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1IRMAR and Inria, University of Rennes, France.

Abstract
Importance sampling of target probability distributions belonging

to a given convex class is considered. Motivated by previous results,
the cost of importance sampling is quantified using the relative en-
tropy of the target with respect to proposal distributions. Using a
reference measure as a reference for cost, we prove under some gen-
eral conditions that the worst-case optimal proposal is precisely given
by the distribution minimizing entropy with respect to the reference
within the considered convex class of distributions. The latter condi-
tions are in particular satisfied when the convex class is defined using
a push-forward map defining atomless conditional measures. Applica-
tions in which the optimal proposal is Gibbsian and can be practically
sampled using Monte Carlo methods are discussed.
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1 Introduction

Importance Sampling (IS) is a generic Monte Carlo methodology that
aims at computing averages with respect to a given probability distri-
bution η ∈ P(E) in a state space E, usually called the target distri-
bution, by using weighted samples distributed according to a different
distribution µ ∈ P(E), usually called the proposal distribution.

A a general concept, IS is at the basis of most Monte Carlo strate-
gies ever since its introduction in computational statistical physics in
the early fifties. The non-expert reader may consult the second chap-
ter of the monograph [11] or the review paper [15] as an introduction.
One well-known problem is the lack of robustness in the choice of the
proposal distribution which leads to the degeneracy of the importance
weights, especially in high dimension (see e.g. [1]). Motivated in part
by this issue, a considerable amount of sophisticated strategies incor-
porating IS have been developed. Broadly speaking, two type of ideas
have emerged in all trends. First, one can smooth the sampling task
by considering a pre-defined family or flow of targets and then per-
form sampling sequentially by starting with the easiest ones. Second,
on may try to optimize the choice of the proposal, using some infor-
mation on the model, or previous sampling attempts. These ideas
are developed both in Sequential Monte Carlo (a.k.a. Particle Filters)
methods in which the proposal itself is known up to a normalization
and sampled iteratively (classical papers include [13, 6]), or in meth-
ods relying on a proposals in a parametric family with some adaptive
features (mainly by optimization of the proposal based on empirical
estimation of the ’cross-entropy’ of the target [14, 8]).
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All the above mentioned methods do suggest the following ques-
tion: what is the optimal proposal associated to a given target distri-
bution, or to a given subset of target distributions ?

In many applications, the target η is given through a non-normalized
density with respect to a reference distribution π ∈ P(E); π being very
easy to sample. The present work is motivated by the following ad-
ditional context: the evaluation of the density defining η is computa-
tionally very expensive, but the user knows a priori that η belongs to
a known convex class of ’admissible’ distributions denoted C ⊂ P(E),
which is described in a much more simple way. For instance, C may be
rigorously given by bounds on the considered model. Another scenario
may occur when preliminary attempts of sampling the target η have
been performed, yielding a confidence set C to which the true target
belongs with a very high probability.

We will address and give a quite generic answer to the following
problem: which importance proposal µ is (worst-case) optimal when
the set of admissible target distributions is C ? The results will be
stated for a subset of admissible target distributions A ⊂ C with
appropriate properties, but we will restrict – without significant loss
of generality – in the present introduction to the case A = C for
expository purpose .

The first choice we have to make is the choice of the cost of per-
forming importance sampling. A way to do that is through the required
sample size N∗ of i.i.d. µ-distributed variables. It can be defined as
the sample size required to yield at least a δ > 0 accuracy with proba-
bility 1−pα when estimating properly normalized test functions; δ, pα
being given. Instead of using the classical Chebyshev lower bound to
estimate N∗ using variance, we will rather use the relative entropy
(Kullback-Leibler divergence):

lnN∗ ' Ent(η | µ). (1.1)

As will be discussed in Section 5, some lower and upper bounds es-
timates are given in [3] which show that, under some uniform tail
conditions on the density η/µ, (1.1) is a rigorous equivalent when
Ent(η | µ) becomes large. This is not the case of variance, as will
be demonstrated in Section 5.2. Some care is needed however with
this argument: the estimates are not sharp and quite inaccurate for
non-asymptotic practical purpose. In this paper, we will reformulate
and comment the results of [3] in Section 5, and then simply proceed
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with our analysis using relative entropy as a definition of the logarith-
mic cost of importance sampling. Note that relative entropy is also
extensively used as a cost function in the so-called cross-entropy or
adaptive importance sampling methods ([14, 8]) in order to optimize
importance proposal distributions, see Section 4.3. Recent works have
also questioned the use of variance in practical empirical estimations
(the so-called Effective Sample Size) of the divergence between the
target and the proposal, proposing to consider other Rényi entropies
(see [9, 12, 10], and Section A for comments on Rényi entropies).

Now that we have a cost functional to compare importance sam-
pling between various proposals, one must deal with the problem that
worst-case costs are usually infinite. We simply solve this issue by
performing a comparison of the log-cost of importance sampling be-
tween: i) a proposal µ, and ii) the reference proposal π. If C ⊂ P(E)
is a given convex set of admissible target distributions, one is led to
define the worst-case logarithmic cost – of importance sampling with
µ as compared to importance sampling with π – by the quantity:

WLCh(µ | π)
def
= sup

η∈C,Ent(η|π)≤h
Ent(η | µ)− h. (1.2)

The quantity (1.2) is the logarithm of the (normalized) worst-case
cost for importance sampling with µ, for targets with a given maximal
reference log-cost.

We will first prove in this paper (Theorem 3.1), that, under some
specific assumptions, the worst-case optimal proposal distribution is
unique and is given by the classical entropy minimizing distribution
associated with C:

µ∗ = arg min
µ∈P(E)

WLCh(µ | π) = arg min
µ∈C

Ent(µ | π). (1.3)

We will show more precisely that the optimal worst-case log-cost is
given by

WLCh(µ∗ | π) + h = h− Ent(µ∗ | π) ≥ 0,

and that the difference with an other proposal is given by

WLCh(µ | π)−WLCh(µ∗ | π) ≥ Ent(µ | µ∗).

The main sufficient condition ensuring these results is the following:
any strict half-space (defined by measurable functions) containing the
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optimizer µ∗ ∈ C must also contain a distribution η ∈ C with pre-
scribed relative entropy Ent(η | π) = h (at least up to an arbitrary
precision).

This abstract condition will be made more concrete in Theorem 3.3,
where a sufficient setting is proposed in the case where the set admis-
sible targets is defined through a push-forward map T :

C = {η : T]η ∈ CT ⊂ P(F )} ,

T ]η denoting the push-forward by any measurable map T : E → F
and CT denoting an arbitrary convex set. A sufficient condition (HT )
ensuring the abstract condition (H) and the main results stated above
is then: i) the conditional distribution π( . | T = t) has an atomless
distribution T]π(dt)-almost everywhere, and ii) C contains distribu-
tions defined as indicator densities with respect to µ∗. A counterex-
ample on a two atom discrete space is provided showing the necessity
of the atomless assumption.

