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A PDE WITH DRIFT OF NEGATIVE BESOV INDEX AND

LINEAR GROWTH SOLUTIONS

ELENA ISSOGLIO AND FRANCESCO RUSSO

Abstract. This paper investigates a class of PDEs with coefficients
in negative Besov spaces and whose solutions have linear growth. We
show existence and uniqueness of mild and weak solutions, which are
equivalent in this setting, and several continuity results. To this aim, we
introduce ad-hoc Besov-Hölder type spaces that allow for linear growth,
and investigate the action of the heat semigroup on them. We conclude
the paper by introducing a special subclass of these spaces which has
the useful property to be separable.

Key words and phrases. Parabolic PDEs with linear growth; distri-
butional drift; Besov spaces.
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1. Introduction

The objective of this paper is to study existence, uniqueness and conti-
nuity results for solutions to a class of parabolic PDEs with negative Besov
drifts and unbounded solutions. In particular, the class of parabolic linear
PDEs studied in this work is of the form

(1)

{

∂tv +
1
2∆v +∇v b = λv + g, on [0, T ]× R

d

v(T ) = vT ,

where λ is a real parameter, and b and g are continuous functions of time
taking values in a negative Besov space C(−β)+ with 0 < β < 1

2 , see defini-
tions and details below. Here the product ∇v b := ∇v · b needs to be defined
using pointwise products, because the term b is a distribution.

Our main motivation to study (1) comes from stochastic analysis. Indeed,
PDEs of the form (1) naturally arise in the context of stochastic differential
equations, particularly when setting and solving them as martingale prob-
lems. In the companion paper [11] we will extensively use all results on PDE
(1) found in the present paper.

PDEs with distributional coefficients have been studied in the literature
before, see for example [3, 5, 8] to name a few. Here we do not require the use
of Gubinelli’s paracontrolled distributions or Hairer’s regularity structures
so that the Besov index of the space where the distributional coefficient b
lives cannot be lower than −1

2 . The main novelty is that we allow terminal
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conditions, and hence the solutions, to have linear growth, which is not the
case in the existing literature.

For this reason in Section 3 we introduce a suitable class of functions
spaces, denoted by DCα, which contains all functions such that their deriva-
tive is an element of Cα. We also investigate the action of the semigroup on
these spaces, in particular Schauder’s estimates and Bernstein’s inequalities
in the DCα spaces, see Lemmata 3.3 and 3.4. In Section 4 We introduce
the notion of weak and mild solutions for this PDE and show that they are
equivalent in Proposition 4.5. We then show existence and uniqueness of
mild solutions by fixed point arguments in Theorem 4.7, using properties of
the heat semigroup. Furthermore we show in Proposition 4.13 some (uni-
form) bounds on the solution of a special case of the PDE, given by (47).
We also exhibiting several continuity results for the solutions with respect to
the functions g, b, vT , both in the case when the solutions have linear growth
and in the case when they are bounded. This is done in Lemmata 4.17 and
4.19. In the last section we introduce and study a further class of spaces,
which are used in our companion paper [11] for applications in stochastic
analysis, together with all the results on the PDE. One of the important
feature of these spaces is the fact that they are separable, which is not the
case for the standard separable Besov-Hölder spaces.

The paper is organised as follows. In Section 2 we introduce the framework
in which we work, define some tools like the pointwise product and state
some Assumptions. In Section 3 we define some new functions spaces that
allow linear growth and derive useful properties of how the heat semigroup
acts on them. The PDE (1) is studied in Section 4. In Section 5 we introduce
and study a class of Besov type spaces which is separable.

