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Although infectious disease outbreaks represent a serious threat for wildlife 

population viability, the environmental factors that underlie such outbreaks are 

poorly investigated. The French Guiana breeding population of Magnificent 

frigatebird Fregata magnificens is subjected to recurrent episodes of chicks’ 

mortality likely caused by a viral disease. We hypothesized that high mercury 

(Hg) concentrations may be responsible for the emergence of clinical signs. 

We therefore investigated whether healthy and sick chicks show different Hg 

concentrations in blood. Because the essential element selenium (Se) may 

be  highly depleted during Hg poisoning, we  further experimentally tested 

whether an increased intake of dietary Se has an effect on blood levels of 

Hg, increases circulating Se, and improves the oxidative status of chicks. 

Finally, we  compared the results of this experiment with a previous food 

supplementation experiment. Our results show similar Hg concentrations 

between healthy and sick chicks with visible clinical signs of the disease. Se 

concentrations were significantly depleted in sick chicks. Se concentrations 

increased while Hg concentrations simultaneously decreased in chicks that 

naturally recovered from the disease. Both the Se and fish supplementation 

experiments significantly increased Se concentrations in blood, while Hg 

levels were only modestly affected. Providing food to chicks appeared to have 

greater benefits than only supplementing chicks with Se pills as, although food 

supplementation had an impact on blood Se similar to that of supplementation 

with Se pills, it also reduced the vulnerability of chicks to the viral disease, 

possibly by reducing nutritional stress and providing essential nutrients.
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Introduction

Over the past years, there has been growing recognition of the 
risks associated with infectious disease outbreaks. Anthropogenic 
activities alter the environment and represent major factors for 
increased transmission of pathogens and emergence of new 
diseases (Sabin et  al., 2020). When human activities deplete 
biodiversity, ecosystem services are impaired and pathogens are 
more likely to emerge (Cunningham et  al., 2017). To date, 
outbreaks of infectious pathogens are occurring at an 
unprecedented rate (Fisher et al., 2012; Baker et al., 2022), but the 
mechanisms underlying such events are poorly investigated 
although they represent a serious threat for wildlife 
population viability.

One documented example of such outbreaks occurs on the 
French natural reserve of Grand Connétable, a small rocky island 
located near the coasts of French Guiana (South America). The 
site hosts several seabird species and approximately 1,300 
reproductive pairs of Magnificent frigatebird Fregata magnificens 
(Sebastiano et  al., 2017a). Since 2005, the population of 
frigatebirds is subjected to massive mortality episodes estimated 
between 85 and 95% of chicks that occur annually (Sebastiano 
et  al., 2017b,c). The disease  – most likely associated with 
herpesvirus activity (de Thoisy et  al., 2009; Sebastiano et  al., 
2018) – is characterized by the appearance of skin crusts on the 
neck and wings of affected birds, which rapidly spread all over the 
chicks’ body, resulting in low chances of recovery (about 15%; 
Sebastiano et al., 2019). Chicks with visible clinical signs of the 
disease exhibit changes in blood-based oxidative status markers 
(Sebastiano et al., 2017b), high inflammation levels (Sebastiano 
et al., 2017c), and lower immune defences (Sebastiano et al., 2018) 
as compared to healthy chicks. Further experimental work on this 
population of frigatebirds showed that an experimental 
supplementation with resveratrol, a powerful antioxidant with 
antiviral proprieties (Abba et  al., 2015), increased circulating 
antioxidants, limited the generation of oxidative damage, and 
stimulated the immune response (Sebastiano et al., 2018), but did 
not influence the chicks’ probability to develop clinical signs or to 
recover/survive (Sebastiano et al., 2018).

