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Abstract

Diffusion processes with small noise conditioned to reach a target set are
considered. The AMS algorithm is a Monte Carlo method that is used to sam-
ple such rare events by iteratively simulating clones of the process and select-
ing trajectories that have reached the highest value of a so-called importance
function. In this paper, the large sample size relative variance of the AMS
small probability estimator is considered. The main result is a large devia-
tions logarithmic equivalent of the latter in the small noise asymptotics, which
is rigorously derived. It is given as a maximisation problem explicit in terms
of the quasi-potential cost function associated with the underlying small noise
large deviations. Necessary and sufficient geometric conditions ensuring the
vanishing of the obtained quantity (’weak’ asymptotic efficiency) are provided.
Interpretations and practical consequences are discussed.
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1 Introduction

Let Xε = (Xε
t )t>0 denotes a diffusion process with small noise parameter ε > 0

and initial condition X0 = x0. We are interested in this paper with the sim-
ulation of rare events of the form {τB(Xε) < τA(Xε)} where τB(x) generically
denotes the first hitting time of a set B ⊂ E by the trajectory x. In the
present work, the ’target’ set B is defined as the level-set B = {ξ > lB} =
{x ∈ E | ξ(x) > lB} of a continuous function ξ : E → R, and the reference set
A typically contains the attractors of the deterministic dynamics (X0

t )t>0, and,
as such is a recurrent set for the process.

Such problems are of primary interest in different fields within computa-
tional physics. Notable recent examples include molecular simulation ([29, 36]),
neutron transport ([30]), and climate forecast ([33, 28]). In the latter refer-
ences, the Monte Carlo methods chosen to perform the rare event simulation
are Importance Splitting (a.k.a. Multilevel Splitting) type methods with N
clones (’fixed effort’ algorithms), and are identical or minor variants of the al-
gorithms studied in the present paper. Those algorithms can also be interpreted
as Sequential Monte Carlo samplers as studied in [16], whose structure is de-
fined by a Feynman-Kac model, leading to unbiased estimates of the rare event
probability, as studied by P. Del Moral in [15] for instance.

The general idea of Importance Splitting, is to simulate N clones

X(1,j), . . . ,X(N,j)

using the dynamics of Xε in a sequential way, j denoting the iteration param-
eter. At each iteration, the considered algorithm discard trajectories far away
from the target set {ξ > lB}, and then do split (or branch/duplicate/clone) the
trajectories heading closer to {ξ > lB}. In order to quantify the closeness to
the target set those methods critically rely on the specific choice of the impor-
tance function (also called reaction coordinate) ξ : E → R on {ξ < lB}, the rare
of event of interest depending only on the target set B = {ξ > lB}. As one
may know only very little about the typical trajectories reaching B, the specific
choice of ξ is usually based on intuitions or loose qualitative knowledge. It is
now accepted that this choice is the main bottleneck parameter of the efficiency
of those Monte Carlo methods. An optimal theoretical choice of ξ is given by
the so called committor function defined by

ξε∗(x) = ε logPx(τB(Xε) < τA(Xε)),

together with lB = 0. The latter choice, which is in most cases unknown and
thus practically infeasible, yields an estimator of the rare event probability
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with an explicit Poisson distribution and with minimal variance (see e.g. Sec-
tion 2.2.3 in [3]). We will also use the limiting small noise committor function
defined by ξ∗(x) = limε→0 ξ

ε
∗(x), that will be equal (under our technical as-

sumptions) to ξ∗(x) = U(x,B) where U is the subsequently defined two-points
quasi-potential function.

The main variant we will consider in this work is the so-called Adaptive
Multilevel Splitting (AMS) algorithm. The latter can be seen as a limit of a
somehow simpler variant – that we will call the Fixed Multilevel Splitting (FMS)
method – which is an instance of Sequential Monte-Carlo (SMC) sampling.
AMS and FMS are detailed in Section 3.2 below. In each iteration of the AMS
algorithm, the least performing clone, in terms of the maximum denoted L of
the importance function ξ along its trajectory, is discarded; it is then replaced
by the duplicate of one of the other trajectories, chosen uniformly among the
N − 1 survivors. The duplication is kept identical from the initial condition up
until the first hitting time τL of the level set {ξ > L}, and the duplicated clone
is then redrawn independently after τL using the dynamics of Xε.

Introducing the notation τl(x)
def.
= τ{ξ>l}(x), the estimator of the rare event

probability associated with level l,

pεl
def.
= P [τl(X

ε) < τA(Xε)] ,

is given by

pNl,ams
def.
= (1− 1/N)I

N
l

where INl is the random number of iterations required so that all clones have
reached the target set {ξ > l}. The estimator pNl,ams (as well as other non-

normalized estimators) is unbiased E
[
pNl,ams

]
= pεl (see [7, 2]). The empirical

distribution of clones at iteration INl

ηN,path
l =

1

N

N∑
n=1

δ
X(n,INl ) ,

consistently estimates the conditional distribution

ηN,path
l

P−−−−−→
N→+∞

ηε,path
l

def.
= Law(Xε | τl(Xε) < τA(Xε)).

The product estimator pNl,amsη
N,path
l is also unbiased. The convergence and

asymptotic normality of all the latter estimators, when the number of clone N
goes to infinity, ε > 0 being fixed, was studied in [7] with an explicit expression
of the asymptotic variance (see Section 3.2). The latter is minimal when ξ = ξε∗
in which case it is given by −(pεl )

2 ln pεl so that the relative asymptotic variance
is only logarithmic with respect to the rare event probability.

A standard quantity assessing the efficiency of such Monte Carlo algorithms
is given by the relative variance times the average computational cost, here at
a logarithmic scale:

E(pε,Nl,ams)
def.
= ε log

(
E
[
Costε,Nl,ams

]
Var

[
pε,Nl,ams

pεl

])
.

The efficiency1 E is a simple variance-based criteria properly normalized, in
order to be invariant by i) averaging over new independent runs of the full

1Unlike in [4], the efficiency here is renormalized by the probability of the rare event pεl .
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algorithm; ii) multiplication of the estimator by a constant. As pointed out in
[26], a good feature of an algorithm would be to have a bounded relative variance
at fixed computational cost, when the true probability goes to 0: pεl →ε→0 0.
But this is virtually always out of reach in practical applications, and one will
only seek, to the very best, a sub-exponential behavior. For this purpose we
resort to the criteria E above (adapted the small noise setting thanks to the use
of a logarithmic scale).

This efficiency criterion has to be compared to i) the behavior given by the
crude Monte Carlo estimator obtained by direct simulation of N independent
trajectories, for which E(pε,Nl,crude) ∼ε→0 −ε log pε, and ii) the best behavior,
usually referred to as asymptotically efficient behavior, for which the relative
variance is sub-exponential at fixed cost, that is limε→0 E(pε,Nl ) = 0, which
happens for the AMS algorithm if (but not only if, as will be proved in this
work) ξ = ξ∗.

The present work is dedicated to the study when ε→ 0 of limN→+∞ E
(
pε,Nl,ams

)
,

where we stress that the limit N → +∞ is taken first. This choice con-
siderably simplify the still intricate analysis. We mention that it is an open

problem to study the small ε limit of E
(
pε,Nl,ams

)
at fixed N . The optimal ef-

ficiency obtained after taking first the limit N → +∞ and then ε → 0, that
is limε→0 limN→+∞ E(pε,Nl ) = 0, will be called here weak asymptotic efficiency.
We stress that both the order limε→0 limN→+∞ and limN→+∞ limε→0 are rele-
vant for practical applications. The case studied here limε→0 limN→+∞ is well
suited to mild cases where the Monte Carlo algorithm is able to sample the
neighbourhood of the least unlikely trajectory defined by the rare event. Con-
verse cases are more difficult.

In the specific case of the AMS (or FMC) algorithm, a single trajectory of X
is refreshed at each iteration, so that it is fair to set the computational cost equal
to the total number of algorithmic iterations Costε,NlB = Iε,NlB (hence the appella-
tion fixed effort algorithm). When the algorithm is convergent (which happens

under mild assumptions), one has limN→+∞ Iε,Nl /N = − log pεl in probability,
and since log log pε � log pε, one obtains that the cost is sub-exponential with
respect to ε and can be removed from the definition of efficiency:

lim
ε→0

lim
N→+∞

E(pε,Nl,ams) = lim
ε→0

ε log

[
lim

N→+∞
NVar(pε,Nl,ams/p

ε
l )

]
. (1.1)

The main result of this paper is the rigorous evaluation and interpretation
of (1.1) under some mild technical assumptions, most prominently a Freidlin-
Wentzell type uniform large deviations principle on Xε when ε → 0. The
obtained logarithmic equivalent will be briefly summarized using (1.2)-(1.3)

below. The result is based on the explicit formula for the variance of pε,Nl,ams

when N → +∞ recalled in Section 3.2, which becomes simpler in the large
deviations picture.

Introducing the notation qεl (x)
def.
= PXε

0=x[τl(X
ε) < τA(Xε)] for the proba-

bility of the rare event associated with a given level l and initial condition x,

as well as ηεl
def.
= Law

(
Xε
τl(Xε) | τl(X

ε) < τA(Xε)
)
, the associated distribution

of the first hitting place of {ξ > l} conditioned on occurring before the hitting
time of A. We will first remark that, for any given initial condition Xε

0 = x0
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and target level lB > ξ(x0):

lim
ε→0

ε log

[
lim

N→+∞
NVar(pε,NlB ,ams)

]
= sup
l∈[ξ(x0),lB ]

lim
ε→0

ε log Varηεl
(
qεlBp

ε
l /p

ε
l

)
,

(1.2)
which exactly states that, on large deviations scales, the relative variance of the
AMS estimator of interest is given by the largest – obtained for l spanning the
interval [ξ(x0), lB ] – relative variance of an unbiased (theoretical) estimators of
pεl . This unbiased theoretical estimator is given by pεl∗ qε (Xε

l∗) where Xε
l∗
∼ ηεl∗ .

We will show that critical levels l∗ do exist and belong to the open interval
]ξ(x0), lB [.

The formula (1.2) is interesting in order to interpret the relative variance
of the AMS algorithm. We will explain in Section 4.1 that on of the main
contribution in the variance formula (1.2) is due to those few trajectories who
have been ’lucky’ when reaching {ξ > l∗} for the first time because they have
a relatively large remaining probability qεlB to reach the final level set B before
the reference set A. Since the empirical distribution of clones at the first hitting
time of {ξ > l∗} is approximately ηεl∗ , the ’lucky’ clones do mainly contribute
to the ηεl∗(q

2
ε) quantity in the variance term.

Our main result is more precise and detailed than this preliminary remark,
and consists in proving that

lim
ε→0

ε log

[
lim

N→+∞
NVar(pε,Nl,ams/p

ε
l )

]
= sup
l′∈[ξ(x0),l]

Loss(l′) (1.3)

where the loss function Loss(l) > 0 is a non-negative upper semi-continuous
function that quantifies the failure from weak asymptotic efficiency. It is ex-
plicitly given by the formula

Loss(l)
def.
= 2U(x0, B)− inf

{ξ=l}

[
U (l)(x0, . ) + 2U( . , B)

]
− U(x0, {ξ = l}). (1.4)

In the above, the notation U(C1, C2) = infx1∈C1,x2∈C2
U(x1, x2) is systemat-

ically used, and one has introduced the so-called quasi-potential two-points
continuous function U : Rd × Rd → R+; a cost function satisfying the triangle
inequality U(x, z) 6 U(x, y) + U(y, z) for all x, y, z and defined by

U(x, y)
def.
= inf

T>0
(x0,xT )=(x,y)

x/∈A

I[0,T ](x),

where I[0,T ](x) is the rate function associated with the large deviation principle

satisfied by (Xε)ε>0 on each time interval [0, T ]. In the same way, U (l)(x, y)
def.
=

inf(x0,xτl(x))=(x,y)

x/∈A
I[0,τl(x)](x), is a variant where the minimizing set of trajecto-

ries is constrained to take values in {ξ 6 l}.

