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Abstract In the present paper non-linear dynamics of a spiral bevel gear pair with backlash are 
investigated in order to clarify the internal excitations of major importance from the vibration 
point of view: manufacturing errors in the teeth profile, teeth spacing errors, and elastic 
deformation of the teeth. In some conditions, like in the case of backside contact, the destructive 
effect of internal excitations can be intensified leading to complex dynamics; for such reasons 
here backside contacts and reverse rotation are investigated in detail using a nonlinear time-
varying model. The effect of damping is investigated as well. A one-DOF model is developed 
in order to study the dynamic behavior; the resulting a nonlinear differential equation with 
time-varying mesh stiffness is solved via numerical integration based on an adaptive step-size 
implicit Runge-Kutta scheme. The dynamic response of the system is analyzed through time 
histories, phase portraits, bifurcation diagrams, and Poincaré maps. Results show that for small 
backlash values, the possibility of backside contact increases. Meanwhile, by increasing the 
backlash value, the amplitude vibration of the gear rotation rises as well. By comparing the 
dynamic response of the system with different damping ratios, the results show that higher 
damping effectively reduces gear vibration resonance, although the probability of unsteady 
response still exists.  

Keywords: nonlinear vibration, spiral bevel gear, gear mesh stiffness, forward and reverse motions, 
backside contact. 

List of Symbols 

aj, bj Fourier coefficients 

b Half of the gear backlash 

c Damping coefficient between the mesh gear teeth of the pairs 

Ceq Equivalent damping coefficient 

E Module of elasticity 

𝑒𝑒(𝑡𝑡) Time-varying circumferential no-load transmission error 
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𝐹𝐹𝑛𝑛 The normal dynamic load for the driven gear 

𝐹𝐹𝑧𝑧 The Z-component of the normal dynamic load for the driven gear 

𝐼𝐼𝑝𝑝𝑥𝑥, 𝐼𝐼𝑔𝑔
𝑦𝑦 Rotary inertia of pinion and gear 

meq Equivalent mass 

N1 Teeth number of the pinion 

n Gear ratio of the gear pair 

Np Number of samples for mesh stiffness computation 

k0 Average value of torsional mesh stiffness of the gear pair 

Keq Equivalent mesh stiffness of the gear pair 

Km The torsional mesh stiffness of the gear pair 

𝑟𝑟𝑝𝑝, 𝑟𝑟𝑔𝑔 Base radii of the pinion and the gear 

𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ−𝑝𝑝 pitch radius of the pinion at the mid-section  

𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ−𝑔𝑔 pitch radius of the gear at the mid-section  

S Number of harmonics 

𝑇𝑇𝑒𝑒𝑒𝑒 Equivalent applied torque on the driven gear 

𝑇𝑇𝑙𝑙 Constant driver torque 

𝑇𝑇𝑚𝑚 Constant breaking torque 

w Face width  

α Normal pressure angle 

β The spiral angle 

γs Input shaft speed  

ζ Damping ratio  

θ1 Driver angular displacement  

θ2 Driven angular displacement 

θb Angular backlash 

λ Linear dynamic transmission error along the line of action 

λθ Angular dynamic transmission error 

ν Poisson ratio 

𝜏𝜏 Non dimensional parameter for time 

ωm Fundamental mesh frequency 

ωn Natural mesh frequency 
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1. Introduction 

Bevel gears embrace a wide range of applications in different engineering fields: in aerospace, bevel 
gears are present in helicopter gearboxes, in terrestrial vehicles, they are often used in the final stage of 
powertrain; in heavy industry whenever it is required to transmit a high load between non-parallel 
shafts. There are many types of bevel gears, the most significant of which are the spiral bevel gears 
(SBGs). The main advantage of SBGs is the high-power transmission density compared with other types 
of bevel gear pairs, for instance, straight or Zerol bevel gears.  

The vibration and dynamic behavior of gear pairs have been the subject of intense research in the 
past [1-5] since their influence is pervasive on noise and stress distribution, and consequently, on the 
lifetime, the efficiency and the capability of transmitting power. Yavuz et al. [6] proposed a nonlinear 
dynamic model for the SBG pair of a gear train that took into account the stiffness of the shafts and 
bearings. The Tredgold approach was used to optimize straight bevel gear models by Motahar et al. [3]. 
Yassine et al. [7] studied the dynamic responses of a two-stage straight bevel system with eccentricity, 
profile error, and a fractured tooth. The Newmark approach was used to determine the dynamic 
response. Masoumi et al. [8] investigated complex dynamics and chaos in high speed balanced planetary 
gears, proving that the nonlinearity and the stiffness variation can induce vibration in inherently 
balanced systems. 

As the main source of vibration in most of gear trains is the static transmission error (STE), this 
topic attracted the attention of an increasing number of scientists and engineers, with a consequent large 
production of scientific and technical papers. The total deflection of gears during meshing is given by 
the summation of different deformations: teeth bending, shear and surface indentation. Kickbush et al. 
[9] proposed two finite element models (two-dimensional and three-dimensional) to approximate the 
mesh stiffness (MS). Tang et al. [10] investigated how two distinct STEs affected SBG's dynamic 
responsiveness; a predesigned parabolic function and a sine function were the two STEs evaluated. 
Some other research investigated how faults impact gear pairs' dynamic behavior [11, 12]. Peng et al. 
[13] proposed a new method for estimating the loaded transmission error (LTE) taking into account the 
bearing supports' influence. Using a finite element analysis technique, Wang et al. [14] examined the 
time-varying mesh stiffness of a gear pair with cracked teeth. In Ref. [15] a new approach for creating 
very accurate nonlinear finite element models was proposed and the effect of misalignments was 
investigated in the case of helical gears. 