The appearance of clinical signs in wild animals may indicate 
that they are undergoing stress. Exposure to environmental 
stressors can alter wildlife immune function (Stephanie et  al., 
2016), but it remains unclear how this translates into changes in 
patterns of infectious diseases (Martin, 2009; Blaustein et al., 2012; 
Stephanie et  al., 2016). In French Guiana, one potential 
environmental stressor frigatebirds may be  exposed to is 
nutritional stress. After the dramatic decline of the local shrimp 
fishery activities - highly beneficial for opportunistic feeders like 
frigatebirds due to the associated discards  - field observations 
suggested that adult frigatebirds were struggling to feed their 
chicks (Martinet and Blanchard, 2009), and recent experimental 
work seems to support this food limitation hypothesis (Sebastiano 
et al., 2019). Another potential environmental stressor is local 
mercury (Hg) contamination (Sebastiano et al., 2016, 2017a). A 

recent review pointed out how Hg impacts on almost every aspect 
of avian physiology (Whitney and Cristol, 2017). Given the high 
affinity between Hg and selenium (Se), one way through which Hg 
causes physiological stress is by binding to selenoproteins, thus 
compromising their synthesis and biological functions in 
oxidoreductase (Ralston and Raymond, 2010). Similarly, Hg can 
decrease the availability of Se (Ralston and Raymond, 2010), 
whose deficiency has been specifically linked with increased 
susceptibility to diseases (Gomez et al., 2002; Wang et al., 2009), 
likely due to the important regulatory role played by Se in the 
immune response (Hawkes et  al., 2001; Hoffmann and Berry, 
2008). The underlying mechanisms of disease outbreaks in this 
population have not yet been investigated nor identified so far, and 
we lack direct evidence that the occurrence of clinical signs may 
be related to Hg exposure or Se deficiency.

In this study, we hypothesized that exposure to Hg potentially 
contributes to the occurrence of clinical signs in this population. 
We quantified the concentrations of Hg and Se in healthy (without 
visible clinical signs) and sick chicks (with visible clinical signs of 
the disease). If exposure to Hg is associated with disease 
occurrence in this species, we  predicted a difference between 
healthy and sick chicks in Hg concentrations in blood. Similarly, 
if Hg reduces the bioavailability of Se, we predicted a deficiency of 
Se in chicks exposed to higher Hg levels. Because Se decreases Hg 
toxicity in birds (Ikemoto et al., 2004) and other animal species 
(Ikemoto et  al., 2004; Sørmo et  al., 2011; Polak-Juszczak and 
Robak, 2015), we experimentally investigated the effect of dietary 
Se on circulating levels of Se and Hg. Se is also utilized as a 
cofactor by the antioxidant enzyme selenium-dependent 
glutathione peroxidase (Beckett and Arthur, 2005). We therefore 
further analyzed the effect of dietary Se on the oxidative status of 
chicks because prior work showed that they were associated with 
the occurrence of clinical signs and progress of the disease in our 
species (Sebastiano et  al., 2017b). Finally  – because prior 
experimental work suggested that frigatebird chicks may also 
be  undergoing nutritional stress (Sebastiano et  al., 2019)  – 
we hypothesized that the combination of high Hg concentrations 
(Sebastiano et al., 2017a) and nutritional stress may be responsible 
for the emergence of clinical signs. If the occurrence of clinical 
signs of the disease is mainly tied to food shortage, we predicted 
that  - by comparing the results from the Se supplementation 
experiment with the results from a previous food supplementation 
experiment (Sebastiano et al., 2019) – extra food would have a 
greater effect than Se alone on the progress of the disease and the 
physiological status of chicks.

Materials and methods

Sample collection

Fieldwork was carried out from 2015 to 2017 on Grand 
Connétable island, a protected area located off the Atlantic coast 
of South America (French Guiana, 4°49′30 N; 51°56′00 W). Most 
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frigatebird pairs in this colony start breeding between the end of 
November and the beginning of December. Consequently, all 
chicks were approximately of the same age (~4 months old) when 
the experiment was carried out (see also Statistical Analysis 
section). A total of 93 chicks without visible clinical signs (22 in 
2015, 26 in 2016, and 45 in 2016) and 101 chicks showing visible 
clinical signs (22  in 2015, 34  in 2016, and 45  in 2016) were 
randomly chosen at different sites of the island and captured at the 
nest by hand. Visible clinical signs of the disease include crusts on 
the head and the body, hyperkeratosis on eyes and the consequent 
thickening of the cornea (de Thoisy et al., 2009). Within a few 
minutes after capture, 2 ml of blood was collected from the 
brachial vein using a heparinized syringe and a 25G needle.

