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1ONERA/Département Multi-Physique pour l’Énergétique, Université de Toulouse, F-31055, Toulouse, France

Abstract

An approach for modeling time-domain impedance boundary conditions (TDIBC) is presented. Its implemen-
tation in numerical codes relies on the inverse Fourier transform to recast the convolution problem into an array
rolling operation. The proposed approach offers several advantages, including an inherently broadband formulation
that can handle discontinuous waves, the ability to cater for any impedance law on frequency, ease of extension
to non-linear impedance operators, and the elimination of ad-hoc, previously-tuned parameters. The linear solver,
whose code is shared, is first validated against theoretical results. The non-linear solver is then validated against
experimental data obtained in an impedance tube setting. Finally, a fully non-linear Navier-Stokes solver based
on discontinuous spectral differences is utilized to demonstrate the implementation of the TDIBC in a grazing
incidence duct configuration.

Keywords: impedance, scattering, direct convolution, dynamic impulse response, TDIBC, broadband, non-
linear, discontinuous, spectral difference

1 Introduction
In the field of aeroacoustics, passive wall treatments called liners are used in engine nacelles to suppress noise prop-
agation [1]. These materials are most commonly made of assemblies of perforated sheets bonded onto honeycomb
cavities, and operate on the principle of resonators [2, 3]. The fundamental characteristic of these materials is the sur-
face impedance, which in the frequency domain establishes a transfer function between the acoustic pressure and the
acoustic particle velocity normal to the liner [4]. If the acoustic behavior of the material is independent of the incident
wave direction, then the liner is considered to be locally-reacting, and the surface impedance becomes the defining
property (Ref. [5] provides a guide for the measurement of impedance on non-locally reactive samples). Another field
of interest for impedance boundary conditions (IBCs) is the study of combustion chambers, where liners can be used
to reduce thermoacoustic instabilities [6–8]. In such scenarios, IBCs provide a convenient tool to replace some element
of the geometry within a large-eddy simulation, allowing the simulation domain to be truncated. The implementation
of an IBC in computational studies was shown to significantly reduce the numerical cost of the simulation while pre-
serving the critical acoustic features that drive the system instabilities [9]. Due to the many analogies between the
acoustic and electromagnetic computational problems, the development of IBCs has been concurrently explored in
both fields of research. The present study focuses on (aero)-acoustic problems, but is a-priori not restricted to them.

Although the impedance modeling of acoustic liners was initially conducted in the frequency domain, most aeroa-
coustic codes rely on solving time-domain equations. This approach is highly suitable for computational aeroacoustics
(CAA), as it allows considering non-linear problems governed by the Euler or Navier-Stokes equations. Additionally,
in the presence of a high sound pressure level (SPL), non-linear phenomena can occur in the vicinity of the liner
perforations [10, 11], thereby complicating the impedance modeling in the frequency domain. Other advantages of a
time-domain representation include the capacity to process sound signals with a broad frequency spectrum and moving
sources.

In recent decades, there has been significant progress in the development of impedance models in the time do-
main, which have demonstrated their ability to target broadband behaviors and to handle non-linear impedance
operators [12]. The majority of these techniques rely on approximating the complex, frequency-dependent impedance
operator with rational functions, and are separated in three families: recursive convolution, z-transform and auxiliary
differential equations (ADE). Further elaboration on each family is provided below.
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Recursive convolution approach Yee [13] pioneered the field of research on the finite-difference time-domain
(FDTD) approach to solving Maxwell’s equations with constant values of the permittivity and conductivity of ma-
terials (equivalent to constant impedance). This enabled narrow-band time-domain simulations. Building upon the
FDTD approach of Yee, Luebbers et al. [14] introduced the first family of solutions to the frequency-dependent prob-
lem by approximating the convolution with an operator (similar to the impedance) via a time discretization technique.
Arbitrary order polynomial approximations of the operator were considered, thus extending the initial work of Lueb-
bers et al. in Ref. [15]. By assuming a linear change in variables over time, the complex time-domain convolution was
reduced to a recursive algorithm. In the field of acoustics, recursive methods were introduced by Reymen et al. [16],
who efficiently implemented the time-domain boundary condition developed by Tam and Auriautt [17].

z-transform approach Özyörük et al. [18] were the first to explore time-domain solutions to an aeroacoustic
problem based on an impedance-modeled liner assuming a linear response. The authors recognized that the direct
convolution of the impedance operator between the pressure and velocity fields could be accomplished recursively at
each time step. To reduce memory requirements, the authors chose to rephrase the convolution problem using the
z-transform. This z-transform strategy, which represents the impedance as a digital filter, had been used previously
by Sullivan for the Maxwell equations within dispersive media featuring frequency-dependent properties [19, 20].
Combining the Myers approach to IBC modeling [21], Özyörük et al. approximated the real and imaginary parts of
the impedance using rational polynomials whose coefficients served as degrees of freedom (DoF) of the time-domain
impedance boundary condition (TDIBC). To ensure the stability and causality of the impedance, constraints were
imposed on the roots and poles of these polynomials. These limitations were due to the lack of physical significance of
the polynomial coefficients, which constrained the flexibility of the approach and the goodness of fit of the polynomials
to the available data. To overcome this constraint and achieve a closer representation of the physics, Rienstra [22]
proposed an alternative method where a single degree of freedom liner (SDoF) made up of a perforated sheet backed
by a cavity, called the extended Helmholtz resonator (EHR) model, was represented using five parameters. The EHR
model was shown in Ref. [12] to be a generalization of the λ/4 resonator model and Ko’s model [23].

Auxiliary differential equations (ADE) approach Based on a recommendation made by Jackson [24, p. 331],
Joseph et al. [25] used the FDTD approach with Maxwell’s equations and examined the first and second order frequency
dependencies of the dispersion operator. Using the inverse Fourier transform (iFT) of the dispersion operator, the
authors proceeded to reframe the convolution problem using additional equations, thus pioneering the so called ADE
approach. Subsequently, the ADE approach was demonstrated to maintain the order of accuracy of the time integration
scheme, which was not the case for the recursive convolution methods that were limited to first and second order
accuracy [26].