In Section 4.3, the formula (1.4) will be interpreted and discussed in details,
using a decomposition into an ’underestimation’ part and an ’overestimation’
part (this nomenclature will be explained); each part being, i) defined by an
independent minimization problem involving the intermediate level sets of ξ,
ii) non-negative. As a consequence, both are identically 0 if and only if weak
asymptotic efficiency is achieved. We will also give in Section 4.3 a geometric
interpretation of the loss function. In particular, a sufficient condition for weak
asymptotic efficiency is given by the following condition: for each l the level
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B = {ξ > lB}

{
U( . , B) = cte

}

{
U(x0, . ) = cte

}

{
ξ = l

}

x0

{x∗}

Figure 1: A sufficient condition for weak asymptotic efficiency when satisfied for all
l ∈ [ξ(x0), lB]. Note that the level sets of the importance function ξ is ’in between’
the level sets of the quasi-potential cost i) from the initial condition, and ii) up to
the final set B. {x∗} represents a least unlikely (optimal) trajectory reaching the
rare event (the instanton, see Section 4.3).

sets of the importance function ξ are always ’in between’ two tangential level
sets (’initial’ and ’final’) of the quasi-potential U . The first ’initial’ level set
is defined from the initial condition {U(x0, . ) = constant}, the second ’final
level set is defined up to the final rare event set {U( . , B) = constant}. This
condition is equivalent to the existence of a state in {ξ = l} that simultaneously
minimizes U(x0, . ) and U( . , B). By construction, this state does belong to an
optimal trajectory as defined by large deviations of reahcing B before A. This
sufficient condition for weak asymptotic efficiency is depicted in Figure 1. We
will show in Section 4 that a necessary condition is given by the weaker demand
that only the minimizer of the quasi-potential from the initial condition belongs
to an optimal path from the intial condition to B (an ’instanton’).

The sufficient condition in Figure 1 can be related to sub-solutions of the
Hamilton-Jacobi equation associated with the quasi-potential cost function U
(see Section 4.5). It is equivalent to the existence of a strictly increasing real
valued function F such that F ◦ ξ satisfies a certain weaker notion of sub-
solution; this weaker notion of sub-solution is given by the usual global notion,
i.e. F ◦ ξ(y)−F ◦ ξ(x) 6 U(x, y), ∀ x, y, but restricted to either x given by the
initial condition x = x0, or y taking values in the target set y ∈ B. In particular,
this is a less demanding condition than being the limiting committor function
ξ = ξ∗, or just F ◦ ξ being a sub-solution (which are conditions independent of
the initial condition). More comparisons with known results in the literature
can be found in Section 4.7.

Finally, some prospects related to practical applications are discussed in
Section 4.6. The general idea is that it may be possible to approximate, at
least in the large deviations picture, the loss function Loss(l) in (1.2) or the
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variance formula (1.2) using the AMS algorithm or some other ad hoc Monte
Carlo algorithms. When the latter evaluation can be achieved for various ξ but
with a given Monte Carlo procedure constructed with a reference ξ0, one can
then try to improve ξ0 by minimizing the obtained quantity over the available
choices of ξ.

The paper is organized as follows. In Section 2, the main notations are
summarized. Section 3 provides the mathematical context, the considered as-
sumptions, and the rigorously states our main results. More precisely, Freidlin-
Wentzell large deviations theory is recalled in Section 3.1, while the description
and asymptotic normality for large sample size of the considered Monte Carlo
algorithms is given in Section 3.2. Assumptions and results are detailed in re-
spectively Section 3.3 and 3.4. Section 4 is dedicated to the interpretation of
the results, with comments on few related works. Finally, Section 5 contains
the mathematical proofs, in particular the main large deviations analysis and
its consequences.

2 Summary of notations

E denotes the main Polish state space.

Level sets are denoted e.g. {ξ 6 l} = {x ∈ E | ξ(x) 6 l}, the minimum
(resp. maximum) with ∧ (resp. ∨).

Continuous trajectories in state space E are denoted with bold lower case.
x denotes a generic trajectory, Xε is a random trajectory with small noise ε > 0
satisfying a LDP in C([0, T ], E) for each T with rate function I[0,T ].

We denote entrance times in S with τS(x)
def.
= inf{t > 0 : xt ∈ S}, with the

usual convention inf ∅ = +∞. When the topology of S is important in order to

obtain upper or lower bound, we will use the notation τ+
S

def.
= τS̊ and τ−S

def.
= τS .

ξ denotes the continuous importance function of interest and we also use the
shorthand notation.

Quasi-potential two-points function U is defined by considering rate function

minimizing trajectories avoiding A, and with fixed end points, that is U(x, y)
def.
=

infx,T I[0,T ](x) under the conditions τA(x) > T , and x0 = x,xT = y. In the

same way, U (l) denotes the variant where trajectories are also constrained in

{ξ 6 l}, that is, U (l)(x, y)
def.
= infx,T I[0,T ](x) under the condition T < τ+

l (x) ∧
τA(x), and x0 = x,xT = y. If C is a subset of E, we will denote U(C, y) :=
infx∈C U(x, y), U(y, C) := infz∈C U(y, z), and similarly for U (l).

When ε > 0 plays no role, or when considering objects associated with the
Monte Carlo algorithm, we may drop in notations the dependence on ε. In the
latter case the dependence on N will be used instead.

The probability that X reaches level l before A for the considered initial con-

dition x0 is denoted pl
def.
= P [τl(X) < τA(X)]; when we want to stress the depen-

dence in the initial condition we will rather denote ql(x)
def.
= PX0=x (τl(X) < τA(X))

so that ql(x0) = pl. The conditional distribution at the first hitting time of

level l is denoted ηl(ϕ)
def.
= E

[
φ
(
Xτl(X)

)
| τl(X) < τA(X)

]
, while its pathwise

generalization is denoted ηpath
l (ψ)

def.
= E [ψ (X) | τl(X) < τA(X)]; ϕ (resp. ψ)

denoting a generic bounded measurable test function on E (resp. path space
C(R+, E)).
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3 Framework and results

3.1 Typical framework: The Freidlin-Wentzell theory

The classical small noise problem (see Section 6 of [37], Section 5.6 of [18], [23])
is studied for small noise diffusion processes given by the Rd-valued (strong)
solution Xε = (Xε

t )t>0 to the Stochastic Differential Equation (SDE){
dXε

t = b (Xε
t ) dt+

√
εσ (Xε

t ) dWt,

Xε
0 = x0

(3.1)

where, as usual, (Wt)t>0 is an Rm-valued Brownian motion; and the drift func-
tion b : Rd → Rd as well as the diffusion coefficients σ : Rd → Rd×m are
Lipschitz continuous. The process is parametrised by the noise amplitude ε > 0.

Let T > 0 be a given horizon. It is well-known that the SDE (3.1) satisfies a
Large Deviations Principle in C([0, T ],Rd) with good rate function (in the case
of non-degenerate noise) given by

I[0,T ](x) =
1

2

∫ T

0

|ẋt − b(xt)|2g(xt) dt.

The latter rate function is as usual a lower semi-continuous functional on
C([0, T ],Rd), finite-valued on a Sobolev sub-space. In the above, | . |g denotes

the (Riemannian) l2-norm associated with the metric

g
def.
=
(
σσT

)−1
.

Clearly, the rate function has an additive structure in the sense that for any
T ′ > T , one has

I[0,T ′] = I[0,T ] + I[T ′,T ], (3.2)

where in the above the two functions of the right hand side have being trivially
extended to lower semi-continuous functions on C([0, T ′],Rd).

In our context, the reference set A will typically contain the attractor set
associated with the limiting ordinary differential equation

ẋt = b(xt)

and the considered initial condition x0 in the sense that xt ∈ A for all t large
enough.

Given a reference set A, and an initial and final points x, y it is possible to
define the (quasi-potential) cost function U : (Rd)2 → R+ as the minimum of
the rate function:

U(x, y) = UA(x, y)
def.
= inf

T>0
inf

x∈C([0,T ],Rd)\Å)
x0=x
xT=y

I[0,T ](x);

the latter quantifies how unlikely is a trajectory deviating from the zero-noise
solution ẋt = b(xt) in order to go from x to y. The quasi-potential has a
geometric, time-free2 expression:

U(x, y) = inf
x∈C([0,T ],Rd)
x0=x,x1=y

xθ /∈Å

∫ 1

0

(∣∣∣∣ dxθdθ
∣∣∣∣
g(xθ)

∣∣∣b(xθ)∣∣∣
g(xθ)

−
〈
dxθ
dθ

, b(xθ)

〉
g(xθ)

)
dθ,

2It can be derived by minimizing over an arbitrary time change. A simple calculation enables
to double-check that the expression is independent of the path parametrization θ 7→ xθ.
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and thus can be interpreted as an oriented type of length hence satisfying the
triangle inequality

U(x, z) 6 U(x, y) + U(y, z) ∀x, y, z ∈ Rd \ Å.

Classically (see [24]), one assumes that the ODE (3.1) with ε = 0, ẋ = b(x),
as a unique attractor xA = limt→+∞ xt and the quasi-potential is sometimes
defined by the function U(x) = U(xA, x). The latter defines the iso-likely exit
levels from the attractor defined by xA. In that specific context one usually
chooses A to be a small neighborhood of xA. In the present work, the quasi-
potential will rather refer to the two points function U .

Upon some assumptions that will be detailed in Section 3.3, the quasi-
potential provides the asymptotic behavior of the probability of hitting a specific
set B before the attractor A:

lim
ε→0

ε lnPx0
[τB(Xε) < τA(Xε)] = − inf

y∈B
U(x0, y).

3.2 Rare event simulation: The splitting algorithms and
their asymptotic variances

Adaptive Multilevel Splitting (AMS)

The AMS algorithm is described assuming one can simulate the underlying
time-continuous diffusion process (Xt)t>0, but of course in practice the latter
has to be discretized and the AMS algorithm needs to be slightly adjusted in
consequence.

The AMS algorithm can be succinctly but rigorously described as follows.

Initially, N clones (a.k.a. particles) are simulated independently using the
underlying Markov dynamics until they reach the reference set A. They are
denoted (X(1,0), . . . ,X(N,0)).

First i), the iteration index of the algorithm is denoted by the index i > 1
and is used to enumerate the finite number of levels L1 < . . . < Li < . . . LINl at

which a branching event (that is the killing and splitting of well-chosen clones)
occurs. INl denotes the first iteration at which all clones reach the target set
{ξ > l} for some given l. At each iteration i, the sample size

Second ii), the level Li is computed as the k-th order statistics of the scores
associated with each clones; the ’score’ being given by the maximum of the im-

portance function ξ over the clones’ trajectories, that is: supt6τA(X(n,i−1)) ξ(X
(n,i−1)
t ).

Then the k clones with lowest scores are killed, and k new clones are uniformly3

randomly picked among the N − k survivors (selection step). When k = 1 the
AMS algorithm is called the last particle algorithm.

Third iii), each newly created clone is modified (mutation step) using inde-
pendent simulations of the underlying Markov dynamics, with initial condition
the first hitting time of {ξ > Lj}, and until the reference set A is reached.

This algorithm yields as an output two main estimators. First,

pNl,ams
def.
=

[
N − k
N

]INl
(3.3)

3E.g. with a multinomial or other permutation invariant distribution
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estimates (without bias) the rare event probability P(τl(X) < τA(X)); second
the empirical distribution of the clones’ trajectories at iteration INl denoted

ηN,path
l,ams

def.
=

1

N

N∑
n=1

δ
X(n,IN

l
) (3.4)

estimates the conditional distribution Law (X | τl(X) < τA(X)). It is also known
(see [7]), as is also true with any Sequential Monte Carlo algorithm, that non-

normalized quantities are unbiased, that is E
[
pNl,amsη

N,path
l,ams (Ψ)

]
= E

[
Ψ(X)1τ1(X)<τA(X)

]
for any pathwise measurable bounded function Ψ.

Under some mild (non-minimal) assumptions (called Assumptions 1, 2 and 3
in [7]), the above estimators are asymptotically normal.