The main goal of the present study is to investigate the static transmission error of a SBG and its 
nonlinear dynamic behavior by considering an example of SBG which is frequently used in transmission 
power system of helicopters. The accurate static analysis of LTE is essential to calculate the system’s 
mesh stiffness and plays a significant role in understanding the gear stress status under working 
conditions. As the example of SBG is used for a helicopter gearbox, the method to manufacture the gear 
pair, is face milling process which provides the possibility of grinding. The static analysis is validated 
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with both experimental and finite element method (FEM) results by extracting the root stress and tooth 
force. Due to the mismatched teeth surfaces between gear and pinion, loaded tooth contact analysis 
(LTCA) and unloaded tooth contact analysis (UTCA) must be conducted. The main result of the static 
simulations consists of the evaluation of the mesh stiffness, through LTCA, for both forward and reverse 
motion. The dynamic model is used for investigating the nonlinear dynamic scenario, the analysis is 
carried out through a 1-DOF model that includes: the effect of backlash, i.e. non-smooth equation; 
variable stiffness, i.e. time-varying coefficients equation and consequent parametric excitation; effect 
of stiffness variation and phasing in the case of backside contact (reverse motion). The scenario is 
studied through the development of bifurcation diagrams, amplitude-frequency diagrams, Poincaré 
maps, and phase portraits. Besides, the effect of some important parameters, including the damping 
ratio and the backlash, on the frequency-response curves is investigated. 

2. Loaded and unloaded tooth contact analysis 

Bevel gears are classified into different categories based on the employed manufacturing process. 
The type of tooth trace determines one of the classifications: straight bevel gears, hypoid bevel gears, 
Zerol bevel gears and spiral bevel gears. Spiral bevel gears, when manufactured in a metal-cutting 
process, can either be produced in single indexing (face-milled process) or continuous indexing (face-
hobbed process) operations which dictate the shape of the tooth trace [16-19], see Fig. 1.  

a) Single indexing (face-milling) b) Continuous indexing (face-hobbing) 

  
Fig. 1. Single indexing (a) and continuous indexing (b) methods. 

These are two ubiquitous processes which are used to manufacture spiral bevel: face milling and 
face hobbing methods. In the face milling approach, one side of a tooth is generated by the cutter. The 
cutter is then withdrawn from the gear blank; the workpiece is indexed by one tooth at time; the cutter 
returns to this new position, and the process is repeated [20]. The main advantage of face milling process 
is that it can be used for cutting and grinding. There are two types of the face milling processes, Formate 
and Generated [18]. The ‘Formate’ face-milling process is a method with no generating motion (faster) 
and is used in automotive ring gears. While the ‘Generated’ face-milling process is a method with 
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generating motion and is used for automotive pinions as well as for both the pinion and ring gear in 
aerospace applications.  

In contrast with the face milling method, the face hobbing process is more efficient as it requires 
fewer machine setups. However, the noteworthy negative point of this process is that there is no 
possibility of grinding the gear pair generated by this method. Due to this point, face milling is mainly 
used in aerospace applications, where the gears need to be ground, whereas face hobbing is a 
predominant method in automotive applications where machining time is more of a concern than surface 
finish [17]. To sum up, in face milling process, both gear and pinion design data must be given as well 
as the kinematics of gear cutting machine and its settings, all these parameters are necessary to create 
an SBG-pairs.  

Due to the significant development in gear software packages during the last decade, there is the 
opportunity to simulate a gear pair based on analytical or FEM methods before creating gears. 
Moreover, the identification of defects within a transmission system, reducing equipment failures and 
unscheduled downtime is increasingly demanded. The major accomplishment of simulating models in 
software before manufacturing is to understand its efficiency and behavior under real situation and the 
ability to optimize and improve the gearbox design and efficiency.  

The vibration analysis has proven to be one of the most effective tools for identifying mechanical 
faults within gear systems and choose the best model for their system. One of initial steps of conducting 
vibration analysis is LTCA to calculate the mesh stiffness of the system. To determine the mesh stiffness 
of a gear pair, an LTCA must be performed. The LTCA could be carried out using a variety of 
approaches: FEM, experiments, and analytical solutions (with certain simplifications). By comparing 
these methods, one can conclude that: i) the experimental method requires a well-equipped laboratory, 
it is cost and time demanding, moreover, measurements on rotating parts are limited to non-contact 
surfaces; ii) analytical solutions have been generally developed for spur or helical gear pairs, however, 
they are not perfectly suitable or precise for gear pairs with complicated geometries, such as a spiral 
gear pair; iii) nonlinear FEM (including contact analysis) has become increasingly popular in recent 
years [3, 21, 22].  

SBGs are manufactured with an intentional tooth profile error, i.e. mismatch [23-25] between two 
teeth surfaces of gear and pinion. This mismatch is done so that the gear mesh can perform in an 
acceptable way even in the presence of misalignment, manufacturing errors, or high torque level that 
cause the gears to deflect to locations different than what was defined in their design. Although the 
conjugate motion provides an ideal transmission, i.e. constant transmission ratio, this is not practical in 
SBG; consequently, SBGs generally operate with a certain amount of geometric transmission error [24, 
26]. Therefore, to obtain the correct mesh stiffness, both LTCA and UTCA must be carried out.  

The process, considered in this paper, is the face-milled method. Such kind of SBGs are mainly 
used in aerospace power transmissions (i.e., helicopter main/tail rotor transmissions) to transmit power 
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between horizontal gas turbine engines and the vertical rotor shaft [27]. The gear and pinion considered 
in the present work were experimentally analyzed through the NASA Lewis Spiral Bevel Gear Test 
Facility [28]. An image of the spiral bevel gear mesh is shown in Fig. 2, the design data for the pinion 
and gear and the machine settings are listed in Appendix A. 

