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Abstract. Lebesgue integration is a well-known mathematical tool, used
for instance in probability theory, real analysis, and numerical mathemat-
ics. Thus, its formalization in a proof assistant is to be designed to fit dif-
ferent goals and projects. Once the Lebesgue integral is formally defined
and the first lemmas are proved, the question of the convenience of the
formalization naturally arises. To check it, a useful extension is Tonelli’s
theorem, stating that the (double) integral of a nonnegative measurable
function of two variables can be computed by iterated integrals, and al-
lowing to switch the order of integration. This article describes the formal
definition and proof in Coq of product σ-algebras, product measures and
their uniqueness, the construction of iterated integrals, up to Tonelli’s
theorem. We also advertise the Lebesgue induction principle provided by
an inductive type for nonnegative measurable functions.

Keywords: Formal proof, Coq, Measure theory, Lebesgue integration,
Tonelli’s theorem

1 Introduction

This work deals with the Coq5 formalization of the Lebesgue induction principle
and Tonelli’s theorem as a direct continuation of previous work [2]. Our long-
term objective is to formally prove in Coq scientific computing programs and
the correctness of parts of a C++ library, such as FreeFEM++6 or XLiFE++,7

that implements the Finite Element Method (FEM), a widely used method for
numerically solving Partial Differential Equations (PDEs) arising in different do-
mains like engineering and mathematical modeling. With this work, we carry on

?
This work was partly supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 Research and Innovation Programme – Grant Agreement n◦810367.

5
https://coq.inria.fr/

6
https://freefem.org/

7
https://uma.ensta-paris.fr/soft/XLiFE++/
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with our goal of providing a Coq library usable by scientific computing people. It
started with the first development of a real numbers library [18], and then with
the first complete formalization and proof of a numerical program [3] (a C pro-
gram for the approximated resolution of the wave equation). More recently, the
Lax–Milgram theorem [1] (for the resolution of a class of PDEs), then Lebesgue
integration of nonnegative measurable functions [2], and Bochner integration [4]
(a generalization for functions taking their values in a Banach space).

The proof of Tonelli’s theorem is the natural next step. And, as a side result,
it also allows us to validate our previous developments and in particular our
formalization choices for the definitions and results about the Lebesgue integral.
For example, as we work in Coq, the question arises of whether to use classical or
intuitionistic real analysis. Following [2], we decided to be completely classical.

The Lebesgue induction principle is a proof technique for properties about
nonnegative measurable functions, and usually involves the integral. It reflects
the three construction steps followed by Henri Lebesgue to build his integral [15].
The property is first established for indicator functions, then for nonnegative
simple functions by checking that the property is compatible with positive linear
operations, and finally for all nonnegative measurable functions by checking that
it is compatible with the supremum. This is an important asset for the proof of
Tonelli’s theorem, and we provide it as a byproduct of an inductive type.

Tonelli’s theorem provides a convenient way to ease the computation of mul-
tiple integrals by stating their equality with iterated integrals, each in a sin-
gle dimension. Tonelli’s theorem applies to nonnegative measurable functions.
A similar result, Fubini’s theorem, applies to integrable functions with an arbi-
trary sign, or even taking their values in a Banach space when using the Bochner
integral. This article focuses on the case of nonnegative functions, and we only
address the case of functions of two variables, as it is common in mathematics.

We aim to the construction of the full formal proof in Coq of Tonelli’s theo-
rem, stating that the (double) integral of a nonnegative measurable function of
two variables can be computed by iterated integrals, and allowing to switch the
order of integration. It can be expressed in a mathematical setting as follows.

Theorem 1: Tonelli

Let (X1, Σ1, µ1) and (X2, Σ2, µ2) be measure spaces. Assume that µ1 and µ2

are σ-finite. Let f ∈M+(X1 ×X2, Σ1 ⊗Σ2). Then, we have

(
∀x1 ∈ X1, fx1 ∈M+(X2, Σ2)

)
∧

∫
X2

fx1 dµ2 ∈M+(X1, Σ1), (1)

(
∀x2 ∈ X2, f

x2 ∈M+(X1, Σ1)
)
∧

∫
X1

fx2 dµ1 ∈M+(X2, Σ2), (2)∫
X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

(∫
X2

fx1
dµ2

)
dµ1 =

∫
X2

(∫
X1

fx2 dµ1

)
dµ2.
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The notations are specified in the remainder of this paper. Just note that many
measures, including the Lebesgue measure, are σ-finite (defined in Section 4),
M+ denotes the set of nonnegative measurable functions (see Section 2.2),
and fx1

and fx2 are partial applications of f (see Section 5.1). Notice also that
the properties (1) and (2) ensure the existence of all simple integrals, while the
existence of the double integral is granted by the assumption on the function f .

