stiffness, defined by

ðAij; A
s
ij; Bij; Dij; B

s
ij; D

s
ij; H

s
ijÞ ¼

Zh
2

�h
2

Qijð1; g2ðzÞ; z; z2; f ðzÞ; zf ðzÞ; f 2ðzÞÞdz (18)

3 Analytical Solution

Navier-type analytical solutions are obtained for the bending and free vibration analysis of functionally
graded beams resting on two parameter elastic foundation. According to the Navier-type solution technique,
the unknown displacement variables are expanded in a Fourier series as given below:

u0
wb

ws

8<
:

9=
; ¼

X1
m¼1

Um cosðkxÞeixt
Wbm sinðkxÞeixt
Wsm sinðkxÞeixt

8<
:

9=
; (19)

where Um, Wbm, and Wsm are arbitrary parameters to be determined, ω is the eigenfrequency associated with
mth eigenmode, and λ =mπ/L.

The transverse load q is also expanded in Fourier series as

qðxÞ ¼
X1

m¼1;3;5

Qm sin kx (20)
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where Qm is the load amplitude calculated from

Qm ¼ 2

L

ZL

0

qðxÞ sinðkxÞdx (21)

The coefficients Qm are given below for some typical loads. For the case of a sinusoidally distributed
load, we have

m ¼ 1 andQ1 ¼ q0 (22)

Substituting Eqs. (19) and (20) into Eq. (17), the analytical solutions can be obtained by the eigenvalue
equations below, for any fixed value of m.

For free vibration problem:

ð½K� � x2½M �ÞfDg ¼ f0g (23a)

For static problems, we obtain the following operator equation:

½K�fDg ¼ fFg (23b)

where

½K� ¼
a11 a12 a13
a12 a22 a23
a13 a23 a33

2
4

3
5; (24a)

½M � ¼
m11 m12 m13

m12 m22 m23

m13 m23 m33

2
4

3
5; (24b)

and

fDg ¼
Um

Wbm

Wsm

8<
:

9=
;; fFg ¼

0
Qm

Qm

8<
:

9=
; (24c)

with

a11 ¼ A11a
2; a12 ¼ �B11a

3;

a13 ¼ �Bs
11a

3; a22 ¼ D11a
4 þ Kw þ Kpa

2;

a23 ¼ Ds
11a

4 þ Kw þ Kpa
2; (25a)

a23 ¼ Hs
11a

4 þ As
55a

2 þ Kw þ Kpa
2

m11 ¼ I0; m12 ¼ � I1a;

m13 ¼ �J1a; m22 ¼ I0 þ I2a
2; (25b)

m23 ¼ I0 þ J2a
2;

m33 ¼ I0 þ K2a
2
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4 Results and Discussion

This section looks at the current situation using numerical examples. The imperfect/perfect FG beams on
elastic foundations supposed to be composed of Al (metal) and Al2O3 (ceramic). (ceramic The material
properties are taken to be Em = 70 GPa; ν = 0.3; ρm = 2702 kg/m3; Ec = 380 GPa; ν = 0.3; ρc = 3960 kg/m3

and the subsequent non-dimensional forms are used

w ¼ 100
Emh3

q0L4
w

L

2

� �
; rx ¼ h

q0L
rx

L

2
;
h

2

� �
; sxz ¼ h

q0L
sxzð0; 0Þ; x ¼ xL2

h

ffiffiffiffiffiffi
qm
Em

r

Finally, the non-dimensional elastic foundation parameters are: nw ¼ Kwl2

Emh
; np ¼ Kp

Emh
.

Note that ξw = ξp = 0, ξw = 0.1, ξp = 0 and ξw = ξp = 0.1 represents the foundationless case, Winkler
foundation case and Winkler-Pasternak foundation case, α = 0 indicates perfect FG beams and α = 0.1 and
0.2 indicate imperfect FG beams, respectively.

Example 1: To begin, comparison is done to establish the existing formulations’ validity. For this
aim, the results for perfect FG beam with and without elastic foundation are compared those of references
[10–12]. Table 1 reveals that present findings are consistent with those previously reported. Here aspect
ratios is taken to be L/h = 5 and 20.