 
Fig. 2. Spiral bevel gear and pinion, a) the test specimen of the NASA Spiral Bevel Gear Rig 

[28], b) finite element model (Ansol Calyx) 

The results, which are available for the pinion root stresses, are interesting from validation point of 
view. The test facility used in their testing is the Spiral Bevel Gear Test Facility at NASA Glenn 
Research Center [29]. The pinion of the spiral bevel gear mesh was instrumented with strain gauges. A 
picture of the pinion used in the experiments is shown in Fig. 3. Three successive teeth of the pinion 
were instrumented with the five strain gauges. A total of three strain gauges were installed on the middle 
tooth (see Fig. 4). The strain gauges used in their study had an active gauge length of 0.38 mm (0.015 
in) [29]. The contact performance of the left-hand flank pairs is analyzed, which corresponds to the 
concave side of the pinion tooth and the convex side of the gear tooth. The kinematics of gear cutting 
are incorporated in the computer programs, ANSOL-Calyx (Calyx-HypoidFaceMilled product from 
ANSOL company - Version 2021), to generate the spiral bevel gear model (see Appendix A).  

 
Fig. 3. Strain gauges on pinion for experiments, a) the location of strain gauges on the pinion tooth 

root, b) a close-up of strain gauge location [27, 30]. 
 

b) a) 

a) b) 
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Fig. 4. Strain gauge location on the successive tooth along the pinion fillet 

Fig. 5 shows the comparison between experimental results [29] and the present FEM analysis: the 
red line represents the root stress for the pinion tooth derived from experimental data (strain) and black 
one represents root stress extracted from simulation. The comparison shows an excellent agreement.  

 
Fig. 5. Maximum principal stress on the root of the tooth respect to pinion for a) the heel root, b) the 

middle root, and c) the toe root - torque value is 7840 lb.in on the gear, ▬ FEM (Calyx) simulation, ▬ 
Experimental results [29]. 

A second comparison is conducted in order to have a further proof of the accuracy of the present 
model. In this case the reference consists of a numerical model developed by Bibel et al. [31]: they 
carried out a nonlinear FEM analysis by MSC Marc in order to simulate the gear pair described in 
Appendix A. To simulate the model, three pinion teeth and four gear teeth were considered. The pinion 
was fixed (Fig. 6-a) and the gear was allowed to rotate about its axis only [26, 31].  
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Fig. 6. FEM model a) NASA - MSC Marc [31], b)  Calyx. 

The first parameter reported by Bibel et al. [31] is the tooth force on the pinion tooth. Fig. 7 
represents the results from Ref. [26] (blue and red spots), beside to the those obtained by the present 
simulation (Calyx).  

 

Fig. 7. Tooth force of pinion: torque value is 9508 lb.in on the gear, 
‘▬’ present FEM simulation, ● nonlinear FEM (MSC Marc) [31]. 

Moreover, Fig. 8 shows the maximum principal stress on the root of the tooth with respect to the 
heel, middle, and toe roots of the pinion. The solid line shows the simulations and the filled circles are 
FEM results reported by Bibel et al. [31]; at that time, using FEM to simulate an SBG model was 
difficult, therefore it is conducted by some simplifications. For instance, to connect flexible members 
together, gap elements were required. This leads to many difficulties as the gap elements needed to be 
oriented normal to the surfaces as closely as possible [26]. Also, due to some limitation on the computer 
facilities, just a few teeth of pinion and gear were modeled. These disparities lead to some differences 
between the present results and FEM results of Ref. [31], however the comparison is quite satisfactory. 
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Fig. 8. Maximum principal stress on the root of the pinion tooth: heel root (a), middle root (b), and toe 
root (c).  Torque is 9508 lb.in on the gear. ‘▬’ present FEM simulation, ● FEM (MSC Marc) [31]) 

2.1 FEM grid sensitivity analysis 

In this section the finite element grid refinement is analyzed in order to assess the quality of the 
simulations and to determine the appropriate finite element size for static simulation. The following 
points are considered: performing selected analyses on a variety of mesh sizes, noting areas with 
significant deformations or stresses; improving the mesh in these areas; collecting data from each mesh 
analysis (Fig. 9), including the result, the number of divisions in the model, and the time required for 
computing. 

From a mesh sensitivity standpoint, the primary issue is determining if a mesh is sufficiently 
refined, since reducing element size results in enormous computational times. Additionally, a balance 
between computing time and accuracy should be achieved. From the chart in Fig. 9 and Table 1 one can 
check that after the 3rd step, any considerable improvement in accuracy would require a tremendous 
increase in computing time. 

Table 1. Grid sensitivity analysis 

Case 1 2 3 4 5 6 

Average deflection of gear [µrad] 75.86 74.77 73.60 73.49 73.52 73.49 

Number of sections along the tooth width 3 8 13 14 15 16 

Number of elements on the tooth section 36 74 176 176 176 176 

Computation time [minute] 260 286 398 420 437 454 
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Fig. 9. Grid sensitivity analysis - torque value is 4754 lb.in on the 

gear. 

2.2 FEM results of loaded and unloaded tooth contact analysis 

A valuable parameter is the maximum principal stress on the root of the pinion. Fig. 10 shows this 
parameter for both directions of rotation, forward (solid line) and reverse (dash line) motions. The 
results are brought for three different teeth of pinion; for the forward motion, tooth no. 1, which is close 
to lose the contact (red line), tooth no. 2, which is passing the contact (black line), and finally the tooth 
no. 3 (blue line), which will come to contact after tooth no. 2; for the reverse motion, the sequence is 
the reverse. The torque applied to the gear is 4754 Ib.in; the consequent maximum value of the principal 
stress in the forward motion is equal to 79950 psi while this value for the reverse motion is lower, 
77206 psi.  