The mathematical definitions and proofs are taken from textbooks [17,12,8].
The Coq code is available at (mainly in files Tonelli.v, LInt p.v and Mp.v)

https://lipn.univ-paris13.fr/coq-num-analysis/tree/Tonelli.1.0/Lebesgue

where the tag Tonelli.1.0 corresponds to the code of this article. An Opam
package, coq-num-analysis, is also available.8

Tonelli’s theorem is known enough and useful enough to have been formalized
before our work in several proof assistants. It has been done in PVS in the PVS-
NASA library9 by Lester, probably as a follow-up of [16]. Some Fubini-like results
are available in HOL Light [13]. More recently, Tonelli’s theorem was formalized
in Mizar by Endou [11]. The formalizations nearest to ours are in Isabelle/HOL
and Lean. Hölzl and Heller defined binary and iterated product measure before
Fubini’s theorem [14]. It relies on Isabelle type classes and locales. A more re-
cent work10 extends it to the Bochner integral. In Lean, van Doorn defines the
product of measures and properties of the product space towards Tonelli and
Fubini’s theorems in a way similar to ours, but for the Bochner integral [20]. He
also provides a similar Lebesgue induction principle, but to our knowledge, our
approach of getting it from an inductive type is new. A recent work in Coq has
been developed for probability theory.11 Many definitions are similar to ours, but
in a simpler setting where measures are finite. Fubini’s theorem also appeared
in math-comp/analysis12 after the submission of this article. This formalization
relies on the math-comp/analysis hierarchy of classes. First, this hierarchy is not
compatible with the canonical structures of Coquelicot we used to prove the
Lax–Milgram theorem [1]. Second, the depth of this hierarchy involves many
abstractions for the unfamiliar user to process.

For a comparison of the Lebesgue integral in various proof assistants, we refer
the reader to [2,20], and we refer to [6] for a wider comparison of real analysis
in proof assistants.

We think Coq is the most suitable tool for our goal: to prove properties on
the FEM algorithm and program, including floating point errors. Coq indeed
provides both libraries and results for the mathematical part [1,2] and the Flocq
library for floating-point arithmetic [7]. We are not aware of another proof as-
sistant able to address these two issues together.

This paper is organized as follows. Section 2 summarizes the prerequisites
and the main concepts of measure and integration theories developed in previ-

8
https://coq.inria.fr/opam/www/

9
https://github.com/nasa/pvslib/blob/master/measure integration/fubini tonelli.pvs

10
https://isabelle.in.tum.de/library/HOL/HOL-Analysis/Bochner Integration.html

11
https://github.com/jtassarotti/coq-proba/

12
https://github.com/math-comp/analysis/blob/master/theories/lebesgue integral.v

https://lipn.univ-paris13.fr/coq-num-analysis/tree/Tonelli.1.0/Lebesgue
https://coq.inria.fr/opam/www/
https://github.com/nasa/pvslib/blob/master/measure_integration/fubini_tonelli.pvs
https://isabelle.in.tum.de/library/HOL/HOL-Analysis/Bochner_Integration.html
https://github.com/jtassarotti/coq-proba/
https://github.com/math-comp/analysis/blob/master/theories/lebesgue_integral.v
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ous works. The formalization of the Lebesgue induction principle is detailed in
Section 3. Section 4 describes the building of the product measure, and Section 5
is devoted to the building of the iterated integrals and the full proof of Tonelli’s
theorem. Finally, Section 6 concludes and provides directions for future work.

2 Prerequisites

Our formalizations and proofs are conducted in Coq. In this section, we present
the necessary prerequisites and libraries for our developments.

2.1 The Coquelicot Library, R and Logic

The Coquelicot13 library [5] is a conservative extension of the standard Coq li-
brary of real numbers [10,18] supplying basic results in real analysis. It is a
classical library, and a salient feature is that it provides total functions, e.g. for
limit, derivative, and (Riemann) integral. This is consistent with classical logic,
and it means a natural way to write mathematical formulas and theorem state-
ments. The library also provides a formalization of the extended real numbers
R := R ∪ {−∞,+∞} equipped, among other operations, with Rbar_lub for the
least-upper bound of subsets, and Sup_seq for the supremum of sequences.

As in the Coquelicot library, we use the full classical logic: total order on real
numbers, propositional and functional extensionality axioms, excluded middle
and choice axioms. We rely on the same axioms detailed in [2, Section 2].

2.2 Lebesgue Integration Theory

The theory of integration is commonly built upon measure theory (e.g. see [9]):
first, the measurability of subsets is defined, and then a measure associates a
nonnegative number in R+ to each measurable subset; second, the measurability
of functions is defined, and then the integral associates a nonnegative number
in R+ to each nonnegative measurable function. The following summarizes what
we need from [2].

Measurable Subsets. A measurable space (X,Σ) consists of a set X, and a
σ-algebra Σ collecting all measurable subsets. A σ-algebra is closed under most
set operations, such as complement, (countable) union and intersection. It can
be generated as the closure of a collection of subsets with respect to some of the
set operations. In our Coq developments, the generators on X : Type are typically
denoted genX : (X → Prop) → Prop, and a subset A : X → Prop belongs to the σ-
algebra generated by genX when the inductive property measurable genX A holds.

When the set X has a topological structure, it is convenient to use its Borel
σ-algebra that is generated by all the open subsets. The Borel σ-algebra of R can
also be generated by the right closed rays ([a,∞]), denoted in Coq by gen_Rbar.

13
https://gitlab.inria.fr/coquelicot/coquelicot/

https://gitlab.inria.fr/coquelicot/coquelicot/
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Given two measurable spaces (X1, Σ1) and (X2, Σ2), the product σ-algebra
on X1 ×X2 is the one generated by the products of measurable subsets of X1

and X2. Some details are provided in Section 4 where it is a major ingredient.