Samples were placed in a cooler and centrifuged in the 
field within less than 3 h to separate plasma and red blood 
cells. Both plasma and red blood cells were kept in dry ice 
until the end of the field work and, when at the laboratory, 
were kept in a − 80°C freezer until laboratory analyses. Birds 
were also ringed with an aluminum ring for individual 
recognition, weighted with a Pesola spring balance to the 
nearest 20 g (except for chicks sampled in 2015), and the 
length of the skull was measured with a 300 mm Caliper (from 
the tip of the beak to the back of the head) to control for the 
age of the chicks. In 2017, a food supplementation experiment 
(for which results are already published in Sebastiano et al., 
2019) and a Se-supplementation experiment (the present 
study) were simultaneously carried out. Briefly, chicks received 
either a pill of Se, fish, or were not supplemented (control 
group). During the experimental period, Se pills (each pill 
containing 200 μg of L-Selenomethionine, the organic form of 
Se) were provided nine times while fish (Atlantic horse 
mackerels Trachurus trachurus, non-local and eviscerated, 
thus very low in Hg concentrations) was provided by direct 
feeding six times within 16 days, to match the frigatebird 
feeding rate. At the end of the experiments, a second sample 
of blood was taken and body mass and skull length were 
measured again. Pictures taken before the start and at the end 
of the experiment were scored and used to classify the chicks 
based on severity of visible clinical signs (“no signs - birds 
with absence of visible clinical signs”; “mild - birds that clearly 
showed clinical signs of the disease”; and “severe - birds deeply 
affected by the disease as highly covered with visible clinical 
signs”), as described in Sebastiano et  al. (2019). This also 
enabled to detect birds that changed group over the progress 
of the disease (which matches a change in the visible clinical 
signs), thus to identify: (a) birds that never showed the 
appearance of clinical signs, hereafter “always healthy”; (b) 
birds that showed the appearance of clinical signs, hereafter 
“new sick”; (c) birds that had an improvement of visible 
clinical signs, hereafter “improved”; and (d) birds that did not 
change their status, hereafter “always sick”). Details on the 
supplementation experiments and the classification of birds 
based on visible clinical signs can be found in Sebastiano et al. 
(2019) and in the Supplementary information.

Laboratory analyses

The analysis of trace element concentrations was carried out 
by the Littoral Environnement et Sociétés (LIENSs) laboratory at 
La Rochelle Université (France). Total Hg was quantified with an 
Altec Advanced Mercury Analyzer AMA 254 spectrophotometer 
while Se was analyzed using a Varian Vista-Pro ICP-OES, as 
described in Bustamante et  al. (2008). Prior and after freeze-
drying, blood samples were weighed to determine the percentage 
of water in blood, and aliquots ranging from 5 to 10 mg were 
analyzed for quality assessment, as described in Bustamante et al. 
(2008). Certified Reference Materials (CRM; dogfish liver 
DOLT-5, NRCC, and lobster hepatopancreas TORT-3, NRCC) 
were treated and analyzed in the same way as the samples. Results 
were in good agreement with the certified values, and the standard 
deviations were low, proving good repeatability of the method. 
The results for CRMs displayed recoveries of the elements ranging 
from 87 to 103% (n = 30). All the results for trace elements are 
presented in absolute concentrations in μg g−1 dry weight (dw.). 
Hg was measured in samples from 2015 to 2017 while Se levels 
were measured only in 2016 and 2017.

All analyses of metrics of oxidative status were done using 
established protocols for vertebrates. High-performance liquid 
chromatography (HPLC) with electrochemical detection 
(Reversed-Phase HPLC of Shimadzu, Hai Zhong Lu, Shanghai) 
was used to quantify reduced glutathione (GSH) concentrations 
in red blood cells, following Sinha et al. (2014), and concentrations 
were expressed as μmol/g of fresh weight. Glutathione peroxidase 
(GPx) activity was determined in red blood cells by measuring the 
decrease in NADPH absorbance at 340 nm using a 
spectrophotometric method (Drotar et  al., 1985), and was 
expressed as μmol NADPH/mg protein per minute.