An important more practical example is for T vector valued and
C = {η : η(T ) ∈ C} for C convex. It will be discussed in Section 4.
In that case the optimal proposal belongs to the Gibbs (canonical)
exponential family:

µ∗ ∝ exp(〈β∗, T 〉)dπ;

and can be simulated using some Monte Carlo procedure (e.g. Sequen-
tial Monte Carlo, or Direct), albeit in a cheapest way as compared to
the target η.

Finally, it is interesting to remark that our main min-max char-
acterization theorem is similar, albeit different, from the classical
Pythagorean theorem for relative entropy in information geometry.
We will recall in Section 3 that the latter is equivalent to the min-max
property:

µ∗ = arg min
µ∈P(E)

sup
η∈C

Ent(η | µ)− Ent(η | π),

which holds in general, without specific assumption. It will be dis-
cussed in Section 2 why the latter is not very satisfactory for a practical
interpretation in terms of importance sampling. The main problem is
that the relative log-cost Ent(η | µ)−Ent(η | π) quantifies the relative
improvement of importance sampling by µ as compared π, and it turns
out that for the optimal proposal µ = µ∗, the worst-case improvement
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is always attained for the ’cheapest’ trivial target η = µ∗; yet, in prac-
tice, one is not interested in improving the cheapest targets of the
admissible set C. Our main results might be interpreted as a variant
of this min-max formulation of the Pythagorean theorem in which the
supremum has to be reached by target distributions with large relative
entropy Ent(η | π)� 1, which are relevant in importance sampling.

The paper is structured as follows. We will recall in Section 2 the
definition and the main properties (e.g. the Pythagorean theorem) of
the distribution µ∗ that minimizes entropy relative to a reference π
over a convex subset. In Section 3, we will then state and prove the
two main theorems of this work, Theorem 3.1 and Theorem 3.3, with
a counter-example for discrete state spaces. Some comments on ap-
plication to Gibbs exponential families will be presented in Section 4.
Finally, a reformulation of, and some comments on, the results of the
reference [3] on the sample size required for importance sampling will
be done in Section 5.

Notation

T]π denotes the push-forward (measure image) of π by the map T .
π(ϕ) =

∫
ϕdπ denotes integration of test functions. η/π denotes the

Radon-Nikodym derivative between two non-negative measures with
domination relation η � π.

2 Entropy minimizing distributions

In this section, we recall some basic facts about the entropy minimizing
distribution µ∗ associated with a given convex subset C of probability
distributions and a reference probability π.

2.1 Definition and Pythagorean theorem

Let (E, π) denotes the pair given by a (standard Borel) state space
E endowed with reference probability distribution π. Let C ⊂ P(E)
be a convex subset. For simplicity, we assume there exists an entropy
minimizing distribution (with finite entropy) associated with the pair
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(π, C). It will be denoted

µ∗
def
= arg min

µ∈C
Ent(µ | π). (2.1)

By strict convexity of entropy, the latter is uniquely defined. A gen-
eral notion of entropy minimizing distribution exists in information
geometry, where it is called information projection [4].

The ‘Euler-Lagrange’ equation or ‘first-order condition’ character-
izing (2.1) are known in information geometry as the Pythagorean
theorem for relative entropy.

Theorem 2.1 (Theorem 1, [4]). Let (E, π) be a probability space. Let
C ⊂ P(E) be convex and contain the entropy minimizing distribution
denoted µ∗. The following condition on µ ∈ P(E):

∀η ∈ C, Ent(η | π) ≥ Ent(η | µ) + Ent(µ∗ | π), (2.2)

has a unique solution given by µ∗.

Remark 2.2. µ∗ is also the unique distribution satisfying the more
constraining condition:

∀η ∈ C, Ent(η | π) ≥ Ent(η | µ) + Ent(µ | π).

Remark 2.3. The above theorem is a kind of first-order optimality
condition. To see this, let us denote by Dµ the formal (Fréchet) deriva-
tive on P(E) for the usual addition of measures. At least in a formal
sense, DµEnt(µ | π) is a test function, and if η ∈ C, the difference
of probability measures η − µ is a tangent vector pointing inside C.
Formal first-order optimality condition precisely requires that:

0 ≤ (η − µ) (DµEnt(µ | π)) = (η − µ)(lnµ/π)

= Ent(η | π)− Ent(η | µ)− Ent(µ | π),

hence the above condition.

The following direct corollary will be useful in our proofs.

Corollary 2.4. Under the assumptions of Theorem 2.1, if η ∈ C
satisfies η

(∣∣ln µ∗
π

∣∣) < +∞, then it holds

η(ln
µ∗
π

) ≥ µ∗(ln
µ∗
π

).
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2.2 Min-max formulation

It is especially of interest to the present work to reformulate the above
theorem as a min-max problem as follows:

Corollary 2.5. Under the assumptions of Theorem 2.1, one has

µ∗ = arg min
µ∈P(E)

sup
η∈C

Ent(η | µ)− Ent(η | π).

Moreover, for µ = µ∗, the supremum is attained by η = µ∗:

sup
η∈C

Ent(η | µ∗)− Ent(η | π) = −Ent(µ∗ | π).

Proof. The condition (2.2) is equivalent to the condition

sup
η∈C

Ent(η | µ)− Ent(η | π) ≤ −Ent(µ∗ | π),

so that the statement of the Pythagorean theorem is equivalent to the
two conditions: i) supη∈C Ent(η | µ) − Ent(η | π) > −Ent(µ∗ | π) if
µ 6= µ∗, and ii) supη∈C Ent(η | µ∗) − Ent(η | π) ≤ −Ent(µ∗ | π) in
which the upperbound is attained for η = µ∗.

Admitting that we quantify the logarithm of the cost of importance
sampling of a target η ∈ C with a proposal µ using relative entropy,
Corollary 2.5 is already of interest to our sampling interpretation.
Indeed let us define the worst relative logarithmic cost by

WRLCC(µ | π) = sup
η∈C

Ent(η | µ)− Ent(η | π)

, that is the logarithm of worst-case improvement ratio between per-
forming importance sampling with proposal µ as compared to with
reference proposal π. The Pythagorean theorem is equivalent to say
that the entropy minimizing distribution µ∗ is the unique optimal pro-
posal in terms of WRLCC(µ | π). The latter is nonetheless not fully
satisfactory from a practical perspective because for µ = µ∗ the worst
case target is attained by the proposal itself η = µ∗. Unfortunately,
it might happen in principle that η = µ∗ is the unique worst-case
target in the sense of the above WRLC criteria. The Pythagorean
theorem thus says nothing a priori about the improvement of cost
for those targets η with higher relative entropy which are of practical
significance.
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In a way, it is the purpose of the present paper to modify the
min-max formulation of Corollary 2.5 in order to consider absolute
rather than relative worst-case costs. This justifies the definition of
the worst-case log-cost (1.2).