Theorem 3.1 (Asymptotic normality of AMS, [7]). Let k = 1. Assume that:

• (Xt)t>0 is a Feller Markov process taking values in a locally compact space
Polish E, with ξ(X0) > l0 > −∞ almost surely.

• For all x ∈ {ξ ∈ [l0, lB ]}, entrance times of closures and interiors of sets of

interest are the same, that is Px
[
τ−ξ(x)(X) = τ+

ξ(x)(X)
]

= Px
[
τ−A (X) = τ+

A (X)
]

=

1,

• Px [τlB (X) < τA(X)] is uniformly bounded away from 0 for x ∈ {ξ > l0}.
Then the estimators pNl,ams and ηN,path

l,ams are asymptotically normal when N →
+∞ with O(1/N) variance. Moreover, the asymptotic variance of

√
N pNl,ams is

given by

σ2
l,ams

def.
= −(pl)

2 ln pl + 2

∫ l

l0

Varηl′ (ql′) pl′ d(−pl′). (3.5)

In [7], a similar formula is given for the large sample size variance of all
estimators, see Corollary 2.8 and Theorem 2.13. The extension to the case
k > 1 under the same assumptions, where k is fixed and N → +∞ can be
obtained using the results of [10].

Note that the considered assumptions, although quite mild, are probably not
minimal. in particular the Feller assumption may not be necessary and the third
assumption may be replaced by the strict positivity Px0 [τlB (X) < τA(X)] > 0,
see Appendix F in [7].

Although the AMS algorithm has been originally presented as an adaptive
Sequential Monte Carlo method, it is more convenient, in order to understand its
unbiasedness structure (typical of non-adaptive SMC methods) and to compute
formally the variance formula (3.5), to recast it as a classical, non-adaptive, time
continuous Sequential Monte Carlo model. In order to do so the role of time
must be played by the continuum of possible levels in [l0, lB ], see Section 3 in [7].
The AMS algorithm can then be interpreted as a Fleming-Viot process which
possesses the Feynman-Kac structure promoted in the work of P. Del Moral
(see [17, 15]). In the next section, we present a fixed levels version of the AMS
algorithm which enables to formally justify the latter ideas. A short review of
those variants of fixed effort splitting algorithms is provided in [9].

Fixed Multilevel Splitting

Consider now a fixed number J of levels `1 < · · · < `J = lB , with final level
lB . Those levels are deterministic and chosen beforehand. The Fixed Multi-
level Splitting algorithm is a standard Sequential Monte Carlo method, with a
Del Moral-Feynman-Kac structure as in [15] section 12.2, or see also [6].
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This algorithm can be succinctly described as follows. Initially, N clones
(a.k.a. particles) are simulated independently using the underlying Markov dy-
namics until they reach the reference setA. They are denoted (X(1,i), . . . ,X(N,i))
for i = 0.

First, i) the iteration index is given by the index j of the considered level in
the ladder `1 < · · · < `j < · · · < `J = lB .

Second ii), the selection step is made using the following 0 or 1 weights: the
Kj clones whose score given the maximum of the importance function ξ over the

clones’ trajectories – that is: supt6τA(X(n,j−1)) ξ(X
(n;j−1)
t ) – fail to reach level `j

are killed (weight 0). Kj new clones are then randomly picked (e.g. multinomial
distribution4) among survivors. If Kj = N , the algorithm is stopped, and the
rare event probability is estimated by 0.

Third iii), each new created clone is modified (mutation step) by simulating
independently the underlying Markov dynamics, with initial condition the first
hitting point of the level set {ξ > `j}, up until reaching the reference set A.

This Fixed Level algorithm yields as an output similar estimators as the
Adaptive algorithm; the estimator of the small probability p`j is obtained for
instance mutatis mutandis by

pN`j ,fms
def.
=

j∏
j′=1

N −Kj′

N
;

and the empirical distribution of the clones’ trajectories at iteration j, that
is

ηN,path
`j ,fms

def.
=

1

N

N∑
n=1

δX(n,j)

estimates, as for AMS, the conditional distribution Law
(
X | τlj (X) < τA(X)

)
.

It is also well known and easy to check –as is always true with Sequential
Monte Carlo strategies – that non-normalized quantities are unbiased, that is

E
[
pN`j ,fmsη

N,path
`j ,fms (Ψ)

]
= E

[
Ψ(X)1τ`j (X)<τA(X)

]
for any Ψ bounded measurable

pathwise test function.

The AMS algorithm can then be obtained as a limit of the Fixed Level
algorithm when J → +∞ with maxj `j+1− `j → 0; at least in a slightly formal
way. To do so, consider in the Fixed Multilevel Splitting algorithm, the random
sequence of levels

L1 < . . . < Li < . . . LIiter

defined as the subsequence in the sequence {`1 < . . . < `J} for which at least
one killing event occur. The Fixed level algorithm can then be equivalently
reformulated by iterating on the index i = 1 . . . IlB instead of j = 1 . . . J with
`J = lB ; IlB denoting the total number of killing (or branching) events required
so that all clones have reached the level {ξ > `J = lB}. When maxj `j+1−`j →
0, then Kj′ ∈ {0, 1} with probability tending to 1. The Adaptive Multilevel
Splitting for k = 1 (the ’last particle’ case) is thus simply obtained by taking
the limit J → +∞ with maxj `j+1 − `j → 0, or even more simply, by formally
removing the constraints that Li ∈ {`1, . . . , `J}.

The case k > 1 can be formulated in a similar fashion. One only needs
to modify the Fixed Level algorithm above by triggering duplications of clones

4for a discussion on the different resampling options in that case see [32]
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only when the number of surviving clones gets below N − k. The Adaptive
Multilevel Splitting for any k > 1 is again simply obtained by taking the limit
J → +∞ with maxj `j+1 − `j → 0.

The asymptotic normality of the estimators of the Fixed Multilevel algo-
rithm follows from the classical results in Section 9 of [15].

Theorem 3.2 (Asymptotic normality of Fixed Multilevel Splitting, [15]). Let
J and `1 < · · · < `J be given, assume ξ(Xε

0) > l0 almost surely, and assume
that uniformly in the initial condition x0 ∈ {ξ ∈ [l0, `J ]}, the probability that X
reaches {ξ > `J} before A is bounded away from 0.

Then the estimators pNl,fms, and ηN,path
l,fms (f), for any test function f , are

asymptotically normal when N → +∞ with O(1/N) variance. Moreover, the
asymptotic variance of

√
N pN`J ,fms is given by

σ2
`J ,fms

def.
=

J−1∑
j=1

p`j
p`j−1

((
p`j−1

)2 − (p`j)2)Varη`j (q`J ) + (p`J )2
J∑
j=1

(
p`j−1

p`j
− 1

)
.

(3.6)

The above result should hold for k > 1 fixed, although a rigorous extension
is not provided explicitly in the literature up to our knowledge. Note that the
variance formula (3.6) is not provided explicitly in Section 9.4.2 of [15], see [9]
for more comments.

It is then possible to derive formula (3.5) from (3.6) as follows:

Lemma 3.3. Assume that the decreasing function l 7→ pl is continuous, and
that `J = lB is fixed. Then one has

lim
J→+∞

maxj `j+1−`j→0

σ2
lB ,fms = σ2

lB ,ams.

3.3 Assumptions and basic consequences

Our results can be stated for a family of pathwise continuous time homogeneous
Markov processes

{(Xε
t )t>0 : ε > 0} ,

taking value in a Polish state space E. A denotes the reference set, and ξ the
continuous importance function of interest. lB denotes the level of the target

set B
def.
= = {ξ > lB}, the rare event of interest being {τB < τA}.

Remark 3.4. Although not necessary, one can assume with a negligible loss
of generality that for any initial condition and level l, the hitting time of the
interior or closure of A or {ξ 6 l} are the same τ+

A (Xε) = τ−A (Xε), and
τ+
l (Xε) = τ−l (Xε), almost surely – avoiding any ambiguity in the precise defi-

nition of the stopping times.

We will also need that Xε satisfies the strong Markov property (for its
natural filtration) with respect to the stopping times τ−l (Xε), l ∈ R.

For simplicity, we assume that the main rare event of interest is defined for
a given deterministic initial condition with level greater than a reference l0

Xε
0 = x0, ξ(x0) > l0.
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Remark 3.5. Our setting and results can be easily generalized mutatis mutandis
to a general initial distribution ηε0 satisfying a Large Deviation Principle on
the Polish space E. Such a generalization can be obtained by adding the rate
function associated to the initial distribution to the rate function I[0,T ] of the
process on the time interval [0, T ] in the small noise asymptotics.

The process Xε is assumed to satisfy on each time interval [0, T ] as ε→ 0 a
large deviation principle on the Polish space C([0, T ], E) (endowed with uniform
convergence) for some good rate function I[0,T ]. The large deviations estimates
are (classically) assumed to be true uniformly (in a local sense) with respect to
the initial condition. This is the content of our first assumption.

Assumption 1. For each final time T and initial condition x0 ∈ E, the family
of processes {Xε}ε>0 satisfies a LDP in C([0, T ], E) with good rate function
I[0,T ]. The LDP is locally uniform with respect to the initial condition, that is,
for the upper bound:

lim sup
(x,ε)→(x0,0)

ε lnPXε
0=x [Xε ∈ C] 6 − inf

C
I[0,T ]

for any closed set C ⊂ C([0, T ], E); and similarly for the lower bound:

lim inf
(x,ε)→(x0,0)

ε lnPXε
0=x [Xε ∈ O] > − inf

O
I[0,T ]

for any open set O ⊂ C([0, T ], E).

Classically, the uniform large deviations principle ensures that the Marko-
vian property of the underlying process translates into the additivity prop-
erty (3.2) of the rate function (using for instance the extended Varadhan lemmas
detailed in Section 5.4):

Lemma 3.6. Under Assumption 1, the family of rate functions (I[T,T ′])06T6T ′

parametrized by time intervals satisfies the additivity property (3.2).

We need now to define the quasi-potential avoiding A.

Definition 3.7. Let us denote for each x, y ∈ E and A ⊂ E

U(x, y) = UA(x, y)
def.
= inf

T>0,x∈C([0,T ],E\A):
(x0,xT )=(x,y)

I[0,T ] [x] ,

the quasi-potential or likelihood-cost function to go from x to y while avoiding
A.

Next, the following assumption is a very mild technical simplification that
prevents degenerate cases in which the boundary of A may play a role in the
definition of optimal trajectories.

Assumption 2. For any δ > 0, T > 0, and any x ∈ C([0, T ], E \ Å) with
x0,xT /∈ ∂A), there exist xδ ∈ C([0, T ], E \A) with x0 = xδ0 and xT = xδT such
that I[0,T ][x

δ] 6 I[0,T ][x] + δ.

In short, Assumption 2 ensures that trajectories avoiding Å can be modified
to avoid A at arbitrarily small cost. The role of this assumption is to make the
definition of optimal costs using A or Å equivalent. Indeed, one immediately
gets:

Remark 3.8. Under Assumption 2, one has

UA = U Å.
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The present work will also resort to variants of the quasi-potential in which
trajectories are restricted to lower level-sets {ξ 6 l}.

Definition 3.9. Let ξ : E → R be continuous, and denote for each l ∈ R,
x ∈ {ξ 6 l}, x, y ∈ {ξ = l} and A ⊂ E

U (l)(x, y)
def.
= U (l),A(x, y)

def.
= inf

T>0,x∈C([0,T ],{ξ6l}\A):
(x0,xT )=(x,y)

I[0,T ] [x] ,

the quasi-potential or likelihood-cost function to go from x to y in {ξ > l} while
avoiding A. Note that:

U (l) > U.

Remark 3.10. Under Assumption 2, one has

U (l),A = U (l),Å.

It is also useful to remark that costs to reach level sets defined by U or U (l)

are the same.

Lemma 3.11. For each level l and initial condition X0, one has by definition
and additivity of the rate function

U(x0, {ξ 6 l}) = U (l)(x0, {ξ 6 l})

Proof. Minimizers of U( ., {ξ 6 l}) can be stopped at the first hitting time of
{xi = l} to obtain minimizers of U (l)( ., {ξ 6 l}).