Measure. A measure space (X,Σ, µ) contains an additional measure µ: a func-
tion Σ → R that is nonnegative, homogeneous (µ(∅) = 0), and σ-additive. In
Coq, a measure is a record collecting the function µ and its three properties. In
Section 4, we rely on the properties of continuity from below and from above. For
all sequences (An)n∈N ∈ Σ, they respectively state for any measure µ that when
the sequence is nondecreasing, µ

(⋃
n∈N An

)
= limn→∞ µ(An) = supn∈N µ(An),

and when it is nonincreasing and one of the subsets is of finite measure, then we
have µ

(⋂
n∈N An

)
= infn∈N µ(An). Note also that the monotonicity of measures

allows to replace the limit of a nondecreasing sequence by its supremum.

Measurable Functions. Given two measurable spaces (X,Σ) and (Y, T ), a
function f : X → Y is said measurable when the preimage of every measurable
subset is measurable:14

Definition measurable_fun (f : X → Y) : Prop :=
∀ B, measurable genY B → measurable genX (fun x ⇒ B (f x)).

When Y := R, and usually T is its Borel σ-algebra, we simply say that
the function is Σ-measurable, and we use the predicate measurable_fun_Rbar

corresponding to genY := gen_Rbar. We denote the set of nonnegative measurable
functions M+(X,Σ). The “(X,Σ)” annotation may be dropped when there is
no possible confusion. Among other operations,M+ is closed under nonnegative
scalar multiplication, addition, and supremum. In Coq, we use the predicate
Mplus genX : (X → R ) → Prop that gathers nonnegativity and measurability, and
Mplus_seq genX : (N→ X → R ) → Prop for sequences of functions in M+.

Simple functions are functions whose image has finite cardinality. The set of
nonnegative measurable simple functions is denoted SF+(X,Σ). In Coq, sim-
ple functions are canonically represented by their strictly sorted list of val-
ues, and we use the predicate SFplus genX : (X → R ) → Prop. Given f ∈ M+,
mk_adapted_seq provides an adapted sequence for f , i.e. a nondecreasing sequence
(ϕn)n∈N in SF+ such that f = limn→∞ ϕn = supn∈N ϕn.

The set of measurable indicator functions is denoted IF(X,Σ). Note that
an indicator function 1A is measurable whenever its support subset A belongs
to Σ. Simple functions in SF+ are nonnegative linear combinations of indicator
functions.

Lebesgue Integral. The construction of the Lebesgue integral inM+ operates
in three steps. The first stage is to integrate indicator functions in IF by taking
the measure of their support. Then, the second stage extends the integral to
simple functions in SF+ by positive linearity. And finally, the third stage extends
it again to measurable functions in M+ by taking the supremum. In the end,

14
Note that we often rely on the Section mechanism of Coq for “hiding” some arguments, here genX
and genY (see https://coq.inria.fr/refman/language/core/sections.html).

https://coq.inria.fr/refman/language/core/sections.html
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the integral of a function f ∈ M+ is defined as the supremum of the integrals
of all simple functions in SF+ smaller than f and formalized in [2] by

Definition LInt_p (f : X → R ) : R :=
Rbar_lub (fun z ⇒ ∃(phi : X → R) (Hphi : SF genX phi),
nonneg phi ∧ (∀ x, phi x 6R f x) ∧ LInt_SFp mu phi Hphi = z).

The proof of Tonelli’s theorem relies on several properties of the integral
inM+, such as monotonicity, positive linearity, σ-additivity, and the Beppo Levi
(monotone convergence) theorem. The latter states the compatibility with the
supremum: for all nondecreasing sequences (fn)n∈N ∈M+, the limit limn→∞ fn
(which actually equals supn∈N fn) is also inM+, and the integral-limit exchange
formula holds,

∫
supn∈N fn dµ = supn∈N

∫
fn dµ (see [2, Section 7.2]).

3 Lebesgue Induction Principle

Let (X,Σ) be a measurable space. The properties of the function spaces M+,
SF+ and IF recalled in Section 2.2 suggest to represent nonnegative measur-
able functions by an inductive type. Indeed, functions inM+ are the supremum
of simple functions in SF+, which are themselves positive linear combinations
of indicator functions in IF . Moreover, the associated structural induction prin-
ciple is a common proof technique for several results in Lebesgue integration
theory, among which is Tonelli’s theorem as noted in [20].

In addition to Mplus recalled in Section 2.2, we now define the inductive type

Inductive Mp : (X → R ) → Prop :=
| Mp_charac : ∀ A, measurable genX A → Mp (charac A)
| Mp_scal : ∀ a f, 0 6 a → Mp f → Mp (fun x ⇒ a ∗R f x)
| Mp_plus : ∀ f g, Mp f → Mp g → Mp (fun x ⇒ f x +R g x)
| Mp_sup : ∀ f, incr_fun_seq f → (∀ n, Mp (f n)) →

Mp (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

where charac A stands for the characteristic function of A (denoted 1A), and
incr_fun_seq f stands for the property ∀ x n, Rbar_le (f n x) (f (S n) x). In other
words, Mp is the closure of measurable characteristic functions under positive lin-
ear combination and increasing supremum.

We also have an inductive type for SF+ denoted by SFp, whose constructors
are essentially the same as the first three of Mp. Several inductive types equivalent
to Mp are defined in order to split the proof steps, for instance one is built over SFp.
They are not given here for the sake of simplicity and brevity.

The important point is then the correctness of this definition, compared to
the existing one. The only delicate part is to obtain the correctness result for
simple functions, stated as Lemma SFp_correct : ∀f, SFp f ↔ SFplus gen f.