 
Fig. 10. Maximum principal stress on the root of pinion - torque on the gear 4754 lb.in; forward 

motion (solid line), reverse motion (dash line); tooth no. 1 (red line), tooth no. 2 (black line), tooth 
no. 3 (blue line) 
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Another important parameter is the force on the tooth surface; Fig. 11 shows such parameter for the 
pinion, reverse motion (Fig. 11-a) and forward motion (Fig. 11-b). From these results one we find that 
the maximum number of teeth in contact is 2, i.e. the contact ratio is between 1 and 2.  

a) Reverse motion b) Forward motion 

  
Fig. 11. Force on the tooth surface of the pinion - torque value 4754 lb.in on the gear; a) forward 

motion, b) reverse motion; tooth No. 1 (red line), tooth No. 2 (black line), and tooth No. 3 (blue line) 

The contact pressure on the tooth surface could be precious results to explore the critical zone on 
the tooth contact surface. As the gears are spiral bevel gear, the stress distribution on the gear is not 
uniform along the tooth width, Fig. 12. The contact zone during reverse motion is close to the heel edge 
while during forward motion it comes to the toe edge. The critical stress zones for both motions are 
approximately at the middle of tooth surface.  
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Fig. 12. Contact pressure on the tooth surface - torque value is 4754 lb.in on the gear; 

0 0.2 0.4 0.6 0.8 1

Steps

0

500

1000

1500

2000

2500

Fo
rc

e 
[lb

s]

Partial Full 

0 0.2 0.4 0.6 0.8 1

Steps

0

500

1000

1500

2000

2500

Fo
rc

e 
[lb

s]

Full 
 

Partial 
 

Root 

  

 
 

 
 

a) Pinion b) Gear 

Root 

  

 
 

 
 

c) Pinion 

Root 

  

 
 

 
 

d) Gear 

Root 

  

 
 

 
 

Accepted Manuscript

11



As mentioned before, here the main purpose of static simulation is obtaining the mesh stiffness 
(MS) needed to investigate the dynamic behavior of the gear pair. To calculate the MS, it is required to 
know the tooth deflection by applying a certain amount of torque. Therefore, it is required to conduct 
the LTCA and UTCA due to the existence of some manufacturing errors such as the mismatched 
between two surfaces of pinion and gear teeth. Fig. 13 shows the rotational transmission error when the 
torque applied on the gear; besides, Fig. 14 presents the UTCA results while a very low torque 
(0.01Ib.in) is applied on the gear, i.e., the geometric transmission error of the gear pair. 

Eventually, Fig. 15 shows the difference between the transmission error obtained from LTCA, 
normal torque, and the one given by UTCA, negligible torque; this part of the transmission error is due 
to the elastic deformation only, therefore, it is the deformation to be used for calculating the meshing 
stiffness. 

a) forward motion b) reverse motion 

  
Fig. 13. Transmission error (gear rotation) after LTCA - torque 4754 lb⋅in; a) forward motion, 

b) reverse motion; ▬ Fitted curve, ● FEM results. 
 

a) forward motion b) reverse motion 

  
Fig. 14. Rigid body transmission error (gear rotation) after UTCA - torque value is 0.01 lb⋅in; 

a) forward motion, b) reverse motion; ▬ Fitted curve, ● FEM results. 
a) forward motion b) reverse motion 
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Fig. 15. Elastic transmission error after LTCA and UTCA; a) forward motion, b) reverse 

motion; ▬ Fitted curve, ● FEM results. 

3 Dynamic physical model 

Consider the spiral bevel gear pair of Fig. 16, the translational degrees of freedom for both, driver 
and driven gears are constrained in all directions as well as the rotations; the gears can only rotate 
around their axes. 

 
Fig. 16. The dynamic model of a gear system with rotational degrees of freedom. 

The dynamic equations of motion of this system (Fig. 16) are given by [2, 3, 32]: 

𝐼𝐼𝑔𝑔
𝑦𝑦�̈�𝜃𝑔𝑔 = −𝑟𝑟𝑔𝑔𝐹𝐹𝑧𝑧 − 𝑇𝑇𝑙𝑙 (1) 
𝐼𝐼𝑝𝑝𝑥𝑥�̈�𝜑𝑝𝑝 = 𝑟𝑟𝑝𝑝𝐹𝐹𝑧𝑧 + 𝑇𝑇𝑚𝑚 (2) 

Due to mounting and manufacturing error (Fig. 17) or teeth profile modifications, a local gap 
between mating teeth can appear, it is called geometric transmission error, e(t); it can be calculated 
through the UTCA. The linear dynamic transmission error (DTE) along the line of action is defined as: 
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𝑎𝑎 = cos𝛼𝛼 cos𝛽𝛽

𝑒𝑒(𝑡𝑡) = �𝑒𝑒𝑗𝑗cos(𝑗𝑗𝜔𝜔𝑚𝑚

𝑠𝑠

𝑗𝑗=1

𝑡𝑡) (4) 

β is the spiral angle and α is the normal pressure angle, 

 
Fig. 17. Geometric transmission error: lack of material along the line of action 

The dynamic load of pinion and its component along the line of action 𝐹𝐹𝑛𝑛 and along the 𝑧𝑧 −axis 𝐹𝐹𝑧𝑧 
can be calculated as: 

𝐹𝐹𝑛𝑛 = 𝐾𝐾𝑚𝑚(𝑡𝑡)𝑓𝑓(𝜆𝜆 − 𝑒𝑒) + 𝐶𝐶𝑚𝑚(�̇�𝜆 − �̇�𝑒) (5) 
𝐹𝐹𝑧𝑧 = −𝐹𝐹𝑛𝑛𝑎𝑎 (6) 

where: 

𝑓𝑓(𝜆𝜆 − 𝑒𝑒) = �
𝜆𝜆 + 𝑏𝑏 − 𝑒𝑒, 𝜆𝜆 − 𝑒𝑒 > 𝑏𝑏
0, −𝑏𝑏 ≤ 𝜆𝜆 − 𝑒𝑒 ≤ 𝑏𝑏
𝜆𝜆 − 𝑏𝑏 − 𝑒𝑒, 𝜆𝜆 − 𝑒𝑒 < −𝑏𝑏

 (7) 

 𝑓𝑓(𝜆𝜆 − 𝑒𝑒) is the function of the linear displacement (7), Fig. 18. This function with the multiplication 
of stiffness returns the restoring force function [33]. 

