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Highlights 

- Large-scale model or map performance significantly decreases above 1 km resolution 

- Fine resolution is more accurate for heterogeneous landscapes and for reduced extents 

- Aggregation of the cell values of predictive maps can improve their precision  

- Different spatial resolution levels should be compared before soil mapping 
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Abstract 

The important development of digital soil mapping (DSM) these last decades has led to a large 
number of maps of soil properties with increasingly finer raster size. Map resolution is mostly 
determined by expert knowledge or by matching with the resolution of existing data, while scale is 
recognized as a major issue. Using the pH and the C/N ratio describing the surface horizon of forest soils 
and estimated by bioindication, we evaluated the effect of resolution changes on model and map 
performance for different geographical extents. Using 40,663 plots from the national forest inventory 
and 25 environmental variables calculated at eight different spatial resolution levels (50, 100, 250, 500, 
1,000, 8,000, 16,000, and 50,000 m), we modeled and mapped pH and C/N over a vast and diversified 
area of 91,000 km² in the north-east of France. The models highlighted the importance of geology in pH 
and C/N spatial variations, and to a lesser extent the importance of stand type, climate and topography, 
with a slight influence of data resolution on predictor selection. On the contrary, the accuracy of model 
or map performance decreased significantly above 1,000 m resolution. Significant performance 
differences were observed according to the location and the size of the geographical extent. Globally, 
the more heterogeneous environmental characteristics and the smaller the geographical extent, the 
better fine spatial resolution performed. In addition, the aggregation of fine-resolution pH or C/N maps 
at a coarser cell size improved map performance as compared to the direct use of the coarse-resolution 
predictors. The impact of resolution changes on map accuracy varies according to the mapping 
procedure, the local environment, and the geographical extent, and should be evaluated in DSM studies 
to optimize map accuracy.  

 

Keywords 
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1 Introduction 

Soils provide important services including water, carbon, nutrient storage or water filtering, and 
represent ecological support for vegetation, with implications on biodiversity, food and biomass 
production. Accurate knowledge of the soil chemical, physical and biological properties is important to 
improve research and practices in environmental management. The challenge is to understand their 
horizontal and vertical spatial variations, that can be substantial even on short distances (Wilding and 
Drees, 1987). For example, surface pH variation ranged between 7.2 and 10.1 across a 41,000-ha area 
in Iran (Pahlavan-Rad et al., 2018). At a more local scale, significant changes in texture and soil thickness 
were observed in an experimental 567 m² plot in Italy by Buttafuoco et al. (2005). Different pedogenic 
factors and landscape processes linked to lithology, topography, hydrology and weathering operate at 
varying intensities according to the location, leading to possible multi-scale variation across a same area 
(Stolt et al., 1993). Liu et al. (2013) observed short-range variation driven by topography and long-range 
changes driven by parent materials in eastern China. In a context of increased demand for spatial data, 
identifying these sources of spatial variability and representing their variation at the relevant scale is 
crucial for agricultural and forest management, land use planning, and natural resource conservation. 

 

Digital soil mapping (DSM) has considerably developed since the 1990s following increased spatial 
data availability and the development of data processing techniques and tools (Lagacherie, 2007; 
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McBratney et al., 2003). It employs empirical correlations between field observations and digital 
environmental data often available through geographic information systems (GIS) layers (i.e. the 
environmental covariates) to create digital maps (McBratney et al., 2003). DSM techniques are based 
on the factors of soil formation (climate, organisms, relief, parent material and time – clorpt, Jenny, 
1941). They provide a comprehensive digital framework describing the empirical relationships between 
maps of environmental covariates related to the soil class or properties, that represent proxies of the 
signatures left on the landscape by the factors and processes of soil formation. The most commonly 
used are topographic information based on digital elevation models (DEM), existing soil maps, climate 
parameters, sometimes complemented by remote sensing images or other existing soil maps according 
to data availability (Nussbaum et al., 2018). The accuracy of these digital soil maps varies according to 
the number, the distribution and the accuracy of the observations used for calibration, the nature and 
the quality of the environmental covariates used for prediction, the model structure, and the mapping 
procedure (Scull et al., 2003).  

 

Numerous studies have demonstrated the importance of scale in DSM (Roecker and Thompson, 
2010), and the need to further investigate it (Cavazzi et al., 2013; Moore et al., 1993). The notion of 
scale includes the measurement scale and the modelling scale, and is characterized by three concepts: 
i) the extent is represented by the area covered by the dataset or the map, ii) spacing is the distance 
between samples, which corresponds to the resolution or cell size for gridded datasets, and iii) the 
spatial support refers to the area covered by each sample (Western and Bloschl, 1999; Wiens, 1989). A 
change of scale means a change in extent, spacing, or spatial support (Dungan et al., 2002). For a given 
geographical extent, the resolution of digital soil maps is usually determined by the resolution of 
available environmental covariates, not according to the spatial variation of soil properties. The 
increasing availability of high-resolution DEM and remote sensing images have made much finer 
resolution possible, even across large areas. For example, the GlobalSoilMaps consortium has made 
fine-resolution maps available (nearly from 100 m.) for many countries (Mulder et al., 2016). It is 
commonly believed that fine spatial resolution provides more accurate information, because calculating 
maps at too large resolution can mask fine-scale variation and alter their performance. Calculating maps 
at too fine resolution can also be inefficient to improve accuracy if the raw dataset and the methods do 
not capture local-scale variability (Cavazzi et al., 2013), and can generate noise that impairs data 
accuracy (Roecker and Thompson, 2010). The optimal cell size should correspond to an area with little 
variation of the studied property value (Florinsky and Kuryakova, 2000; Hengl, 2006). These questions 
of resolution and geographical extent are strongly linked, and refer to the geographers' “modifiable 
areal unit problem” (MAUP) (Openshaw and Taylor, 1981). The MAUP states that for the same area, a 
change in the shape or the size of the units often leads to different results. The MAUP includes two 
components: the “scale problem”, which relates to the change in spatial resolution through the level of 
aggregation of pixels, and the “zoning problem”, concerning the changes in the boundaries. It was 
demonstrated that MAUP effects can lead to meaningless results (Jelinski and Wu, 1996).  
 