For that, from a simple function represented by a list of values of size n+ 1,
we need to construct a smaller simple function associated to a sublist of size n.
The tricky needed result is the following:



A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 7

x

f(x)

v1

v2
v3

...

v7

x

g(x)

v1

v2
v3

...

v7

Fig. 1. Illustration of Lemma SF_aux_cons. The value v2 taken by the simple function f
(on the left) is replaced in g (on the right) by the value v1 (in red).

Lemma SF_aux_cons :
∀ (f : X → R) v1 v2 l, nonneg f → SF_aux genX f (v1 :: v2 :: l) →
let g x := f x + (v1 − v2) ∗ charac (fun t ⇒ f t = v2) x in

nonneg g ∧ SF_aux genX g (v1 :: l).

Given f ∈ SF+ and its associated canonical list `, the lemma builds a new g
in SF+ canonically associated with the list ` deprived of some item v2. This
means that on the nonempty subset f−1({v2}), g must take one of the remaining
values, v1 as shown in Figure 1, which also provides the property g 6 f .

More precisely, let us assume that f is of the form
∑

v∈{v1,v2}∪` v×1f−1({v})
with v1 < v2 and v1, v2 6∈ `. Then, by setting g := f + (v1 − v2) × 1f−1({v2}),
one has g =

∑
v∈{v1}∪` v × 1f−1({v}). Thus, g belongs to SF+ with a smaller

list of values, and f = g + (v2 − v1) × 1f−1({v2}) with v2 − v1 ≥ 0. This is
tricky for two reasons. First, we cannot set g to zero on f−1({v2}) (as zero
may be a new value, defeating the point of reducing the size of the value list);
thus, the initial list must contain at least two values. Second, by proceeding the
other way around and setting g to v2 on f−1({v1}), we cannot write f as the
sum of g and a nonnegative value times an indicator function, as needed by the
constructor SFp_scal, similar to Mp_scal.

Now, we have all the ingredients to check that the definition of Mp is satis-
factory, that is to say that Mp represents M+ as Mplus already does:

Lemma Mp_correct : ∀f, Mp f ↔ Mplus genX f.

The proof is mainly based on inductions, the construction of adapted sequences
mk_adapted_seq (see Section 2.2), and the previous lemma.

This gives us for free the following induction lemma corresponding to Mp:

Mp_ind : ∀ P : (E → R ) → Prop,
(∀ A, measurable gen A → P (charac A)) →
(∀ a f, 0 6 a → Mp f → P f → P (fun x ⇒ a ∗R f x)) →
(∀ f g, Mp f → P f → Mp g → P g → P (fun x ⇒ f x +R g x)) →
(∀ f, incr_fun_seq f → (∀ n, Mp (f n)) →

(∀ n, P (f n)) → P (fun x ⇒ Sup_seq (fun n ⇒ f n x))) →
∀ f, Mp f → P f.
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This lemma can be stated informally as

Lemma 2: Lebesgue induction principle

Let P be a predicate on functions X → R. Assume that P holds on IF ,
and that it is compatible on M+ with positive linear operations and with
the supremum of nondecreasing sequences:

∀A, A ∈ Σ ⇒ P (1A), (3)

∀a ∈ R+, ∀f ∈M+, P (f)⇒ P (af), (4)

∀f, g ∈M+, P (f) ∧ P (g)⇒ P (f + g), (5)

∀(fn)n∈N ∈M+, (∀n ∈ N, fn 6 fn+1 ∧ P (fn))⇒ P

(
sup
n∈N

fn

)
. (6)

Then, P holds on M+.

There are a few alternative statements of the Lebesgue induction principle.
For instance, we choose to have a in R and not in R in (4), as it makes an
equivalent, but simpler to use lemma. Moreover, as noted in the Lean source
code,15 it is possible to sharpen the premises of the constructors. For instance,
it may be sufficient to have in (5) simple functions that do not share the same
image value, except 0, or with disjoint supports.

4 Product Measure on a Product Space

In this section, we build the product measure for the measurable subsets of a
product space. This allows us to integrate on such a product space in Section 5.

Given two measure spaces (X1, Σ1, µ1) and (X2, Σ2, µ2), a product measure
on (X1 × X2, Σ1 ⊗ Σ2) induced by µ1 and µ2 is a measure µ defined on the
product σ-algebra Σ1 ⊗Σ2 (defined in Section 4.1) satisfying the box property :

∀A1 ∈ Σ1, ∀A2 ∈ Σ2, µ(A1 ×A2) = µ1(A1)µ2(A2). (7)

To ensure the existence and uniqueness of such a product measure, we assume
that µ1 and µ2 are σ-finite, i.e. that the full sets X1 and X2 are nondecreasing
unions of subsets of finite measure (see a detailed definition in Section 4.3).

A candidate product measure is first built in three steps, see Figure 2. Firstly,
X1-sections (or “vertical” cuttings) of subsets are proved to be Σ2-measurable.
Then, the measure of sections is proved to be Σ1-measurable. The candidate
is the integral of the measure of sections. Then, this candidate is proved to
be a product measure, and the product measure is guaranteed to be unique.
The main argument for this construction is the monotone class theorem, whose
intricate proof is not detailed here (e.g. see [9, Sec 1.6], and Section 4.3 for a

15
https://leanprover-community.github.io/mathlib docs/measure theory/integral/lebesgue.html#
measurable.ennreal induction

https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/lebesgue.html#measurable.ennreal_induction
https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/lebesgue.html#measurable.ennreal_induction
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A ∈ Σ1 ⊗Σ2

sx1(A) ∈ Σ2

(x1 7−→ µ2(sx1(A))) ∈M+(X1, Σ1)

µ1 ⊗ µ2 :=
(
A 7−→

∫
X1
µ2(sx1(A)) dµ1

)
is a product measure

product measure is unique

Monotone Class Thm
Restricted measure

Fig. 2. Flowchart for the construction of the product measure. The fill colors refer to
sections: 4.1 in brown , 4.2 in yellow , 4.3 in green , and 4.4 in blue . Dashed lines
denote the use of the listed proof arguments, that were developed for the present work.

quick presentation). It is used twice: for the measurability of the measure of
sections, and for the uniqueness of the product measure.