Whenever 𝜆𝜆 − 𝑒𝑒 is between −𝑏𝑏 and +𝑏𝑏, the contact loss happens (single-sided impact) [34, 35]. In 
the case of forward motion, for 𝜆𝜆 − 𝑒𝑒 > 𝑏𝑏, the mesh is expected to be in the forward contact  (desired 
situation), while if  𝜆𝜆 − 𝑒𝑒 < −𝑏𝑏, undesired backside contact happens (double-sided impact); see Ref. 
[35, 36].  

 
Fig. 18. Equivalent gear model and backlash function. 

The meshing stiffness of the gear pair is a time-varying periodic function, with the fundamental 
mesh frequency  𝜔𝜔𝑚𝑚 = 2𝜋𝜋

60
𝑁𝑁1𝛾𝛾𝑠𝑠; the equivalent meshing stiffness Fourier series is given by: 

b b k(t) k(t) 

c c 
-b 

b 𝜆𝜆 − 𝑒𝑒 

𝑓𝑓(𝜆𝜆 − 𝑒𝑒) 
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  �
𝜔𝜔𝑚𝑚 =

2𝜋𝜋
60

𝑁𝑁1𝛾𝛾𝑠𝑠

𝑠𝑠 = �𝑁𝑁𝑝𝑝 − 1�/2
        ⇒    𝐾𝐾𝑚𝑚(𝑡𝑡) = 𝑘𝑘0 + �𝑎𝑎𝑗𝑗cos(𝑗𝑗𝜔𝜔𝑚𝑚

𝑆𝑆

𝑗𝑗=1

𝑡𝑡) +�𝑏𝑏𝑗𝑗sin(𝑗𝑗𝜔𝜔𝑚𝑚

𝑆𝑆

𝑗𝑗=1

𝑡𝑡) (8) 

From the pure elastic deformation obtained from the LTCA and UTCA, see Fig. 15 , the meshing 
stiffness for both directions of motions is extracted (see Fig. 19); moreover, Fig. 20 represents the 
geometric transmission error. 

a) Forward motion b) Revese motion 

  
Fig. 19. Mesh stiffness diagram: 

a) forward motion, b) reverse motion; ▬ Fitted curve by Fourier series, ● FEM results. 
 

a) Forward motion 
 

b) Revese motion 

  
Fig. 20. Geometric transmission error on the line of action: 

a) forward motion, b) reverse motion; ▬ Fitted curve by Fourier series, ● FEM results. 
 

Fig. 21. Dynamic model of a reduction gear system with one DOF 

Therefore, by combining Eqs. (1) and (2), Eq. (9) is written in terms of DTE: 
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𝑚𝑚eq�̈�𝜆 + 𝐶𝐶𝑚𝑚(�̇�𝜆 − �̇�𝑒) + 𝐾𝐾𝑚𝑚(𝑡𝑡)𝑓𝑓(𝜆𝜆 − 𝑒𝑒) = 𝑇𝑇eq (9) 
where,  

 𝑚𝑚eq = �
�𝑟𝑟𝑝𝑝�

2

𝐼𝐼𝑝𝑝𝑥𝑥
+
�𝑟𝑟𝑔𝑔�

2

𝐼𝐼𝑔𝑔
𝑦𝑦 �

−1

, 𝑇𝑇eq = �
𝑇𝑇𝑚𝑚
𝑟𝑟𝑝𝑝
� (10) 

In order to normalize the governing equation, new parameters are introduced as follows: 

𝜁𝜁 =
𝐶𝐶𝑚𝑚

2𝑚𝑚eq𝜔𝜔𝑛𝑛
,  𝑇𝑇�𝑚𝑚 =

1
𝑏𝑏𝑚𝑚eq𝜔𝜔𝑛𝑛2

�
𝑇𝑇𝑚𝑚
𝑟𝑟𝑝𝑝
� 

𝜏𝜏 = 𝜔𝜔𝑛𝑛𝑡𝑡 𝜆𝜆′ =
d𝜆𝜆
d𝜏𝜏

 𝜆𝜆 =
𝜆𝜆
𝑏𝑏

        𝜔𝜔𝑛𝑛 = �
𝑘𝑘0
𝑚𝑚eq

𝑒𝑒 =
𝑒𝑒
𝑏𝑏

 
(11) 

Consequently, Eq. (9) can be rewritten as follows: 

�̅�𝜆′′ + 𝐾𝐾�𝑚𝑚(𝜏𝜏)𝑓𝑓(λ� − e�) + 2𝜁𝜁(�̅�𝜆′ − �̅�𝑒′) = 𝑇𝑇�𝑚𝑚 (12) 

𝑓𝑓(λ� − e�) = �
λ� − e� + 1, λ� − e� > 1
0, −1 ≤ λ� − e� ≤ 1
�̅�𝜆 − e� − 1, λ� − e� < −1

 (13) 

𝐾𝐾𝑚𝑚(𝜏𝜏) = 1 + �
𝑎𝑎𝑗𝑗

𝑚𝑚eq𝜔𝜔𝑛𝑛2
cos (𝑗𝑗𝜔𝜔𝑚𝑚

𝑆𝑆

𝑗𝑗=1

𝜏𝜏) + �
𝑏𝑏𝑗𝑗

𝑚𝑚eq𝜔𝜔𝑛𝑛2
sin (𝑗𝑗𝜔𝜔𝑚𝑚

𝑆𝑆

𝑗𝑗=1

𝜏𝜏) (14) 

Eq. (12) is a nonlinear differential equation with time-varying parameters. This equation is solved 
numerically based on an implicit fifth-order Runge-Kutta scheme (RADAU) coded in FORTRAN 
language, the algorithm is extremely stable and accurate, see e.g. Refs. [3, 21, 22, 33, 36]. 