2.3 Gibbs case

We end this section with the most standard example of entropy min-
imizing distributions.

Example 2.6 (Gibbs exponential family). Let T : E → Rd be given
with finite exponential moments π(e〈β,T 〉) < +∞ for all β ∈ Rd. As-
sume that

C = {η | η(T ) ∈ C}

where C is closed convex with C ∩ supp(T]π) 6= ∅. Then,

µ∗ = µβ∗ =
1

Zβ∗
e〈β∗,T 〉dπ,

for a unique β∗ ∈ Rd. Morever, β∗ is the unique β ∈ Rd satisfying the
first order optimality condition

∀t ∈ C, 〈β, t〉 ≥ 〈β, µβ(T )〉.

In the case where C = {t0}, C is called a linear family, the equality
case is satisfied in the Pythagorean theorem, and β∗ is the unique β
satisfying

µβ(T ) = t0.

3 Main results

We now assume in this section that one wants to compare the cost of
importance sampling between: i) a proposal µ, and ii) the reference
proposal π.

We will use the exponential of relative entropy (rather than vari-
ance) to quantify the sample size N∗ required by importance sampling
of η by µ, that is Ent(η | µ) ' lnN∗. This will be thoroughly discussed
and justified in Section 5. From now on, Ent(η | µ) will be called the
log-cost of performing importance sampling of target η with proposal
µ.
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Denoting by A ⊂ P(E) a given set of admissible target distribu-
tions, it is then natural to define the worst-case log-cost – of impor-
tance sampling with µ as compared to importance sampling with π –
by the quantity (1.2), that we recall here:

WLCh(µ | π)
def
= sup

η∈A,Ent(η|π)≤h
Ent(η | µ)− h. (3.1)

The quantity (3.1) is the logarithm of the worst-case cost of impor-
tance sampling with proposal µ for targets with a given maximal ref-
erence log-cost of importance sampling with π.

Note that since µ∗ is entropy minimizing, the definition of WLCh

is well-defined only for h ≥ Ent(µ∗ | π). For h∗ = Ent(µ∗ | π), the set
defining the supremum is given by the singleton µ∗, and one trivially
obtains WLCh(µ | π) = Ent(µ∗ | µ)−Ent(µ∗ | π) which has minimum
0 for µ = µ∗.

In (3.1), the ’worst-case scenario’ is defined using the subset {Ent( . | π) ≤ h}∩
A defined by the admissible target distributions with a given max-
imal reference log-cost of importance sampling (with the reference
proposal π). As detailed in the previous section, the definition of log-
cost (3.1) has to be compared with the variant of the Pythagorean
theorem in Corollary (2.5). The latter involves the worst-case rela-
tive log-cost, where the relative log-cost is defined by the difference
Ent(η | µ) − Ent(η | π), whereas in 3.1 the comparison is made with
a reference worst-case value h. This ensures that the minimization
of the worst-case log-cost WLCh really focuses on the worse target
distributions.

3.1 The general min-max theorem

We can then state the first of the two main theorems of this paper.
The main issue is to give a general condition under which the opti-
mal proposal distribution minimizing the worst-case log-cost WLCh

is indeed the entropy minimizing over a convex set C of distributions
containing A:

A ⊂ C.

In short, this condition asks that in any half-space (as defined by
bounded measurable functions) containing strictly µ∗, one can find a
target η ∈ A with log-cost Ent(η | π) arbitrarily close to the reference
log-cost h; or, in other words, that µ∗ and those target distributions
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η with Ent(η | π) close to h cannot be strictly separated by an hyper-
plane.

We will in fact show a much more precise results. First we will show
that the optimal worst-case log-cost obtained for µ = µ∗ is given in fact
by the opposite of the minimal entropy on C: −Ent(µ∗ | π). This is
similar to what happens in the Pythagorean theorem of Theorem 2.1.
We will also prove the inequality (3.3) below, that states that the
difference between i) a worst-case log-cost for any proposal µ, and ii)
the optimal worst-case log-cost for proposal µ∗, is in fact greater than
the log-cost of µ itself, Ent(µ | µ∗). This will immediately yield the
desired characterization of µ∗ as optimal worst-case proposal, with a
quantification of optimality given by Ent(µ | µ∗).

Theorem 3.1. Let (E, π) be a standard probability state space, with
C ⊂ P(E) a given convex subset of probability distributions containing
the unique entropy minimizing distribution µ∗ = arg minC Ent( . | π).

Let h ≥ Ent(µ∗ | π) be given, and assume that for all bounded
measurable real-valued function f : E → R, and all ε > 0, there exists
an admissible distribution ηf,h,ε ∈ A ⊂ C such that

|Ent(ηf,h,ε | π)− h| ≤ ε, & ηf,h,ε(f) ≥ µ∗(f)− ε. (3.2)

Then one first has that:

WLCh(µ∗ | π) = −Ent(µ∗ | π).

has:

∀µ ∈ P(E), WLCh(µ | π) ≥WLCh(µ∗ | π) + Ent(µ | µ∗). (3.3)

where in the above the log-cost is defined by (3.1).

The above result immediately implies our main finding that

µ∗ = argmin
µ∈P(E)

WLCh(µ | π),

and when the condition (3.3) is satisfied for any h, we also obtain that:

µ∗ = argmin
µ∈P(E)

lim sup
h→+∞

WLCh(µ | π),

the quantity lim suph→+∞WLCh being a natural definition of the
worst-case log-cost when no constraint is applied to admissible tar-
gets.
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Remark 3.2. The main assumption (3.2) in Theorem 3.1 above have
a nice geometric interpretation. µ∗ is the unique distribution obtained
as the intersection of two convex sets C and {Ent(| π) ≤ h∗}, where
h∗ = Ent(µ∗ | π) is such that the latter two are ’tangent’ with each
other. The condition (3.2) exactly asks that in any open1 half-space
of distributions that contains µ∗, one can find an element of A with
prescribed entropy.

Proof of Theorem 3.1. First recall that Ent(µ∗ | π) ≤ infη∈A Ent(η |
π)

Step 1. We claim that

sup
η∈A

⋂
{Ent( . |π)≤h}

Ent(η | µ∗) = h− Ent(µ∗ | π).

Indeed, let η ∈ A be a probability such that Ent(η | π) < +∞. By
the Pythagorean inequality (2.2) one has Ent(η | µ∗) < +∞ and
η (|lnπ/µ∗|) < +∞. One can then consider the following decomposi-
tion:

Ent(η | µ∗) = Ent(η | π) + η(ln
π

µ∗
), (3.4)

and (2.2) becomes η(ln π
µ∗

) ≤ − infη∈A Ent(η | π) ≤ −Ent(µ∗ | π).
By (3.2), there exists a sequence in A such that limn Ent(ηn | π) = h
and limn ηn(ln π

µ∗
) ≥ −Ent(µ∗ | π). Hence the claim.