We then need a finiteness and continuity assumption on the cost to reach
level sets; broadly speaking, ensures that the cost to reach level sets is finite
and the cost to ’infinitesimally increase’ levels is zero.

Assumption 3. For any intial condition x ∈ {l0 6 ξ 6 lB}, the cost U(x, {ξ 6 lB}) <
+∞ is finite and the cost to immediately enter the open set {ξ > ξ(x)} is zero.
Formally:

inf
T>0,x:x0=x,

τ+
ξ(x)

(x)=0

I[0,T ][x] = 0.

In particular, this assumption is the most important assumption required
to obtain the continuity (with respect to level) of the cost to enter a level-set;
as is stated in Lemma 3.14 below.

The most demanding assumption is the following. It is similar to Condition
(16.22) in [4]. It implies in particular that the reference set A contains all
the possible attractors of the dynamics the deterministic dynamics Xε=0 with
initial condition x0.

Assumption 4. The process Xε with initial condition x0 reaches the interior
of the reference set Å with a probability exponentially close to 1 when ε → 0;
the associated rate being arbitrary for large enough times. Rigorously:

lim sup
T→+∞

lim sup
ε→0

ε lnPXε
0=x0

[
τÅ(Xε) > T

]
= −∞.

Remark 3.12. Assumption 4 is not satisfied rigorously in many practical sit-
uations because practitioners usually do not include in A all the attractors, or
even critical points, of the deterministic dynamics Xε=0; but only consider those
’close’ to the initial condition. However one should remark that:
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• When ε→ 0 attractors outside of A will considerably slow down the split-
ting algorithms, since some trajectories may be stuck in one of the latter
for a very large time before reaching A. It is a practical argument that
shows that Assumption 4, although perhaps not minimal, is not a super-
fluous assumption.

• It is possible to consider the formal limit A → ∅ in the present work,
the various minimizations problems of interest – for instance defining the
functions U , U (l), or Loss, still being well defined (and even sometimes
continuous) in this limit.

The most important consequence of the above assumptions is the following
lemma, which interprets the quasi-potential as the rate of vanishing of the rare
event probability in the small noise limit.

Lemma 3.13. Let Assumptions 1, 2, 3 and 4 hold true. Let x ∈ {ξ > l0},
l ∈ [l0, lB ] be given and define

qεl (x) = PXε
0=x[τl(X

ε) < τA(Xε)],

that is the probability to reach the level l before A starting from x. Then:

lim
ε→0
x→x0

−ε log qεl (x) = U(x0, {ξ = l}) def.
= inf
{y:ξ(y)=l}

U(x0, y).

This result is classical. We give a self-contained, warm-up proof adapted to
the setting of this work in Section 5.3. The latter proof justifies the role of the
proposed set of assumptions.

Finally an already mentioned consequence of the above assumptions is the
continuity of costs to reach level sets. The proof is also postponed to Section 5.3.

Lemma 3.14. Let Assumptions 1, 2, 3 and 4 hold true. For all x ∈ {l0 6 ξ 6 lB},
the map l 7→ U (x, {ξ > l}) is continuous on [l0, lB ].

We can now explicitly state a simple example of conditions on ξ and on the
finite dimensional SDE (3.1) under which the latter assumptions hold true.

Lemma 3.15. Consider the SDE (3.1) taking values in Rd. Assume b = −∇V
and that σ =

√
2 Id.

1) Assume that ∇V is globally Lipschitz continuous, then Assumption 1 holds
true.

2) Assume that A = {ξ 6 lA} with lA < l0, ξ is smooth and has no critical
point that is ∇ξ 6= 0 on the set {ξ ∈ [lA − δ, lA + δ]} for some δ. Then
Assumption 2 holds true.

3) Assume that ξ is smooth and has no critical point that is ∇ξ 6= 0 on the
set {ξ ∈ [l0, lB ]}, then Assumption 3 holds true.

4) Assume that |∇V | is bounded away from 0 on Rd \A. Then Assumption 4
holds true.

Proof. Item 1) is the classical Freidlin-Wentzell LDP, see [18, 37].

Item 2) can be proved by using a diffeomorphism in the neighbourhood of
∂A that approximates the identity. Indeed, since ξ is smooth and has no critical
point, A is a smooth domain, and one can locally in the neighbourhood of ∂A
consider a smooth set of new coordinates of Rd the form (y, r) ∈ ∂A×R where
x = y+ r∇yξ. One can then set χδ(x) = y+ kδ(r)∇yξ where kδ is smooth and
strictly increasing, kδ(0) > 0, kδ(r) = r outside [−δ,+δ] and ‖k′δ‖∞ < δ. Hence
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χδ converges to the identity in C1. By construction if x does not intersect Å,
then χδ(x) does not intersect A; yet on the other hand I[χδ(x)]→δ→0 I[x] and
the result follows.

Item 3) is somehow similar to Item 2), yet much simpler. Indeed, just
consider the trajectory xt = t∇x0

ξ and the result follows.

Item 4) By assumption |∇V | > κ > 0 on set Rd \A. The classical Freidlin-
Wentzell formula for the rate function can be rewritten in the form:

I[0,T ] [x] =
1

4

∫ T

0

|ẋ|2 dt+
1

4

∫ T

0

|∇V (xt)|2 dt+
1

2
(V (xt)− V (x0))

>
1

4
κ2T − 1

2
V (x0) −−−−−→

T→+∞
+∞

Remark 3.16. Although it is not done in practice, it might be interesting to
include in the reference set A the subset {|∇V | 6 κ} for a well-chosen small κ,
see Remark 3.12.

3.4 Main results

We can now state rigorously the main results of the present work, whose proof
is postponed to Section 5. The first (and most prominent) result provides the
small noise asymptotics of the (large sample size asymptotic) variance formula(
σεlB ,ams

)2

of the AMS rare event probability estimator pε,NlB ,ams, as defined

by (3.5). We have recalled in Section 3.2 that, under mild assumptions, one has

indeed
(
σεlB ,ams

)2

= limN→+∞
1
NVar(pε,NlB ,ams).

Theorem 3.17 (Small-noise asymptotics of AMS fluctuations). Let the vari-
ance of an AMS probability estimator σεlB ,ams be defined by (3.5). Under As-
sumptions 1, 2, 3 and 4 the following holds true:

lim
ε→0

ε log
[(
σεlB ,ams

)2
/p2
lB

]
= sup
l∈[ξ(x0),lB ]

lim
ε→0

ε log Varηεl
(
qεlBp

ε
l /p

ε
lB

)
= sup
l∈[ξ(x0),lB ]

Loss(l),

where the loss functions is defined by:

Loss(l)
def.
= 2U(x0, {ξ = lB})− inf

{ξ=l}

[
U (l)(x0, . ) + 2U( . , {ξ = lB})

]
−U(x0, {ξ = l}).

(3.7)
Moreover there exist at least one critical level l∗ ∈]ξ(x0), lB [ such that supl∈[ξ(x0),lB ] Loss(l) =
Loss(l∗).

The most important result associated with the above theorem is the follow-
ing sufficient condition for weak asymptotic efficiency, which is definition the
vanishing of the logarithmic equivalent stated in Theorem 3.17.

Theorem 3.18. For all l ∈ [ξ(x0), lB ], the loss function (3.7) is non-negative:
Loss(l) > 0. If for some l ∈ [ξ(x0), lB ], the initial minimal cost U(x0, {ξ = l})
and the final minimal cost U({ξ = l} , {ξ = lB}) are attained by a same state
x∗(l) ∈ {ξ = l}, that is

U(x0, x∗(l)) = U(x0, {ξ = l})
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and
U(x∗(l), {ξ = lB}) = U({ξ = l} , {ξ = lB}),

then the loss function vanishes Loss(l) = 0.

The above theorem gives a sufficient criterion ensuring that the AMS algo-
rithm is weakly asymptotically efficient, in the sense that Loss(l) = 0 for all
l ∈ [ξ(x0), lB ]. The interpretation and the geometric visualisation of the loss
function and of conditions ensuring weak asymptotic efficiency will be discussed
in Section 4.In particular, it will be shown that a necessary condition for weak
asymptotic efficiency is that the minimum of the quasi-potential from the initial
condition U(x0, . ) cöıncide with a state of the optimal Freidlin-Wentzell path
from x0 to B (the instanton).

Proof of Theorem 3.18. Since U(x0, {ξ = l}) = U (l)(x0, {ξ = l}), one has on
{ξ = l}:

U (l)(x0, . ) 6 2U (l)(x0, . )− U(x0, {ξ = l}).
One can then remark that

inf
{ξ=l}

[
2U (l)(x0, . ) + 2U( . , {ξ = lB})

]
= 2U(x0, {ξ = lB}),

and combining the two last equations we get the positivity of the loss function.

Now, the existence of x∗(l) ensures that for all x ∈ {ξ = l}, first i) U (l)(x0, x) >
U(x0, x∗(l)) and second ii) U(x, {ξ = lB}) > U(x∗(l), {ξ = lB}). This shows
that the minimization in the definition of the loss functions is attained for
x = x∗(l), leading to Loss(l) = 0.

We also obtain a similar result for the fixed level variant. In what follows,
we will use the abuse of notation

U(x, `) = U(x, {ξ = `})

which is clearer in that context to keep track of the different levels.

Theorem 3.19 (Small-noise asymptotics of FMS fluctuations). Let `1, . . . , `J
denotes a fixed sequence of levels with `J . Let the variance of a FMS probability

estimator
(
σε`J ,fms

)2

be defined by (3.6). Under Assumptions 1, 2, 3 and 4, the

following holds true:

lim
ε→0

ε log
[(
σε`J ,SMC

)2
/p2
`J ,ε

]
= max(C1, C2) > 0,

where

C1
def.
= 2U(x0, `J)− min

16j6J−1

[
inf
{ξ=`j}

(
U (`j)(x0, . ) + 2U( . , `J)

)
+ U(x0, `j−1)

]
,

and

C2
def.
= max

16j6J
[U(x0, `j)− U(x0, `j−1)] > 0.

It is worth noticing the following:

Lemma 3.20. The quantity C1 in Theorem 3.19 satisfies:

0 6 min
16j6J−1

U(x0, `j)− U(x0, `j−1)

6 C1 − min
16j6J−1

Loss(`j) 6 max
16j6J−1

U(x0, `j)− U(x0, `j−1)
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Proof. The lower bound comes from

min
16j6J−1

[
inf
{ξ=`j}

(
U (`j)(x0, . ) + 2U( . , `J)

)
+ U(x0, `j−1)

]
+ min

16j6J−1
[U(x0, `j)− U(x0, `j−1)]

6 min
16j6J−1

[
inf
{ξ=`j}

(
U (`j)(x0, . ) + 2U( . , `J)

)
+ U(x0, `j)

]
while the upper bound comes from

min
16j6J−1

[
inf
{ξ=`j}

(
U (`j)(x0, . ) + 2U( . , `J)

)
+ U(x0, `j−1)

]
> min

16j6J−1

[
inf
{ξ=`j}

(
U (`j)(x0, . ) + 2U( . , `J)

)
+ U(x0, `j)

]
− max

16j6J−1
[U(x0, `j)− U(x0, `j−1)]

Note that in the above lemma the equality case C1 = min16j6J−1 Loss(`j)
is satisfied at least if the difference of initial cost between two levels is constant,
that is U(x0, `j)−U(x0, `j−1) is independent of j for j = 1 . . . J , and thus equal
C2.

The previous lemma thus shows that the surplus of loss in the FMS case
as compared to the AMS case exactly comes from the differences U(x0, `j) −
U(x0, `j−1). The AMS and the FMS small noise asymptotic variance will be
similar only if the latter are small as compared to the loss function. This
requires to choose sufficiently many levels `j in the FMS algorithms.

As a corollary we obtain equality between the small noise asymptotic vari-
ance of the adaptive AMS and fixed level FMS algorithms, when the number of
levels J tends to infinity. This shows that under the different assumptions used
in this work (Assumptions 1, 2, 3 and 4 and the assumptions of Theorem 3.1),
one can commute the J → +∞ and the ε→ 0 limit.