3.1 Numerical results 

As explained before, Eq.(12) describes a non-linear differential equation with time-varying 
coefficient, which parametrically excites system in addition to the external constant torque (power 
transmitted). The time responses calculated by direct simulation are used for building amplitude–
frequency diagrams and bifurcation diagrams of Poincaré maps, obtained by varying the excitation 
frequency: the pinion rotation speed. For each simulation the transient is separated from the “steady-
state” for each frequency, i.e. the first 1000 periods are deemed transient and beyond that, the influence 
of frequency variation is assumed to be expired, therefore, the first 1000 periods of simulation are never 
recorded and analyzed. The Poincaré map diagrams and phase portraits are derived from at the last 200 
periods of time responses. Each Poincaré map is obtained by sampling the time histories with the same 
period of the meshing frequency. 

For all simulations the torque applied to the pinion is 4754 Ib⋅in (537.12 N.m) which correspond to 
the 50% of the nominal torque. Fig. 22 shows the bifurcation diagram of the Poincaré maps, for each 
frequency a one-dimensional Poincaré map section is represented, i.e. for each frequency 200 points 
are plotted. By means of this diagram the dynamic behavior of the system is represented, in Fig. 22 the 
gear pairs rotate in the forward direction. It should be noted that black dots indicate the responses during 
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the backward simulation, i.e. the rotation speed starts from highest to the lowest value (from high to 
low excitation frequency); red dots indicate the forward simulation (from low to high speed).  

Let us consider the forward simulation, the system is excited from low frequency and the frequency 

is increasing (i.e., sweeping up the frequency), the response will grow until the point that any further 

increase in excitation frequency will cause a spontaneous jump in the amplitude of DTE (see Table 2 – 

Case D; starting point with 𝜔𝜔𝑚𝑚
𝜔𝜔𝑛𝑛

= 0.3266), after the jump a further increasing of the frequency causes a 

reduction of amplitude see Fig. 22b; this peak is a resonance caused by the third super-harmonic of the 

meshing stiffness. From the bifurcation diagram, Fig. 22a, one can see that up to 𝜔𝜔𝑚𝑚
𝜔𝜔𝑛𝑛

= 0.46 the system 

response is periodic (single line of the diagram). In Table 2 the list of different jumps is reported. The 

resonance close to 𝜔𝜔𝑚𝑚
𝜔𝜔𝑛𝑛

= 0.5 is due to the second super-harmonic of the meshing stiffness and the main 

resonance close to 𝜔𝜔𝑚𝑚
𝜔𝜔𝑛𝑛

= 1 is due to the fundamental harmonic; all resonances have a strong sub-

harmonic character. Close to 𝜔𝜔𝑚𝑚
𝜔𝜔𝑛𝑛

= 2 an instability due to the principal parametric resonance is present, 

the parametric resonance branch shows a softening character. Such softening behaviors are due to the 

loosing of contact that take place when the inertia forces exceed the static contact force induced by the 

applied torque. 

The sweep-down simulation completes the analysis allowing to follow all stable branches, in 

particular the softening branches are almost completely followed. It is interesting to note that a small 

portion of a hardening branch is caught, this happens for very high vibration amplitudes when the 

backside contact takes place; the hardening branch starts from the ending point of case A with 𝜔𝜔𝑚𝑚
𝜔𝜔𝑛𝑛

=

0.5072 (see Table 2; case A) to starting point of case B with 𝜔𝜔𝑚𝑚
𝜔𝜔𝑛𝑛

= 0.4716 (see Table 2; case B). 

From a theoretical point of view, different solutions of the governing equation could exist; however, 

some of them are practically not feasible and cannot be physically achieved. The transition appearing 

in proximity of the jumps are not recorded. Besides, the system experiences unsteady phenomena, 

which can be chaotic or quasiperiodic, when it approaches super-harmonic resonances (𝜔𝜔𝑚𝑚
𝜔𝜔𝑛𝑛

≈

0.46, 0.51, respectively for backward and forward simulations). 
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Fig. 22. Dynamic response for forward motion, torque 4754 Ib⋅in, a) Bifurcation diagram, b) 

amplitude–frequency diagram. Forward simulation (red dot), Backward simulation (black dot). 
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The backlash function is the main source of nonlinearity; the system could experience three 
different states: drive side contact, tooth separation, and backside contact (coast-side contact). As it was 
explained, when the amplitude of 𝜆𝜆 (DTE) is between -1 and 1, the tooth separation take place (see 
cases A, B, C and D in Table 2). Teeth separation occurs in all the three frequency ranges: fundamental, 
super-harmonic, and sub-harmonic, for the backward and forward simulations. As explained, as soon 
as the nondimensional amplitude of the response gets lower than -1, the undesired backside contact 
occurs (see cases 𝐴𝐴′ in Table 2) near to the super-harmonic frequency region for the backward 
simulation, i.e., reducing speed. 