Starting from physically-sound acoustic impedance models in the frequency domain, Monteghetti et al. [27] in-
troduced the oscillatory-diffusive (OD) approach to the TDIBC, which is a specific type of ADE that makes use of
delayed ordinary differential equations. The OD-TDIBC consists in recasting the convolution problem using a sum of
first order polynomials representing an operator, such as the scattering or the impedance. With the adoption of the
OD representation, a set of additional variables extends the system, and auxiliary equations on these parameters must
be solved along with the initial ones. A first advantage of the OD-TDIBC approach is that physical guidelines were
given to choose some of the model’s DoFs, while the remainder could be obtained using a simple linear least squares
optimization. A second advantage over other models is the introduction of delayed oscillatory and diffusive parts of the
impedance operator. This delay has a physical meaning, related to the time it takes for the wave to travel within the
liner cavity and back. Using delayed first-order ordinary differential equations, the OD-TDIBC approach generalizes
the EHR model. Extensions of the OD-TDIBC to a non-linear impedance model were detailed in Ref. [28, Sec. 4],
demonstrating that the use of the scattering operator (i.e., the reflection coefficient) was numerically more efficient
than the impedance operator in the non-linear case, while remaining equivalent in the linear case. Alternatively, an
ADE method developed by Troian et al. [29] also proved capable of a broadband representation, with the difference
from Ref. [27] that no delay was required in the rational function used to fit the impedance curve in the frequency
domain.

In a recent study, Diab et al. [30] demonstrated that the poles and weights of the ADE-TDABC (where "A" stands
for admittance, i.e., the inverse of impedance) were continuously varying with respect to the particle velocity. This
property resulted in a seamless incorporation of the non-linear contribution of SDoF liners in the time domain.

CAA codes that rely on the TDIBC concept are typically high-order codes featuring low numerical dissipation to
accurately solve small-amplitude waves propagating over long distances. Spatially-discontinuous numerical schemes
are particularly well-suited for such problems, as the order of their approximation can be locally increased through
compact stencils where contiguous elements communicate through boundary fluxes. Examples of such schemes are the
Spectral Difference (SD [31]) and the Discontinuous Galerkin (DG [32, 33]) methods. Effective boundary condition
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management is critical to these codes and can be efficiently handled using the Navier-Stokes Characteristic Boundary
Conditions (NSCBC [34]) formalism, of which TDIBCs are a subset. The main objective of a TDIBC in such schemes
is to provide the characteristic entering the domain, which is a convolution of the wave exiting the domain and the
reflection operator. The OD-TDIBC of Monteghetti et al. has been integrated within a DG code with the linearized
Euler equations in Refs. [27, 28], in an SD code with the full Navier-Stokes equations in Ref. [35], as well as a high-order
version of a second-order finite volume code with the Navier-Stokes equations in Refs. ([36], [37, II.3-II.4]).

Whatever the approach, their DoFs (i.e. the poles, weights and delays for the OD representation) must be fitted
to impedance data, sometimes obtained experimentally. The quality of the approach is directly linked to the quality
of this fit, and consequently, to the characteristics of the impedance. Recent advances in the state-of-the-art of liner
design rely on the parallel assembly of materials having different impedances in order to extend the frequency range of
absorption (see Ref. [38] for a review of recent liner concepts). Additionally, multi-stage liners - such as the stacking
of two SDoFs - can be considered, rendering a single delay inadequate to represent the wave behavior. Therefore,
extending the conventional TDIBC approach to complex liners might be challenging.

The conventional TDIBC modeling approach has often relied on fitting parameters to approximate the impedance
operator rather than directly computing the convolution. This could be due to computational and memory cost
considerations that existed at the time of the pioneering works on TDIBCs. However, with the current availability
of high-performance computing resources and fast Fourier transform (FFT) libraries, a direct computation of the
convolution may no longer be a bold approach. The present study aims to show that a parameter-free method, based
on inverse Fourier transforming the impulse response of the scattering operator, is a promising alternative for both
linear and non-linear problems.

The present manuscript introduces a TDIBC formulation that is inherently wider band than the numerical scheme
considered, has the ability to handle discontinuous waves and non-linear responses alike, and does not require additional
parameter fitting. The manuscript is structured as follows. In Sec. 2 we provide a review of the modeling of aeroacoustic
liners and discuss non-linear effects. In Sec. 3 we introduce the proposed TDIBC method, first by tackling the linear
regime before moving on towards the non-linear one. Validation cases of the method are given in Sec. 4, and numerical
applications in a 2D duct are gathered in Sec. 5. Lastly, we provide an extensive discussion of our findings in Sec. 6.

2 Aeroacoustic liner impedance modeling
This section provides an overview of aeroacoustic liners and their modeling. A more comprehensive discussion including
novel liner concepts is available in Ref. [38].

2.1 Physics of the dissipation within liners
Typical acoustic treatments, such as SDoF liners, consist of a perforated plate backed by a cavity [39, 40]. The
primary mechanism of dissipation in these treatments occurs through viscous and thermal effects in and around the
perforations [41]. The cavity introduces a delay in the wave’s travel time, which can lead to constructive interference
(phase match) between incoming and reflected waves at certain wavelengths. At these resonant frequencies, the
acoustic particle velocity in the perforations increases, leading to additional viscous dissipation.

In the frequency domain, locally-reacting acoustic liners are defined by their normalized surface impedance, denoted
by the complex frequency-dependent quantity Z̃. This impedance represents the transfer function between the acoustic
pressure p̃ and the normal velocity ũ ·n at the liner surface, where n is the unit normal vector pointing into the liner
surface by convention:

Z̃ =
1

z0

p̃

ũ · n , (1)

with z0 being the characteristic impedance of air. As was shown in different numerical studies [42, Sec .1.3.2],[28],
the impedance is not particularly convenient in numerical codes due to its unbounded nature. It is more practical to
work directly with the scattering operator, i.e., the reflection coefficient R̃. This coefficient describes the ratio of the
reflected wave to the incident wave and is defined as:

R̃ =
Z̃ − 1

Z̃ + 1
. (2)

It has been established in Ref. [41] that perforated plates can be approximated as porous foams with particular
properties. As cavities are commonly composed of honeycomb layers, representing each element of a liner by a porous
material greatly simplifies its modeling. By using the transfer matrix approach [43, Chap. 11], one can relate the
acoustic pressure and velocity fields on either side of a material layer, such as a plate or a cavity. By multiplying the
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matrices of each layer sequentially, the global surface impedance of the assembly can be determined. One significant
advantage of this method is its ability to handle more complex situations, such as stacking multiple SDoF liners or
introducing porous media like foams within cavities.