Step 2. We claim that if µ 6= µ∗, then

sup
η∈A

⋂
{Ent( . |π)≤h}

Ent(η | µ) > h− Ent(µ∗ | π).

Indeed, let η with Ent(η | π) < +∞, and µ 6= µ∗ be given, and
assume without lost of generality that Ent(η | µ) < +∞, which implies
η
(∣∣ln µ

π

∣∣) < +∞. One has the decomposition

Ent(η | µ) = Ent(η | π) + η(ln
π

µ
) (3.5)

By (3.2), there exists a sequence such that Ent(ηn | π) = h and
limn ηn(lnπ/µ) ≥ µ∗(lnπ/µ) = −Ent(µ∗ | π) + Ent(µ∗ | µ). Hence
the claim.

1for the locally convex weak topology on finite measures making evaluation of measur-
able bounded function continuous. This topology is sometimes called the weak τ -topology
as in [7]
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3.2 A sufficient condition in the atomless case

In this section, we will show that the main assumption in Theorem 3.1
is satisfied in a quite generic context related to applications. This is
Theorem 3.3 below, which is the second main theorem of this paper.

Let T : E → F be a measurable map onto a secondary (standard
Borel) measurable space F . Let CT denotes any convex subset of
P(F ). Let us assume that the convex set containing admissible target
distributions is defined as the pull-back by T of CT :

C = {T]η ∈ CT ⊂ P(F )} . (3.6)

This is a completely generic context; any convex set C can be written
in this way, for instance trivially is a measurable isomorphism. This
corresponds to the practical situation in which the prior information
on the possible targets is given by a condition on the push-forward by
T .

Theorem 3.3. Let (E, π) be a standard probability space. Let C be
given by (3.6) and contains the unique associated entropy minimizing
distribution. Assume that:

1. The conditional distributions π( . | T = t) are atomless T](dt)-
almost everywhere.

2. The set of admissible target distributions A contains at least all
distributions having an indicator density with respect to µ∗.

Then for any h ≥ Ent(µ∗ | π) = h∗, any f : E → R bounded mea-
surable, and any ε > 0, A contains a distribution ηf,h,ε such that (3.2)
is verified. In particular, the statement of Theorem 3.1 holds true for
any h ≥ h∗.

Proof. We first claim that: i) the conditional distribution of entropy
minimizer µ∗ is the same as the conditional distribution of π:

µ∗(dx | T (x) = t) = π(dx | T (x) = t), T ]π(dt)− a.e.,

and ii) the entropy minimizer on CT relative to T]π is T]µ∗ is.
Indeed, chain rule of conditional entropy reads:

Ent(µ | π) =

∫
F

Ent(µ( . | T = t) | π( . | T = t))T]µ(dt)+Ent(T]µ | T]π);
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for µ ranging in C, the first term of the right hand side uniquely
(T]π almost everywhere) vanish for µ( . | T = t) = π( . | T = t),
while second term is minimized only if T]µ minimizes entropy on CT
relative to T]π.

Next, let f be an arbitrary bounded measurable and h ≥ h∗ be
given. The atomless assumption ensures that there exists a set Af,h ⊂
E satisfying for T]µ∗ almost all t

π(Af,h | T = t) = eh∗−h and π(f | Af,h &T = t) ≥ π(f | T = t).

and Lemma B.2 (based on the existence of an independent complement
to T ) ensures that Af,h can be chosen among Borel subsets.

One can then define a target distribution candidate to satisfy (3.2).

ηf,h(dx)
def
= µ∗(dx | Af,h) = e−h∗+h llAf,h(x)µ∗(dx).

We can now conclude by showing that ηf,h indeed satisfies (3.2)
for ε = 0:

Step 1.Since µ∗( | T = t) = π( | T = t), one can remark that by
construction of Af,h, one also have µ∗(f | Af,h &T = t) ≥ µ∗(f | T =
t), so that it holds ηf,h(f) ≥ µ∗(f).

Step 2. We remark that by construction π(Af,h | T = t) is in-
dependent of t so that the push-forward distribution is unchanged
T]ηf,h = T]µ∗. Moreover, since ηf,h( . | t = T ) has an indicator den-
sity with respect to µ∗( | T = t) = π( | T = t), a routine calculation
yields that

Ent(ηf,h( . | T = t) | π( . | T = t)) = − ln ηf,h(Af,h | T = t).

Using again the chain rule of conditional entropy we obtain

Ent(ηf,h | π) = Ent(T]µ∗ | T]π) +

∫
− lnπ(Af,h | T = t)T]η(dt)

= Ent(µ∗ | π) + h− h∗ = h.
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3.3 A simple two atoms counter-example

We next provide a very simple counter-example showing that the
atomless asumption is critical in Theorem 3.3. For simplicity we con-
sider

A = C = P(E),

so that entropy minimizing distribution is simply the reference π:

µ∗ = π, h∗ = 0.

Similar counter-examples can be constructed in more complex cases.

The problem arises when the discrete structure is not uniform:
there are atoms with very different masses. In that discrete case, the
(absolute) worst-case target distribution for the proposal π is exactly
a Dirac distribution on the atom with smallest probability. The worst-
case optimal proposal is then the uniform discrete measure: proposing
with π is sub-optimal because of the smallest atom. However, for
medium values of h, the discrete uniform distribution competes with
the reference π; while for smaller values of h, targets concentrated on
the smallest atom are not allowed and π is optimal.

Proposition 3.4. Let E = {1, 2} and π ∈ P(E) non-degenerate with

π(1) ≥ π(2) > 0. Let us denote WLCh(µ | π)
def
= sup

η: Ent(η|π)≤h
Ent(η | µ).

Remark that Ent(δi | π) = − lnπ(i). If h ∈ [− lnπ(1),− lnπ(2)], let
us denote by πh the unique distribution such that

Ent(πh | π) = h.

If h ≤ − lnπ(1) then

π = arg min
µ∈P(E)

WLCh(µ | π),

If h ∈ [− lnπ(1),− lnπ(2)] , then

πh = arg min
µ∈P(E)

WLCh(µ | π),

If h ≥ − lnπ(2) then

Unif({1, 2}) = arg min
µ∈P(E)

WLCh(µ | π)).
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Proof. We start with the case h ≤ − lnπ(1) ≤ − lnπ(2). We claim
that the assumptions of Theorem 3.1 are satisfied. Let f : E → R
be given, and let i ∈ {1, 2} be such that fi = max f . The map
θ 7→ Ent(θπ + (1 − θ)δi | π) is continuous on [0, 1] taking values in
[0,− lnπ(i)] so that the value h ≤ − lnπ(i) is attained; and we set
ηf,h = θhπ + (1− θh)δi where θh is such that ηf,h = πh. One also has
ηh(f) ≥ π(f) by construction and the claim follows.