Different spatial resolution levels can be compared in many ways, including directly recording data 
at different resolutions (for remote sensing mainly), transforming raw data from plots or polygons into 
raster data at different resolutions, or upscaling raster datasets by coarsening spatial resolution 
(Gottschalk et al., 2011). Existing studies mainly concern the effect of environmental factors calculated 
for a same extent at different spatial resolutions, to predict species distribution (Guisan et al., 2007), to 
elaborate hydrological models (Dixon and Earls, 2009), or relevant remote sensing data (Stow, 1999). 
Most of them focus on the DEM resolution effect (Chow and Hodgson, 2009; Gao, 1997), but also 
sometimes on the mapping of soil properties (Guo et al., 2019; Florinsky and Kuryakova, 2000; Maynard 
and Johnson, 2014; Sena et al., 2020; Thompson et al., 2001). They show a significant effect of cell size 
on predictions (Usery et al., 2004; Wu et al., 2005), and globally an increase of performance with 
decreasing resolution (Guo et al., 2019; Lassueur et al., 2006; Zhang and Montgomery, 1994). Other 
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studies also suggest no effect of resolution, or better performance of coarser resolution (Costa et al., 
2018; Kim et al., 2014; Roecker and Thompson, 2010). An effect of pixel aggregation from small size to 
coarse resolution showed both improved and decreased digital map accuracy (Carmel, 2005; McCloy 
and Bocher, 2007). These different results illustrate that decreasing cell size does not always describe 
more detailed information (Samuel-Rosa et al., 2015). They suggest that fine spatial resolution could be 
more accurate only if the fine-scale variables can better describe the drivers of soil forming processes.  

 

This research work aims to evaluate how spatial resolution can impact the accuracy of soil 
properties maps, by studying a large range of ecological conditions and different geographical extents. 
We focused on two soil properties among those most commonly used in ecological studies – the pH and 
the C/N ratio – recognized for their interest in explaining plant distribution and growth (Beauregard and 
de Blois, 2014; Seynave et al., 2005). Using a large number of plots with pH and C/N values estimated 
from bioindication from field observations collected in forests, and a dataset of environmental variables 
mapped at eight spatial resolution levels, we addressed the following four questions: 

- Question 1:  how does the resolution of the candidate environmental predictors influence the 
model calibration? We compared the composition and performances of models elaborated with 
predictors calculated at different resolutions;  

- Question 2: how the predictor’s spatial resolution influence map accuracy? We compared the 
performance of the same model mapped with predictors at increasing spatial resolution; 

- Question 3: does aggregation of the fine-resolution maps of soil properties at different coarser 
resolution levels improve accuracy?  The pH and C/N maps calculated at the finest spatial 
resolution were aggregated at coarser resolution, and their performances were compared with 
those of the maps directly built from the environmental predictors calculated at different cell 
sizes (Question 2); 

- Question 4: do the performances of the maps calculated at different spatial resolution vary 
according to their location and extent? We compared the performances of the maps calculated 
for questions 2 and 3 for different geographical extents. 
 

2 Methods 

To evaluate the optimal resolution of maps, defined as the resolution leading to the highest 
accuracy for a fixed geographical extent, pH and C/N bioindicator values were modeled with 
candidate variables describing topography, geology, climate and stand type calculated for eight 
different spatial resolution levels (Figure 1). The models were first compared (Question 1). Then, 
the model calibrated with the most local information was directly mapped at the eight resolution 
levels, and the performances of the maps were compared (Question 2). Finally, these maps were 
compared with those elaborated by aggregating the 50-m pH and C/N maps at coarser resolution 
(Question 3). All the calculations were validated with an independent dataset. Because we 
hypothesized that results could differ according to the studied area, map performances were 
compared for different geographical extents of four different sizes (the whole studied area, divided 
in 100*100 km, 50*50 km, and 25*25 km squares).  
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Figure 1: Synthetic presentation of the methods used to answer the four questions addressed in 
the paper (Q1, Q2, Q3, and Q4). 

 

2.1  Study site  

The study area encompassed a 91,364 km² area in the north-east of France where plains are 
dominant, surrounded by four mountain ranges (Jura, Massif Central, Ardennes and Vosges), and 
crossed by one calcareous plateau (Figure 2A). The average elevation is close to 300 meters; it reaches 
1,493 m in the Jura mountains and 1,424 m in the Vosges mountains (Figure 2B). The Vosges mountains, 
the Ardennes and the Massif Central are composed of a wide variety of Paleozoic rocks like granites, 
gneiss, schists, or volcanic – mainly acidic – rocks (Figure 2C). The calcareous plateau and the Jura 
Mountains are mainly made of limestone, with rich soils. The sedimentary basins contain limestones, 
marls, clays or sandstones (Champagne, central plain), or alluvial sediment made of sand or gravel 
(Alsace). 

 

Topography combined with oceanic and semi-continental influences lead to a wide gradient of 
climates, and occasional abrupt changes at short distances. Annual rainfall ranges from 500 mm in 
Alsace to 2,000 mm in the Vosges and Jura mountains, while mean annual temperatures range between 
9°C and 11°C (Cachan, 1974; Canellas et al., 2014). The driest areas are found in Champagne, the south 



6 
 

of the central plain, and Alsace (Figure 2D). Soil and climate variability lead to a gradient of vegetation, 
with mainly broadleaved species (oak, beech) in plains and coniferous species (silver fir, spruce) in the 
mountains, often in a mixture with beech (Figure 2E). 

 

 

Figure 2: Simplified maps of the studied area: A, ecological units (based on Sylvoecoregions1); B, 
geology; C, elevation (m.); D, vegetation category; E, annual average 1961-1990 climatic water 
balance (the difference between rainfall and potential evapotranspiration, in mm.). The climatic water 
balance (Piedallu et al., 2013) summarizes climate conditions, with low values in dry areas vs. high 
values in wet ones. 