Table 1: Non-dimensional displacements and stresses of functionally graded beam resting on two parameter
elastic foundation and subjected to sinusoidal load

k ξw ξp Theory L/h = 5 L/h = 20

�w �rx �sxz �w �rx �sxz
0 0 0 Present 2.5019 3.0913 0.4755 2.2839 12.171 0.4760

Sayyad et al. [10] 2.5019 3.0922 0.4800 2.2839 12.171 0.4806

Reddy [11] 2.5020 3.0916 0.4769 2.2838 12.171 0.4774

Timoshenko [12] 2.0523 3.0396 0.2653 2.2839 12.158 0.2653

0.1 0 Present 2.3547 2.9093 0.4475 1.1935 6.3607 0.2488

Sayyad et al. [10] 2.3547 2.9102 0.4517 1.1935 6.3608 0.2511

Reddy [11] 2.3547 2.9096 0.4488 1.1935 6.3606 0.2495

Timoshenko [12] 2.3205 2.8607 0.2499 1.1929 6.3539 0.1387

0.1 0.1 Present 1.4894 1.8402 0.2830 0.2089 1.1136 0.0436

Sayyad et al. [10] 1.4894 1.8407 0.2857 0.2090 1.1136 0.0440

Reddy [11] 1.4894 1.8403 0.2839 0.2090 1.1136 0.0437

Timoshenko [12] 1.4756 1.8093 0.1589 0.2089 1.1124 0.0243

1 0 0 Present 4.9458 4.7851 0.4755 4.5774 18.814 0.4760

Sayyad et al. [10] 4.9441 4.7867 0.5248 4.5774 18.814 0.5245

Reddy [11] 4.9458 4.7857 0.5243 4.5773 18.813 0.5249

Timoshenko [12] 4.8807 4.6979 0.5376 4.5734 18.792 0.5376

0.1 0 Present 4.4015 4.2586 0.4232 1.6169 6.6456 0.1681

Sayyad et al. [10] 4.4015 4.2600 0.4657 1.6169 6.6458 0.1851
(Continued)
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Table 1 (continued)

k ξw ξp Theory L/h = 5 L/h = 20

�w �rx �sxz �w �rx �sxz
Reddy [11] 4.4015 4.2591 0.4666 1.6169 6.6456

Timoshenko [12] 4.3499 4.1871 0.4791 1.6164 6.6418 0.1900

0.1 0.1 Present 2.1100 2.0415 0.2029 0.2189 0.9001 0.0228

Sayyad et al. [10] 2.1100 2.0422 0.2232 0.2190 0.9001 0.0251

Reddy [11] 2.1100 2.0417 0.2237 0.2190 0.9001 0.0251

Timoshenko [12] 2.0981 2.0195 0.2311 0.2190 0.8998 0.0257

5 0 0 Present 7.7715 6.6047 0.3840 6.9539 25.794 0.3847

Sayyad et al. [10] 7.7739 6.6079 0.5274 6.9541 25.795 0.5313

Reddy [11] 7.7723 6.6057 0.5314 6.9540 25.794 0.5323

Timoshenko [12] 7.5056 6.4382 0.9942 6.9373 25.752 0.9942

0.1 0 Present 6.5072 5.5302 0.3216 1.8389 6.8211 0.1017

Sayyad et al. [10] 6.5089 5.5327 0.4416 1.8389 6.8212 0.1397

Reddy [11] 6.5078 5.5310 0.4450 1.8389 6.8211 0.1408

Timoshenko [12] 6.3198 5.4210 0.8371 1.8377 6.8221 0.2634

0.1 0.1 Present 2.4974 2.1224 0.1234 0.2226 0.8258 0.0123

Sayyad et al. [10] 2.4976 2.1231 0.1694 0.2226 0.8258 0.0170

Reddy [11] 2.4975 2.1226 0.1708 0.2226 0.8258 0.0170

Timoshenko [12] 2.4693 2.1181 0.3271 0.2226 0.8264 0.0319

10 0 0 Present 8.6526 7.9069 0.4208 7.6421 30.923 0.4215

Sayyad et al. [10] 8.6539 7.9102 0.4237 7.6422 30.923 0.4263

Reddy [11] 8.6530 7.9080 0.4226 7.6421 30.999 0.4233

Timoshenko [12] 8.3259 7.7189 1.2320 7.6215 30.875 1.2320

0.1 0 Present 7.1138 6.5008 0.3459 1.8838 7.6224 0.1039

Sayyad et al. [10] 7.1147 6.5033 0.3484 1.8838 7.6225 0.1051

Reddy [11] 7.1141 6.5016 0.3474 1.8838 7.5606 0.1043

Timoshenko [12] 6.8914 6.3891 1.0197 1.8825 7.6262 0.3043

0.1 0.1 Present 2.5819 2.3594 0.1256 0.2233 0.9035 0.0123

Sayyad et al. [10] 2.5820 2.3601 0.1264 0.2233 0.9035 0.0125

Reddy [11] 2.5819 2.3596 0.1261 0.2233 0.8934 0.0124

Timoshenko [12] 2.5520 2.3660 0.3776 0.2233 0.9045 0.0361
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Example 2: In order to explicitly understand the porosity effect on the bending behavior of FG beams,
Fig. 3 shows variations of the nondimensional axial normal stress rx of FG perfect and imperfect beams
across the depth under sinusoidal load at a constant value of span-to-depth ratio (L/h = 5). From this
figure, it can be concluded that the influence of the porosity on the bending of imperfect beams with even
porosities distribution (Imperfect-I) and uneven porosities distribution (Imperfect-II) is very clear. The
stresses are tensile at the top surface and compressive at the bottom surface and take the maximum and
the minimum values for the even porosities distribution (Imperfect-I), respectively.