Corollary 3.21. Assume `J = lB is fixed and J → +∞ with maxj(`j−`j−1)→
0. Then under Assumptions 1, 2, 3 and 4

lim
J→+∞

lim
ε→0
−ε log

(
(σεlB ,FMS)2

)
= lim
ε→0
−ε log

(
(σεlB ,AMS)2

)
.

4 Interpretation and insights

This section is dedicated to the interpretation of main result of this work,
namely the small-noise large-sample-size variance formulas (1.2) to (1.4) for
the AMS algorithm presented in the introduction, and then stated rigorously
in Theorem 3.17 and Theorem 3.18.

Throughout this section we will use the notation B = {ξ > lB}.

4.1 The variance formula 1.2

A result already mentioned in the introduction (formula (1.2)) says that the
relative variance of the AMS estimator of the probability of interest pεlB is
equivalent – at large deviations regime and for the worst possible level l = l∗ ∈
]ξ(x0), lB [ – to the variance of the following unbiased (theoretical) estimator of
pεlB :

Var
[
pεl q

ε
lB (Xε

l )
]
,
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where Xε
l ∼ ηεl is distributed according to ηεl , the distribution of the first hitting

place of {ξ = l} by a trajectory (conditioned to happen before reaching A).

The large deviations estimates obtained in this paper suggests a decom-
position of the above variance into the product of pεl on the one hand, and
γεl
(
(qεlB )2

)
on the other hand – where γεl = pεl × ηεl is the non-normalized ver-

sion of the conditional distribution ηεl . This will be discussed in Section 4.3.
We will rather now comment, quite informally, the behavior of the conditional
distribution ηεl , of the probability pεl and their relations to the variance formula
above.

The conditional distribution ηεl is by definition concentrated in areas of
{ξ = l} that are the most likely to be reached by trajectories (before A). Unfor-
tunately, the importance function ξ usually misleads (so to speak) trajectories,
in the sense that those likely areas of {ξ = l} may have a very small remaining
probability to hit B. In that scenario, we can informally decompose trajecto-
ries into two types of events: i) those typical but unuseful trajectories that hit
{ξ = l} in the most likely areas but have a very small remaining probability
qεlB to reach the final level B (before A), and ii) rare lucky trajectories that are
outliers with a relatively large remaining probability qεlB to reach the final level
B (before A).

By definition, the ’typical but unuseful trajectories’ of ηεl are involved in
underestimation of the final probability

ηεl (q
ε
lB | typical)�

pεlB
pεl

;

while the ’lucky trajectories’ ii) are involved in overestimation

ηεl (q
ε
lB | lucky)�

pεlB
pεl
.

Note that in an AMS algorithm, clones sampling ’typical but unuseful trajec-
tories’ will have little or no offspring, while clones sampling ’lucky’ will have
many offsprings and will chiefly contribute to the final estimation.

In that scenario, the quantity varηεl (q
ε
lB

) which quantifies the fluctuations
of the function qεlB is dominated by ’lucky trajectories’ since a large remain-
ing probability will mainly contribute to variance through the average square
ηεl ((q

ε
lB

)2).

On the other hand, the total mass of ’typical but unuseful trajectories’ is
related to pεl : indeed, the larger pεl is, the easier it is to reach {ξ = l}, and the
more ’typical but unuseful trajectories’ will happen. This idea will be made
rigorous using the ’underestimation’ part of the loss function in Section 4.3
below.

This informally described phenomenon is somehow similar to what happens
with a naive i.i.d. Monte-Carlo. Let p denote the small target probability to be
estimated. Assume one estimates ε� p (with probability 1− pε), or success 1
(very rarely, with probability pε); where pε = (p− ε)/(1− ε) ' p. The overall
relative variance is only driven by the rare but highly overestimating value 1.

It should also be noted that in those considerations, the precise value of the
underestimation does not influence variance. To fix ideas in the above simple
i.i.d. example, ε does not impact the order of the variance ' p(1− p).
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4.2 A disclaimer about variance

As said before, it is well-known that an unbiased estimation of a rare event
probability usually leads to a typical systematic underestimation (an ’apparent
bias’), as well as to a variance driven by rare overestimations (where some
erroneously large values of the estimator contribute strongly to the variance
while being nonetheless rarely seen by the algorithm). This has been noted for
instance in [12, 35, 25]. This can be seen as a limitations of the present analysis
for in some practical cases, if for instance one is only interested in understanding
the typical underestimation of an AMS algorithm (as said in the end of the
last section this information is lost in our variance analysis) when using the
algorithm with limited number of particles.

However, our analysis is restricted to a regime where N can be taken to
infinity before ε→ 0. In that perspective, there are sufficiently many clones to
obtain a Central Limit Theorem [7], and the variance is a legitimate quantity
to discuss the fluctuations of the algorithm. This situation happens in prac-
tice when the importance function is sufficiently good to enable a consistent
sampling of paths close enough to rate-funtion-optimal trajectories.

4.3 The loss function: discussion

The loss function can be interpreted using a decomposition into an underestima-
tion part and a overestimation part, in the spirit of the discussion of Section 4.1.
The underestimation part, denoted LossU, is associated with the large deviation
equivalent of the factor pεl∗ which satisfies

lim
ε→0

ε ln pεl = −U(x0, {ξ = l}).

The overestimation part, denoted LossO, is associated with the large deviation
equivalent of the factor γεl

(
(qεlB )2

)
which satisfies

lim
ε→0

ε ln γεl
(
(qεlB )2

)
= − inf

{ξ=l}

[
U (l)(x0, . ) + 2U( . , B)

]
.

This decomposition is also motivated by the following to facts:

• Each part is non-negative and identically 0 when weak asymptotic effi-
ciency is achieved.

• The conditions ensuring that each part is 0 are mostly independent in
terms of the importance function ξ, as both are defined by two different
minimization problems.

In order to be more precise, we can consider for each l a state x∗(l) ∈ {ξ = l}
such that

U(x0, B) = U(x0, x∗(l)) + U(x∗(l), B).

A continuous level-indexed path l 7→ x∗(l) satisfying the above condition is
called an instanton in physics literature (e.g. [1]). Then one can consider the
decomposition

Loss(l) = LossU(l) + LossO(l),

where we define

LossU(l)
def.
= U(x0, x∗(l))− U(x0, {ξ = l}) > 0,

as well as

LossO(l)
def.
= U(x0, x∗(l)) + 2U(x∗(l), B)− inf

{ξ=l}

[
U (l)(x0, . ) + 2U( . , B)

]
> 0.
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B = {ξ > 1} {
U( . , B)

= U(x∗(l), B)
}

{
U(x0, . ) = U(x0, x∗(l))

}

{
ξ = l

}{xLossO(l)

}

x0

{x∗}

{
xLossU(l)

}

Figure 2: Graphical interpretation of the main small noise variance formula (1.4).
The path {x∗} is the minimizer defining the cost U(x0, B). The path

{
xLossU(l)

}
represents ’typical but unuseful’ trajectories, and is the minimizer of the cost
U(x0, {ξ = l}), that defines the underestimation part of the loss function. The
path

{
xLossO(l)

}
represents ’lucky’ trajectories, and is the minimizer of the cost

inf{ξ=l} U(x0, . ) + 2U( . , B) that defines the overestimation part of the loss func-
tion.

The underestimation part of the loss function LossU(l) for a given l is ob-
tained by the minimizing trajectories from x0 to the set {ξ = l} which yield
the cost U(x0, {ξ > l}). An example of such a trajectory (assuming it exists for
simplicity) is denoted xLossU(l) and is depicted in Figure 2 and 3. A first result
is that LossU(l) = 0 if and only if U(x0, {ξ > l}) = U(x0, x∗(l)), or equivalently,
if and only if the level set ξ = l is above the level set {U(x0, . ) = U(x0, x∗(l))},
see Figure 3.

The overestimation part of the loss LossO(l) for a given l is characterized
by trajectories minimizing the sum of the rate function from x0 to the first
hitting time of the level {ξ = l} plus twice the rate function from the associ-
ated entrance point up to {ξ > lB}. An example of such a trajectory denoted
xLossO(l) is depicted in Figure 2 and Figure 3. Note that LossO(l) = 0 if and
only if the composed cost above is attained at the point x∗(l), see again Fig-
ure 2. A sufficient condition (but not necessary) ensuring LossO(l) = 0 is that
the level set ξ = l is below the level set {U( . , B) = U(x∗(l), B)}, see Figure 3.
This condition is not necessary because contrary to the underestimation part,
this overestimation part of the loss involves a competition between an initial
cost from x0 and a final cost up to B.

Note that the obtained sufficient condition involving x∗(l) for weak asymp-
totic efficiency is exactly the one given in theorem 3.18. Under that condition,
minimizer of either LossU(l) or LossO(l) can be identified with instantons min-
imizing the rate function among trajectories reaching B before A.
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B = {ξ > 1}

{
U( . , B)

= U(x∗(l), B)
}

{
U(x0, . ) = U(x0, x∗(l))

}

{
ξ = l

}

x0

{x∗}

Figure 3: A sufficient condition for weak asymptotic efficiency, given by the simul-
taneous two conditions LossU(l) = LossO(l) = 0 for all l ∈ [ξ(x0), lmax]. Note that
the level sets of the importance function ξ is between the level sets of the quasi-
potential cost i) from the initial condition, and ii) up to the final set B. Mo rover,{
xLossO(l)

}
=
{
xLossU(l)

}
= {x∗} is a (non necessarily unique) instanton.

Note also that the geometric conditions ensuring LossO = LossU ≡ 0 stated
above are much weaker than the restriction that ξ is defined by the limiting
committor function ξ = ξ∗. Note that, contrary to the latter, our conditions
depends on the initial condition x0, so that a choice of weakly asymptotic
efficient ξ for a given initial condition may not be so for a different initial
condition. A related relaxed class of optimal ξ is given by sub-solutions of the
Hamilton-Jacobi equation that underlies the rate function of the LDP satisfied
by (Xε)ε>0, see [13, 14, 5, 4]. This will discussed in a section below.

The probabilistic and algorithmic interpretation of LossU(l) for a given l
is the following. LossU(l) will be large when when the minimizers associated
with the optimal cost U(x0, {ξ = l}) do not correspond to x∗(l) where x∗ is an
instanton (a minimizer associated with the global cost U(x0, {ξ = lB})). This
means that the conditional distribution ηεl which is concentrated towards the
minimizers associated with U(x0, {ξ = l}) (by a standard Gibb’s conditioning
argument in large deviations theory). LossU(l) thus quantifies the likelihood of
’typical but unuseful trajectories’, as discussed in Section 4.1. The large devia-
tion picture is depicted in Figure 3. Those trajectories are eventually associated
with underestimation. We stress that the quantity LossU is not related to the
specific value of this underestimation (the latter is rather encoded by the func-
tion U( . , B) evaluated at the minimizer associated with U(x0, {ξ = l}), which
does not appear in the definition of the loss function). In an AMS algorithm,
LossU(l) can be associated with the proportion of clones that will be quickly
killed after having reached the level l.

The algorithmic interpretation of LossO(l) for a given l is complementary.
We have seen that it is associated with large values of the quantity γεl ((qεlB )2).
As discussed in Section 4.1, this term can be associated with specific lucky
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trajectories which turn out to be very contributive to variance in the end because
they can reach the rare event set {ξ > lB} with a relatively large probability
qεlB . This is quantified in the loss function by the variational problem:

inf
{ξ=l}

[
U (l)(x0, . ) + 2U( . , B)

]
in which the final cost U( . , B) counts twice as compared to

inf
{ξ=l}

[
U (l)(x0, . ) + U( . , B)

]
= U(x0, B)

which is minimized by global minimzers x∗. This implies that states with lower
final cost U( . , B) are much preferred. These states defines the ’lucky outliers’
discussed in Section 4.1. A typical lucky trajectory is depicted in Fig.3. In
an AMS algorithm, LossU is associated with the overestimation by the small
fraction of clones that are the most likely to reach B after having reached the
level l.