The main objective of this paper is not to provide a detailed model for the impedance of a liner. Instead, the
TDIBC developed in this work is model-agnostic and requires no fitting of parameters, so the reader has the liberty
to choose among the variety of impedance models available in the literature [38]. For pedagogical purposes, the
considered normalized impedance for a SDoF liner is that of Atalla and Sgard [41, Eq. 8], where the wave number kc
of the cavity is that of Bruneau [44, § 3.7]:

Z̃SDOF (ω) =
Rs
cfφp

(
2Lp
rp

+ 4
εe
rp

)
(1 + j) +

1

cfφp
(2εe + Lp) jω +

1

φc
coth

(
jk̃cLc

)
, (3)

εe = 0.85rp

(
1− 1.14

√
φp

)
, Correction length (4)

Rs =
1

2

√
2ηωρf , Surface resistance (5)

jk̃c =
jω
cf

[
1 + (γ − 1) Φ (kκrc)

1− Φ (kνrc)

]1/2
, Cavitywavenumber (6)

Φ (s) :=
2

s

I1
I2

(s) . (7)

In the previous equations, Lp is the thickness of the perforated face sheet, φp its porosity, rp the radius of its
perforations. Similarly, Lc, φc and rc define the honeycomb cavity properties. The ambient air is defined by its speed
of sound cf , density ρf , the ratio of specific heat constants γ, the dynamic viscosity η, the cinematic viscosity ν and
the thermal conductivity κ. The modified Bessel functions of the first kind of order n are written In, and kν =

√
jω/ν,

kκ =
√

jω/κ.

2.2 Non-linear modeling
Typical jet engines may exhibit SPLs in excess of 160 dB inside the engine nacelle, where liners are typically installed.
While non-linear effects of the ambient gas are significant for SPLs exceeding 160 dB, the non-linear aspect of perforated
plates can already manifest itself at a SPL of 130 dB or lower. At high SPLs, the flow of air near the perforations can
trigger a vortex-shedding mechanism, which converts the irrotational acoustic wave into rotational flow features [11].
The resulting vortices are eventually broken down and dissipated by viscosity. In experiments, the real part of the
impedance was shown to increase when the SPL was raised. At resonance, while the imaginary part was slightly
reduced (see e.g. Ref. [45] for a discussion on the non-dimensional coefficients that can be used to model a non-linear
“thin” orifice impedance). Typical models for liners tend to represent this non-linearity as

Z̃NL = Z̃ + GNL (v) , (8)

where v is the acoustic particle velocity just outside the perforation, and GNL is a non-linear function of v (see e.g.
Refs [46, 47]). The velocity within the perforation is a function of both the incoming wave and the one that has
traveled within the cavity and back, adding a layer of complexity in the time-domain modeling. As shown by Billard
et al. [48], even the simple Guess model [47] can be predictive, provided that the velocity within the perforations is
accurately estimated. Since the velocity depends on the reflection coefficient, which itself depends on the velocity, an
iterative loop is required, with an increasing number of iterations needed as the SPL rises.

An example of impedance, considered for pedagogical purposes, is that of a SDoF used in the literature for
benchmarks, the GE03 NASA sample [49]. Table 1 presents the properties of the GE03 NASA sample, and Fig. 1
shows its theoretical impedance for different incident SPLs. The calculations are directly performed in the frequency
domain at each frequency, and an iterative loop is carried out to converge on the value of v [48].

3 Direct convolution approach in the time domain
This section introduces the concept of the impulse-response TDIBC, abbreviated as IR–TDIBC. The IR-TDIBC is
a technique that relies on a direct convolution to implement the TDIBC using the impulse response of the reflection
coefficient. The latter is obtained by iFT. The linear and non-linear scenarios of this approach are described in Sec. 3.1
and Sec. 3.2, respectively.
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Table 1: SDoF sample properties, from Ref. [49]

GE01 GE03

Facesheet porosity (%) 8.7 15

Facesheet thickness (mm) 0.635

Perforation diameter (mm) 1

Sample thickness (mm) 38.1

3.1 Linear convolution
A frequency-domain transfer function R̃ and its corresponding time-domain equivalent R (t) are considered, which are
related by the iFT as

R (t) =
1

2π

∫ +∞

0

R̃ (jω) ejωtdω. (9)

Let x (t) be an input signal and y (t) the output of a linear time invariant system defined by the IR operator R (t). In
the linear case,

y (t) = x (t) ∗ R (t) ,

y (t) =

∫ +∞

0

x (τ)R (t− τ) dτ . (10)

The input x (t) can be considered as a series of appropriately scaled Dirac pulses, so Eq. 10 can be approximated at
time tN as

y (tN ) =
∑

n∈[0,N ]

x (tn)R (tN − tn) , (11)

where tn = n× dt, with dt > 0 being the simulation time step. If the impulse response R (t) is known, one can store
it in an array of size NR

R =

 R (t = 0)
...

R (t = (NR − 1)× dt)

 , (12)

with the first element of the array being the instantaneous response of the operator, and the remaining elements
representing the future response. Such an impulse response is partly shown for material GE03 in Fig. 2, where
successive reflections are displayed. These reflections correspond to the back and forth travel of waves in the liner
cavity. Reflections also occur at the junction between the perforated plate and the cavity, and are too concentrated in
time to be separated on the signal. The total size of R depends on dt and can be quite large (in the remainder of this
paper, NR ≈ 3 · 104). For materials such as liners, later reflections contain less energy as the signal gets dissipated.
One way to alleviate the memory burden introduced by the impulse response is thus to cut the signal once the energy
has sufficiently decreased. This strategy comes at a price in terms of precision, as it removes future reflections from
the signal, but might suffice for engineering purposes since these echos usually amount to a lesser proportion of the
total energy. Using an energy criterion, one can then select the lowest integer Nε < NR that respects

Nε∑
n=1

R2 (tn) ≥ ε
NR∑
n=1

R2 (tn) (13)

meaning that at least ε of the energy contained in the IR is conserved (typically ε = 0.99). Lowering ε also lowers
Nε. In practice, if the frequency response of the reflection coefficient is known, one can obtain R with an iFT. We fix
ε = 1 in the remainder of this paper, and the entire IR obtained by iFT is used.

Let us define the array

Rn =



R (t = n× dt)
...

R (t = (NR − 1)× dt)
0
...
0

n


, (14)
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Figure 1: Acoustic characteristics of the GE03 sample

also of size NR, which represents the impulse response starting at a later time n×dt, completed with zeros to account
for the lack of information on the impulse response after the time (NR − 1)× dt. We note that R0 = R. For brevity,
an index-shifting linear operator Ψ = δi,i+1 of size NR × NR is defined, with δ being the Kronecker delta. The Ψ
operator transforms an array as

Ψ

 a0
...

aNR−1


NR

=


a1
...

aNR−1
0


NR

, (15)

which resembles an array-rolling operation. One obtains the following relationship

Rn = Ψ (Rn−1) = Ψn (R) . (16)

We can now define an array yN of size NR that contains the future response of the TDIBC once it has seen a discrete
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Figure 2: Impulse response R (t) for the GE03 sample

set of successive inputs up to a time tN as

yN =
∑

n∈[0,N ]

x (tn)RN−n = x (t0)



R (t = N × dt)
...

R (t = (NR − 1)× dt)
0
...
0


NR

+ . . .+ x (tN )



R (t = 0)
...
...
...
...