2. Setting and preliminary results

2.1. Function spaces. We use the notation C0,1 := C0,1([0, T ] × R
d) to

indicate the space of functions with gradient in x continuous in (t, x). By a
slight abuse of notation we use the same notation C0,1 for functions which
are R

d-valued. When f : Rd → R
d is differentiable, we denote by ∇f the

matrix given by (∇f)i,j = ∂ifj. When f : Rd → R we denote the Hessian

matrix of f by Hess(f). Given any function f defined on [0, T ]×R
d we often

denote f(t) := f(t, ·).
Let S = S(Rd) be the space of Schwartz functions on R

d and S ′ = S ′(Rd)
the space of Schwartz distributions. We denote by F and F−1 the Fourier
transform on S and inverse Fourier transform respectively, which are ex-
tended to S ′ in the standard way. For γ ∈ R we denote by Cγ = Cγ(Rd) the
Besov space (or Hölder-Zygmund space) defined as

(2) Cγ :=

{

f ∈ S ′ : sup
j∈N

2jγ‖F−1(ϕjFf)‖∞ <∞

}

,
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where (ϕj) is some partition of unity. ‖·‖∞ denotes the usual sup-norm. For
more details see for example [1, Section 2.7]. Note that for γ′ < γ one has

Cγ ⊂ Cγ′

. If γ ∈ R
+ \ N then the space coincides with the classical Hölder

space, namely the space of bounded functions with bounded derivatives up to
order ⌊γ⌋ and such that the ⌊γ⌋th derivative is (γ−⌊γ⌋)-Hölder continuous.
For example if γ ∈ (0, 1) the space Cγ can be equipped with the classical
γ-Hölder norm

(3) ‖f‖γ := ‖f‖∞ + sup
x 6=y,|x−y|<1

|f(x)− f(y)|

|x− y|γ
,

and if γ ∈ (1, 2) then norm is given by

(4) ‖f‖∞ + ‖∇f‖∞ + sup
x 6=y,|x−y|<1

|∇f(x)−∇f(y)|

|x− y|γ
.

We remark that it is equivalent in the previous formulations of the norms to
take the supremum over the whole space rather than on |x − y| < 1. Note
that we use the same notation Cγ to indicate R-valued functions but also
R
d- or Rd×d-valued functions. It will be clear from the context which space

is needed.
We denote by CTC

γ the space of continuous functions on [0, T ] taking
values in Cγ , that is CTC

γ := C([0, T ]; Cγ). For any given γ ∈ R we denote
by Cγ+ and Cγ− the spaces given by

Cγ+ := ∪α>γC
α, Cγ− := ∩α<γC

α.

Note that Cγ+ is an inductive space. We will also use the spaces CTC
γ+ :=

C([0, T ]; Cγ+). We remark that f ∈ CTC
γ+ if and only if there exists α > γ

such that f ∈ CTC
α, see [10, Lemma B.2]. Similarly, we use the space

CTC
γ− := C([0, T ]; Cγ−); in particular we observe that if f ∈ CTC

γ− then
for any α < γ we have f ∈ CTC

α. Note that if f is continuous and such
that ∇f ∈ CTC

0+ then f ∈ C0,1.
Finally for a general Banach space (B, ‖ · ‖B) we introduce the family of

ρ-equivalent norms on CTB, denoted by ‖ · ‖
(ρ)
CTB and defined for all ρ ≥ 0

by ‖f‖
(ρ)
CTB = supt∈[0,T ] e

−ρ(T−t)‖f(t)‖B . If ρ = 0 this is the standard norm
in CTB.

2.2. The heat semigroup in S ′. Let (Pt)t denote the semigroup gen-
erated by 1

2∆ on S, in particular for all φ ∈ S we define (Ptφ)(x) :=
∫

Rd pt(x− y)φ(y)dy, where the kernel p is the usual heat kernel pt(x− y) =
1

(2πt)d/2
exp{− |x−y|2

2t }. It is easy to see that Pt : S → S. Moreover we can

extend it to S ′ by dual pairing (and we denote it with the same notation by
simplicity). One has 〈Ptψ, φ〉 = 〈ψ,Ptφ〉 for each φ ∈ S and ψ ∈ S ′, using
the fact that the kernel is symmetric.