Statistical analyses

Although chicks were approximately of the same age, their 
body mass highly fluctuates over time depending on feeding 
events frequency and timing. For instance, chicks may be fed even 
after 3 days of fasting, with an amount of food that can be up to 
300/400 grams (personal observation). Therefore, chicks of similar 
age may strongly differ in their body weight if measured shortly 
after their received food from their parents. Therefore, we decided 
not to include it into the statistical analyses, but instead we used 
skull length as a proxy of the age into statistical models 
when possible.

Linear models were used to investigate Hg differences (pooled 
samples from 2015 to 2017, n = 194) and Se (pooled samples from 
2016 and 2017, n = 150) among years or between the health status 
categories of chicks (with or without clinical signs), or among 
groups separated based on the severity of clinical signs (separated 
linear models among chicks with no signs, mild signs, and severe 
clinical signs). Hg and Se were included as dependent variables 
while the year of study and the health status of chicks were 
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included as predictors. Skull length was not included in the 
models for Hg as it was not measured in 2015 chicks. Hg and Se 
were log10 transformed when testing years and groups differences.

Generalized linear models (GLMs) with a binomial error 
distribution (0 = survives, 1 = dies) were used to test whether 
pre-existing levels of Se and Hg predict survival probabilities of 
chicks (used as predictors in the model). These models were run 
on control individuals (non-treated birds, as the treatment could 
have modified the progress of the disease) from the year 2016 and 
2017 (for which we had complete data). Hg and Se were log10 
transformed when using generalized linear models. Skull length 
was included in GLMs to correct for the age of the chicks.

Linear mixed models were used to specifically test whether 
either the Se or the food supplementation experiments generated 
a significant change in Hg or Se levels, and in physiological 
markers of antioxidant defenses, between the first and the second 
sampling period (before and after the experiments). A three-way 
interaction (experimental period * health status * experimental 
group) was thus used to test among groups differences (control, 
Se, or fish administered groups, further divided between chicks 
with and without clinical signs of the disease). The skull length 
was included as a covariate to correct for the age of the chicks, 
while the ID of the chicks was used as a random factor. Hg, Se, and 
GPx valued were not transformed while GSH concentrations were 
log10 transformed when used in linear mixed models to achieve 
homoscedasticity and normality of residuals. Three outliers were 
excluded from the model on GPx as they were highly influential 
in the model, and exceed the mean ± 3 times the standard deviation.

Linear mixed models were further used to specifically test 
whether Se and Hg concentrations showed a change from the first 
to the second sampling period in chicks divided based on the 
progress of the disease (always healthy, get sick, always sick, 
improved; as described in detail in Sebastiano et al. (2019). These 
models were only run on control chicks (chicks that were not 
included in the experiments). The skull length was included as a 
covariate to correct for the age of the chicks, while the ID of the 
chicks was included as a random factor.

All data transformation and violation of models’ assumptions 
are reported throughout the manuscript. Statistical significance 
was set to α = 0.05. All statistical analyses were performed using R 
version 3.6.1.

Results

Year and group differences at sampling 1

There were no significant differences in Hg concentrations 
among the 3 years of study (F = 2.50, p = 0.08), although there was 
a tendency for Hg to be higher in 2015 than 2017 (t = 2.2, p = 0.07; 
Supplementary Figure S1a). Healthy and sick chicks had similar 
concentrations of Hg (F = 0.98, p = 0.32; Supplementary Figure S1b), 
even when chicks were divided among chicks with no, mild, or 
severe clinical signs (F = 0.70, p = 0.50; Supplementary Figure S1c).