R (t = (NR − 1)× dt)


NR

. (17)

A salient feature of this representation is that it can be used to build yN iteratively, with the linearity property of Ψ,
as

yN = x (tN )R +
∑

n∈[1,N−1]
x (tn)RN−n

= x (tN )R +
∑

n∈[1,N−1]
x (tn)RN−1+1−n

= x (tN )R +
∑

n∈[1,N−1]
x (tn)Ψ (RN−1−n)

= x (tN )R + Ψ
(
yN−1

)
, (18)

leading to an efficient numerical handling. One can update yN−1 by shifting the position of its elements by one, and
by adding the time-local contribution of amplitude x (tN ). Lastly, the output at the current time step y (tN ) becomes

y (tN ) = yN [1] , ∀N > 0, (19)

where the bracket denotes the access to an array element (here the first one) which encompasses the instantaneous
response due to the Dirac pulse at time tN , as well as the integrated contribution of past time steps. This procedure
recalls in essence the Duhamel principle of superposition, by means of which one integrates a solution in time by
considering elementary constituents (see Ref. [50] for applications in aerodynamics).

In the present study, the impulse response R is central to the method, hence the name IR–TDIBC in what follows.

3.2 Non-linear convolution
The reflection operator exhibits non-linearity due to the contribution of the acoustic particle velocity vpf within the
liner perforation. This velocity is a direct function of the normal particle velocity v immediately above the perforated
plate. Then, conservation of mass yields

vpf =
1

φ
v. (20)
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We hypothesize that the non-linear problem can be rewritten as a dynamic convolution, also called impulse response
switching, which can be expressed in discrete-time

y (tN ) =
∑

n∈[1,N ]

x (tn)R (tN − tn, x (tN − tn) , y (tN − tn)) . (21)

This technique, already in use within the electro-acoustic community to simulate non-linear devices [51, 52], involves
re-evaluating the impulse response for each amplitude of the parameter driving the nonlinearity. It has to be noted
that the non-linear behavior of liners has a memory effect, since the wave that has traveled back and forth within
the cavity does contributes to setting the particle velocity within the perforation. However, by using Eq. 20, it is
possible to determine the contribution of the outgoing wave at the current time-step, allowing for a memory-less
dynamic convolution. The primary advantages of this approach over using Volterra series to describe the nonlinearity
are chiefly the generality of representation of the non-linear term, the simplicity of integration of the impulse response
switching method, and the lack of need for a kernel identification. A physical limitation of the approach, common to
all TDIBC methods, is that once the wave has entered the liner, its future is fixed. In experiments, when the wave
comes back, it can in practice be influenced again by the non-linear behavior at the perforation on its way out. This
feature cannot be predicted by the current method.

The iterative procedure on yN is now given by

yN = x (tN )R (x (tN ) , v (tN )) + Ψ
(
yN−1

)
. (22)

In contrast to the linear scenario described previously, the impulse response R now constitutes a non-linear function
of the input and output. This is attributed to its dependence on v, a quantity that can be accessed during runtime in
numerical solvers. Note that for broadband signals, it may be more relevant to consider the root mean square velocity
integrated across the entire frequency spectrum, as done by Diab et al. [30].

The procedure to use the non-linear convolution approach in a code is as follows:

1. Evaluate numerically the normal acoustic particle velocity v at the TDIBC

2. Using a chosen model for the nonlinear behaviour, evaluate the non-linear contribution to the impedance, GNL (v).
The detailed description of one such model is delayed to Sec. 4.3.

3. Following Eq. 8, evaluate the total impedance Z̃NL in the frequency-domain, which is the sum of the linear
contribution Z̃ and the non-linear contribution GNL (v).

4. Evaluate the corresponding reflection coefficient R̃ using Eq. 2.

5. Calculate the corresponding IR, R, and use it to update yN in Eq. 22

4 Validations
We start by validating the IR–TDIBC technique on a straightforward input-output solver, presented as supplementary
data in the form of a python script. The linear solver is first demonstrated on the impedance of the GE03 sample
in Sec. 4.1, and the non-linear case is treated in Sec. 4.3. The considered configuration is quite representative of
the impedance tube measurement set-up, depicted schematically in Fig. 3. For the purpose of this validation, the
propagation aspect of the incident and reflected waves is deemed unnecessary. Only signals originating locally at the
TDIBC surface, i.e., at the sensor position in Fig. 3, are taken into account.

4.1 Linear case
Two incident waves are considered in the linear case. The first one is a continuous pulse, while the second is a
discontinuous signal. Their evolution in time at the sensor location (x = L) is shown in Figs. 4–5. Knowing the
full time-domain incident signal Fin (t) and the frequency-domain scattering operator R̃, the exact expression of the
reflected wave at x = L is

Fout (t) = iFT
(
F̃in (ω) · R̃ (ω)

)
, (23)

where F̃in (ω) is the FT of Fin (t). Fout (t) is considered as the reference solution. It is here evaluated by means of the
FFT algorithm. This direct approach to calculating Fout (t) cannot be applied in numerical codes for wave propagation,
since one does not know the entirety of the incident wave signal in advance. Using the IR–TDIBC approach described
in Sec. 3.1, Fout (t) can now be calculated iteratively. Prior to this calculation, the first step is to evaluate R, which
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Figure 3: Setup of the impedance tube test case. A right-running pressure wave enters the domain at x = 0 and
impacts the TDIBC at x = L, where it is reflected back towards the inlet.

is done via an iFT applied to R̃ (ω). The time step of the simulation is dt ≈ 1.5 · 10−6 s, in line with the envisioned
time steps encountered in CAA simulations. The total simulation time is 5 · 10−2 s. The high frequency limit related
to Shannon’s theorem is thus much higher (330 kHz) than the typical frequency content of interest in aero-acoustics
(20 kHz). The match between the reflected waves obtained with the IR–TDIBC algorithm and the reference ones are
displayed in Fig. 4b–5b, showing a perfect agreement. Handling discontinuous signals with the IR-TDIBC approach
is done in a natural way, since at its root, the method is based on a Dirac pulse input, see Fig. 5b. At the onset of
the discontinuous signal, the reference solution displays an oscillation, shown in the inserted zoom of Fig. 5b. The
oscillation is attributed to a Gibbs phenomenon, a standard feature of the FFT for discontinuous signals. The signal
obtained from the IR-TDIBC is exempt from spurious oscillations near the discontinuity, because the FFT used to
calculate the IR is applied on a continuous quantity, the reflection coefficient.
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Figure 4: Numerical test of the linear IR–TDIBC. Incident and reflected waves for the GE03 sample with a continuous
wave. Comparison with the reference result, obtained via iFT on the entire signal.