Next we state and prove a joint continuity result for the heat semigroup
acting on S ′. To this aim, we first recall some facts about the Schwartz space
S ′, which is an inductive space. We recall that [13, Section 7.3] says that
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for any ϕ ∈ S, f ∈ S ′ there exists a constant C(f) and an integer N ∈ N

such that

(5) |〈ϕ, f〉| ≤ C(f) sup
y∈Rd,|α|≤N

|Dαϕ(y)| (|y|2 + 1)N .

From this it follows that the space S ′(Rd) can be expressed as the space
S ′(Rd) = ∪N∈NE

∗
N equipped with the inductive topology, where EN is the

space of smooth functions ϕ : Rd → R such that

‖ϕ‖N := sup
y∈Rd,|α|≤N

|Dαϕ(y)| (|y|2 + 1)N <∞.

Lemma 2.1. Let f ∈ CTS
′(Rd). Then there exists N ∈ N and a constant

C(f) independent of time such that

sup
t∈[0,T ]

|〈f(t), ϕ〉| ≤ C(f) sup
y∈Rd,|α|≤N

|Dαϕ(y)| (|y|2 + 1)N .

for all ϕ ∈ S(Rd). In particular there exists N such that f ∈ CTE
∗
N .

Proof. Since t 7→ f(t) is continuous in S ′(Rd) then (f(t))t∈[0,T ] is a compact

in S ′(Rd), so there exists N such that f : [0, T ] → E∗
N and such that

(f(t))t∈[0,T ] is compact in E∗
N by [10, Remark B.1]. In particular, (f(t))t∈[0,T ]

is bounded in E∗
N , which implies that

sup
t∈[0,T ]

‖f(t)‖EN→R < C(f) <∞,

and thus

sup
t∈[0,T ]

|〈f(t), ϕ〉| ≤ C(f)‖ϕ‖N = C(f) sup
y∈Rd,|α|≤N

|Dαϕ(y)| (|y|2 + 1)N

for any ϕ ∈ S(Rd). �

Lemma 2.2. Let h ∈ CTS
′. Then the function Pth(r) is jointly continuous

in (t, r) ∈ [0, T ]2 with values in S ′.

Proof. By means of Fourier transform it is enough to prove that (r, t) 7→
F(Pth(r)) is continuous with values in S ′. We can write

(6) F(Pth(r))(ξ) = [F(exp(it·))Fh(r)](ξ) = exp(−
t

2
ξ2)Fh(r)(ξ).

Expression (6) has to be understood as an element of S ′. When t > 0 the
product of ξ 7→ exp(− t

2ξ
2) ∈ S and Fh(r) ∈ S ′ belongs to S ′. In that case

F(Pth(r))(ξ) = 〈(Fh(r))(ξ), exp(
−tξ2

2
)〉 ∈ R,

so that (6) is a function.

We now prove that (t, r) 7→ exp(−tξ2

2 )Fh(r)(ξ) is continuous with values
in S ′. By Lemma 2.1 let N be such that Fh ∈ CTE

∗
N and let (tn, rn) →
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(t0, r0). Let m ≥ N to be chosen later. We have (omitting the variable ξ in
Fh(r) for brevity)

‖ exp(−
tn
2
ξ2)Fh(rn)− exp(−

t0
2
ξ2)Fh(r0)‖E∗

m

≤‖ exp(−
tn
2
ξ2)[Fh(rn)−Fh(r0)]‖E∗

m

+‖[exp(−
tn
2
ξ2)− exp(−

t0
2
ξ2)]Fh(r0)‖E∗

m

=:I1(n) + I2(n).

We know that

I1(n) = sup
φ∈S,‖φ‖Em≤1

|〈Fh(rn)−Fh(r0), φ exp(−
tn
2
ξ2)〉|.