4.4 Summary

To summarize our main results, we proved that there exists a critical level l∗
that will contribute mostly to variance. This contribution is described by the
distribution ηεl∗ of trajectories at the first hitting times of l∗ and the associated
probability pεl∗ to reach level l∗ (all before A). The logarithmic equivalent of
the relative variance can also be decomposed into two independent non-negative
terms. The first term, LossU(l∗), quantifies the likelihood to have ’typical but
unuseful’ states in the distribution ηεl∗ . The second term, LossO(l∗) > 0, quan-
tifies the overestimation by outliers in ηεl∗ that are likely to eventually reach B.
We also provide a simple geometric sufficient (resp. necessary and sufficient)
condition on ξ depicted in Figures 2 and 3 such that LossO ≡ 0 or LossU ≡ 0.

4.5 Interpretation as a Hamilton-Jacobi sub-solution

We have thus obtained a simple geometric sufficient criteria for weak asymptotic
efficiency (supl Loss(l) = 0): for each l the level set ξ = l lies in between the
iso-cost set from x0, as depicted in Figure 3. Formally, this amounts to the the
existence of an increasing function F (realized by the cost along x∗) such that{

F (ξ(x0))− F (ξ(y)) 6 U(x0, y), ∀y ∈ {ξ ∈ [ξ(x0), lB ]}
F (ξ(x))− F (ξ(y)) 6 U(x, y), ∀(x, y) ∈ {ξ ∈ [ξ(x0), lB ]} × {ξ > lB}

(4.1)
This expression is related to sub-solutions of the Hamilton-Jacobi equation
that underlies the rate function of the LDP satisfied by (Xε)ε>0 (see e.g.
[13, 14, 5, 4]). A sub-solution f is a function that satisfies the inequality
f(x) − f(y) 6 U(x, y) for all x, y ∈ {ξ 6 lB}. This is however a much more
demanding condition than (4.1) because: i) we do not need to compute the
reparametrization F which be given by F (ξ(x∗(l))) = U(x∗(l), B) + cte; and ii)
the sub-solution inequality need to be true only for initial points in the initial
condition of Xε, and final points in B. See also Section 4.7 for comments on
related work.

4.6 Possible practical consequences

Finally, there are several consequences of our results for practical purposes. We
list them below. All are left for future work.
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The first question is about estimating the variance (1.2) or equivalently the
loss (1.4) which are the main result of this paper.

• An idea is to try to estimate a non-asymptotic (with respect to ε) form
of the variance formula (1.2) after one realisation of the AMS algorithm.
Variance estimation has recently been studied in [11, 27, 19]. The present
work suggests that variance estimation can be considerably simplified at
the cost of being accurate only asymptotically for large N and small eps.
For instance, one can first estimate on the states x visited by the clones
the probability qε(x) to reach the final set {ξ > lB}. This can be done
using the genealogy of the clones and the formula (3.4). One can then
proceeds using the formula (1.2) by averaging those estimations over ηεl
for each l, and then by minimizing on the level l.

• We will also remark in Section 5.8 that the loss function can be expressed
as a new, simulable, rare event probability. The latter is the probability
that an AMS algorithm with N = 2 clones succeeds in at most one iter-
ation. This fact may be used to estimate supl Loss(l) using a secondary
Monte Carlo rare event algorithm, more appropriate than the first one
since it will purposely simulate the rare clones involved in the overestima-
tion (that drives the variance) of the final probability.

• The variance estimation proposed in the first item above can in fact es-
timate the variance obtained with various importance function ξ, using,
say, an AMS algorithm performed with a given reference ξ0. Indeed, the
only quantity depending on ξ is the first hitting place ηεl associated with
set {ξ > l}, but this can be estimated using the full genealogical estima-
tor (3.4).

• There is currently a lot of effort in practical applications aimed at opti-
mizing the importance function ξ in order to obtain reliable results, see
for instance the references in the review for molecular simulation applica-
tions [34], or the paper [31] that uses a data-driven approach. Our analysis
provides insights on the minimal conditions an importance function must
satisfy in order to provide efficiency. In particular, instead of trying to ex-
actly compute the committor function ξ∗, one may try, after a rare event
simulation, to update ξ by trying to minimize the rough estimation of the
variance as discussed in the previous item.

4.7 Comparison to previous work

The idea to analyse rare event (multi-level) splitting Monte Carlo simulation
algorithms in a large deviation setting has been mainly developed by P. Dupuis
and his co-authors.

In [13] a fixed multilevel splitting method with varying number of clones is
studied. The main difference from our study is that the clones do not inter-
act with each other through the splitting mechanism and the rate of splitting
is given by the variations of the values of the level function. The authors
then show that a sufficient condition to obtain asymptotic efficiency in a large
deviation small noise limit is that the level function must be a sub-solution of
the Hamilton-Jacobi problem associated with the Lagrangian formulation of the
rate function (see Section ...). They also argue that this condition should be nec-
essary. This type of condition on the level function (or importance function) is
reminiscent to the type of condition required on the importance function in im-
portance sampling in order to achieve asymptotic efficiency (see e.g. [21, 22, 20]);
note that the importance function must in addition be a smooth sub-solution
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which highlights the likely generic lack of robustness of importance sampling as
compared to importance splitting.

As compared to our work, those result are more precise in the sens that the
number of clones (although randomly varying) is finite, whereas our analysis
is restricted to asymptotic (in terms of clones sample size) variance. However,
our work suggest three (related with each other) improvements enabled by the
adaptivity of levels and the fixed number of clones:

• Weak asymptotic efficiency can be achieved if some parametrization of the
level function satisfies a certain weaker condition related to sub-solutions
of the considered Hamilton-Jacobi problem. This condition is sufficient
but not necessary.

• The notion of sub-solution is weaker: it only has to be one with respect
to the support of the initial condition and the final target set (and not for
every pair of points in space).

• We do not face the problem of explosion or implosion of the total number
of clones. In [13] the splitting rate has to be tuned carefully – close to the
inverse of probability of transitions between levels – to avoid such popu-
lation size issues, even if the population size can still grow polynomially.

Similarly [14] studies a variant called RESTART which enables to reduce
the trajectory length of most of the clones. The analysis is also improved (the
notion of sub-solution is defined variationally instead of as a viscosity solution
of a PDE) and then recapitulated in [4]. In [5], the authors nonetheless studies
a splitting algorithm with fixed number of clones, but in dimension one only
(asymptotic efficiency is then conditionless).

5 Large Deviations estimates and proof of the
main result

This Section is devoted to the the large deviations estimates that eventually
lead to the main result theorem 3.17.

5.1 Stopping times and topology

We start that a key technical remark on the semi-continuity of stopping times.

Lemma 5.1. Let E be a Polish space, T > 0 be given, and A,B ⊂ E. The map
x 7→ τ−A (x) (resp. τ+

A ) is lower (resp. upper) semi-continuous as a function of
C([0, T ], E) with the topology of uniform convergence. In particular,{

x | τ+
A (x) < τ−B (x)

}
is an open subset of C([0, T ], E).

Proof. See Lemma A.4 in [8].

5.2 Continuity of the cost to reach level sets

Let us prove Lemma 3.14. .

Right continuity. Let l∗ be a given level. By definition of U , there is for

each δ > 0 a trajectory xδ with U(x0, {ξ > l∗}) + δ > I[0,τ−l∗ (xδ)][x
δ]. By

Assumption 3, it is possible to strictly extend xδ so that τ−l∗ (xδ) = τ+
l∗

(xδ)
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and U(x0, {ξ > l∗}) + 2δ > I[0,T ][x
δ]. This implies that there exists a l =

maxt ξ(x
δ
t ) > l∗ with U(x0, {ξ > l∗}) + 2δ > U(x0, {ξ > l}). The result follows

since δ is arbitrary and the function non-decreasing.

Left continuity. Let l be an arbitrary level, lk be increasing with k and
converging to l, and δ > 0 be given, arbitrary. By definition of U and by
Assumption 4, there is a time horizon T > 0 and a sequence of paths xk

such that I[0,T ][x
k] 6 U(x0, {ξ 6 lk}) + δ. Since I is a good rate function in

Assumption 1 (lower semi-continuous with compact pull-back of closed bounded
above intervals), one can extract a (uniformly) converging sub-sequence of paths
such that I[0,T ][x

∞] 6 lim infk I[0,T ][x
k]. By construction lim infk I[0,T ][x

k] 6
limk U(x0, {ξ 6 lk}) + δ, and by continuity of ξ, τ−l (x∞ 6 T ) which implies
I[0,T ][x

∞] > U(x0, {ξ > l}), hence the result.

5.3 Small noise asymptotics of the rare event

We can now turn to the proof of Lemma 3.13. We recall that the latter states
that under Assumptions 1, 2, 3 and 4, then limε→0, x→x0

ε lnPx [τl(X
ε) < τA(Xε)] =

−U(x0, {ξ > l}).

Proof of Lemma 3.13.

Upper bound. Assume T > t∗ given, arbitrary large. We can then consider
the upper bound

Px [τl(X
ε) < τA(Xε)] 6 Px

[
τ−l (Xε) 6 τ+

A (Xε) ∧ T
]

+ P
[
τ+
A (Xε) > T

]
On the one hand, using Assumption 4, one has lim supε ε lnP

[
τ+
A (Xε) > T

]
6

−CT , with limT+∞ CT = +∞. On the other hand Lemma 5.1 ensures that the
set
{
x : τ−l (x) 6 τ+

A (Xε) ∧ T
}

is closed in C([0, T ], E). Thus, the uniform LDP
upper bound yields

− lim sup
ε→0
x→x0

ε lnPx [τl(X
ε) < τA(Xε)] > min

 inf
x∈C([0,T ],E)

x(0)=x0

τ−l (x)6T

I[0,T ] [x] , CT


> min (U(x0, {ξ = l}), CT ) ,

CT being arbitrary large.

Lower bound Let l > 0 be a given level, δ > 0 be given, arbitrarily small,
and let x0 ∈ {ξ > l0} be an initial condition. Using the continuity property
of Lemma 3.14, there is a small enough h > 0 such that U(x0, {ξ = l + h}) 6
U(x0, {ξ = l}) + δ/2. One can thus construct a minimizing continuous path x∗
with x∗(0) = x0 and a time t∗ > 0 such that

i) I[0,t∗] [x∗] ∈ [U(x0, {ξ = l}), U(x0, {ξ = l}) + δ/2],

ii) ξ(x∗(t∗)) > l so that τ+
l (x∗) < t∗,

iii) τ−A (x∗) > t∗.

Extending the trajectory x∗ with a δ/2 minimizer of the rate function I[t∗,T ] [xt∗ ],
we obtain a path which satisfies for any arbitrary large final time T > t∗,
I[0,T ][x∗] ∈ [U(x0, {ξ = l}), U(x0, {ξ = l}) + δ].
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We can then consider the lower bound

Px [τl(X
ε) < τA(Xε)] > Px

[
τ+
l (Xε) < t∗ < τ−A (Xε) ∧ T

]
.

Applying the uniform LDP to the open (see Lemma 5.1) set{
x ∈ C([0, T ], E) | τ+

l (x) < t∗ < τ−A (x)
}

it yields

− lim inf
ε→0
x→x0

ε lnPx [τl(X
ε) < τA(Xε)] 6 inf

x∈C([0,T ],E)
x(0)=x0

τ+
l (x)<t∗<τ

−
A (x)

I[0,T ] [x]

6 I[0,T ] [x∗] 6 U(x0, {ξ = l}) + δ,

δ being arbitrary small.

5.4 Varadhan lemmas

In this section, we state and prove minor variants of the classical Varadhan
lemmas, in the case where the potential function is general (ε-dependent and
only measurable).

We start with the easier lower bound.

Lemma 5.2. Assume (Xε)ε>0 satisfies a LDP with rate function I on a Polish
state space. Let (Vε)ε>0 be a family of measurable functions in ] − ∞,+∞].
Define for each state x the upper semi-continuous envelope V+(x) of the latter
by:

V+(x)
def.
= lim sup

ε→0
y→x

Vε(y). (5.1)

Then
− lim inf

ε→0
ε lnE

[
e−

1
εVε(Xε)

]
6 inf (I + V+) .