Using the reflected wave in the time domain (the data displayed in Fig. 4b for instance), one can re-evaluate the
reflection coefficient in the frequency domain, or alternatively the surface impedance that has been imposed by the
IR–TDIBC. The comparison between these values and the theoretical ones obtained in Eq. 3 are displayed in Fig. 6,
where the continuous input signal was used. The fit is excellent up to 25 kHz, but the IR–TDIBC solution deviates
from the theory beyond this frequency. The continuous incident wave has an energy spectrum contained below 25 kHz,
so there is not enough signal for the post-processing to be meaningful at higher frequencies. Increasing the frequency
content of the incident signal, for instance by considering the discontinuous signal of Fig. 5a, one can recover a perfect
fit up to higher frequencies too.

4.2 Extension to complex liners
A challenging class of liners to model with classical TDIBC approaches is that of multi-degree-of-freedom (MDoF)
liners, which comprise a series of SDoF liners stacked on top of one another. MDoF liners pose significant difficulties,
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Figure 5: Numerical test of the linear IR-TDIBC. Incident and reflected waves for the GE03 sample with a discontin-
uous wave. Comparison with the reference result, obtained via iFT on the entire signal.

owing to the presence of delayed differential equations associated with each cavity that lead to an increased number
of parameters caused by the rise in the number of resonances and anti-resonances in a particular frequency band.
Another relevant problem in the field of aeroacoustic liners concerns the characterization of an acoustic metasurface,
which is a parallel assembly of SDoF liners. The total impedance Z̃tot of a parallel assembly of P liners, each of
impedance Z̃p, is given by

Z̃tot =

[
P∑
p=1

1

Z̃p

]−1
. (24)

By combining the two concepts previously introduced, i.e. MDoF liners and the parallel assembly of P liners, one can
devise intricate liners with optimized impedances, capable of absorbing sound across a broad frequency range. Such
complex liners are analyzed next in order to showcase and leverage the versatility of the IR-TDIBC approach when
dealing with elaborate impedance laws.

The selected liner architecture is more elaborate than the classical SDoF liner of Sec. 4.1. It is made of three
different liner surfaces Si, each of which has multiple stages. A perforated plate is considered on top of a cavity filled
with a foam, and this assembly is placed on a LEONAR sample – a perforated plate with tubes extending through
the cavity. A schematic of the proposed metasurface is presented in Fig. 7. In order to obtain the liner properties, we
choose an optimization strategy subjected to the constraint of a fixed liner height (5 cm) responding to the incident
signal x (t) shown in Fig. 4a. A global optimization tool called pyMOO [53] was used to minimize the cost function
J , defined by

J =

∫ tmax

0

|x (t) ∗ R (t)|dt =

∫ tmax

0

|y (t)| dt, (25)

where tmax is the end time of the simulation, and where the parameters to be optimized appear in the calculation of
the reflection coefficient, which is then used by the IR-TDIBC method to calculate the output wave y (t). Some liner
properties are fixed here for simplicity, including the foam intrinsic properties, such as its porosity and tortuosity. The
foam is modeled in frequency domain via the Jonhson-Champoux-Allard model [54, 55] and roughly corresponds to a
melamine foam, often encountered in the field of acoustics. More information on the optimization tool, called OPAL,
can be found in Ref. [56]. A total of 19 parameters were optimized: the perforated plates porosities and radius of
perforation, the foam thickness (taken equal in all liners), the tube length, radius and total porosity, as well as its
cavity height. The reflected wave is shown in Fig. 8, showing a close to perfect agreement with the reference solution
obtained via the direct convolution approach. The goodness of fit remains excellent at longer times, when most of the
signal has been dissipated, as shown in the inset in Fig. 8.

Using the output of the IR-TDIBC solver, i.e., the reflected wave, the reflection coefficient and surface impedance
that were effectively imposed numerically are evaluated. The comparisons between theoretical values and those
obtained numerically are shown in Fig. 9. An excellent agreement is found, despite a quite complex "shape" of the
reflection coefficient and impedance functions. This confirms that the IR-TDIBC solver is quite capable of handling
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Figure 6: Comparisons between the exact acoustic properties and the ones obtained using the wave reflected with the
IR-TDIBC approach.

most liner configurations, without any overhead in terms of calculation, nor any fitting of parameters required from
the user.

4.3 Non-linear case
To validate the non-linear capabilities of the IR–TDIBC method, a dataset obtained by NASA in an impedance tube
configuration is used [49], similar to that of Fig. 3. Two different acoustic liners known for their non-linear behaviors
are considered at two different SPLs: 120 dB and 140 dB. The liner properties were given in Table 1, and the model
described in Eq. 3 is used to evaluate their impedance. For each simulation, non-linear effects are considered, although
they are expected to be small in the 120 dB case. The non-linear Guess model [47] is selected to update the impedance
value as a function of the normal particle velocity at the liner surface, i.e., the non-linear contribution to the impedance
in Eq. 8 becomes

GNL (v) =
1− φ2
φ2

|v|
cf

= αNL |v| , (26)

where αNL is the non-linear parameter. The normal particle velocity immediately outside of the perforation is v, taken
along the x component in Fig. 3.

The SPL was measured in the experiment at a location very close to the upper surface of the liner, and consists
in a total SPL including the contribution of both incident and reflected waves. Here, the sensor location displayed in
Fig. 3 is used again as the reference location for this measurement, and thus the propagation aspect of waves in space
can be ignored. An input-output relationship can be adopted, i.e. the only dimension of the problem is time.
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Figure 8: Reflected waves for the optimized metasurface sample. Comparison with the reference result, obtained via
iFT on the entire signal.

A control system was used by NASA to modulate the loudspeaker response until a target SPL was reached at the
sensor location. In a numerical solver, only the incident wave amplitude can be directly entered by the user. Due
to the standing wave pattern that is present in an impedance tube, a frequency dependent SPL is observed at the
liner surface. Given the non-linear behavior of the considered liners, a complex dependency can exist between the
incident SPL, the total SPL and the non-linear impedance of the liner. Sine waves are considered numerically too,
and the incident SPL is initialized in the simulations at the target SPL. The simulation is then run multiple times
and the incident amplitude adjusted by a gradient descent approach until the target SPL is reached, within a 0.1 dB
margin. In this respect, the numerical method closely matches the experimental one. The time-domain reflected
signal is recorded, and then transformed back into the frequency domain, from which the reflection coefficient and the
impedance are recovered at each frequency. The impedance numerically obtained for both the GE01 and GE03 liners
are displayed in Figs. 10 and 11 along with the experimental data. Given the potential experimental uncertainties
on the liner properties and the general variations observed between identical samples in round robin tests [57], the
impedance realized by the IR–TDIBC approach can be considered to be a good fit to the experimental data. We
note that the “peak” of the real part of the impedance, called resistance, is well captured by the model in both cases
near the resonance, with a slight shift of this peak to higher frequencies in the numerical case. Accounting for a non-
linear contribution to the imaginary part of the impedance could help further improve the fit, and could be achieved
straightforwardly by updating Eq. 26 as needed.