There was no difference between 2016 and 2017  in Se 
concentrations (F = 1.18, p = 0.28; Supplementary Figure S2a). 
Healthy and sick birds had different blood Se concentrations 
(F  = 31.64, p  < 0.001), with Se being significantly higher in 
healthy than sick chicks (t  = 5.52, p  < 0.001; 
Supplementary Figure S2b). Similar results were obtained when 
birds were divided based on the severity of clinical signs 
(F  = 15.91, p  < 0.001), as birds with no clinical signs had 
significantly higher Se levels than both groups with mild or 
severe clinical signs (both t  > 4.32, both p  < 0.001; 
Supplementary Figure S2c).

Pre-treatment levels of either Hg or Se did not predict 
survival probabilities. Chicks that survived had similar levels 
of Hg or Se to chicks that died, even when the same models 
were run only considering sick chicks (all z values < 1.36, all 
p > 0.17).

Finally, 6 out of 15 (40%) healthy chicks administered with Se 
pills showed the appearance of clinical signs over the course of 
the experiment.

Effect of the experiments on blood 
concentrations of Hg and Se

The food-supplementation experiment influenced blood Hg 
concentrations (significant three-way interaction; F = 5.14, p < 0.01; 
Table 1). Hg significantly increased in sick chicks administered 
with fish (t  = −5.75, p  < 0.001; Supplementary Table S1;  
Figure 1).

Both the food and Se supplementation experiments affected 
blood Se concentrations even if the three-way interaction was only 
marginally significant (F = 2.92, p = 0.057; Table 1), likely because 
Se strongly increased in all four experimental groups 
independently of the health status of chicks (all t  > 8.12, all 
p < 0.001; Supplementary Table S1; Figure 1).

Effect of the experiments on oxidative 
status markers

The concentration of GSH showed an overall decline from the 
first to the second experimental period (Figure 2). There was a 
significant interaction between the health status and the 
expermental period (F = 7.18, p < 0.01; Table 1) showing that the 
drop in GSH concentrations was more pronounced in healthy 
than sick chicks (t = 7.47, p < 0.001 and t = 4.34, p < 0.001, 
respectively; Supplementary Table S1; Figure 2).

Similarly, there was a significant interaction between the 
health status and the experimental period when considering GPx 
(F = 4.26, p < 0.05; Table 1). The concentration of GPx decreased 
in healthy chicks (t  = 2.56, p  = 0.06; Supplementary Table S1; 
Figure 2) but did not change in sick chicks (t = 0.22, p = 0.99; 
Supplementary Table S1; Figure 2) from the first to the second 
experimental period.
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TABLE 1 Linear mixed models among groups divided based on the health status, the treatment received, and the experimental period.