 

2.2  Bioindication of pH and C/N on NFI plots 

 

We used floristic surveys from 40,663 temporary plots recorded between 1984 and 2017 by the 
French National Institute of Geographic and Forest Information (IGN) and stored in the National Forest 
Inventory (NFI) database (Drapier and Cluzeau, 2001) to predict pH and C/N values using bioindication 
(Ellenberg et al., 1992). This inventory was realized with a similar sampling density for all the forested 
areas, by administrative units between 1984 and 2005, and on a regular mesh shift each year 
encompassing the whole of France since 2005 (about 7000 plots per year). The floristic survey was 
realized on a circular plot on a 700 m² area. Indicator values (IVs) were calibrated for the most common 
forest plant species in France using the Ecoplant database (Gegout et al., 2005), which contains both 
floristic surveys and soil analyses for the same locations. For each of the most common forest species, 
IVs provide the highest probability to observe the species along different ecological gradients (Gegout 
et al., 2003). For each of the 40,663 plots, we obtained bioindicated pH and C/N values for the soil 
surface layer by averaging the IV values of the plants present in the floristic survey. At large scales, the 
validation of these values with independent datasets yielded R² values of 0.45 and 0.41, and RMSEs of 
0.47 and 3.8 for pH and C/N, respectively (Gegout et al., 2003). Because prediction is less accurate when 
few species are present, pH and C/N were not estimated when less than five species with IVs were 
surveyed. We obtained 37,958 plots with pH estimations and 37,737 with C/N estimations, collected 

                                                           
1 https://inventaire-forestier.ign.fr/IMG/pdf/IF_SER_web.pdf 
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with a density near of 1.10 plot per km² in forested areas. pH values ranged between 3 and 8, and C/N 
values between 10 and 35 (See Appendix A for plot location, Appendix B for the observed spatial 
distribution of pH and C/N, and Appendix C for the range of pH and C/N values). Values from the plots 
were autocorrelated up to 110 km for pH and 96 km for C/N (Appendix D).   

 

2.3 Explanatory environmental variables 

 

A set of 25 potential explanatory environmental variables was identified from the literature 
(McBratney et al., 2003; Scull et al., 2003), describing topography, geology, climate and stand type 
(Table 1). Because gravity plays a role in water and nutrient transport, topography is described as an 
important driver of the redistribution of soil properties along slopes. For the whole studied area, we 
used the 50-m resolution digital elevation model (DEM) from the IGN to calculate topographic indices2. 
Elevation (DEM), slope, shape of the soil surface (concave, convex, curved), sine and cosine of aspect 
(sinaspect and cosaspect), and relative distance or elevation between ridges and talwegs (reldist/relalt) 
characterized the position in the landscape (Table 1). Flow accumulation (flac) and topographic wetness 
index (TWI) quantified the topographic drivers of hydrological processes. 
 

Because parent materials provide nutrients to the soil, a simplified geological map based on the 
1:50000 vector maps of the Bureau de Recherches Géologiques et Minières (BRGM) was calculated over 
the whole study area (Geol). The original maps, which contain data about bedrocks and most of the time 
superficial units, were homogenized by the BRGM for each French “département” (administrative unit). 
We concatenated the sixteen departmental maps describing the study area. The 130,164 polygons and 
2,841 different units were homogenized and simplified according to the chemical characteristics of the 
units to obtain 16 simplified units (Appendix E). 
 

Monthly mean temperature (TM) and rainfall (R) were modeled and mapped for the whole of 
France at 50 m resolution for the 1961-1990 period (Table 1), using variables describing distances to 
the sea, vegetation, and topography (Piedallu et al., 2013). Two hundred and thirty-seven Météo France 
weather stations were used for temperature calibration and 432 for rainfall calibration. The data were 
validated using annual values from independent weather stations. Ninety-three percent of the variance 
was explained for temperature, and 78% for rainfall. Climatic water balance (CWB) was calculated as 
the difference between rainfall and potential evapotranspiration (Piedallu et al., 2013). Monthly mean 
data were averaged for temperature and cumulated for rainfall and CWB for each season: winter (wi, 
December to February), spring (sp, March to May), summer (su, June to August) and autumn (au, 
September to November). Finally, an IGN vector map representing stand composition (BD Forêt 3) for 
units greater than 0.5ha was used to characterize the stand types of the forested areas (Stand). The 22 
initial units were simplified into five stand types: coniferous, broadleaved, mixed, tree-less forest, and 
others. 

 

The 25 predictors were calculated and mapped for the whole area at eight spatial resolution 
levels: 50, 100, 250, 500, 1,000, 8,000, 16,000 and 50,000 m. We studied a large range of resolutions to 
detect if predictive ability could decrease beyond a specific threshold. All the variables initially existed 
in 50 m resolution grids, except Geol and Stand that were in vector format and were rasterized. For 

                                                           
2 
https://geoservices.ign.fr/ressources_documentaires/Espace_documentaire/MODELES_3D/BDALTIV2/SE_BDAL
TI.pdf 
3 https://inventaire-forestier.ign.fr/spip.php?article646 
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these last two predictors, the pixel value was attributed for each of the eight spatial resolution levels 
according to the polygon unit with the greatest area in the cell. The raster layers were calculated at the 
coarser resolution by averaging the cells from the 50-m resolution maps.  
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Category Variable name Definition Units 
Input Data 
set 

References/Algorithm 

Topography 

DEM Elevation Meter 

BD Alti® V2- 
IGN 

 

Slope Change in altitude for a defined distance Degree Neighborhood Slope Algorithm 

Concav/Convex/Curv 
Relief form index: convexity, concavity, or linear, of the 
soil surface 

Unitless 

Fit 2.Degree polynomial 

Sinaspect/Cosaspect Sine and cosine of aspect  
compass direction of the maximum 
rate of change (3*3 cells window) 

RELdist/RELalt 
Topographic position: relative distance/elevation 
between ridges and talwegs 

Gégout et al., 2008 

Flac 
Flow accumulation: potential contributing runoff of 
upslope catchment 

Log 
scale 

D8, Multiple Flow Direction (MFD) 
and D-infinity flow methods 

TWI 
Topographic Wetness Index (TWI): potential 
accumulation of water 

Unitless Moore et al., 1991 

Geology Geol Simplified geological units (16 units)  Unitless 
Adapted 
from BRGM 

BRGM 

Climate 

TM wi/sp/su/au Mean seasonal temperature for the 1961-1990 period °C 

Digitalis V2 

Piedallu et al., 2013 
R wi/sp/su/au Cumulated seasonal rainfall for the 1961-1990 period mm 