5 Applications in a Spectral Difference solver
Now that the approach has been validated on both linear and non-linear cases, the IR–TDIBC approach is included
in a solver capable of handling the propagation of waves in space and time, in order to represent more complex
configurations. This solver, called JAGUAR, is first presented in Sec. 5.1. A grazing incidence 2D duct is then
tackled numerically in Sec. 5.2, since this configuration is widely used in the impedance eduction community, where
the non-linear effect on the impedance is often neglected.
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Figure 9: Comparisons between the exact acoustic properties and the ones obtained using the wave reflected with the
IR-TDIBC approach, on the optimized metasurface sample.

5.1 The JAGUAR solver for aeroacoustics
The code selected for the implementation of the IR-TDIBC is a fully non-linear Navier-Stokes solver relying on
a high-order discontinuous method for the spatial discretization. Named JAGUAR [58, 59], the solver is jointly
owned by CERFACS1 and ONERA2. It is based on an SD scheme [31, 60–62], which handles the strong form of the
governing equations. The conservative variables (hereafter, the solution) and their fluxes are approximated inside each
computational cell by fitting two polynomials: one of order p for the solution and one of order p+1 for the fluxes. The
ability to generate the additional degrees of freedom internally within the cell allows for a high-order discretization
to be obtained on unstructured meshes, and hence to consider flows around complex geometries. In contrast, a high-
order discretization obtained with finite differences generally requires a large computational stencil achievable only
on structured grids. Throughout this study, p = 4, which results in a fifth-order accurate SD scheme. Furthermore,
the time integration follows an optimized low-dissipation low-dispersion 6-step Runge-Kutta scheme inspired from
Berland et al.[63]. Finally, all results presented in the following sections are carried out in two dimensions with the

1European Center for Advanced Training in Scientific Computation
2The French Aerospace Lab
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Figure 10: Impedance of the GE01 sample, comparison between NASA’s experiments and the present IR-TDIBC
model.
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Figure 11: Impedance of the GE03 sample, comparison between NASA’s experiments and the present IR-TDIBC
model.

Navier-Stokes equations. The governing equations in generalized coordinates (ξ,η) are given by:

1

J
∂U

∂t
+

∂

∂ξ

(
Ec

ξx
J + F c

ξy
J

)
+

∂

∂ξ

(
Ed

ξx
J + F d

ξy
J

)
+

∂

∂η

(
Ec

ηx
J + F c

ηy
J

)
+

∂

∂η

(
Ed

ηx
J + F d

ηy
J

)
= 0, (27)

where U = [ρ, ρu, ρv, ρ(e + (u2 + v2)/2)]ᵀ is the solution vector. The density is labeled as ρ, the streamwise (herein
x-coordinate) velocity as u, the wall-normal (herein y-coordinate) velocity as v and the specific internal energy as e.
J is the mesh Jacobian, and the convective and diffusive fluxes of U in physical space are (Ec,F c) and (Ed,F d),

respectively. These fluxes are defined as:

Ec = (ρu, ρu2 + p, ρvu, (ρe+ p)u)ᵀ

F c = (ρv, ρuv, ρv2 + p, (ρe+ p)v)ᵀ

Ed = (0, p+ τ(1,1), τ(2,1), uτ(1,1) + vτ(2,1) + λT∂xT )ᵀ

F d = (0, τ(1,2), p+ τ(2,2), uτ(1,2) + vτ(2,2) + λT∂yT )ᵀ (28)
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with viscous stress tensor τ(i,j) (in kg.m−1.s−2) and thermal conductivity λT (in J.K−1). The flux balance at the
boundaries is modified in order to account for the NSCBCs, following the approach suggested by Kim and Joo [64].
For a validation of the NSCBCs implemented in JAGUAR in test cases of variable complexity, we refer the readers to
Fiévet et al.[35], where the OD–TDIBC approach was also considered.

5.2 Grazing impedance tube configuration
The grazing incidence duct configuration, commonly used by the aeroacoustic community to test liners, is considered
and described next. A two-dimensional L × H domain (in the x and y directions, respectively) is discretized with
201×12 rectangular cells of constant size, yielding 60, 300 degrees of freedom at this order of approximation (p = 4). In
our numerical discretization, L = 812 mm and H = 50.8 mm. A sketch of the numerical setup, along with details on the
TDIBC location, is provided in Fig. 12. The simulations for this case were run by solving the Navier-Stokes equations
during a total of 1.2·105 iterations with a uniform time step of dt = 2.5·10−7 s. An ambient pressure of Pa = 101, 325 Pa
and ambient temperature of Ta = 295 K are considered. There is no net mass flow through the domain (no flow case).
Both walls are treated as hard wall isothermal BCs at ambient temperature. The fluid is air with constant specific heat
ratio γ = 1.4 and sound speed c = 344.31 m/s, and the viscosity varies with temperature according to Sutherland’s
law (reference viscosity and temperature are µref = 1.715 · 10−5 kg/(m · s) and Tref = 273.15 K, respectively).
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Figure 12: Setup of the grazing incidence duct test case. A right-running pressure wave first enters the domain at
x = 0 and grazes over the TDIBC located at the lower wall, and then travels towards the exit at x = L.

Two theoretical liners are considered. The first one was introduced in a recent work by Diab et al. [30], where
the non-linear effects were integrated by modulating the coefficients of the ADE–TDABC (the admittance was used
instead of the impedance but the strategy remains similar). In addition, a second liner configuration is also considered,
for which the non-linear behavior is artificially changed by increasing the value of its αNL, which is given otherwise by
the Guess model in Eq. 26. The properties of both samples are given in Table 2, as well as their resonance frequency
fres, which is the frequency at which a sine wave is generated at the inlet of the domain. The linear impedance of the
materials is shown in Figure 13. The incident SPL is varied from 80 dB to 150 dB in the JAGUAR simulations.

Table 2: SDoF sample properties, from Ref. [30]

M1 M2

Facesheet porosity (%) 1.5 20

Facesheet thickness (mm) 1 1

Perforation diameter (mm) 0.5 2

Cavity depth (mm) 10 40

αNL 10.8 10.8

fres(Hz) 1574.6 1731.4

In the simulations, the SPL is extracted at the upper wall opposite from the liner by calculating the FFT of the
time-domain pressure signal in multiple locations, and interpolating the frequency-domain signal at the frequency of
generation - i.e. the resonance frequency. The difference ∆SPL in dB between the total SPL and the incident SPL is
represented for the M1 liner in Fig. 14 and for M2 in Fig. 15.