Sum of squares Mean of squares F-value p-value

Model on Hg

Experiment 0.014 0.007 0.47 0.63

Health status 0.091 0.091 6.01 0.02

Period 0.055 0.055 3.63 0.06

Skull length 0.003 0.003 0.22 0.64

Experiment*health status 0.183 0.091 5.99 <0.01

Experiment*period 0.187 0.093 6.14 <0.01

Health status*period <0.001 <0.001 0.02 0.90

Experiment*health status*period 0.156 0.078 5.14 <0.01

Model on Se

Experiment 143.4 71.70 82.6 <0.0001

Health status 1.504 1.504 1.73 0.19

Period 292.1 292.1 337 <0.0001

Skull length 5.214 5.214 6.00 0.02

Experiment*health status 0.584 0.292 0.34 0.72

Experiment*period 123.4 61.69 71.1 <0.0001

Health status*period 5.245 5.245 6.04 0.02

Experiment*health status*period 5.071 2.536 2.92 0.057*

Full model on GSH

Experiment 0.097 0.048 1.77 0.17

Health status 0.003 0.003 0.13 0.72

Period 1.676 1.676 61.4 <0.0001

Skull length 0.002 0.002 0.06 0.81

Experiment*health status 0.010 0.005 0.18 0.83

Experiment*period 0.010 0.005 0.18 0.84

Health status*period 0.189 0.189 6.91 0.01

Experiment*health status*period 0.035 0.018 0.64 0.53

Final model on GSH

Status 0.005 0.005 0.19 0.66

Period 1.895 1.895 71.3 <0.0001

Experiment 0.113 0.057 2.13 0.12

Skull length 0.004 0.004 0.15 0.70

Health status*period 0.190 0.191 7.18 <0.01

Full model on GPx

Experiment 3.51*10−7 1.75*10−7 11.1 <0.0001

Health status 3.31*10−8 3.31*10−8 2.08 0.15

Period 5.77*10−8 5.77*10−8 3.63 0.06

Skull length 4.94*10−8 4.94*10−8 3.10 0.08

Experiment*health status 1.87*10−7 9.36*10−8 5.88 <0.01

Experiment*period 1.97*10−8 9.83*10−9 0.62 0.54

Health status*period 6.44*10−8 6.44*10−8 4.05 0.05

Experiment*health status*period 4.19*10−8 2.09*10−8 1.32 0.27

Final model on GPx

Status 3.21*10−8 3.21*10−8 1.89 0.17

Period 5.32*10−8 5.32*10−8 3.12 0.08

Experiment 3.02*10−7 1.51*10−7 8.8721 <0.01

Skull length 3.05*10−8 3.05*10−8 1.79 0.18

Health status*period 7.25E-08 7.25E-08 4.26 0.04

For each variable, both the full and reduced (final) models are shown, except when they overlapped. Significant p-values are shown in bold. Asterisks * indicate a marginally significant 
value of p.
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Hg and Se concentrations during the 
progress of the disease

Control chicks divided based on the progress of the disease 
showed a different change in Hg and Se concentrations from the 
first to the second experimental period (F = 4.29, p < 0.01 and 
F = 10.11, p < 0.001, respectively; Table 2). Specifically, chicks that 
improved had a marginally significant decrease in Hg 
concentrations (t  = 3.18, p  = 0.05, Supplementary Table S2; 

Figure 3), and a strong increase in Se concentrations (t = −3.67, 
p = 0.01, Supplementary Table S2; Figure 3).

Discussion

Our study is the first to experimentally investigate the role of 
dietary Se on Hg concentrations and the physiological status of a 
wild vertebrate facing a viral disease. We  found a significant 

FIGURE 1

Hg and Se concentrations (expressed as μg g−1 dry weight ± SE) in chicks divided based on the health status and experimental group (control, fish 
supplemented, or Se supplemented). Asterisks * indicate a significant change in concentrations from “before the experiment” (grey column) to 
“after the experiment” (black column). ***, indicates a value of p < 0.001.
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difference in Se levels between chicks with and without clinical 
signs, which may suggest heterogeneity in the way chicks receive 
food from their parents. In contrast, we did not find any difference 
in Hg concentrations among chicks with or without clinical signs 
of the disease. The experimental part of our study further showed 
that administration of Se pills increased circulating Se in blood, 
but did not affect Hg nor the physiology of chicks.

Our previous work on frigatebirds in 2013 showed high 
variability in Hg concentration among chicks (ranging from 
0.65 to 1.68 μg g−1; Sebastiano et  al., 2016). We  previously 
showed that other pollutants  – which may represent 
confounding factors for the interpretation of the results (as 
described in Sebastiano et  al., 2022b)  – occur at low 
concentrations in the blood of frigatebirds (Sebastiano et al., 

FIGURE 2

GSH (expressed as as μmol/g of fresh weight) and GPx (expressed as μmol NADPH/mg protein per minute) concentrations (± SE) in chicks divided 
based on the health status and experimental group (control, fish supplemented, or Se supplemented). Concentrations are further divided and 
represented as “before the experiment” (grey column) and “after the experiment” (black column). GPx concentrations were multiplied by 1,000 for 
an optimal graphic representation.
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2017a), so that they should not pose a serious threat to this 
population. We therefore hypothesized that Hg concentrations 
might be  one factor underlying the probability of disease 
outbreaks in this population. However, our results showed that 
chicks with or without visible clinical signs of the disease had 
similar Hg concentrations. On the contrary, chicks with visible 
clinical signs of the disease had significantly lower 
concentrations of Se in their blood. Because fish is the main 
dietary source of Se in seabirds, these results would suggest that 
healthy chicks might receive more food from their parents, 
which is not supported by our data (as the skull length was not 
significant in statistical analyses thus chicks were of the same 
body size).