The definition of the product σ-algebra is first reviewed in Section 4.1. Then,
Section 4.2 is dedicated to sections, and Section 4.3 to the measure of sections.
Finally, the existence and uniqueness of the product measure is in Section 4.4.

4.1 Product σ-algebra

Let us detail the notion of product σ-algebra that was introduced in [2]. Given
two measurable spaces (X1, Σ1) and (X2, Σ2), the product σ-algebra on X1×X2

is the σ-algebra Σ1 ⊗Σ2 generated by the products of measurable subsets:

Σ1⊗Σ2 := σ-algebra generated by Σ1×Σ2 := {A1×A2 | A1 ∈ Σ1 ∧A2 ∈ Σ2}.

Given generators genX1 and genX2 forΣ1 andΣ2, the generatorΣ1×Σ2 is denoted
in Coq by Product_Sigma_algebra genX1 genX2. It is proved in [2, Sec. 4.3] that
Σ1⊗Σ2 is also the σ-algebra generated by gen(Σ1)∪{X1}×gen(Σ2)∪{X2}. This
generator is denoted in Coq by Gen_Product genX1 genX2, and simply by genX1xX2

in the sequel. Symmetrically, genX2xX1 represents Gen_Product genX2 genX1.

4.2 Section of Subset

The notion of section consists in keeping one of the variables fixed (see Figure 3).
Given a subset A of X1 ×X2 and a point x1 ∈ X1, the X1-section of A at x1 is
the subset of X2 defined by sx1

(A) := {x2 ∈ X2 | (x1, x2) ∈ A}.

Definition section (x1 : X1) (A : X1 ∗ X2 → Prop) (x2 : X2) : Prop := A (x1, x2).

Sections commute with most set operations. For example, they are compat-
ible with the empty set (sx1(∅) = ∅), the complement (sx1(Ac) = sx1(A)c),
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X1

X2

A

x1

sx1(A)

y1

sy1(A)

Fig. 3. X1-sections of a subset A of X1 ×X2 at points x1 and y1.

countable union and intersection, and are monotone. Sections also satisfy the
following box property: for all subsets A1 ⊆ X1, A2 ⊆ X2, and point x1 ∈ X1,

x1 ∈ A1 ⇒ sx1(A1 ×A2) = A2 and x1 6∈ A1 ⇒ sx1(A1 ×A2) = ∅. (8)

Then, we prove that, if a subset A is Σ1⊗Σ2-measurable, then its X1-sections
at any point in X1 are Σ2-measurable. As measurability is an inductive type,
the proof is a simple induction on the hypothesis.

Lemma section_measurable :
∀ A x1, measurable genX1xX2 A → measurable genX2 (section x1 A).

4.3 Measurability of Measure of Section

As sections are measurable (see Section 4.2), one can take their measure. In
Section 4.4, the product measure is defined as the integral of the measure of
sections, but before that, we have to prove nonnegativity and measurability of
these functions. More precisely, that for all Σ1 ⊗Σ2-measurable subsets A, the
function (x1 7→ µ2(sx1(A))) belongs to M+(X1, Σ1).

The nonnegativity property directly follows from that of measures. The proof
of measurability goes in two stages: firstly when the measure µ2 is assumed to
be finite (i.e. when µ2(X2) is finite), and then in the more general σ-finite case.
The first stage is quite high-level; it relies on the monotone class theorem. The
second stage extends the first one by means of restricted measures.

The measure of sections is represented in Coq by the total function

Definition meas_section (A : X1 ∗ X2 → Prop) (x1 : X1) : R := muX2 (section x1 A).

Then, the first stage of the proof is stated in Coq as

Lemma meas_section_Mplus_finite : ∀A, is_finite_measure muX2 →
measurable genX1xX2 A → Mplus genX1 (meas_section A).

Let S be the set of measurable subsets satisfying the property to prove,

S :=
{
A ∈ Σ1 ⊗Σ2 |

(
x1 7−→ µ2(sx1(A))

)
∈M+(X1, Σ1)

}
.
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It suffices to show that Σ1⊗Σ2 ⊆ S. Firstly, S is proved to contain the generator
Σ := Σ1×Σ2 of Σ1 ⊗ Σ2 (see Section 4.1). Then, it is proved to contain the
algebra of sets generated by Σ (i.e. the closure of Σ under complement and finite
union). Then, S is also proved to be a monotone class, i.e. closed under monotone
countable union and intersection. This step uses the finiteness assumption on µ2,
and continuity from below and from above (see Section 2.2). And finally, we
conclude by applying the following corollary of the monotone class theorem
(with X := X1 ∗ X2, P := S, and genX := Σ) which states that if a monotone class
contains the smallest algebra of sets containing genX, then it also contains the
smallest σ-algebra containing genX.