The results for material M1 are qualitatively similar to those obtained by Diab et al. [30]: an increase in the
SPL leads to a more resistive impedance overall, leading to less absorption in the duct. The difference between the
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Figure 13: Surface impedance of the M1 and M2 samples
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Figure 14: Spatial evolution of the SPL at the upper wall of the duct, with M1 installed.

present results and those of Ref. [30] are attributed here to a difference in the modeling of the non-linear effect.
Instead of considering the non-linear contribution as a way to change the intrinsic parameters of the perforated plate
(resistivity and tortuosity), the rather simplified approach of Guess was followed, directly updating the impedance by
the experimental correlation of Eq. 26. The present model does not account for a change in the imaginary part of
the impedance, called reactance. However, the reactance was increased in the case of Diab et al. [30] at higher SPL,
resulting in less absorption in the duct since the sample was not at resonance anymore. We stress once again that the
IR–TDIBC approach is model agnostic and could handle different models of non-linear behavior if needed.

The resistance at the resonance frequency is lower for material M2 than it is for M1 due to its higher porosity.
The non-linear behavior, controlled by αNL, is taken equal for both liners. This is not fully realistic, because a higher
porosity generally incurs a lower αNL [47]. There were two reasons behind the nonphysical change. The first one
was to display a particular behavior, i.e. that the attenuation in the duct is improved as the SPL increases for M2,
as opposed to what was observed in the case of M1. As a result of increasing the SPL and thus the resistance of
the material, the impedance becomes closer to the optimal value, until an incident SPL of 140 dB is reached. After
this limit, the resistance becomes too high and the attenuation decreases. The second reason behind this nonphysical
change is rooted in the results obtained in Ref. [65], where an iterative method was used in the frequency domain to
tackle the non-linear behavior of the impedance. One of the conclusions of that work was that for a given αNL, less
resistive liners would display an increased variation of the impedance across their surface.

The spatially-varying impedance is extracted at the numerical DoFs constituting the IR–TDIBC, by first consid-
ering the FFT of the pressure and normal velocity at the frequency of generation, and then calculating the ratio of
both quantities. The spatially-varying impedance is given in Fig. 16 for M1 and in Fig. 17 for M2. An almost linear
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Figure 15: Spatial evolution of the SPL at the upper wall of the duct, with M2 installed.

decrease of the real part of the impedance is observed for both materials, which supports the hypothesis made by
Lafont et al. [66] in an attempt to simplify the eduction process for non-linear cases.

The results obtained in Ref. [65] indicate that for a low value of the linear resistance, the real part of the spatially-
varying impedance should be higher than in the case of a high value of linear resistance. This phenomenon, observed
numerically, was attributed to a higher impedance discontinuity in the case of a low resistance material, which would in
turn lead to a high variation of the normal particle velocity on the liner, yielding a high contribution to the resistance
by nonlinear effects. As a result, a higher nonlinear resistance value was expected in the present work for M2, which
has a low linear resistance value. This feature was not observed, and the difference with Ref. [65] remains unexplained.
Similar results were obtained with the Euler equations in JAGUAR, meaning that the presence of viscosity in the NS
equations cannot be responsible for the observed discrepancy.
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Figure 16: Spatially varying impedance of M1 along the lined section

6 Discussions
This section gathers observations related to the IR–TDIBC as well as its practical implementation.

6.1 The broadband aspect
For a given simulation with a time step dt fixed in advance, the reflection coefficient is well approximated from 0 Hz
up to a cut-off frequency of dt−1. Simulations are naturally performed at a dt sufficiently small to extract relevant
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Figure 17: Spatially varying impedance of M2 along the lined section

data from a signal of interest. The maximum frequency of such a signal thus needs to be lower than 0.5 × dt−1 for
the sampling to respect Shannon’s theorem [67].

We note in passing that we verified a power law decrease in the error for increasingly smaller time step dt, with
the decay exponent imposed by the order of the time integration scheme. This check confirmed that the array-rolling
procedure detailed in 3.1 preserves the order of the time integration scheme. For that validation, a fourth order
Runge-Kutta was chosen in the NS solver JAGUAR, applying it to a 1D impedance tube problem with a purely
reflective wall on one end. The choice of a purely reflective wall was deliberate, as that is a case where the impulse
response R does not need to be recomputed by iFT for every dt selected during the error convergence study. Indeed,
it remains a vector with a single one followed by zeroes, regardless of the dt employed: R=[1,0,0] with NR = 3. It
is important to note that in more general problems, allowing the dt to shape the impulse response R will have an
impact on the numerical representation of the physics in ways that go beyond those strictly related to the order of
the numerical scheme, as it modifies the frequency resolution of the wave reflection process and hence the physical
behavior of the IR-TDIBC. It follows that an error convergence study with a dt-dependent impulse response R would
provide a result that stems from two different mechanisms: one related to the time step truncation error, and one
related to the sampling resolution of the frequency-dependent IR-TDIBC.

Going back to the properties of the IR–TDIBC, we emphasize that it is intrinsically broadband, i.e., it can handle
every signal of interest without further tuning of any parameter. By design, the method naturally handles Dirac
impulses and is thus well adapted to treat discontinuous signals, without any previous knowledge input by the user.
A potential drawback of the method is that it requires one to know the impedance of a sample from 0 Hz up to a
frequency of dt−1. While this is not a problem theoretically with current models from the literature, such as the one
in Eq. 3, more complex materials whose impedance can only be obtained experimentally might prove challenging.

Extending the frequency-domain impedance curve by filling in the missing values is not a trivial exercise due to
the influence of this choice on the IR. We recommend using a physical model as much as possible, potentially by first
making use of an inverse identification procedure to evaluate unknown physical properties, i.e., the intrinsic parameters
of a foam (porosity, tortuosity, etc.). Such methods are now routinely used with impedance tube measurements [68–
70]. Another potential strategy would be to attempt the direct identification of the IR of a given material in the time
domain using short bursts.

Continuity of the impedance operator, or in this case of the reflection coefficient, is not required for the FT to
be meaningful. However, one should expect a Gibbs phenomenon in that case, so it is recommended to smoothly
transition whenever possible.

As an additional benefit of its intrinsic broadband aspect, the IR–TDIBC ensures the passivity property on the
entire frequency spectrum of the simulation, including the smallest wavelengths which are associated to spurious noise.
This ensures that such noise is properly filtered by the TDIBC and never amplified.