Fig. 4 shows the distribution of the shear stresses of embedded perfect and imperfect FG beams across
the depth under sinusoidal load. The volume fraction exponent of the FG beam in taken as k = 1. It is clear
that the distributions are not parabolic and the stresses increase for the imperfect FG beam. The even
porosities distribution (Imperfect-I) gives the highest value of shear stress compared to other distributions
of porosity.

Example 3: Table 2 shows the variations of the fundamental frequencies of perfect and imperfect FG
beams with and without elastic foundations vs. varying volume fraction index, k. Here aspect ratios is

Figure 3: Variation of nondimensional axial normal stress rxðl=2; zÞ of embedded perfect and imperfect FG
beams across the depth

Figure 4: Variation of nondimensional transverse shear stress sxzð0; zÞ of embedded perfect and imperfect
FG beams across the depth of FG beams
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taken to be L/h = 5 and 20. The present results are compared with those presented by Sayyad et al. [10]. The
examination of Table 2 reveals that the frequencies obtained using the present theory are in excellent
agreement with the previously published results. It is observed that an increase in the value of the k index
leads to a reduction of fundamental frequencies and a decrease in the value of elasticity modulud. Also, it
is observed that the natural frequencies are increased when beam is resting on two parameters elastic
foundation.

Fig. 5 illustrates the variation of the fundamental frequency x of embedded perfect and imperfect FG
beams vs. L/h ratio with α = 0.2. It can be also seen that the span-to-depth ratio L/h has a considerable
effect on the non-dimensional fundamental natural frequency x where this latter is reduced with
decreasing L/h. This dependence is related to the effect of shear deformation.

Table 2: Comparisons of the fundamental frequency parameter of functionally graded beams resting on
elastic foundation

k

L/h ξw ξp Theory 0 1 2 5 10 ∞

5 0 0 Present 5.1527 3.9904 3.6265 3.4014 3.2817 2.6773

Sayyad et al. [10] 5.1453 3.9826 3.6184 3.3917 3.2727 2.6734

0.1 0 Present 5.3114 4.2299 3.9047 3.7170 3.6192 3.0987

Sayyad et al. [10] 5.3038 4.2216 3.8961 3.7066 3.6094 3.0942

0.1 0.1 Present 6.6783 6.1088 5.9935 5.9983 6.0059 5.7979

Sayyad et al. [10] 6.6689 6.0973 5.9810 5.9830 5.9909 5.7903

20 0 0 Present 5.4603 4.2051 3.8361 3.6485 3.5389 2.8371

Sayyad et al. [10] 5.4603 4.2050 3.8361 3.6484 3.5389 2.8371

0.1 0 Present 7.5533 7.0752 7.0185 7.0949 7.1280 6.9259

Sayyad et al. [10] 7.5533 7.0751 7.0184 7.0948 7.1279 6.9259

0.1 0.1 Present 18.052 19.224 19.753 20.390 20.704 21.022

Sayyad et al. [10] 18.052 19.224 19.752 20.390 20.703 21.022

Figure 5: Variation of the fundamental frequency x of embedded perfect and imperfect FG beams vs. L/h
ratio
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5 Conclusions

In the present work, bending and free vibration of imperfect FG beams resting on two-parameter elastic
foundations was investigated. To accomplish this, the material properties of the beam are assumed to change
continuously along the thickness direction based on the volume fraction of constituents defined by the
modified rule of the mixture. In addition, to describe the elastic foundation’s response on the imperfect
FG beam, the foundation medium is assumed to be linear, homogenous, and isotropic, and it has been
modeled using the Winkler-Pasternak model with two parameters. Moreover, in the kinematic relationship
of the imperfect FG beam resting on a two-parameter elastic foundation, hyperbolic shear deformation
theory is used, and the equations of motion are derived using Hamilton’s principle. For the bending and
free vibration analysis of imperfect FG beams resting on a two-parameter elastic foundation with simply
supported edges, an analytical solution is obtained. The impacts of the two-parameter elastic foundation,
porosity volume fraction, type of porosity models, and aspect ratio, on the bending and fundamental
natural frequency of the beams, are investigated in detail. Finally, it is concluded that the types of
adopted, two-parameter elastic foundation porosity model, porosity volume fraction, aspect ratio, plays
significant role on the bending and free vibration of the FG beams. The negative effects of porosity may
be reduced by adopting suitable values for said parameters, considerably.
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