It is however possible that sick birds received more Hg 
contaminated food, although they showed similar blood Hg 
concentration than healthy chicks. At high concentrations, the 
high affinity between Hg and Se would indeed lead to Hg 
binding to Se (Ralston and Raymond, 2010), with the 
consequent generation of mercuric selenide (HgSe), a 
non-toxic form in marine mammals and birds (Ikemoto et al., 
2004). HgSe accumulates in muscles, kidneys, and the liver 
(Nigro and Leonzio, 1996; Manceau et al., 2021), thereby its 
formation may have reduced blood Hg concentrations in sick 
birds. This hypothesis would also explain why Se was lower in 
sick chicks, as Se would be also stored in those tissues with the 
excess of Hg, resulting in a deficiency of Se in the blood of sick 
birds. A way to test this hypothesis requires the quantification 
of Se and Hg in the soft tissues of both sick and healthy chicks. 
As birds are also able to excrete Hg into growing feathers 
(Dauwe et al., 2003), further investigations in smaller chicks 
before feathers have started growing, or the analyses of Hg in 
both blood and in feathers would also help to better clarify 
this aspect.

Previous work found that Se deficiency may selectively 
influence the susceptibility to viruses (experimentally tested on 
coxsackie viruses and herpes simplex 1; Gómez et al., 2001) and 

that Se-containing molecules may play a very effective role against 
cancer, and viral and bacterial infections (Fernandes and Gandin, 
2015; Lenardão et al., 2018). Our Se supplementation experiment 
dramatically increased circulating Se into the blood, with Se 
concentrations in treated birds being almost double compared to 
control birds at the end of the experiment. However, higher 
concentrations of Se in blood were not able to decrease Hg 
concentrations in blood. One possible reason might be related to 
the growth stage of supplemented birds. If Se increases the rate at 
which Hg is excreted into growing feathers, reducing Hg 
concentrations in internal tissues, this will need to be tested in 
smaller chicks, as chicks included in the experiment were 
approximately 4 months old when we started the supplementation, 
thus their feathers were almost fully grown and there was no Hg 
remobilization from internal tissues.

Similarly to the Se supplementation experiment, supplementing 
chicks with extra food strongly increased the concentration of 
circulating Se in blood. Sick birds that received food also showed an 
increase in blood Hg concentrations at the end of the experiment. As 
described in Sebastiano et al. (2019), non-local and eviscerated fish – 
thus very low in Hg concentrations – was used, therefore we exclude 
the possibility that extra food increased Hg in blood, as also 
confirmed by the fact that this result was not found in healthy chicks 
supplemented with extra food. One possible explanation may 
be represented by the begging behavior of chicks. As begging calls 
reflect the degree of hunger in birds and modulate parental feeding 
rate (Klenova, 2015), healthy chicks which received extra food may 
have reduced their begging and therefore their intake of 
Hg-contaminated fish delivered by the parents.

Our results further show that neither the activity of GPx nor 
the concentration of GSH were influenced by the Se or the fish 
supplementation experiment. A previous long-term Se dietary 
supplementation trial in cows showed that Se content rapidly 
increased in the liver and plasma, while it took almost 2 months 
before it increased in red blood cells, suggesting that the time 
required for maximal assimilation is tissue-specific (Brennan 
et al., 2011), explaining why we did not find an effect on these 
markers. Specifically related to birds, experimental work on 
mallards Anas platyrhynchos also suggests a detrimental effect 
of Hg on antioxidant enzymes as GPx (Hoffman and Heinz, 
1998), which may explain the observed general decrease in GPx 
and GSH concentrations in the present study. However, it 
remains unclear why this drop in GPx activity was more 
pronounced in healthy chicks. A possible explanation may 
be  that healthy chicks downregulate the costly antioxidant 
machinery, while sick chicks keep it upregulated as it is needed 
to face the ongoing infection.