Theorem monotone_class_Prop :
∀ P : (X → Prop) → Prop, is_Monotone_class P →
Incl (Algebra genX) P → Incl (Sigma_algebra genX) P.

Note that Incl denotes the inclusion of subsets of the power set of X.

In the second stage, the measure µ2 is supposed to be σ-finite. Thus, there
exists a nondecreasing sequence (Bn)n∈N ∈ Σ2 such that X2 =

⋃
n∈N Bn,

and µ2(Bn) is finite for all n ∈ N. Then, for each n ∈ N, the restricted mea-
sure µn

2 := (A2 ∈ Σ2 7−→ µ2(A2 ∩ Bn) ∈ R+) is proved to be a finite measure.
Thus, the previous result applies,

∀A ∈ Σ1 ⊗Σ2, (x1 7−→ µn
2 (sx1

(A))) ∈M+(X1, Σ1).

Moreover, from the properties of sections (see Section 4.2) and from the conti-
nuity from below of µ2, for all A ∈ Σ1 ⊗Σ2 and x1 ∈ X1, we have

µ2(sx1
(A)) = µ2

(⋃
n∈N

sx1
(A) ∩Bn

)
= sup

n∈N
µn
2 (sx1

(A)).

Finally, the closedness of M+(X1, Σ1) under supremum (see Section 2.2) con-
cludes the proof. Thus, the lemma in the σ-finite case holds,

Lemma meas_section_Mplus_sigma_finite :
∀ A, is_sigma_finite_measure muX2 →
measurable genX1xX2 A → Mplus genX1 (meas_section A).

Note that from (8), the measure of the section of a box reads

∀A1 ∈ Σ1, ∀A2 ∈ Σ2, (x1 7−→ µ2(sx1
(A1 ×A2))) = µ2(A2)1A1

. (9)

4.4 Existence and Uniqueness of the Product Measure

As the measures of sections belong to M+ (see Section 4.3), one can take their
integral. The candidate product measure is the function defined on the product
σ-algebra Σ1 ⊗Σ2 (see Section 4.1) by (µ1 ⊗ µ2)(A) :=

∫
X1
µ2(sx1

(A)) dµ1,

Definition meas_prod_meas (A : X1 ∗ X2 → Prop) : R :=
LInt_p muX1 (meas_section muX2 A).
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We easily deduce that this candidate function is both nonnegative and equal
to zero on the empty set. The σ-additivity property is obtained by means of the
σ-additivity of the integral (see Section 2.2), and of the measure µ2. This proves
that the candidate is a measure, and that we can instantiate the record defining
the product measure meas_prod as an object of type measure (see Section 2.2),
so all the proved results on measures are available.

Moreover, Equation (9), and the positive linearity of the integral ensure the
box property (7), thus making meas_prod a product measure.

Product measures are proved to keep the finiteness, or σ-finiteness, property
of the initial measures µ1 and µ2. Then, the proof of the uniqueness of the
product measure follows exactly the same path as for the measurability of the
measure of sections (see Section 4.3). Firstly, when the measures µ1 and µ2 are
finite, we introduce two (finite) product measuresm and m̃ induced by µ1 and µ2,

i.e. both satisfying (7). The set S def.
= {A ∈ Σ1 ⊗ Σ2 |m(A) = m̃(A)} is proved

to contain Σ1 ⊗Σ2 using monotone_class_Prop, which shows uniqueness. Then,
the result is extended to σ-finite measures by means of restricted measures.

5 Tonelli’s Theorem

With the product measure built in Section 4, we can now consider integration
on a product space. As in Section 4, we assume that the measures are σ-finite,
which ensures the existence and uniqueness of the product measure.

This section addresses the proof of Tonelli’s theorem that allows to compute
a double integral on a product space by integrating successively with respect
to each variable, either way. Besides the following formulas, the theorem also
states measurability properties that ensure the legitimacy of all integrals (see
Theorem 1): ∫

X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

(∫
X2

f dµ2

)
dµ1 (10)

=

∫
X2

(∫
X1

f dµ1

)
dµ2. (11)

Similarly to the process used in Section 4, the iterated integral (right-hand
side of (10)) is built in three steps, see Figure 4. Firstly, X1-sections of functions
are proved to be Σ2-measurable. Then, the integral (in X2) of sections of func-
tions is proved to be Σ1-measurable. And the iterated integral is the integral
(in X1) of the integral (in X2) of the sections of functions. Finally, Formula (10)
is proved, and then (11) is deduced from the latter by a swap of variables relying
both on a change of measure and on the uniqueness of the product measure. The
main argument for this proof is the Lebesgue induction principle (see Section 3).
It is used twice: for the measurability of the integral of sections of functions
together with the first Tonelli formula, and for the change-of-measure formula.

Section 5.1 is dedicated to sections of functions, and Section 5.2 to the iter-
ated integral and the proof of the first formula of Tonelli’s theorem. Finally, the
full proof of Tonelli’s theorem is obtained in Section 5.3.
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f ∈M+(X1 ×X2, Σ1 ⊗Σ2)

fx1 ∈M+(X2, Σ2)

If :=
(
x1 7−→

∫
X2
fx1 dµ2

)
∈M+(X1, Σ1)

∫
X1×X2

f d(µ1 ⊗ µ2) =
∫
X1
If dµ1

fx2 ∈M+(X1, Σ1)

Jf :=
(
x2 7−→

∫
X1
fx2 dµ1

)
∈M+(X2, Σ2)∫

X1×X2
f d(µ1 ⊗ µ2) =

∫
X2
Jf dµ2

Lebesgue induction principle

Swap of variables
Change of measure

Fig. 4. Flowchart for the construction of the iterated integrals on a product space. The
fill colors refer to sections: 5.1 in yellow , 5.2 in green , and 5.3 in blue . Dashed lines
denote the use of the listed proof arguments, that were developed for the present work.