The case h ≥ − lnπ(2) is quite simple. The map η 7→ Ent(η | µ)
is strictly convex with two admissible extrema: η = δ1 and η = δ2

suprema with respective entropies − lnµ(1) and − lnµ(2). This im-
plies WLCh(µ | π) = − ln min(µ(1), µ(2)) ≥ − ln 1/2, this last in-
equality being an equality if and ony if µ is the uniform distribution.
This yields the result.

In the case h ∈ [− lnπ(1),− lnπ(2)], one also consider the con-
tinuous strictly convex map η 7→ Ent(η | µ) which has now two
admissible extrema: i) the Dirac distribution η = δ1 on the one
hand, and ii) πh. The associated admissible extrema defining WLCh

are then respectively: − lnµ(1) and h. h is the greatest so that
WLCh(µ | π) = Ent(πh | µ). Hence the result.

4 Gibbs exponential families and ap-

plications

In this section, we consider a slightly more practical viewpoint. We
assume that the main objective is to set up an importance sampling
method aiming at numerically estimate averages with respect to a
given target distribution ηtrue, defined up to a normalizing constant,

ηtrue(dx) ∝ f(x)π(dx).

We first discuss Gibbs exponential families, which are the entropy min-
imizing proposals that arise when considering targets in a convex set
defined using the push-forward by a vector-valued function T . Then,
we will present an applicative scenario and discuss the relationship
with the well-known cross-entropy method.
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4.1 Gibbs exponential families

Let us now consider a vector-valued bounded measurable function
defined on the considered state-space:

T : E → Rd.

For instance, T may be given by various statistics, or physical observ-
ables of special interest. We also assume that we know that averages
of T with respect to the target distribution belong to a given closed
convex set C of Rd:

ηtrue(T ) ∈ C ⊂ Rd.
C is assumed to have a non void intersection with the support of
T]π. This defines the admissible convex set of distributions C =
{η : η(T ) ∈ C}. If one assumes that the conditional distributions
π( . | T = t) are atomless distribution T]π almost everywhere, one
can directly apply Theorem 3.3 and obtain that the entropy minimiz-
ing distribution µ∗ is the worst-case optimal proposal in the sense of
the log-cost (3.1).

µ∗ is well-known and is given by

µ∗ =
1

Zβ∗
e〈β∗,T 〉dπ.

It is the unique distribution in C = {η : η(T ) ∈ C} and in the Gibbs
(a.k.a canonical) exponential family µβ ∝ e〈β,T 〉dπ, β ∈ Rd, which
minimizes the entropy relative to π.

It is also interesting to remark that it is not necessary to be able to
sample exactly according to µ∗ in order to implement the method. In-
deed, µ∗ is described by T up to a normalization, so that a Sequential
(or other) Monte Carlo routine (e.g. [6]) can be used to sample ac-
cording to the latter and estimate the associated normalization. The
latter can be coupled with an iterative convex minimization routine
calculating β∗

4.2 An applicative context

In some practical cases, the preliminary information on the target
distribution ηtrue may be given by preliminary importance sampling
in the form of a weighted empirical probability distribution

ηN =
N∑
n=1

WnδXn ,
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defined by a sequence of random states X1, . . . , XN ∈ EN , on which
the density f(X1), . . . , f(XN ) have been previously evaluated.

Let us again consider a vector-valued bounded measurable func-
tion defined on the considered state-space: T : E → Rd. For instance,
T may be given by various statistics, or physical observables of special
interest. It may happen then that the user is able to define a confi-
dence convex set CηN ⊂ Rd – which heavily depends on the precise

construction of ηN – which asserts that with very high probability

P[ηtrue ∈ CηN ] ' 1 (4.1)

where one has defined the confidence set of target distributions

CηN
def
=
{
η ∈ P(E) : η(T ) ∈ CηN ⊂ Rd

}
.

One can then choose as a worst-case optimal proposal the Gibbs dis-
tribution µ∗ ∝ e〈β∗,T 〉dπ minimizing entropy with the constraint that
averages of T belong to CηN . This optimal proposal can then be com-
puted using various combination of Monte Carlo sampling and convex
optimization routines. Although each ingredient (sampling and convex
optimization) are well-known, such combinations and the proposed ap-
plication are not standard up to our knowledge, and a detailed study
is left for future work.

An interesting point consists in remarking that the proposed opti-
mization of the proposal can be done iteratively, leading to a kind of
adaptive importance sampling algorithm. This typically also happens
in the so-called cross-entropy method that we are to briefly discuss
below.

4.3 Relation to the cross-entropy method

Broadly speaking, the cross-entropy method is an adaptive impor-
tance sampling method performed iteratively (with main step here-
after indexed k). On this topic, the interested reader can refer to the
book [14], or to [5] for a shorter introduction. See also yhe related
adaptive importance sampling in [8].

Let ηN(k) denotes a weighted empirical distribution approximating
ηtrue and constructed with a previously obtained samples, as discussed
in the previous section. In cross-entropy methods, importance propos-
als are chosen in a parametric family (µθ)θ∈Θ, and in the most basic
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versions of the algorithm, at step k, an i.i.d. sequence X
(k)
1 , . . . , X

(k)
N is

sampled with distribution µθN
(k−1)

for an iteratively chosen parameter

θN(k−1). The approximating weighted empirical distribution discussed
in the previous section is then explicitly given by

ηN(k) ∝
N∑
n=1

f

dµθN
(k−1)

(
X(k)
n

)
δ
X

(k)
n
.

Finally, the specific parameter θN(k) at which importance sampling is
performed at step k+1 is chosen by solving the minimization problem

θN(k) = arg min
θ

Ent
(
ηN(k) | µ

N
(k),θ

)
, (4.2)

where in the above we denote the empirical version of a proposal by

µN(k),θ ∝
N∑
n=1

dµθ
dµθN

(k−1)

(
X(k)
n

)
δ
X

(k)
n
.

In many cases, (with the obvious exception of mixtures), µθ is
chosen in an exponential family that can be set in a canonical Gibbs
form:

µθ ≡ µβ ∝ e〈β,T 〉dπ.

At each step of the method, the minimizer is then precisely given by
µ∗ = µβ∗ where β∗ is the unique vector such that

µβ∗(T ) = ηN (T ).

The novelty of the present paper consist in showing that the distri-
bution µβ∗ , according to Theorem 3.3, is also the worst-case optimal
proposal among all possible proposals, as soon as one considers the
following convex set of admissible targets:

CηN =
{
η ∈ P(E) : η(T ) = ηN (T )

}
.