The relationship between the concentrations of Hg and 
that of Se is also relevant to describe Hg toxicity. Previous 
work on Guiana dolphins Sotalia guianensis in Southeastern 
Brazil showed that all Se was complexed as HgSe, implying 
that Se was not available for important biological functions 
(Manhães et  al., 2021), and further suggesting a possible 
cumulative effect of Hg toxicosis and Se deficiency on the 

TABLE 2 Results of the linear mixed models run on chicks divided 
based on the progress of the disease (their change in status from the 
first to the second sampling period).

Sum of 
squares

Mean of 
squares

F-value p-value

Model on Hg

Health status 0.019 0.006 1.93 0.13

Period 0.003 0.003 1.03 0.32

Skull length 0.017 0.017 5.38 0.02

H. status*period 0.042 0.014 4.29 <0.01

Model on Se

Health status 1.649 0.550 2.61 0.06

Period 0.653 0.653 3.10 0.08

Skull length 0.609 0.609 2.89 0.09

H. status*period 6.385 2.128 10.1 <0.001

Significant p-values are shown in bold.
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severity of morbillivirus infections in cetaceans (Manhães 
et al., 2021). Our results on Hg and Se concentrations seem to 
support this cumulative effect hypothesis (Sebastiano et al., 
2022a). Indeed, when chicks were divided based on the 
progress of the disease, we found that chicks that improved – 
i.e. which exhibited a reduction in the visible clinical signs of 
the disease – showed an increase in Se concentrations while 
simultaneously showing a decrease of Hg concentrations in 
blood. As these results were obtained in control birds, which 
were not included in either experiments, the most likely 
hypothesis is that chicks improved because they received more 

food from their parents. This result would provide an 
explanation for the increased concentrations of Se in the blood 
of these chicks. As for the concomitant decrease in Hg 
concentrations, it is possible that by receiving more food, 
chicks grew faster and eliminated Hg in their feathers; or that 
adults shifted to a low Hg diet. As availability of food appears 
to be  one relevant factor that can affect the probability of 
chicks to develop the disease or to survive, we suggest further 
work on this population to be refined with (i) stable isotope 
analyses, as the trophic position (reflected by nitrogen 
isotopes) and the feeding habitat (reflected by carbon isotopes) 

FIGURE 3

Hg and Se concentrations (expressed as μg g−1 dry weight ± SE) in chicks divided based on the progress of the disease (always healthy, always sick, 
new sick, and improved). Asterisks * indicate a significant change in concentrations from “before the experiment” (grey column) to “after the 
experiment” (black column). *, ** indicates a value of p < 0.05 and p < 0.01 respectively.
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are important drivers of Hg contamination in this population 
(Sebastiano et al., 2017a); and (ii) tracking devices, as GPS and 
accelerometer data would provide fundamental insights on 
habitat selection, feeding behavior of adults, and the begging 
behavior of chicks.

Conclusion

Our multi-year correlative and experimental results suggest 
that food shortage might have a stronger impact than Hg toxicosis 
on the probability that viral outbreaks occur in our frigatebird 
population. This inference is corroborated by the fact that food 
supplementation protected all chicks from the occurrence of 
clinical signs (Sebastiano et  al., 2019). On the contrary, Se 
supplementation did not protect chicks nor did it positively affect 
the physiological status of chicks.

Se is known to decrease Hg toxicity in various organisms, 
including birds (Hoffman and Heinz, 1998; Spiller, 2018). 
However, if chicks are also undergoing deficiency of Se in their 
diet due to food shortage – which increases physiological stress 
(Kitaysky et al., 2007) and impairs immune function (Gasparini 
et al., 2006) – the immune system of chick frigatebirds might 
remain depressed even after Se supplementation due to the 
ongoing nutritional stress.

Further studies are needed to clarify whether specific dietary 
molecules  - as Se  - i) increase the excretion rate of Hg into 
growing feathers, or ii) increase Hg deposition into other organs 
(e.g., liver) as mercuric selenide HgSe formations. This will 
provide fundamental knowledge on how birds can detoxify from 
Hg and if this detoxification mechanism would affect the 
vulnerability of chicks to the viral disease.
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