Proof. Similar to the usual proof of Varadhan’s lemma lower bound.

First note that by definition of the envelope V+, for each state x and each
δ > 0, one can find an open neighbourhood Ux,δ such that

lim sup
ε→0

sup
Ux,δ

Vε 6 V+(x) + δ/2.

Let δ > 0 be given, arbitrarily small. By definition of the infimum, there is
a xδ such that

I(xδ) + V+(xδ) 6 inf [I + V+] + δ/2.

We can then consider the lower bound

E
[
e−

1
εVε(Xε)

]
> E

[
1Uxδ,δ (Xε) e−

1
εVε(Xε)

]
> P [Xε ∈ Uxδ,δ] e−V+(xδ)/ε−δ/2ε,

and using the LDP lower bound

− lim inf
ε

ε lnE
[
e−

1
εVε(Xε)

]
6 inf
Uxδ,δ

I + V+(xδ) + δ/2

6 I(xδ) + V+(xδ) + δ/2

6 inf [I + V+] + δ.
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Lemma 5.3. Assume (Xε)ε>0 satisfies a LDP with good rate function I on a
Polish state space. Let (Vε)ε>0 be a family of measurable functions in [0,+∞].
Define for each state x the lower semi-continuous envelope of the latter by:

V−(x)
def.
= lim inf

ε→0
y→x

Vε(y). (5.2)

Then
− lim sup

ε→0
ε lnE

[
e−

1
εVε(Xε)

]
> inf (I + V−) .

Proof. This is the classical proof of Varadhan upperbound based on the rate
function goodness.

Let δ > 0 be given, arbitrarily small. For each x, by lower semi-continuity
of I and definition of V−, we can find an open neighborhood Ux,δ such that:

inf
Ux,δ

I > I(x)− δ/2,

as well as
lim inf
ε→0

inf
Ux,δ

Vε > V−(x)− δ/2.

Using the compactness of the level sets of I, one can choose a finite covering
Uxi,δ, i = 1 . . . I of the level set {x | I(x) 6 vmax} with vmax arbitrarily large,

and denote U
def.
=
⋃
i=1...I Uxi,δ. Consider now the main upper bound:

E
[
e−

1
εVε(Xε)

]
6

I∑
i=1

E
[
1Xε∈Uxi,δ e−Vε(X

ε)/ε
]

+ P [Xε ∈ U c]

6
I∑
i=1

P
[
Xε ∈ Uxi,δ

]
e
− infUxi,δ

(Vε)/ε
+ P [Xε ∈ U c] .

By construction of the neighbourhood Ux,δ and the LDP upper bound

− lim sup
ε

ε lnP
[
Xε ∈ Ux,δ

]
e
− infUx,δ

(Vε)/ε > I(x) + V−(x)− δ,

so that

− lim sup
ε

ε lnE
[
e−

1
εVε(Xε)

]
> min

(
V−(x1) + I(x1), . . . , V−(xI) + I(xI), inf

Uc
I︸︷︷︸

>vmax

)
− δ

> min(inf [V− + I] , vmax)− δ.

5.5 A Large Deviations estimate

In order to analyze the (large sample size) variance of the AMS algorithm in
the small noise regime, we will need precise estimates on the quantity ε ln γεl (q2

ε)
when ε→ 0. The latter will yield the ’final’ part LossO(l) of the loss function.

The goal of the present section is to detail the proof of these results. The
proof is based on the extended Varadhan lemmas of the previous section.

We start by defining the set Hl(x) of excursions in {ξ = z} before hitting
the interior {ξ > l}:
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Lemma 5.4. Let x ∈ C([0, T ], E) be given with τ−l (x) < +∞ and T arbitrarily
large. Denote the closed set

Hl(x)
def.
= {ξ = l} ∩

{
xt, t ∈ [τ−l (x), τ+

l (x) ∧ τ+
A (x) ∧ T ]

}
.

Assume xn →n x in C([0,+∞[, E) for the uniform topology on bounded time
intervals and that Hl(x) 6= ∅. Let tn, n > 1, denotes a sequence such that for
all n > 1:

tn ∈ [τ−l (xn), τ+
l (xn) ∧ τ+

A (xn) ∧ T ] and xntn ∈ {ξ = l} .

Then up to extraction of a sub-sequence

lim
n

xntn ∈ Hl(x).

Proof. Let us denote (y, s) = limn(xntn , t
n), which always exists up to extraction

by a compacity argument. We need to prove that s > τ−l (x), s 6 τ+
l (x) ∧

τ+
A (x) ∧ T and xs = y with ξ(y) = l in order to complete the proof.

Trivially, s 6 T . Assume τ+
l (x) ∧ τ+

A (x) < T . By definition, xn which

converges to x hits {ξ > l} ∪ Å before τ+
l (x)∧ τ+

A (x) + δ for all n large enough
and δ arbitrary small; hence s 6 τ+

z (x) ∧ τ+
A (x).

Similarly, assume s < τ−l (x). Then we can find a small δ and an infinite
number of xn such that τ−l (xn) < τ−l (x) − δ, which contradicts the uniform
convergence.

Finally, xntn converges towards xs by uniform convergence, and since ξ(xntn) =
l, y also belongs to {ξ = l} by continuity of ξ.

One can then consider the (measurable) potential function defined on con-
tinuous trajectories restricted to [0, T ]:

V Tl,ε(x)
def.
= −ε ln

[
1τl(x)<T∧τA(x) q

ε
(
xτl(x)

)]
, (5.3)

with the convention ln 0 = −∞. We will denote by Vl,ε(x)
def.
= limT→+∞ V Tl,ε(x)

the trivial extension to the time interval R+.

Before applying the extended Varadhan’s lemmas, we need to estimate the
lower and upper semi-continuous envelopes of Vl,ε. For this purpose, we denote
by

xT∧τ
+
A

the restriction of x to the time interval [0, T ∧ τ+
A (x)] and define

V Tl (x)
def.
=

 inf
x∈Hl

(
xT∧τ

+
A

) U(x, {ξ = lB}), if τ−l (x) 6 T ∧ τ+
A (x),

+∞, else,

as well as

V
T

l (x)
def.
=

{
supx∈Hl(x) U(x, {ξ = lB}), if τ+

l (x) < T ∧ τ−A (x),

+∞, else,

and denote by Vl,±(x)
def.
= limT→+∞ V Tl,±(x) their natural extensions on R+.
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Lemma 5.5. Let x denotes a path in C([0, T ], E). Under Assumptions 1, 2, 3
and 4, one has:

lim sup
xn→x
ε→0

V Tl,ε(x
n) 6 V

T

l (x).

as well as

lim inf
xn→x
ε→0

V Tl,ε(x
n) > V Tl (x).

Proof. Let xn →n x be a uniformly convergent sequence on [0, T ].

Upper bound The condition τ+
l (x) < τ−A (x) ∧ T defines an open subset

of C([0, T ], E) according to Lemma 5.1, thus there is a n0 above which the
sequence satisfies τl(x

n) < T ∧ τ−A (x). We can then use Lemma 5.4, together
with Lemma 3.13 giving the uniform limit of qε, to obtain the claimed upper
bound.

Lower bound The condition τ−l (x) > T ∧ τ+
A (x), defines again an open set

according to Lemma 5.1, thus there is a n0 above which the sequence satisfies
τl(x

n) > T and thus V Tl (x) = +∞. Otherwise, if x is outside that open set,
we use again Lemma 5.4 , together with Lemma 3.13 giving the uniform limit
of qε, to obtain the claimed lower bound.

We can now proceed and estimate lim sup / lim infε ε ln γεl (q2
ε) using the ex-

tended Varadhan lemmas.

Lemma 5.6. Let Assumptions 1, 2, 3 and 4 hold true. Then one has

− lim sup
ε→0

ε ln γεl (q2
ε)

> inf
x: τ−lB

(x)<τ+
A (x)

I[0,τ+
l (x)][x] + 2I[τ+

l (x),τ−lB
(x)](x)

(
def.
= w(l)

)
.

Proof. Assume T > 0 given, arbitrary large. By definition of γε, and using
qε 6 1, we get the upper bound

γεl (q2
ε) = E

[
1τl(Xε)<τA(Xε)q

2
ε

(
Xε
τl(Xε))

)]
6 E

[
1τl(Xε)<T∧τA(Xε)q

2
ε

(
Xε
τl(Xε)

)]
+ P [τA(Xε) > T ]

= E
[
e−

2
εVl,ε(X

ε)
]

+ P
[
τA(Xε,T ) > T

]
.

Using Varadhan’s upper bound (Lemma 5.3) and Lemma 5.5, with Assump-
tion 4, we get

− lim sup
ε→0

ε ln γεl (q2
ε) > min

[
inf
x
I[0,T ][x] + 2V Tl [x], CT

]
,

where limT→+∞ CT = +∞.

Let δ > 0 be given. Without loss of generality one can assume that the
lower bound above is finite. As a consequence there exists xδ ∈ C([0, T ], E)
such that

inf I[0,T ] + 2V Tl > I[0,T ][x
δ] + 2V Tl [xδ]− δ.
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By definition of V Tl , there exists

tδ∗ ∈ [τ−l (xδ), τ+
l (xδ) ∧ τ+

A (xδ) ∧ T ]

such that xδtδ∗
∈ {ξ = l} and

V Tl [xδ] > U(xδtδ∗ , {ξ = lB})− δ.

By additivity of the rate function, one also have I[0,T ][x
δ] > I[0,tδ∗][x

δ].

We can pick a xδ, tδ∗, T
δ with τ−l (xδ) 6 tδ∗ < T δ < +∞ such that for any

T > T δ it holds

inf I[0,T ] + 2V Tl > I[0,tδ∗][x
δ] + 2U(xδtδ∗ , {ξ = lB})− δ.

We can now modify xδ, and extend it after tδ∗ by a trajectory δ-close to the

optimal trajectories defining the cost UA(xδtδ∗
, {ξ = lB}), that is

U(xδtδ∗ , {ξ = lB}) > I[tδ∗,τ
−
lB

(xδ)][x
δ]− δ,

and such that τ+
A (xδ) > τ−lB (xδ). Finally, one gets

inf I[0,T ] + 2V Tl > I[0,tδ∗][x
δ] + 2I[tδ∗,τlB (xδ)][x

δ]− 3δ

> I[0,τ+
l (xδ)][x

δ] + 2I[τ+
l (xδ),τlB (xδ)][x

δ]− 3δ

> inf
x: τ−lB

(x)<τ+
A (x)

I[0,τ+
l (x)][x] + 2I[τ+

l (x),τ−lB
(x)](x)− 3δ,

where in the second line of the above one has used again the additivity of
the rate functions. The fact that δ small and T large are arbitrary yields the
result.

Lemma 5.7. Let Assumptions 1, 2, 3 and 4 hold true. Then one has

− lim sup
ε→0

ε ln γεl (q2
ε)

6 inf
x: τ−lB

(x)<τ−A (x)
I[0,τ−l (x)][x] + 2I[τ−l (x),τ−lB

(x)](x)
(
def.
= w(l)

)
.