In other words, we have thus shown that the minimization of relative
entropy between an empirical target ηN and proposals in an expo-
nential family is equivalent to the minimization of worst-case relative
entropy for targets η with fixed average η(T ) = ηN (T ); the minimiza-
tion being obtained for proposals spanning all distributions. This
seems to be an original interpretation of the cross-entropy method.
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Our result also suggests a possible way to improve or control cross-
entropy methods. In practice, confidence intervals in the form of (4.1)
could be used instead of the singleton C =

{
ηN (T )

}
⊂ Rd. This might

improve the robustness of cross-entropy algorithms, especially in high
dimension.

5 The sample size required for impor-

tance sampling

In this section, η ∈ P(E) will denote a generic target probability
distributions and µ ∈ P(E) a generic proposal distribution.

In the so-called importance sampling method, the density dη/dµ
is assumed to be computable (perhaps only up to a normalizing con-
stant), and averages of the form η(ϕ) are estimated using the empirical
distribution of n i.i.d. variables (Xi)i=1...n distributed according to µ.
The estimator is given by:

ηN (ϕ)
def
=

1

N

N∑
i=1

ϕ(Xi)
dη

dµ
(Xi)

a.s.−−−−−→
n→+∞

η(ϕ). (5.1)

In the above, only the product ϕ dη
dµ has to be evaluated numerically;

if the normalizing constant Z is unknown, the test function ϕ must be
defined as a product of this unknown normalization Z with another
computable function. From now on, we will denote

Y
def
=

dη

dµ
(X) ≥ 0, X ∼ µ.

In the special case when the test function ϕ = Z is the normalizing
constant, the relative variance of the estimation of Z can be immedi-
ately computed:

Var(ηN ( ll)) =
Var(Y )

N
=

eEnt2(η|µ) − 1

N
(5.2)

where Ent2(η | µ) = ln η
(

dη
dµ

)
is the order 2 Rényi entropy (see be-

low for a definition). Using (5.2) and various standard concentration
inequalities, one can then obtain an upper bound on (some appro-
priate notion of) the required sample size N∗. This upper bound
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is usually comparable to the variance (using Chebyshev inequality)
N∗ ≤ cVar(Y ), or to the square of an upper bound on the support of
Y N∗ ≤ c`2 if Y ≤ `, or a combination of both; in the above c is a
numerical constant.

5.1 The Chatterjee-Diaconis bounds

We shall use here an alternative approach motivated by [3]. In the
latter reference, some theorems (Theorem 1.1, 1.2 and 1.3) are proved
showing that the sample size N∗ = N∗δ,pα(η | µ) required to obtain an
importance sampling estimation at a given precision δ and with a given
probability pα is, quite generically, and at logarithmic scales, given by
the relative entropy of the target η with respect to the proposal µ:

lnN∗ ' Ent(η | µ) = E(Y lnY ). (5.3)

The failure (or equivalently success) probability of importance sam-
pling at a given precision threshold δ > 0 is rigorously defined as
follows. The deviation probability of importance sampling is defined
using L2(ν)-normalized test functions, and is given by:

pdev,δ(N)
def
= sup

ϕ: η(ϕ2)=1

P
(∣∣ηN (ϕ)− η(ϕ)

∣∣ ≥ δ) , (5.4)

where one considers estimators of the form (5.1). A sample size de-
noted N∗ = N∗pα,δ(η | µ) and satisfying

pdev,δ(N
∗) = pα.

is called a critical sample size required for importance sampling. It
is a sample size achieving δ-accuracy with success probability exactly
1− pα.

For simplicity, we now state a slightly weaker version of Theo-
rem 1.1 [3] (based on lower order moment conditions) for the special
case where the failure probability is defined with the estimator of the
normalizing constant rather than (5.4):

pdev,δ(N)
def
= P

((
ηN ( ll)− 1

)
≥ δ
)
.

This case enables to present the result as a general result on sum i.i.d.
real valued random variables. The case (5.4) can be treated in the
same way (since the lower bound in Theorem 1.1 [3] is obtained for
constant test functions ϕ = ll). Such results and their proofs can be
found in Section A.
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Theorem 5.1 (Corollary of Theorem 1.1 [3]). Let Yi ≥ 0, i = 1 . . . N
i.i.d. random variables with unit mean EY = 1. Denote by N∗ a
sample size verifying

P

(∣∣∣∣∣ 1

N∗

N∗∑
i=1

Yi − 1

∣∣∣∣∣ ≥ δ
)

= pα,

for some δ, pα ∈ (0, 1). Then the following estimate holds

|lnN∗ − E(Y lnY )| ≤ inf
θ∈[0,1]

[
1

θ
ln
(
E(Y 1+θ)E(Y 1−θ))

)
+

ln c(δ, pα)

θ

]
,

(5.5)
where cδ,pα is a numerical constant depending only on pα and δ.

The estimate (5.5) result can be interpreted a concentration/anti-
concentration inequality with lower order moments condition. The
proof, discussed in Section A, is based on: i) an upper bound on the
deviation probability pdev,δ(N) that decreases with the sample size
according to a (slow) power-law N−θ/4, ii) an upper bound on the
success probability 1 − pdev,δ(N) that increases with the sample size
according to a (slow) power-law N θ/2 .

In the context of importance sampling, one has 1
N∗
∑N∗

i=1 Yi =
ηN ( ll), E(Y lnY ) = Ent(η | µ), and the logarithmic moments

1

θ
ln
(
E(Y 1+θ

)
=

1

θ
ln

∫ (
dη

dµ

)θ
dη

def
= Ent1+θ(η | µ), θ ∈ [−1,+∞],

are the order 1 + θ Rényi entropy of η relative to µ. The latter is
increasing with θ, and it is continuous when finite. Ent1 = Ent is the
usual relative entropy. We refer to [16] for a review of properties of
those entropies.

In our context, the estimate in (5.5) is meaningful only in cases
where the relative entropy E(Y lnY ) is large as compared to the dif-
ference of Rényi entropies Ent1+θ(η | µ)− Ent1−θ(η | µ). It is argued
in [3] that this situation happens quite generically, see the discussion
in Section A. Some care however is required in practice because the
constants in the right hand side of (5.5) can be unsatisfactory; they
are however certainly not sharp, and it may turn out that improved
estimates can be obtained.

A conservative user of importance sampling might prefer to mini-
mize the usual variance Var(Y ) = η( dη

dµ) − 1, rather that Ent(η | µ).
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However, minimizing upper bounds might lead to inefficient results
depending on context. The estimate (5.5) shows that Ent(η | µ) is,
loosely speaking, a compromise between an upper bound and a lower
bound. This makes relative entropy an interesting practical criteria.

Moreover, denoting the right hand side in (5.5) by

R(Y )
def
= inf

θ∈[0,1]

[
1

θ
ln
(
E(Y 1+θ)E(Y 1−θ)

)
+

ln c

θ

]
,

we provide in the next section an important class of examples for
which, in a quite generic asymptotics, the following holds:

lnVar(Y )− E(Y lnY )� R(Y ). (5.6)

This implies, according to (5.5), that the sample size estimate with
eE(Y lnY ) is arbitrarily more accurate than Var(Y ), in the sense that:

|lnN∗ − lnVar(Y )| � |lnN∗ − E(Y lnY )| ,

that is, in other words, variance is unwarrantedly too large.