CWB wi/sp/su/au 
Thorthwaite's seasonal climatic water balance for the 
1961-1990 period 

mm Thornthwaite, 1948 

Stand type Stand 
Stand types: coniferous, broadleaved, mixed, tree-less 
forest, other 

Unitless 
BD Foret® 
V2- IGN 

IGN 2016 

 
Table 1: Ecological variables used to model pH and C/N, units and references. wi= winter, sp= spring, su= summer, au= autumn. 
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2.4  Effect of the resolution of variables on model calibration 

 

To evaluate the influence of the resolution of the candidate variables on model calibration 
(Question 1), we calibrated the pH and C/N models with the set of the 25 environmental variables (Table 
1) calculated for the eight resolution levels. Each model was calibrated independently using multiple 
linear regression. The explanatory variables were selected one by one. At each step, the variable best 
explaining the variance was selected, provided that it was statistically significant (P value < 0.001). To 
ensure a selection of relevant responses according to current knowledge, we allowed a pH decrease or 
a C/N increase with altitude or slope increase, on convex areas or near the ridges with low Flac and TWI 
values, on northern or eastern slopes, in cold areas, and with high R or CWB values. At each step, 
variables were discarded if they were correlated with another previously selected variable (Pearson’s r 
> 0.7). The model ended if the R² increase was less than 0.001. For each model, the relative importance 
of each variable contribution was calculated with the relaimpo package (Gromping, 2006).  We used the 
averaging over ordering method (lmg) that provides the R2 contribution averaged over orderings among 
regressors, identified as one of the most relevant ones (Lindeman et al., 1980). Then, the model 
compositions and performances were compared at the eight resolution levels. 

 

2.5 Effect of spatial resolution on model mapping 

 

Once the models were calibrated, we evaluated how the resolution of the maps describing the 
selected variables influenced the accuracy of the maps of soil properties (Question 2). To only consider 
the effect of the predictor’s resolution on accuracy, we used the same model (those previously 
calibrated with the most local information, 50 m) to map pH and C/N with the predictors calculated at 
the eight spatial resolution levels. Because pixel aggregation can improve map performance (Carmel, 
2004), we also used the finest-resolution pH and C/N maps (50 m) and averaged their cell values to the 
coarser resolution levels (Question 3). For different coarser resolutions, we compared the performances 
of the maps obtained by aggregation with those of the maps directly built from the environmental 
predictors with the same validation dataset. 

 

Because map performance can vary according to the geographical extent (Openshaw and 
Taylor, 1981), we compared the performance of all the pH and C/N maps elaborated at the eight spatial 
resolution levels at different geographical extents:  the whole studied area, and 100*100 km, 50*50 km, 
and 25*25 km squares (Question 4).  For these last three extents, the study area was split into squares 
that contained a subset of plots. For the whole area and each square that contain more than 100 plots, 
maps values (Appendix A and B) were compared to an independent subset of plot estimations and the 
differences in performances were mapped. For the eight resolution levels and the four geographical 
extents, global performances were compared, by averaging the performances of all the 100*100 km, 
50*50 km, and 25*25 km squares.  

 
2.6 Comparison of model and map performances 
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Four metrics were used to evaluate model performance following calibration at different 
resolution levels: R², root mean squared error (RMSE), mean absolute error (MAE), and mean bias error 
(MBE). R² assesses the proportion of explained variance, but does not inform about the difference 
between predicted and estimated values. RMSE and MAE are two of the most common metrics used to 
evaluate model prediction error in units of the variable of interest; RMSE gives a more important weight 
to large errors (Willmott & Matsuura, 2005): 
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Where n is the number of recordings, 

jy  is the observed value, and 
jŷ  is the predicted value. 

 
Due to a large number of calculations and the difficulties in representing all the results, we only 

used R² and MAE to evaluate map performance (Questions 2, 3 and 4) for the whole area and for each 
100*100 km, 50*50 km and 25*25 km square. The metrics were estimated with an independent dataset 
both for model calibration and map accuracy evaluation. The model and maps were set up with 80% of 
the randomly selected plots, and predictions were validated with the remaining 20%. Performances 
were calculated by averaging values from 100 iterations.  
 

3 Results 
3.1 Similar variables but decreasing performances when calibrating models with data 

at increasing spatial resolution  

 

Two to 6 variables were selected to calibrate each model for the eight resolution levels, with 
responses in line with current knowledge (Appendix F). Although 25 candidate variables were evaluated, 
most of the selected ones were similar for the different resolution levels (Table 2). The maximum R² 
values were about 0.65 and 0.54 for pH and C/N, and the minimum MAEs were 0.48 and 2.25, 
respectively. A large part of the variance (> 60%) was explained by geology for both pH and C/N. Climate 
also explained the variance of pH (except when the models were calibrated with the variables at coarse 
resolution), with stand type and topography to a lesser extent. For C/N, stand type performed better 
than topography and climate (Table 2-B). We showed a slight decrease of the variance explained by 
geology at resolution levels < 1km, compensated by an increase of the variance explained by stand type 
(for pH) and topography (for C/N) (Appendix G). At coarser resolution, the importance of stand type and 
climate decreased while the importance of topography increased. R², RMSE and MAE were comparable 
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when the resolution of the input variables ranged between 50 m and 1 km, and strongly decreased at 
coarser resolution. The best performances were reached for input variables at 250 m resolution for pH. 
For C/N, they were reached at 250 m resolution according to R² and 50 m according to RMSE and MAE 
(Table 2).  
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A) PH CATEGORY VARIABLE 50 M  100 M 250 M 500 M 1 KM 8 KM 16 KM 50 KM 

VARIABLES 

Geology Geol 74 74 72 70 69 72 73 75 

Stand type Stand 9 8 15 16 17 1 6   

Climate TMwi 13 13 8           

CWBsu       7 6 20 12   

Topography Slope 3 4 4 6 7     25 

Flac 1 1 1 1 1 7     

TWI             8   

Sinaspect             1   

PERFORMANCES 

R² 0.64 0.64 0.65 0.65 0.64 0.56 0.52 0.40 

RMSE 0.65 0.64 0.64 0.64 0.64 0.71 0.74 0.83 

MAE 0.48 0.48 0.48 0.48 0.48 0.53 0.56 0.64 

MBE 0.00  

 

 