Table 2. The properties of starting and ending points of separation and backside contact 
for the forward motion 

 
Backward simulation Forward simulation 

starting point ending point starting point ending point 

Te
et

h 
se

pa
ra

tio
n 

𝐴𝐴 

𝝎𝝎𝒎𝒎 𝝎𝝎𝒏𝒏�  2.1043 0.5072 1.8911 2.1062 

min (𝜆𝜆) 0.9967 -0.9887 0.9017 0. 9996 
max (𝜆𝜆) 1.5879 2.0266 1.6379 1.5871 

𝐵𝐵 

𝝎𝝎𝒎𝒎 𝝎𝝎𝒏𝒏�  0.4716 0.3516 0.8490 1.1516 

min (𝜆𝜆) 0.8851 0.3153 0.7031 0.9700 
max (𝜆𝜆) 1.6877 1.8971 1.6216 1.5149 

𝐶𝐶 

𝝎𝝎𝒎𝒎 𝝎𝝎𝒏𝒏�  3.362 0.2949 0.4851 0. 5120 

min (𝜆𝜆) 0.9994 0.7605 0. 9384 0.9945 

max (𝜆𝜆) 1.5728 1.7164 1.6438 1.5834 

𝐷𝐷 

𝝎𝝎𝒎𝒎 𝝎𝝎𝒏𝒏�  

No separation 
0. 3266 0. 3362 

min (𝜆𝜆) 0.9487 0.9994 
max (𝜆𝜆) 1.6081 1.5728 

B
ac

ks
id

e 
co

nt
ac

t 

𝐴𝐴′ 

𝝎𝝎𝒎𝒎 𝝎𝝎𝒏𝒏�  0.5062 0.4726 
No backside contact min (𝜆𝜆) -1.3628 -1.0129 

max (𝜆𝜆) 2.4443 2.3311 

A further analysis is now carried out in the case of reverse direction, the system is investigated by 
means of Bifurcation and RMS diagrams (see Fig. 23). Compared to forward motion, here, just tooth 
separation occurred (see Table 3). In Fig. 23-a, one can see two diverse trends: periodic (single line), 
2T-subharmonic (2 lines) during both forward and backward simulations. No hardening branches (no 
backside contact) nor complex dynamics are found in this case. 
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Fig. 23. Dynamic response for reverse motion, torque 4754 Ib⋅in, a) Bifurcation diagram, b) 

amplitude–frequency diagram. Forward simulation (red dot), Backward simulation (black dot). 

During reverse motion, teeth separation is the only phenomena that occurs in all the three frequency 
ranges: fundamental, super-harmonic, and sub-harmonic, for the backward and forward simulations 
(see Table 3).  

Table 3. The properties of starting and ending points of separation and backside contact for the reverse motion 

 
Backward simulation Forward simulation 

starting point ending point starting point ending point 

Te
et

h 
se

pa
ra

tio
n 

A 

𝝎𝝎𝒎𝒎 𝝎𝝎𝒏𝒏�  2.0418 1.3024 1.9573 2.0438 

min (𝜆𝜆) 0.9993 -0.9943 0.8827 0.9998 
max (𝜆𝜆) 2.1285 2.9623 2.2207 2.1279 

B 

𝝎𝝎𝒎𝒎 𝝎𝝎𝒏𝒏�  1.0795 0.6551 0.9172 1.0795 

min (𝜆𝜆) 0.9940 -0.9880 0.6418 0.9940 
max (𝜆𝜆) 2.0507 2.8879 2.2602 2.0507 

C 

𝝎𝝎𝒎𝒎 𝝎𝝎𝒏𝒏�  0.5072 0. 4438 0.4927 0.5072 

min (𝜆𝜆) 0.9987 0.5340 0.8859 0.9987 
max (𝜆𝜆) 2.0575 2.3478 2.1534 2.0575 

The nonlinear dynamics of the most interesting regimes are shown in Fig. 24; time histories, phase 

portraits, and Poincaré maps are illustrated for four different frequency ranges: Case I) 𝝎𝝎𝒎𝒎
𝝎𝝎𝒏𝒏

= 0.459, the 

response is non periodic and the Poincaré map presents a complex shape; Case II) 𝝎𝝎𝒎𝒎
𝝎𝝎𝒏𝒏

= 1.684 the 

Poincaré maps show two points, the response is 2T subharmonic due to the nonlinearity induced by the 

teeth separation; Case III) 𝝎𝝎𝒎𝒎
𝝎𝝎𝒏𝒏

= 1.098, forward, shows a ¼ subharmonic response; Case IV) 𝝎𝝎𝒎𝒎
𝝎𝝎𝒏𝒏

=

0.512, forward, shows another unsteady response having probably a chaotic character as the Poincaré 

maps appears fractal with a coherent structure. 
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State: 

(
𝝎𝝎𝒎𝒎

𝝎𝝎𝒏𝒏
) 

Phase portrait 
Horizontal axis: 𝝀𝝀(𝝉𝝉) 

Vertical axis: �̇�𝝀(𝝉𝝉) 

Poincaré map 
Horizontal axis: 𝝀𝝀(𝝉𝝉𝟎𝟎 + 𝒊𝒊𝒊𝒊) 

Vertical axis: �̇�𝝀(𝝉𝝉𝟎𝟎 + 𝒊𝒊𝒊𝒊) 

Time Response 
Horizontal axis: 𝝉𝝉 = 𝝎𝝎𝒏𝒏𝒕𝒕 

Vertical axis: 𝝀𝝀(𝝉𝝉) 
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Fig. 24. Nonlinear vibration behavior in different frequency ratios for backward simulation and forward 

motion 
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3.2. Backlash effects on the dynamic behavior 

Backlash is required to avoid binding of the mating gears, which causes heat production, noise, 
anomalous wear, overload, and/or drive failure. In addition to preventing binding, dimensional 
limitations required for cost-effective production induce backlash in gear systems. Backlash is created 
during the gear manufacturing process by making each gear tooth one-half as thin as the backlash size 
required for the application. When two of such gears run together (i.e., mate), their allowances add up 
to the whole backlash [37]. As backlash increases due to the tooth wear, here the effect of backlash is 
investigated by decreasing the thickness of teeth. A static FEM simulation is carried out to calculate the 
mesh stiffness for each case with different backlash. Fig. 25 represents the mesh stiffness in the form 
of Fourier transform coefficients for forward motion. One can see that, by increasing the backlash, the 
mean value of mesh stiffness decreased. The values of the first harmonic for all cases are about 5 time 
higher than the second harmonic’s values and values are insignificant from harmonic number 6th. 