5.2 A motivating example

Consider the class distribution given by
P(Y = 0) = 1− p1 − p2,

P(Y = l1) = p1,

P(Y = l2) = p2,

with the condition
α

def
= p1l1 = 1− p2l2,

which is equivalent to EY = 1. We assume that

r
def
=
l2
l1
→ 0, l1 → +∞,

together with
α→ 0,

which means that a large value l1 has a small contribution α in the
average E(Y ).
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Straightforward calculations yields:

lnE(Y 2) = ln(αl1 + (1− α)l2) = ln l1 + ln(α+ (1− α)r),

and we now assume that

α� r1−α ≥ r

which implies that the large value l1 has a dominating contribution in
the variance (contrary to the mean).

One can now compute

E(Y lnY ) = α ln l1 + (1− α) ln l2 = ln l1 + (1− α) ln r,

so that the difference with the log-variance diverge:

lnE(Y 2)− E(Y lnY ) ∼ ln(α)− (1− α) ln r = ln
α

r1−α → +∞.

On the other hand

1

θ
lnE(Y 1+θ) =

1

θ
ln
(
αlθ1 + (1− α)lθ2

)
= ln l1 +

1

θ
ln
(
α+ (1− α)rθ

)
,

so that

1

θ
ln
(
E(Y 1+θ)E(Y 1−θ)

)
=

1

θ
ln
(

1 + α(1− α)(rθ + r−θ − 2)
)
.

Now, taking

θ =
− lnα

− ln r
→ 0

implies that αr−θ remains bounded so that

inf
θ∈[0,1]

[
1

θ
ln
(
E(Y 1+θ)E(Y 1−θ)

)
+

ln c

θ

]
≤ − ln r

− ln θ
ln(2c),

and since
− ln r

− ln θ
� − ln

r1−α

α
,

which implies that (5.6) holds true.
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A More on the Chatterjee-Diaconis bounds

In this section, η ∈ P(E) will denote generic target probability distri-
butions, and µ ∈ P(E) a generic proposal. The importance sampling
estimator is given by for any test function ϕ.

ηN (ϕ)
def
=

1

N

N∑
i=1

ϕ(Xi)
dη

dµ
(Xi)

a.s.−−−−−→
n→+∞

η(ϕ).

The failure probability of importance sampling is defined using a
supremum over L2(ν)-normalized test functions, and is given, for a
precision threshold δ by:

pdev,δ(N)
def
= sup

ϕ: η(ϕ2)=1

P
(∣∣ηN (ϕ)− η(ϕ)

∣∣ ≥ δ) . (A.1)

One can alternatively consider the failure probability of estimating a
normalizing constant

pdev,δ(N)
def
= P

(∣∣ηN ( ll)− η( ll)
∣∣ ≥ δ) . (A.2)

If pα denotes a failure probability, a critical sample size N∗ = N∗pα,δ(η |
µ) required for importance sampling is then defined by

pdev,δ(N
∗) = pα. (A.3)

which is precisely the sample size achieving δ-accuracy with success
probability 1− pα.

The main theorems of [3] and the subsequent examples are not
so easy to state and interpret. We propose in this section a slightly
weaker reformulation of the main result Theorem 1.1 of [3] using Rényi
entropies.

Rényi entropies are the power-law generalization of relative entropy
and are defined by

Entα(η | µ)
def
=

1

α
ln

∫ (
dν

dµ

)α
dν, α ∈ [0,+∞]

if ν � µ, while Entα(η | µ) = +∞ otherwise. α 7→ Entα(ν | µ)
is increasing and continuous when finite. Ent1 = Ent is the usual
relative entropy. We refer to [16] for a review of properties of those
entropies.

A corollary of the main result (Theorem 1.1) in [3] is then the
following:
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Corollary A.1 (Theorem 1.1, [3]). Let η, µ ∈ P(E) be two given
probability distribution, and let N∗ be a sample size verifying (A.1)-
(A.3) or (A.1)-(A.3) with δ, pα ∈ (0, 1). There is a numerical constant

c(δ, pα) ≤ max

((
3
pαδ

)4
,
(

2
(1−pα)(1−δ)

)2
)

such that

|lnN∗ − Ent(η | µ)| ≤ inf
θ∈[0,1]

[
2 (Ent1+θ(η | µ)− Ent1−θ(η | µ)) +

ln c

θ

]
Corollary A.1 implies that

lnNpα,δ(η | µ)∼Ent(η | µ)

for asymptotics such that

Ent(η | µ)� inf
θ∈(0,1)

Ent1+θ(η | µ)− Ent1−θ(η | µ) +
1

θ
ln c(δ, pα),

(A.4)
where we stress that c(δ, pα) is numerical (independent of η, µ).

In Section 3 of [3], S. Chatterjee and P. Diaconis argued that many
(high dimensional) toy models inspired by statistical mechanics indeed
satisfy behaviors similar to (A.4) when Ent(η | µ) is large. More
specifically, one can first remark that Rényi entropies satisfy (if finite
for |θ| small):

Ent1+θ(η | µ) = Ent(η | µ) +
θ

2
varη(ln

η

µ
) +O(θ3).

The authors then showed that in various cases of interest it holds
varη(ln

η
µ) = O

(
Ent(η | µ) = η(ln η

µ)
)
, which in other words means

tha the mean and variance of the log-likelihood ln η
µ are of the same

order. In examples of Section 3 of [3], these two quantities scale like
the dimension of the considered system. Choosing θ of order

θ = O(Ent(η | µ)−1/2)

then yields the asymptotic condition (A.4). We provided in Section 5.2
a simpler, practically generic, example for which this condition is also
satisfied.

Proof of Corollary A.1. Let us recall the notation of Theorem 1.1
in [3]. The importance sampling estimator ηN (ϕ) is denoted In(f).
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The authors also use the notation L = Ent(η | µ) and t = ±(lnN −
L).We will also denote Ent1+θ(ν | µ) = L1+θ.

Denote t = lnN − L ≥ 0. Using Markov inequality, the first
inequality in Theorem 1.1 can be rewritten:

pdev,δ(N) ≤ 1

δ
e−t/4 +

2

δ

√
η( llln ρ>D+t/2).

A routine upper bound of Chernoff-type yields, for any θ ≥ 0,

η( llln ρ>L+t/2) ≤ e−θL−θt/2 η(ρθ)︸ ︷︷ ︸
exp θEnt1+θ(µ|η)

= eθ(L1+θ−L)−θt/2,

so that for θ < 1:

pdev,δ(N) ≤ 3

δ
e−θt/4+θ(L1+θ−L)/2.