B) C/N CATEGORY VARIABLE 50 M 100 M 250 M 500 M 1 KM 8 KM 16 KM 50 KM 

VARIABLES 

Geology Geol 70 70 69 67 66 63 66 76 

Stand type Stand 18 18 18 18 18 8 9 
 

Climate TMsu 6 6 5 5 4 
   

CWBsu 
     

14 
  

Topography Curv 1 1 
      

Slope 4 5 7 9 11 15 22 24 

RELalt 1 
 

1 1 1 
   

Convex 
      

3 
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PERFORMANCES 

R² 0.54 0.53 0.54 0.53 0.53 0.45 0.42 0.31 

RMSE 3.2 3.2 3.2 3.2 3.2 3.5 3.6 3.9 

MAE 2.2 2.3 2.3 2.3 2.3 2.4 2.5 2.8 

MBE 0.00 

 

Table 2: Selected variables and performances of the models for eight spatial resolution levels A) for pH and B) for C/N (Question 1). The numbers provided for 
each selected variable indicate the part of explained variance they added to the model (in %). RMSE, MAE and MBE were expressed in pH or C/N units. The 
highest performances are highlighted in grey. See Table 1 for explanations about the names of the variables. 
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3.2 Lower accuracy when digital maps larger than 1 km resolution 

 

We used the equation calibrated with the most local data (i.e. at 50 m resolution, Appendix F), 
to map pH and C/N with the sets of variables calculated at the eight spatial resolution levels (Figure 3). 
Logically, both for pH and C/N, the more reduced the geographical extent, the lower the R² value (Figure 
4). MAE decreased with geographical extent, except for predictions taking the whole area into account. 
Performances varied according to location, with both for pH and C/N globally better R² but higher MAE 
on the Vosges mountains, and lower R² but also lower MAE in calcareous plateaux and Jura mountains 
(Appendix H and Figure 1 for the location of ecological units). 

 

Using variables with different spatial resolution levels had a limited impact on map accuracy, 
whatever the extent up to 1 km cell size, and then map performance dropped significantly at coarser 
resolution levels (Figure 4). The highest R² and lowest MAE were consistently obtained in 250 m 
resolution maps for pH. For C/N, the highest R² were obtained at 50 or 100 m resolution, and the lowest 
MAEs were found between 250 m and 1 km resolution (Figure 4). Beyond these mean performances, 
significant spatial variability was highlighted (Figure 5). Fine-resolution maps globally performed better 
in the Vosges mountains, in the north of the Jura mountains and the south of the central plain (see 
Figure 1 for the location of ecological units). Great discrepancies were found for C/N, whether R² or 
MAE was used (Figure 5). When we compared the performances of the 50 m and 1 km spatial resolution 
maps, fine resolution mainly improved map performances in the Vosges mountains, with a greater 
effect on R² than on MAE and on C/N than on pH (Appendix I). The maximum increase of R² at 50 m 
resolution comparatively to 1 km resolution was + 0.15 for pH and + 0.21 for C/N at the 25km*25km 
scale. 

 

 

Figure 3: Examples of pH and C/N maps calibrated using the model with the most local data and 
mapped with explanatory variables at 50-m, 1-km, 8-km and 50-km spatial resolution levels. 
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Figure 4:  Performance (R² and MAE) of pH and C/N maps calculated at the eight different spatial 
resolution levels (50 m to 50 km) for different geographical extents (Question 2). For the 100, 50, and 
25 km extents, values were averaged from the different squares. 
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Figure 5: Resolution with the best performance (R² and MAE) for pH and C/N and for different 
geographical extents (100*100km, 50*50 km and 25*25 km, Question 2 and 4). For each square, 
performances were calculated between the maps calculated at different spatial resolution and an 
independent subset of plots. White areas, no performance calculated because the number of plots was 
lower than 100. 
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3.3 Spatial aggregation improves map quality  

 

We compared the performances of the maps calculated by directly using the variables at 
different spatial resolution levels with the maps calculated by aggregating the 50-m pH or C/N maps at 
coarser resolution (Figure 6). For large resolution (≥ 500m), the maps consistently performed better 
when they were calculated by aggregation. The highest R² and lowest MAE were reached at 1 km 
resolution, whatever the geographical extent (Appendix J). Although aggregation improved the 
performance of the 1 km maps, some of the maps at smaller resolution levels remained more accurate 
locally, mainly when considering R² and C/N , and in the Vosges mountains (Appendix K and L).  

 

 

 

 

 

 

 

Figure 6: Performances (R² and MAE) of pH and C/N maps calculated by directly using the variables at 
the eight different spatial resolution levels for the whole studied area or by aggregating the 50 m pH 
and C/N maps at coarser resolution levels (Question 3). 

 

3.4 Fine-resolution maps better describe local variability when geographical extents 
are smaller 

 

Because optimal resolution can vary according to the size of the geographical extent (Figure 5), 
we compared the performance of the maps calculated at different resolution levels for the studied 
geographical extents (table 3). We compared the 50 m and 1 km resolution maps because the previous 
analysis had shown that performance significantly decreased above 1 km cell size. For the maps directly 
calculated at different resolutions, 50 m resolution maps showed on average a higher R² and lower MAE 
than 1 km resolution maps for the 25*25 km extent compared to the whole area (Appendix M for 
average performances, Appendices I, and L for the maps). The efficiency of the 50 m resolutions maps 
increased compared to the coarser resolution maps as the extent decreased. The better performance 
of the 50 m maps was mainly observed when focusing on R² rather than on MAE, and was better for 
C/N than for pH (Table 3). The 50 m resolution maps had higher R² than the 1 km resolution maps for 
59 and 80 % of the squares in the 25*25 km extent for pH and C/N, respectively. The percentage of the 
squares for which the 50 m resolution maps performed better than the 1 km resolution maps decreased 
when they were calculated with aggregation: 48 and 41 % of the squares had a higher R² than at 1 km 
resolution for pH and C/N, respectively, for the 25*25 km extent. 
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   Extent  25*25 km 50*50 km 100*100 km 

 n 132 46 17 

  pH 59 57 35 

R² CN 80 76 71 

 pH aggregated 37 17 0 

 CN aggregated 61 48 35 

  pH 48 41 35 

MAE C/N 41 41 35 

 pH aggregated 23 17 24 

  C/N aggregated 26 22 24 

 

Table 3:  Percentage of the squares where the 50 m resolution maps performed better than the 1 km 
resolution maps, for the 25*25, 50*50 and 100*100 km extents, for pH and C/N calculated directly 
using the variables at different resolution or by aggregating the 50 m maps (Question 4, see 
Appendices G and J for the maps).  