 
Fig. 25. mesh stiffness for cases with different backlash in form of Fourier transform 

coefficients: forward motion, ● b = 0.01 in, ● b = 0.02 in, ● b = 0.03 in, ● b = 0.04 in 

To illustrate the effect of backlash on the dynamic response of the system, the governing equation 
is solved by considering diverse values for the backlash (see Fig. 26). By comparing these results, it is 
evident that backlash affects the dynamic responses of the system from two different points of view: 
maximum amplitude of the response and behavior of the system when the frequency is close to the 
primary resonance. Increasing the backlash leads to a decrease in the probability of backside contact. 
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Fig. 26. Effect of backlash on dynamic response during the forward motion 

● b = 0.01 in, ● b = 0.02 in, ● b = 0.03 in, ● b = 0.04 in 

3.3 Damping ratio effects on the dynamic behavior 

In this section, the role of damping ratio on the nonlinear dynamics is investigated. Different values 
of the damping ratio are considered (ζ = 0.01, 0.03, and 0.05 [35]), all the other parameters are kept 
fixed, the frequency-response curves are shown in Fig. 27. One can find that with the increase of the 
damping ratio the amplitude of vibration decreases accordingly, and the double-sided impact would 
vanish gradually (see Fig. 27 and Fig. 28); moreover, the increase of the damping ratio could control 
the behavior of impact. It can also be observed that the chaotic and subharmonic resonances may exist 
depending upon the damping. 

 
Fig. 27. Effect of damping ratio on Dynamic response for the forward motion 

● ζ = 0.01, ● ζ = 0.03, ● ζ = 0.05 
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Fig. 28. Bifurcation diagram to show effect of damping ratio on Dynamic response during the 

forward motion; ● ζ = 0.01, ● ζ = 0.03, ● ζ = 0.05 

Conclusion 

This paper investigates the nonlinear dynamic behavior of a spiral bevel gear pair for the two-
directions of rotation. The calculation of an accurate mesh stiffness is the first step of the study. The 
statical results are carried out by executing the finite element method for the full spiral bevel gear 3D 
model. Preliminary static results, i.e., root stress, force on the tooth surface, and pressure distribution 
on the tooth surface are illustrated. Due to the difference of teeth trace, two different mesh stiffness are 
extracted and applied into the dynamic model. The dynamic model, which is nonlinear and time-
dependent parametrically excited system, is analyzed by using an implicit Runge–Kutta algorithm. The 
dynamic responses of the system are presented in two main forms: amplitude-frequency and bifurcation 
diagrams, for both forward and reverse motions.  

The results show that the system experienced three types of contact, i.e., drive side contact, 
separation tooth, and backside contact. One of the most important parameters having a remarkable effect 
on the dynamic response of the system is the backlash, which leads to nonlinearity in the dynamic model 
of the system. Four different values for transverse backlash are considered in this study: big backlash 
(0.04 in), where backside contact is not observed; small backlash (0.01 in, 0.02 in, and 0.03 in), where 
unwanted backside contact occurs. The results show that the vibration amplitude increases by increasing 
the backlash. Eventually, tooth separation occurs for all backlash values for some specific frequency 
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ranges. These results are important from the practical point of view to understand how to avoid tooth 
separation and backside contacts.  

The effect of damping ratio on the gear dynamic characteristics is also investigated. The results 
show that the damping induced by the lubrication effectively reduces gear vibration in resonance and 
super-harmonic resonance conditions. A lubricant with a higher viscosity gives a larger damping ratio 
and it diminished the vibration more significantly. 
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Appendix A. Important data of the analyzed spiral bevel gear pair 

Table 4. System data [20, 28] 
Hand of pinion Left 
Shaft offset 0 
Shaft angle 90 Deg 
Loaded side of gear Convex 
Driver Pinion 
Coefficient of friction 0 
Pinion speed [rpm] 100 
Diametral pitch [1/in] 5.141 
Damping ratio [38], ζ 0.01 

 

Table 5. Pinion and gear data  [20, 28] 
Tooth parameters Pinion Gear 

No. of teeth 12 36 
Transverse Circular Tooth 
Thickness at Pitch Cone [in] 0.32 0.15 

Outer cone distance [in] 3.691 3.691 
Face Width [in] 1.0 1.0 
Face Angle [deg] 22.31667 72.5 
Back Angle [deg] 18.433 71.5666 
Spiral Angle [deg] 35 35 
Pitch Angle [deg] 18.433 71.5666 
Diameter of cylinder at the 
base of the tooth [in] 1.138 61.5 

Young’s Modulus [psi] 30.0×106 30.0×106 
Poisson’s Ratio 0.3 0.3 
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Machine settings Concave Convex Concave Convex 
Radial setting [in] 2.947802 2.801049 2.85995 2.85995 
Blank offset [in] 0.1545759 -0.1742616 0 0 
Root Angle [deg] 16.8666 16.8666 67.68333 67.68333 
Machine Center to Back [in] -0.04023062 0.05414291 0 0 
Sliding Base [in] 0.01167273 -0.01570932 0 0 
Cradle Angle [deg] 63.94203 53.92599 59.2342023 59.2342023 
Ratio of Roll 3.242698536 3.105176807 1.051674445 1.051674445 

Cutter geometry Concave Convex Concave Convex 
Cutter type Straight Straight Straight Straight 
Point radius [in] 2.965621 3.071306 3.0325 2.9675 
Blade angle [deg] 18.6015 24.90 22.0 22.0 
Edge radius [in] 0.045 0.045 0.01 0.01 
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