6.2 On the numerical cost
One of the advantages of the IR–TDIBC approach is that the associated numerical burden is quite low: in the linear
case, one only needs summing arrays and “roll” them by one at every time step. In most of the situations encountered
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by the authors, the simulation time overhead was less than 1%.
When the non-linear case is considered, the call to the IR–TDIBC solver becomes more involved since an iFT

is required to recalculate the IR. The default would be to re-evaluate the iFT of the reflection coefficient at each
time step, as the value of the normal velocity changes with time. This is an unnecessary and resource-intensive
task, since these iFTs are repeated needlessly. Indeed, we claim that the IR is a smoothly varying function of the
normal velocity, and that one can thus also interpolate the non-linear impulse response R as a function of the normal
velocity. One should then tabulate in advance the impulse response, and at each time step evaluate R by a linear or
quadratic interpolation. While we have not yet implemented a non-linear version of the OD–TDIBC in the JAGUAR
solver (following for instance Diab et al. [30]), adding the non-linear contribution would not drastically slow down the
simulation compared with the linear case. The reason is that one only has to interpolate the parameters as a function
of the normal velocity, and continue the simulation with these values.

Another avenue of research regarding simulation speed-up would be to consider using the TDIBC sparsely in time,
since the simulation time step dt is usually exceedingly lower than the one required for acoustic analyses. One could
thus consider an asynchronous TDIBC, for instance by saving an incremental variable using a moving average of the
input and calling the TDIBC solver every mth iteration. While this technique applies to most types of ADE-TDIBCs,
it has an additional benefit in the case of the IR–TDIBC. By artificially increasing the dt of the IR–TDIBC, one
reduces the frequency step ∆f of the reflection coefficient represented by the IR. This is caused by the time-frequency
relationship

dt∆f = cst, (29)

meaning that for a given size of R on disk, one improves the frequency resolution by artificially increasing the time-step
at the price of reducing the maximum frequency that can be resolved by the TDIBC. This drawback is not problematic
since the time-step of the TDIBC can be selected a priori to match the expected frequency content of the signals (or
20 kHz by default in aeroacoustic problems).

Of the above methods (interpolation and asynchronization), only the former was implemented in the JAGUAR
solver.

6.3 On the memory cost
One of the historical reasons why the IR–TDIBC was not introduced earlier is certainly the additional memory cost
associated with storing the future response of the TDIBC, i.e. the yN array in Eq. 17. This array needs to be saved
at each degree of freedom located at the TDIBC, and its size NR depends on the size of the FFT. This size is selected
explicitly by the user to obtain a given frequency resolution of the reflection coefficient, which also depends on the
TDIBC time-step dt (which can be, as explained above, greater than the simulation dt). A striking feature of the
IR–TDIBC is that its cost in memory (and simulation time) is not controlled by the maximum frequency resolved
in the simulation. This behavior is dissimilar to what happens with the ADE–TDIBC family, where the number of
parameters depends on the frequency range of interest. The process of finding these parameters has to be done prior to
the simulation, and sometimes involves solving a non-linear optimization problem of high dimension. These parameters
lead to additional variables that have to be advected on a 1D mesh that is tailored to the simulation, thus requiring
additional memory space. The OD–TDIBC approach is, in our experience, much less memory-demanding than the
IR–TDIBC proposed in this work. A fair comparison between the two methods remains difficult since they have
different limitations, but a factor of one or two orders of magnitude is observed in terms of additional memory usage
by the IR–TDIBC. Note that in practice, this additional memory usage remains small compared with the memory
available in current machines, due to TDIBCs being a boundary problem with few DoFs compared with the rest of
the domain. This comparison is more favorable in 3D than in 2D, but even in the 2D cases treated in the present
work, the memory overhead was negligible.

6.4 On the representativeness and utility of the IR–TDIBC approach
One noteworthy advantage of the IR-TDIBC is its remarkable ability to efficiently represent various types of liners,
requiring minimal effort on the part of the user. While the ADE–TDIBC class of methods involves the (sometimes
complex) optimization of parameters to fit a model or experimental data, the IR–TDIBC only relies on the iFT.
Starting from an experimentally obtained impedance curve, one first has to extend the data with values from 0 Hz
up to the maximum frequency 1/dt required during the iFT calculation of the impulse response in Eq. 9. Using the
classical models from the literature, such as the one in Eq. 3, one can indicate values for the reflection coefficient that
remain consistent with the physics.
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6.5 Using the python script
To accompany the present paper and to disseminate our approach to the community, a python script is given alongside
for educational purposes. To run the script, python 3 is required, along with the numpy and matplotlib libraries. With
linear_IR_TDIBC.py, the reader will get familiar with the linear case and reproduce the results of Figs. 4–6.

7 Conclusions
The last decades of efforts in representing aeroacoustic liners in the time domain have focused on incorporating
additional variables to capture the complex oscillatory-diffusive behaviors occurring within the liners. The present
work reintroduces an alternative approach based on the impulse response of the reflection coefficient and extends it
to non-linear cases. The IR can be obtained by using an iFT, and provides a complete picture of the future states of
the waves reflected by the liner after being subjected to a Dirac impulse.

In numerical simulations, signals are treated as subsequent Dirac impulses of varying amplitudes, allowing for
straightforward sequential treatment by a liner BC based on the impulse response. In the present work, the reflection
coefficient (scattering operator) was favored to handle the wave characteristics due to its boundedness, as opposed to
the surface impedance or admittance. This IR–TDIBC approach, which had been discarded in the past for memory
cost reasons, can now be considered an affordable option given the power available in modern computers. The main
contribution of this work is the introduction of a generic method to handle non-linear behaviors using the IR-TDIBC
approach.

The proposed approach was validated against exact theoretical results for the linear case and tested against
impedance tube experiments with non-linear SDoF liner samples displaying a non-linear behavior. A satisfactory
agreement was observed between the experiments and the model. Furthermore, the propagation of waves in a 2D
duct geometry was considered, and the Navier-Stokes equations were solved in a no-flow configuration representative
of ducts used in impedance eduction. The authors confirmed, as was recently reported in the literature, that the
impedance of such SDoF liners was a function of space due to the decrease of the SPL over the liner.

Some benefits of using the IR–TDIBC method are listed below:

1. Parameter free approach: there is no need to fit any parameter, one only has to calculate the impulse response
of the reflection coefficient.

2. Generalization: the method can readily handle any type of impedance, such as that of a metasurface made of
a parallel assembly of complex liners.

3. Fast: only a low additional numerical complexity is introduced by the IR–TDIBC approach, i.e., a sum of arrays.

4. Ease of integration: the proposed approach behaves as an input-output blackbox for any code written in an
NSCBC formalism to impose the BCs, easing the coupling with existing flow solvers.

The authors have included a collection of Python scripts alongside the current work that may be of interest to the
community that intends to begin working with the IR-TDIBC. The scripts can serve as a starting point for future
research and ideally demonstrate the straightforward integration of the method, as well as its ability to accurately
represent all types of liners and handle both continuous and discontinuous incident waves with ease. Further studies
should concentrate on incorporating the method with implicit time schemes since it is currently limited to explicit
time integration.
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