 

4 Discussion 

4.1 Using bioindication to optimize the calibration dataset 
 
Although the question of resolution has been extensively studied for terrain attributes (Deng et al., 

2007), and despite the increasing number of digital maps of soil properties calculated at finer and finer 
spatial resolution (Dai et al., 2019), the question remains about the impact of scale on DSM 
performance. Using bioindication allowed to calibrate and validate models and maps with a large 
dataset based on floristic surveys carried out at high sampling density. Bioindication has long been used 
in ecology (Ellenberg et al., 1992) and has proved efficient to represent local variation of soil properties 
(Coudun et al., 2006; Simon et al., 2020). Its main weaknesses are linked to greater uncertainty 
compared to measurements, whose intensity can vary along the gradient of variables (Gegout et al., 
2003). For example, bioindicated pH does not discriminate values from acidic soils as precisely as it 
discriminates values from neutral or alkaline soils (Riofrio-Dillon et al., 2012). A comparison with 
measurements should allow to quantify if these differences could have an impact on the map’s 
performances calculated at different scales. Thanks to the large dataset used, various ecological 
conditions have been investigated. A large amount of pH and C/N variance was explained by our models, 
allowing us to study how resolution influences model and map performances for a large range of 
environmental conditions and different geographical extents.   

 

4.2 Resolution had a limited influence on predictor selection 
 
In our models, the resolution had little influence on variable selection but influenced the proportion 

of variance they explain. Whatever the resolution, simplified geology was the most efficient predictor, 
and represented 63 to 75% of explained pH and C/N variances, respectively. It was complemented by 
stand type, climate and topography. Different studies reported the most commonly used predictors are 
terrain attributes, while the parent material was used in only less than 10% and 25 % of DSM studies 
according to the reviews by Grunwald (2009) and McBratney (2003), respectively. The importance of 
the parent material has been highlighted in different studies carried out in Europe (Simon et al., 2020) 
or in China (Wiesmeier et al., 2011). We demonstrated geology can be a good surrogate in the absence 
of soil maps. Its efficiency in our models can be explained by the large variety of units of different 
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chemical characteristics. The absence of quaternary deposits on some maps and the difficulty in 
summarizing a great variety of substrates, mainly in mountainous areas, constitute the main obstacles 
to the use of geology. Stand type and climate also contributed significantly to our models, and showed 
relevant responses according to current knowledge. The negative effect of coniferous species on the pH 
reflected the soil acidification by coniferous tree species already observed in experimental studies 
(Augusto et al., 1998). The pH increase and C/N decrease with temperature and water stress are in 
agreement with experimental studies showing better N mineralization under warm temperature and a 
low water content (Cassman and Munns, 1980). In a context where topography is often showed to be 
the most efficient predictor, we highlighted the important role of parent material, stand type and 
climate variables in DSM studies. This comparison was based on explanatory variables all calculated at the 
same resolution, but some authors found better results when considering predictors at different resolution 
levels (Miller et al., 2015). Therefore, further investigations should be carried out to evaluate the optimal 
resolution of each soil property predictor taken independently. 

 

4.3 Resolution strongly influences map accuracy  
 
The optimal resolution of maps of soil properties is complex to determine because different 

categories of factors interplay (McBratney et al., 2003), while biophysical processes can operate at 

different spatial scales (Deng et al., 2007; Phillips, 1988). Map cell size is often determined subjectively to 
match with the finest data available, or by expert knowledge (Deng et al., 2007). Florinsky and Kuryakova 
(2000) proposed a framework to identify optimal map cell size by correlating topographic variables 
derived from a DEM calculated at different resolution levels with landscape properties. We adapted this 
approach to compare the performances of models and maps of soil properties. Although average 
performances can mask great discrepancies, we determined that the average optimal resolution, i.e., 
the largest cell size before performance decreases, was 1 km cell size. Performances for pH and C/N 
were on average comparable at resolution levels ranging between 50 m and 1 km, and strongly 
decreased at coarser resolution. We expected a global improvement of accuracy with decreasing cell 
size because important variations in soil pH can be observed on short distances (Laslett et al., 1987), 
and smoothed variables can mask fine-scale variations (Chow and Hodgson, 2009; Gao, 1997). Our result 
can reflect the local spatial relationships between soil properties and the underlying pedogenic factors 
that operate at a specific range of spatial scales (Maynard and Johnson, 2014; Samuel-Rosa et al., 2015). 
A value below which increased resolution does not seem to impact performance has already been 
reported for terrain parameters (Zhang and Montgomery, 1994).  The scale invariance that we globally 
observed below 1 km resolution, already observed with fine-resolution predictors (Pradervand et al., 
2014), can also suggest that the study design failed to completely capture the spatial variability of soil 
properties when variations were low. This result can be influenced by the bioindication of pH and C/N 
values, that increased uncertainty compared to laboratory analyses, and probably smoothed out spatial 
variability in areas with little changes. Better performance of the fine-resolution maps can be expected 
using measured pH and C/N values.  

 
Different spatial supports were used in this study: point support collected on a 700 m² plot for soil 

data, used for model and map calibration and validation, and cells of different surfaces from the digital 
maps. The support size should be relevant to describe the natural variability of the soil properties: if the 
support of the soil data is too large compared to the process scale, variability can be averaged (Western 
and Bloschl, 1999). The use of bioindication increases the support size comparatively to soil analysis 
classically collected from a single point at the plot center. Complementary studies should investigate 
the small-scale variability of pH and C/N in heterogeneous areas to evaluate the optimal support size. 
The difference in support size between digital maps and the validation dataset probably underestimates 
the map performances, and the validation of digital maps at the point support probably performs worse 
than larger spatial units (Bishop et al., 2015). 
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Optimal resolution matched point density – around one plot per km² in our calibration dataset, 
potentially contributing to the scale invariance below 1 km resolution. Sampling density is known to have 
a strong influence (Loiseau et al., 2021): increasing it globally improves the accuracy of prediction (Guo et 
al., 2018). On the other hand, the 1 km threshold beyond which accuracy decreases is an average value that 
hides important local differences. This does not advocate for a global effect of the sampling density on our 

results. For example, in some heterogeneous areas, map accuracy strongly decreased both for pH and C/N 
above 50 m resolution (R² was up to 0.15 and 0.11 higher for the 50 m resolution maps than for the 1 km 
resolution maps for pH and C/N maps, respectively; see appendix I), while sampling density remained the 
same. We suggest further studies to better understand how the sampling scheme can influence the results, 

by comparing optimal resolution with models calibrated at various sampling densities. We recommend such 
comparisons of maps with different cell sizes with an independent dataset of field observations to reach 
an optimal resolution.  