Denoting c =
(

3
pαδ

)4
for pdev,δ(N

∗) = pα, it yields

lnN − L = t ≤ 2 (L1+θ − L) +
ln c

θ
,

the claimed upper bound on lnN∗ − L follows.

Similarly, let us now denote t = − lnN + L ≥ 0. The second
inequality in Theorem 1.1 in [3] can be rewritten:

1− pdev,δ(N) ≤ P (ηN ( ll)− 1 ≥ −δ)

≤ 1

1− δ
e−t/2 +

1

1− δ
η( llln ρ≤D−t/2).

A similar routine upper bound of Chernoff-type yields

η( llln ρ≤L−t/2) ≤ eθL−θt/2 η(ρ−θ)︸ ︷︷ ︸
exp θEnt1−θ(µ|η)

= eθ(L−L1−θ)−θt/2,

so that

1− pdev,δ(N) ≤ 2

1− δ
e−θt/2+θ(L−L1−θ).

Denoting c =
(

2
(1−pα)(1−δ)

)2
for pdev,δ(N

∗) = pα, it yields

L− lnN = t ≤ 2 (L− L1−θ − L) +
ln c

θ
,

the claimed lower bound on lnN∗ − L follows.
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B A measurable selection lemma

We first start by a general result of measure theory (see Theorem 10.8.3in
Bogachev Vol. 2 [2]), which states the existence of an independent
”complement” of atomless conditional measures.

Theorem B.1 (Independent Complement). Let T : E → F denotes
a measurable map between two standard Borel spaces. Let π ∈ P(E)
denotes a probability such that for T]π-almost all t ∈ F , π( . | T = t)
is atomless. Let λ denotes the usual Lebesgue measure on the interval
[0, 1]. Then there exists a measurable function S : E → [0, 1] such
that, i) (T, S) : E → F × [0, 1] is one-to-one and, ii)

(T, S)]π = T]π ⊗ λ;

that is, if X has distribution π, then T (X) and S(X) are independent
with distribution (T])π and λ respectively.

We next use the above theorem to prove the existence of distribu-
tions in a given half-space with prescribed conditional entropy.

Lemma B.2. Let T : E → F denotes a measurable map between two
standard Borel spaces. Let π ∈ P(E) denotes a probability such that
for T]π-almost all t, π( . | T = t) is atomless. For each ε ∈ (0, 1) and
all bounded measurable function F : E → R, there exists a measurable
set Aε,F ⊂ E verifying for T]π-almost all t

π(Af,h | T = t) = ε

as well as
π(F | Af,h, T = t) ≥ π(F | T = t).

Proof. The existence a measurable complement (Theorem B.1) implies
a fortiori, the existence of a measurable function S : E → [0, 1] such
that, for T]π-almost all t, S]π( . | T = t) is the Lebesgue distribution.
Let us consider the pair (yε(t), zε(t)) ∈ R× [0, 1] defined by

πt ({F > yε(t)} ∪ {F = yε(t) &S ≥ zε(t)}) = ε;

The above equality being required for t in a measurable set of T]π-
measure 1 on which S]π( . | T = t) is the Lebesgue distribution. We
conventionally set (yε(t), zε(t)) = (0, 0) elsewhere. By Lemma B.3,
t 7→ (yε(t), zε(t)) is a uniquely defined measurable map.
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We can then consider the measurable set

Af,h
def
= {x ∈ E : F (x) > yε(T (x))}∪{x ∈ E : F (x) = yε(T (x)) &S(x) ≥ zε(T (x))} .

Let us now remark that for any subset B ⊂ E the function F takes
greater values on the set

A
def
= {F > y} ∪ ({F = y} ∩B)

than on its complementary Ac. Now for any probability η on E∫
Fdη = η(A)dη(F | A) + (1− η(A))η(F | Ac),

which yields η(F | A) ≥ η(F ). One can apply this argument in our
case to η = π( . | T = t) and A = Aε,F in order to obtain π(F |
Af,h &T = t) ≥ π(F | T = t) for T]π-almost all t.

Finally, we give an elementary lemma which proves the measura-
bility of the set Af,h constructed in the proof of Lemma B.2 above.

Lemma B.3. Let E and F denotes two measurable spaces, and let
t ∈ F 7→ πt ∈ P(E) denotes a measurable probability kernel (t 7→
πt(A) is measurable for any measurable subset A ⊂ E). Assume given
two measurable bounded functions F : E → R and G → [0, 1] such
that the push-forward probability G]πt is the Lebesgue measure for all
t ∈ F . For each t ∈ F and each ε ∈ (0, 1), there exists a unique pair
(yε(t), zε(t)) ∈ R× [0, 1] such that

πt ({F > yε(t)} ∪ {F = yε(t) &S ≥ zε(t)}) = ε;

moreover, the map t 7→ (yε(t), zε(t)) is measurable.

Proof. Let us denote

pt(y, z)
def
= πt ({F > y} ∪ {F = y&S ≥ z}) .

By a routine argument of measure theory, (t, z, y) 7→ pt(x, y) is a
measurable map as a bounded pointwise limit of simple functions in
tensorial form. The map (y, z) 7→ pt(y, z) is decreasing for the lexico-
graphic order, and z 7→ pt(y, z) is continuous and strictly decreasing
since, by assumption, S]πt is atomless. yε(t) can thus be defined as the
unique y such that limy+ pt( . , 1) > ε ≤ pt(y, 1), and zε(t) the unique
z such that pt(yε(t), z) = ε. This shows existence and uniqueness.
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In order to prove the measurability of yε, zε, it suffices to show that
they are the monotone limit of measurable simple functions.

For each k ∈ N , let us denote the unique pair (ykε (t), zkε (t)) in
2−kZ× 2−k[0, . . . , 2k] defined by

pt(y
k
ε (t), 1) ≤ ε < pt(y

k
ε (t)− 2−k, 1),

as well as
pt(yε(t), z

k
ε ) ≤ ε < pt(yε(t), z

k
ε (t)− 2−k).

By construction, k 7→ ykε (t) and k 7→ zkε (t) are decreasing maps, and
by σ-additivity, their respective infima are given by yε(t) and zε(t).

We now claim that t 7→ ykε (t) is measurable. Since the latter
takes its values in a countable space, it suffices to show that the set

Ay0
def
=
{
t : ykε (t) = y0

}
is measurable for each y0 ∈ R. But by defini-

tion
Ay0 =

{
t : pt(y0, 1) ≤ ε < pt(y0 − 2−k, 1)

}
,

which is indeed measurable since t 7→ pt(y, z) is measurable. As a
consequence, t 7→ yεt is measurable as a decreasing limit of simple
measurable functions.

We finally claim that t 7→ zkε (t) is also measurable. The argu-
ment works as in the paragraph above, except that we now use the
measurability of the map t 7→ pt(yε(t), z).
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