5.1 Section of Function

Similarly to Section 4.2, given a numeric function f : X1×X2 → R and x1 ∈ X1,
the X1-section of f at x1 is the partial application fx1 := (x2 7→ f(x1, x2)).

Definition section_fun (x1 : X1) (f : X1 ∗ X2 → R ) (x2 : X2) : R := f (x1, x2).

From the measurability of sections of subsets, we deduce that, if f belongs
to M+(X1 ×X2, Σ1 ⊗Σ2), then its X1-sections are in M+(X2, Σ2).

Lemma section_fun_Mplus :
∀ f x1, Mplus genX1xX2 f → Mplus genX2 (section_fun x1 f).

Symmetrically, for all x2 ∈ X2, we introduce the X2-section of f at x2, the
partial application with respect to the second variable, fx2 := (x1 7→ f(x1, x2)).

5.2 Iterated Integral and the First Formula of Tonelli’s Theorem

As sections of functions are nonnegative and Σ2-measurable (see Section 5.1),
one can take their integral (in X2). For all functions f ∈M+(X1×X2, Σ1⊗Σ2),

we define If :=
(
x1 7−→

∫
X2
fx1

dµ2

)
,

Definition LInt_p_section_fun (f : X1 ∗ X2 → R ) x1 : R :=
LInt_p muX2 (section_fun x1 f).

The iterated integral corresponds to integrating once more (in X1), but one
must first establish that If ∈ M+(X1, Σ1). The nonnegativity result directly
follows from the monotonicity of the integral (see Section 2.2). The general
measurability result and the first Tonelli formula (10), are proved by means of
the Lebesgue induction principle of Section 3.
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The function I := (f 7→ If ) is shown monotone and positive linear. For
all x1 ∈ X1, we have I1A

(x1) = µ2(sx1
(A)). And from the Beppo Levi (mono-

tone convergence) theorem (see Section 2.2), the function I commutes with the
supremum: for all nondecreasing sequence (fn)n∈N in M+(X1 ×X2, Σ1 ⊗ Σ2),
Isupn∈N fn = supn∈N Ifn .

Let P0 f := Mplus genX1 (LInt_p_section_fun f) be the predicate of the non-
negativity and measurability of If , of type (X1 ∗ X2 → R ) → Prop. Then, previous
formulas and closedness properties ofM+ (see Section 2.2) provide the compat-
ibility of P0 with indicator functions, positive linearity, and the supremum of
nondecreasing sequences. For instance, we have

Lemma LInt_p_section_fun_measurable_plus :
∀ f g, Mplus genX1xX2 f → Mplus genX1xX2 g →
P0 f → P0 g → P0 (fun x ⇒ f x +R g x).

Let us now define the predicate P of the existence of the iterated integral
(granted by P0) and the validity of the first Tonelli formula of (10):

Let P (f : X1 ∗ X2 → R ) : Prop :=
P0 f ∧ LInt_p meas_prod f = LInt_p muX1 (LInt_p_section_fun f).

where meas_prod is the product measure defined in Section 4.4. Again, the com-
patibility of P with indicator functions, positive linearity, and the supremum is
easily obtained from the previous results. For instance, we have

Lemma LInt_p_section_fun_meas_prod_Sup_seq :
∀ f, incr_fun_seq f → Mplus_seq genX1xX2 f →

(∀ n, P (f n)) → P (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

Now, the first part of Tonelli’s theorem (10) can be stated in Coq as

Lemma Tonelli_aux1 : ∀f, Mplus genX1xX2 f →
Mplus genX1 (LInt_p_section_fun f) ∧
LInt_p meas_prod f = LInt_p muX1 (LInt_p_section_fun f).

Its proof is a direct application of the Lebesgue induction principle (see Section 3)
with the predicate P, as all the premises are already shown.

5.3 Change of Measure, Second Formula, and Tonelli’s Theorem

There is no doubt that the second formula (11) can be proved using the same path
as the first claim: use sections with respect to the second variable, define Jf (see
Figure 4), prove Jf ∈M+ and the equality by the Lebesgue induction principle.
This would be easy, but pretty long and redundant. Instead, we have exploited
the “symmetry” between the right-hand sides of both formulas. The first idea is
a simple exchange of the roles of the two variables that expresses the previous
result for functions of type X2 ∗ X1 → R . And then, the difficult part is a change
of measure that brings back to the target type X1 ∗ X2 → R .

The change of measure is an application of the concept of image measure (e.g.
see [9, Sec 2.6]), also called pushforward measure as the measure is transported
between σ-algebras, here from Σ2 ⊗Σ1 to Σ1 ⊗Σ2.
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Change of Measure. Let (X,Σ) and (Y, T ) be measurable spaces. Let h :
X → Y be a function and Mh be a proof of its measurability. Let µ be a mea-
sure on (X,Σ). The image measure of µ by h is the measure on (Y, T ) defined
by h#µ := µ ◦ h−1, and denoted in Coq by meas_image h Mh mu. The proof that it
is indeed a measure directly follows from the measure properties of µ, and Mh.