 
 

4.4 Using cell aggregation improves the performances of predictive maps 
 
We observed better performances when upscaling finer pH or C/N resolution maps rather than 

calibrating them at coarser resolution. Data aggregation results are controversial across studies. In some 
cases, coarsening spatial resolution by aggregating cell size causes a loss of information that increases 
uncertainties. For example, Maharjan et al. (2019) showed that aggregating climatic and soil data led to 
a greater error when simulating crop yields, in agreement with other studies and despite the use of 
diverse models, crops, production conditions, and variables (Zhao et al., 2015). On the other hand, 
several studies demonstrated the interest of cell aggregation, mainly for the classification of remote 
sensing images (Carmel, 2004; Townshend et al., 1992). As in our study, they showed better accuracy 
when aggregating pixels up to the object size, followed by a decrease when the pixel was bigger (McCloy 
and Bocher, 2007; Woodcock and Strahler, 1987).  

The gain in performance we observed with aggregation can be attributed to the qualitative 
predictors available through vector maps. When a vector map was rasterized at different cell sizes, the 
pixel value was attributed according to the polygon unit that occupied the greatest area in the cell, and 
information about minority units was lost. On the contrary, cell aggregation after pH or C/N mapping at 
fine spatial resolution allowed for unbiased calculations that considered all the existing units 
proportionally to their geographical extent. The two vector datasets we used (Geol and Stand type) 
explained a large part of the variance in our models, so that performance was improved by aggregation. 
On the contrary, the quantitative predictors initially available through raster maps at 50 m resolution 
were calculated at coarser resolution using aggregation. This method probably contributes to improve 
the performance of the maps directly calculated at a coarser resolution than 50 m, and could contribute 
to explain the global scale invariance observed below 1 km resolution. Aggregation efficiency can vary 
according to the upscaling method (Dai et al., 2019), and this effect could be evaluated in further 
studies. Therefore, data aggregation can be an efficient tool to improve map accuracy, and its use should 
be evaluated in DSM studies.  

 

4.5 Environmental characteristics and geographical extent have a strong impact on 
optimal map resolution 

 
Beyond the average performances showing a scale invariance below 1 km resolution, important 

differences were recorded according to the location and the size of the geographical extent. Fine-
resolution maps performed better in heterogeneous areas, while the coarse resolution was more 
efficient in homogeneous ones. As already reported by other studies (Liu et al., 2013), multi-scale 
variation can be observed depending on the different environmental characteristics. In our case, 
geology and climate varied at a regional scale, but also more locally in mountainous areas. Acidic units 
were mainly grouped in a few specific regions (see paleozoic rocks in Figure 2-C), but significant short-
distance variation can occur locally. Climate gradients also operated at a large scale (Figure 2-D), but 
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were influenced locally by topographic gradients (Piedallu and Gegout, 2008). This probably explains 
why fine-resolution maps performed better in the Vosges mountains because they better described 
these strong local changes in an area showing highly diverse chemical characteristics among parent 
materials (Nedeltcheva et al., 2006) and a great diversity of climates, topographies, and stand types 
(Cachan, 1974). On the contrary, in homogeneous areas, coarse cells probably improve the prediction 
by smoothing out local uncertainties. Similar findings have been reported for topographic variables 
calculated with DEMs, with a better performance at coarse resolution in flat areas and at fine resolution 
in morphologically varied areas (Cavazzi et al., 2013; Thompson et al., 2001). Our results suggest that 
different spatial resolution could be used according to the environmental characteristics of the areas to 
be studied. 

 

The size of the studied geographic space influences the results because the range of soil properties 
globally decreases with decreasing extents (Grunwald et al., 2011). The performance of the fine-
resolution maps was clearly improved compared to coarser resolution when the size of the study area 
decreased.  For reduced extents, the 50 m maps were most of the time more efficient than the 1 km 
maps to explain pH or C/N variations because they exhibited a higher variance that better described 
local spatial variability than coarser resolution did. Their ability to describe local variability is an 
important advantage for managers or policymakers, who often need to extract data about a specific 
extent from maps calibrated and validated over broad areas. Further investigations should be carried 
out to evaluate if the performance of fine-resolution maps keeps increasing relatively to coarse-
resolution maps when geographical extents are further decreased. These results argue for the 
calculation of fine-resolution maps in heterogeneous landscapes and for local use. On the other hand, 
coarse data do not dramatically degrade map quality and could be used when they are the sole data 
available, particularly for homogeneous areas or regional studies. Multi-scale validation of the map 
performances should provide a more comprehensive evaluation of their quality according to the 
intended use. 
 

 

5 Conclusion 

The need for relevant digital data about soil properties has increased in recent years in link with the 
need to manage the consequences of human actions on environmental changes. Two pitfalls have to be 
avoided: too coarse resolution that leads to less precision, and too fine resolution that makes users 
believe in false precision. We observed that optimal map resolution varied according to soil properties, 
local environmental characteristics, and geographical extent. In a context where digital maps of soil 
properties are calculated at finer and finer resolution, we did not show an altogether linear 
improvement of accuracy as resolution grew finer. However, we did observe a significant effect of cell 
size on performances, with a range of suitable resolution levels before an abrupt loss of performance 
at coarser resolution. The finest spatial resolution proved to be of interest as it significantly improved 
accuracy in heterogeneous areas, with rising performances as the geographical extent decreased. 
Moreover, fine-resolution maps allowed for cell aggregation, which showed promising results. In a 
context where the benefits of digital maps are highly dependent on their accuracy, we highlighted the 
importance of identifying the best resolution to provide land managers and policymakers with relevant 
maps available for a broad range of geographical extents.  
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Appendices 

 

Appendix A: Location of the 37,958 plots from the National Forest Inventory used for model calibration 
(black dots), and delineation of the four geographical extents: the whole studied area, 100*100 km, 
50*50 km, and 25*25 km squares (squares with less than 100 plots does not appear and were not used 
in the analysis).  
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Appendix B: Spatial distribution of pH values (left, n = 37,958) and C/N (right, n = 37,737) bioindicated 
with floristic inventories collected on temporary plots. 