Proof. Let T > 0 be given. By definition of γε and qε (and since qε 6 1), we
get the upper bound

γεl (q2
ε) = E

[
1τl(Xε)<τA(Xε) q

2
ε

(
Xε
τl(Xε))

)]
> E

[
1τl(Xε)<τA(Xε)∧T q

2
ε

(
Xε
τl(Xε))

)]
= E

[
e−

2
εVl,ε(X

ε,T )
]

We can thus directly use Varadhan’s lower bound (Lemma 5.2) and Lemma 5.5
to get

− lim sup
ε→0

ε ln γεl (q2
ε) 6 inf I[0,T ] + 2V

T

l .
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One can then restrict in the infimum above to trajectories verifying τ+
l (x) =

τ−l (x) to get the upper bound:

inf I[0,T ] + 2V
T

l 6

inf
τ−l (x)=τ+

l (x)
I[0,T ][x] + 2V

T

l [x]
def.
= A(l),

and remark that by definition of V
T

l , if τ−l (x) = τ+
l (x) < τ−A (x), then V l[x] =

U(xτ−l (x), {ξ > lB}). Next, Assumption 2 ensures that minimizing I[τ−l (x),T ](x)

with the constraint that τ−l (x) = τ+
l (x) yields 0 so that:

A(l) = inf
τ−l (x)<τ−A (x)∧T

I[0,τ−l (x)][x] + 2U(xτ−l (x), {ξ > lB})

= inf
τ−l (x)<T

τ−lB
(x)<τ−A (x)

I[0,τ−l (x)][x] + 2I[τ−l (x),τ−lB
(x)][x]

It finally remains to remark that the horizon time T is arbitrary to conclude
the proof.

5.6 Analysis of the loss functional

Lemma 5.8. Let Assumption 2 holds true. Let us define for l ∈ [ξ(x0), lB ] and
C = A, A or Å:

wC(l)
def.
= inf

x: τ−lB
(x)<τC(x)
x0=x0

I[0,τ+
l (x)] [x] + 2I[τ+

l (x),τ−lB
(x)] [x] ,

wC(l)
def.
= inf

x: τ−lB
(x)<τC(x)
x0=x0

I[0,τ−l (x)] [x] + 2I[τ−l (x),τ−lB
(x)] [x] .

And we simply denote w(l) = wA(l) and w(l) = wA(l).

First, wÅ = wA and wÅ = wA. Second, w and w are respectively the left-
and right-continuous versions of the same decreasing function. In other words:
w(l) = liml− w and w(l) = liml+ w.

Proof. First let us remark that by a direct application of Assumption 2, the
definition of w and w are independent of the choice C = Å or C = A.

Let l′ < l be given, and let x be a trajectory that reaches the final level lB .
Since τ+

l′ < τ−l , by additivity of the (non-negative) rate functions, one has

I[0,τ−l (x)] [x] + 2I[τ−l (x),τlB (x)] [x] 6 I[0,τ+

l′ (x)] [x] + 2I[τ+

l′ (x),τlB (x)] [x] .

Taking the infimum it yields w(l) 6 w(l′).

Using also additivity of rate functions, one can check that w > w and that
w and w are decreasing functions. This yields the result.

Lemma 5.9. Let Assumption 2 and 3. Let x0 and lB be given. For l ∈
[ξ(x0), lB ], let us denote by u(l)

def.
= U(x0, {ξ > l}). Then it holds

2u(lB)− u(l)− w(l) 6 Loss(l) 6 2u(lB)− u(l)− w(l),
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The maximization problem

sup
l∈[ξ(x0),lB ]

Loss(l)

has at least a maximizer l∗ ∈]ξ(x0), lB [, with Loss(0) = Loss(lB) = 0.

Proof. First remark that by construction:

w(l) 6 inf
x∈{ξ=l}

U (l)(x0, .) + 2U( ., B) 6 w(l)

which implies the first inequality by definition of the loss function.

Next it holds by definition of u:

w(l) + u(l)

= inf
x: τlB (x)<τA(x)

I[0,τ+
l (x)] [x] + 2I[τ+

l (x),τlB (x)] [x] + inf
x′: τ+

l (x′)<τA(x)
I[0,τ+

l (x′)] [x′]

6 inf
x: τlB (x)<τA(x)

2I[0,τ+
l (x)] [x] + 2I[τ+

l (x),τlB (x)] [x] = 2u(lB),

which implies that 0 6 2u(lB)− u(l)−w(l). By construction one also has that
2u(lB)− u(l)− w(l) 6 2u(lB) < +∞.

Next, since by Assumption 3, u is an increasing continuous and w is a left-
continuous decreasing function, while o is its right continuous version.

This implies that the bounded functions u + w and u + o i) attain their
extrema, i) at the same values (either by left or right). An so it holds for Loss.

Finally, we remark that by construction u(ξ(x0)) = 0 and w(ξ(x0)) =
2u(lB), whereas w(lB) = 2u(lB), so that Loss(0) = Loss(lB) = 0.

5.7 Small noise analysis of variance

A key property enabling the analysis of the AMS large sample size variance is
the following.

Lemma 5.10. The map
l 7→ γl(q

2
lB )

is increasing.

Proof. Let l′ > l be given and denote by {Fs, s > 0} the natural filtration of
X. By definition of γl,

γl(q
2
lB ) = E

[
1τl(X)<τA(X)P2

Xτl(X)
(τlB (X) < τA(X))

]
= E

[
1τl(X)<τA(X)

[
EXτl(X)

(
1τlB (X)<τA(X) | Fτl(X)∧τA(X)

)]2]

so that applying Jensen’s inequality to the conditional expectation above, using
in addition the strong Markov property:

EXτl(X)

(
1τlB (X)<τA(X) | Fτl(X)∧τA(X)

)2

= EXτl(X)

(
EXτ

l′ (X)

(
1τl′ (X)<τA(X)1τlB (X)<τA(X) | Fτl′ (X)∧τA(X)

)
| Fτl(X)∧τA(X)

)2

6 EXτl(X)

(
1τl′ (X)<τA(X)EXτ

l′ (X)

(
1τlB (X)<τA(X) | Fτl′ (X)∧τA(X)

)2

| Fτl(X)∧τA(X)

)
,
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which, once put in the former expression, finally gives

γl(q
2
lB ) 6 γl′(q

2
lB ).

We can then compute

Lemma 5.11. Assume Let Assumptions 1, 2, 3 and 4. One has

lim
ε→0

ε log

∫ lB

ξ(x0)

γεl

((
qεlB
)2)

d (−pεl )

= − inf
l∈[ξ(x0),lB ]

[
U(x0, {ξ = l}) + inf

{ξ=l}

[
U (l)(x0, . ) + 2U( . , {ξ = lB})

]]
Proof. Let us consider a finite discretization {lj} of the interval [ξ(x0), lB ], and

let us denote for simplicity γεl

((
qεlB
)2) ≡ γεl throughout the present proof. By

the monotony property of Lemma 5.10, it yields:

∑
j

γεlj (p
ε
lj − p

ε
lj+1

) 6
∫ lB

ξ(x0)

γεl d (−pεl ) 6
∑
j

γεlj+1
(pεlj − p

ε
lj+1

).

Using the usual rule for finite sum and any quantity ∗εj

lim
ε→0

ε log
∑
j

∗εj = max
j

lim
ε→0

ε log ∗εj ,

one can use Lemmata 3.14, 5.6 and 5.7 to obtain

max
j
ulj ,lj+1

6 lim
ε→0

ε log

∫ lB

ξ(x0)

γεl d (−pεl ) 6 max
j
ulj+1,lj+1 ,

where we have used the notation

ulj ,lk
def.
= u(lj) + w(lk),

taking a converging sequence of discretizations, maxj |lj+1 − lj | → 0, and re-
calling that w and w are the left- and -right continuous version of the same
decreasing function while u is continuous (see Lemma 5.8), we can conclude.

With the two lemmas above, we can finally conclude the proof of Theo-
rem 3.17.

Proof of Theorem 3.17. Recall that σ2
ε,ams denotes the large sample size vari-

ance of the estimator of pε in (3.5).

First, one has σ2
ε,ams 6 −p2

ε ln pε so that limε ε log σ2
ε,ams 6 −2U(x0, {ξ = lB}).

Then a simple integration by parts then shows that:

σ2
ε,ams = p2

ε ln pε + 2

∫ lB

ξ(x0)

γεl
(
q2
ε

)
d (−pεl ) ; (5.4)

but since the term p2
ε ln pε is negative, we need to distinguish two cases.
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First, if supl Loss(l) = 0 that is if

2U(x0, {ξ = lB}) = inf
l∈[ξ(x0),lB ]

[
U(x0, {ξ = l}) + inf

{ξ=l}
[U(x0, . ) + 2U( . , {ξ = lB})]

]
one can simply bound −p2

ε ln pε > σ2
ε,ams > 2

∫ lB
ξ(x0)

γεl
(
q2
ε

)
d (−pεl ) one ob-

tains that the lower and upper bounds are logarithmically equivalent so that
limε ε log σ2

ε,ams = −2U(x0, {ξ = lB}) .

Second, if supl Loss(l) > 0, that is if

2U(x0, {ξ = lB}) > inf
l∈[ξ(x0),lB ]

[
U(x0, {ξ = l}) + inf

{ξ=l}
[U(x0, . ) + 2U( . , {ξ = lB})]

]
then the second term in (5.4) dominates at logarithmic scales, yielding the
claimed result.

5.8 AMS for two clones and at worse one iteration

This section discusses the proof that for an AMS algorithm with N = 2, one
has

lim
ε→0

ε logP
[
I2,ε
iter 6 1

]
= − inf

l∈[ξ(x0),lB ]

[
U(x0, {ξ = l}+ inf

{ξ=l}
[U(x0, . ) + 2U( . , {ξ = lB})]

]
.

For the sake of concision, the proof is only sketched.

By exchangeability between the two clones, P
[
I2,ε
iter 6 1

]
is twice the prob-

ability of the same event with the additional requirement that the killed clone
is the clone with index 2. Then remark by construction of the AMS algorithm
that

P
[
I2,ε
iter = 1

]
= 2E

[
1τMaxε (Xε)<τA(Xε)

(
qεlB (Xε

τMaxε (Xε))
)2
]
,

where in the above Xε denotes the clone with index 1 and Maxε is the maximum
level in [ξ(x0), lB ] of the clone with index 2, independent from Maxε. Using
Lemma 3.13, Maxε satisfies a LDP with good rate function l 7→ IMax(l) =
U(x0, {ξ, l}). By the tensorization principle (Maxε,Xε) satisfy a LDP with a
good rate function so that we can apply Varadhan lemmas similarly to the main
estimates of this paper with

Vε(x, l) = − ln
(
1τl(x)<τA(x)q

ε
lB (xτl(x))

)
,

the only difference being the additional dependence in l (we skip the time hori-
zon cut-off T for clarity), in which l is replace by Maxε. Using similar technical
arguments in the application of Varadhan’s lemmas, we get that

ε logP
[
I2,ε
iter = 1

]
= ε log 2E

[
e−2Vε(X

ε,Maxε)
]
ε→0−−−→ .

− inf
l∈[ξ(x0),lB ]
xl∈{ξ=l}

[
IMax(l) + U (l)(x0,xl) + 2U(xl, {ξ > lB})

]

which is precisely the claimed result.
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A More on Freidlin-Wentzell

In this Section, we recall the definitions of the rate function and the quasi-
potential for a generic SDE (3.1) with possibly degenerate noise.

Define for r ∈ H1 ([0, T ],Rm), where H1 denotes the Sobolev space defined
by d

dtr ∈ L
2([0, T ],Rm), the following functional

I[0,T ](x)
def.
= inf

r∈H1([0,T ],Rm)

ẋ=b(x)+σ(x)ṙ

1

2

∫ T

0

|ṙ|2 dt.

The latter, when finite-valued, can be written explicitly as:

I[0,T ](x) =
1

2

∫ T

0

‖ẋt − b(xt)‖2(σσT )−1(xt)
dt,

where in the above
(
σσT

)−1
denotes the spectral pseudo-inverse so that:

‖y‖2(σσT )−1
def.
= inf

λ:y=σλ
|λ|2 .

The associated quasi potential is then given by:

U(x, y) = inf
x0=x,x1=y

∫ 1

0

inf
λ∈R∗

∥∥∥∥λ dxθdθ − 1

λ
b(xθ)

∥∥∥∥2

(σσT )−1(xθ)

dθ.

Acknowledgement

This work has been partially supported by ANR SINEQ, ANR-21-CE40-0006.

References

[1] Freddy Bouchet, Jason Laurie, and Oleg Zaboronski. Langevin dynamics,
large deviations and instantons for the quasi-geostrophic model and two-
dimensional euler equations. Journal of Statistical Physics, 156(6):1066–
1092, 2014.
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