Now, given g ∈M+(Y, T ), the compatibility of measurability with the com-
position of functions provides g ◦ h ∈ M+(X,Σ), and one has the change-of-
measure formula:

∫
Y
g d(h#µ) =

∫
X
g ◦ h dµ.

Lemma LInt_p_change_meas : ∀g, Mplus genY g →
LInt_p (meas_image h Mh mu) g = LInt_p mu (fun x ⇒ g (h x)).

The proof follows the Lebesgue induction principle with the predicate P corre-
sponding to the formula. Again, the compatibility of P with indicator functions,
positive linearity, and the supremum follows from properties of the integral, such
as positive linearity and the Beppo Levi (monotone convergence) theorem.

Swap and Second Formula. Using Section 4.4, let µ12 := µ1 ⊗ µ2 be the
product measure on the product space (X1×X2, Σ1⊗Σ2) induced by µ1 and µ2.
In Coq, muX1xX2 := meas_prod muX1 muX2. Symmetrically, let µ21 := µ2⊗µ1 be the
product measure on (X2×X1, Σ2⊗Σ1). In Coq, muX2xX1 := meas_prod muX2 muX1.
Let h := (x2, x1) 7→ (x1, x2) be the swap of variables. The image measure h#µ21

is also proved to be a product measure on (X1 × X2, Σ1 ⊗ Σ2) induced by µ1

and µ2. In Coq, meas_prod_swap := meas_image h Mh muX2xX1.
Now, let f ∈M+(X1×X2, Σ1⊗Σ2). One has f ◦h ∈M+(X2×X1, Σ2⊗Σ1),

and using the section with respect to the second variable (see Section 5.1),

∀x2 ∈ X2, fx2 := (x1 7−→ f(x1, x2)) = (x1 7−→ f ◦h(x2, x1)) = (f ◦h)x2
. (12)

We then deduce∫
X1×X2

f dµ12
(a)
=

∫
X1×X2

f d(h#µ21)
(b)
=

∫
X2×X1

f ◦ h dµ21

(c)
=

∫
X2

(∫
X1

(f ◦ h)x2
dµ1

)
dµ2

(d)
=

∫
X2

(∫
X1

fx2 dµ1

)
dµ2.

The uniqueness of the product measure of Section 4.4 yields h#µ21 = µ12, thus
gives (a). The above change-of-measure formula gives (b). The first formula of
Tonelli’s theorem (10) applied to X2×X1 gives (c), and Equation (12) gives (d).
With swap f denoting f ◦ h, the second part of Tonelli’s theorem (11) is

Lemma Tonelli_aux2 : ∀f, Mplus genX1xX2 f →
Mplus genX2 (LInt_p_section_fun muX1 (swap f)) ∧
LInt_p meas_prod_swap f = LInt_p muX2 (LInt_p_section_fun muX1 (swap f)).

Statement of Tonelli’s Theorem. Finally, assuming that X1 and X2 are non-
empty and that µ1 and µ2 are σ-finite measures, we have (a more comprehensive
theorem legitimating of all integrals is also provided as Theorem Tonelli):



16 S. Boldo, F. Clément, V. Martin, M. Mayero, H. Mouhcine

Lemma Tonelli_formulas : ∀f, Mplus genX1xX2 f →
LInt_p muX1xX2 f = LInt_p muX1 (LInt_p_section_fun muX2 f) ∧
LInt_p muX1xX2 f = LInt_p muX2 (LInt_p_section_fun muX1 (swap f)).

6 Conclusion and perspectives

This paper is devoted to the full formal proof of Tonelli’s theorem. An original
point is the definition of nonnegative measurable functions as an inductive type.
It is proved equivalent to the usual mathematical definition, and leads to a useful
induction scheme. Although the Lebesgue induction principle is present in other
works such as [20], we have not seen its construction from an inductive type in
the literature.

To achieve this proof, we have also formalized in Coq generic results and
constructions such as the monotone class theorem, restricted measures, image
measures, and a change-of-measure formula for the integral. The latter, combined
with a swap of variables, has prevented redundancies in our proofs.

This work confirms that the library we are developing, in line with the choices
of the Coquelicot library, is rather comprehensive and usable. First, this work
has resulted in few additions in the core of the library, except for the inductive
definition forM+ (related to the needed Lebesgue induction principle). Second,
both Coq and the library seem easy to learn, as one author was a Coq novice at
the beginning of this work.

After Tonelli’s theorem on nonnegative measurable functions, the natural
extension is to prove Fubini’s theorem. It provides the same formulas for inte-
grable functions with an arbitrary sign, or taking their values in a Banach space
when using the Bochner integral [4]. We can also take inspiration from [20], in
particular for the “marginal integral” to handle finitary Cartesian products.

Our long-term purpose is to formally prove the correctness of parts of a
library implementing the Finite Element Method, which is used to compute
approximated solutions of Partial Differential Equations (PDEs). We already
formalized the Lax–Milgram theorem [1], one of the key ingredients to numer-
ically solve PDEs, and we need to build suitable Hilbert functional spaces on
which to apply it. The target candidates are the Sobolev spaces, such as H1,
which represents square-integrable functions with square-integrable first deriva-
tives. Of course, this will involve the formalization of the Lp Lebesgue spaces as
complete normed vector spaces, and parts of the distribution theory [19].
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15. Henri Léon Lebesgue. Leçons sur l’intégration et la recherche des fonctions prim-
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