 

 

 

Appendix C: Ranges of pH (left) and C/N (right) values throughout the dataset. 
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 pH C/N 

n 37958 37737 

Sill 1.15 14.7 

Range 110 km 96 km 

Nugget 0.19 7.29 

 

Appendix D: parameters of exponential semivariograms for pH and C/N values bioindicated on 
temporary plots.  

 

 

Appendix E: The 16 geological units from the simplified geological map 
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Appendix F: coefficients and variables for the 50-m resolution pH and C/N models. See Table 1 for variable description1 

pH C/N 

Variable Coefficient Variable Coefficient 

(Intercept) 5.6369 (Intercept) 21.5651 

geology - Siliceous sandstone and Principal Conglomerate  -1.9001 geology - Siliceous sandstone and Conglomerate Principal 9.0011 

geology - Sandstone -1.2852 geology - Sandstone 5.3393 

geology - Acidic granite -1.1678 geology - Schist and shale 4.3154 

geology - Schist and shale -1.0318 geology - Acidic granite 4.3072 

geology - Siliceous conglomerate -0.9242 geology - Siliceous conglomerate 3.6765 

geology - Granite and gneiss -0.8440 geology - Granite and gneiss 2.9312 

geology - Gaize -0.6779 geology - Gaize 2.6781 

geology - Paleozoic rock -0.6770 geology - Fine to medium grade colluvium 2.5974 

geology - Fine to medium grade colluvium -0.6062 geology – Paleozoic rock 2.3061 

geology - Sand -0.4564 geology - Coarse grade colluvium 2.0758 

geology - Coarse grade colluvium -0.4145 geology - Sand 1.4229 

geology - Little acidic quaternary deposits and clay -0.1821 geology - Little acidic quaternary deposits and clay 0.3845 

geology - Marl 0.1953 geology - Calcareous quaternary deposits -0.5376 

geology - Calcareous quaternary deposits 0.2953 geology - Marl -0.9792 

geology - Limestone 0.6423 geology - Limestone -1.5933 

TMwi 0.2019 stand type- Coniferous 2.7162 

stand type- Coniferous -0.6478 stand type- Tree-less forest  1.6703 

stand type- Tree-less forest  -0.5197 stand type- Mixed 1.5508 

stand type- Mixed -0.3767 stand type- Broadleaved 0.2893 

stand type- Broadleaved -0.2261 TMsu -0.5642 

slope 0.0125 curv 1.0620 

Flac 0.0887 slope -0.0307 

    relalt 0.5493 
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pH 

 

C/N 

 

Appendix G: Explained variance per variable category for the pH and C/N models calculated at eight 
resolution levels (Question 1).  
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Appendix H: Best R² and MAEs for the pH and C/N models whatever the resolution level, for three 
extents (100*100 km, 50*50 km, 25*25 km) (Questions 2 and 4). No performance was calculated 
when the number of plots in a cell was lower than 100. For each square, performances were calculated 
between the maps calculated at different spatial resolution and an independent subset of plots. 
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 Appendix I: Differences in performance between the 50-m and 1-km resolution maps of pH and C/N (R² 
and MAEs) for the different extents (Questions 2 and 4). Positive values highlight better performance of 
50-m resolution maps, while negative values highlight better performance of 1-km resolution maps. No 
performance was calculated when the number of plots in a cell was lower than 100. For each square, 
performances were calculated between the maps calculated at different spatial resolution and an 
independent subset of plots. 
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Appendix J: Average performance (R² and MAE) of aggregated pH and C/N maps for 100*100km, 
50*50 km and 25*25 km geographical extents at eight spatial resolution levels (Questions 3 and 4). 
Values were averaged from the different squares for the geographical extents. 
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Appendix K: Resolution with the best performance (R² and MAEs) for the aggregated pH and C/N maps, 
at the 100*100km, 50*50 km and 25*25 km geographical extents (Questions 3 and 4). No 
performance was calculated when the number of plots in a cell was lower than 100. For each square, 
performances were calculated between the maps calculated at different spatial resolution and an 
independent subset of plots. 
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Appendix L: Difference of performance (R² and MAEs) between the aggregated maps of pH and C/N at 
50 m and 1 km resolution for the different geographical extents (Questions 3 and 4). Positive values 
highlight better performance of 50 m maps while negative values highlight better performance of 1 km 
maps. No performance was calculated when the number of plots in a cell was lower than 100. For each 
square, performances were calculated between the maps calculated at different spatial resolution and 
an independent subset of plots. 
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   Extent  25*25 km 50*50 km 100*100 km Whole area 

 n 132 46 17 1 

  pH 0.01 0.00 -0.01 0.00 

R² CN 0.04 0.02 0.01 0.02 

 pH aggregated -0.03 -0.04 -0.05 -0.03 

 CN aggregated 0.01 -0.01 -0.02 -0.01 

  pH -0.01 -0.01 -0.01 0.00 

MAE C/N -0.03 -0.04 -0.01 0.00 

 pH aggregated 0.03 0.03 0.03 0.02 

  C/N aggregated 0.08 0.09 0.07 0.05 

 

Appendix M: Averaged differences in pH and C/N R² and MAE values between i) the 50 m and 1 km 
resolution maps following direct calculations and ii) pH and C/N calculated by aggregation, for the 
25*25, 50*50 and 100*100 km extents (Question 4). For each extent, values were calculated by 
averaging the performances of the different squares. Positive R² and negative MAE values highlight 
better performance of 50 m maps than 1 km maps. n= number of geographical units used for 
averaging performances. 
 

 

 

 

 

 

 

 

 

 