For φ ∈ S we have

|〈Fh(rn)−Fh(r0), φ exp(−
tn
2
ξ2)〉| ≤ ‖Fh(rn)−Fh(r0)‖E∗

N
‖φ exp(−

tn
2
ξ2)‖EN

and the first term goes to zero as n→ ∞ since Fh ∈ CTE
∗
N . We prove that

(7) ‖φ exp(−
tn
2
ξ2)‖EN

≤ C1‖φ‖Em1
,

for some m1 ≥ N , where C1 is a constant independent of n. Let α be a
multi index such that |α| ≤ N . We have

(1 + |ξ|2)NDα(φ exp(−
tn
2
ξ2))

is a linear combination of

P (ξ; tn)D
γφ(ξ) exp(−

tn
2
ξ2)

where P (ξ; tn) is a polynomial in ξ with coefficient depending on tn that can
be bounded from above by a polynomial in ξ independent of tn (possibly
depending on T ) and |γ| ≤ N . It is clear that there exists an integer m1

and a constant C1 > 0 such that P (ξ; tn) ≤ C1(1 + |ξ|2)m1 . Thus (7) holds.
Concerning I2(n) we have

I2(n) = sup
φ∈S,‖φ‖Em≤1

|〈Fh(r0), [exp(−
tn
2
ξ2)− exp(−

t0
2
ξ2)]φ〉|,

so for φ ∈ S we have

|〈Fh(r0), [exp(−
tn
2
ξ2)− exp(−

t0
2
ξ2)]φ〉|

≤ ‖Fh(r0)‖E∗

N

tn − t0
2

‖ξ2φ

∫ 1

0
exp(−

tna+ (1− a)t0
2

ξ2)da‖EN
.

Since tn − t0 → 0 and ‖Fh(r0)‖E∗

N
is finite, it is enough to prove that

(8) ‖ξ2φ

∫ 1

0
exp(−

tna+ (1− a)t0
2

ξ2)da‖EN
≤ C2‖φ‖Em2
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for some m2, where C2 is independent of n. Let α be a multi index such
that |α| ≤ N . Then

(1 + |ξ|2)NDα

(

ξ2φ(ξ)

∫ 1

0
exp(−

tna+ (1− a)t0
2

ξ2)da

)

is a linear combination of terms of the type

P (ξ; tn)D
γφ(ξ)

∫ 1

0
exp(−

tna+ (1− a)t0
2

ξ2)da

where P (ξ; tn) is a polynomial in ξ with coefficient depending on tn that can
be bounded from above by a polynomial in ξ independent of tn (possibly
depending on T ) and |γ| ≤ N . As above, there exists an integer m2 and a
constant C2 > 0 such that P (ξ; tn) ≤ C2(1 + |ξ|2)m2 . Thus(8) holds.

Finally we conclude that I1(n) + I2(n) → 0 as n → ∞ by setting m =
m1∨m2 and using the fact that the sequence of seminorms is monotone. �

Remark 2.3. The semigroup Pt and ∇ commute in S ′.
Indeed let h ∈ S ′. We compute the (generalised) gradient of Pth, that is,

for all φ ∈ S we have

〈∇Pth, φ〉 : = −〈Pth, divφ〉

= −〈h, Ptdivφ〉

= −〈h, divPtφ〉

= 〈∇h, Ptφ〉

= 〈Pt∇h, φ〉.

2.3. Estimates in Cγ for the heat semigroup. In this section, we are
interested in the action of the semigroup on elements of Besov spaces Cγ .
These estimates are known as Schauder’s estimates (for a proof we refer to
[4, Lemma 2.5], see also [7] for similar results).

Lemma 2.4 (Schauder’s estimates). Let f ∈ Cγ ⊂ S ′ for some γ ∈ R. Then
for any θ ≥ 0 there exists a constant c such that

(9) ‖Ptf‖γ+2θ ≤ ct−θ‖f‖γ

for all t > 0.
Moreover for f ∈ Cγ+2θ and for any θ ∈ (0, 1) we have

(10) ‖Ptf − f‖γ ≤ ctθ‖f‖γ+2θ.

Note that from (10), (9) and the semigroup property, it readily follows
that if f ∈ Cγ+2θ for some 0 < θ < 1, then for t > s > 0 we have

(11) ‖Ptf − Psf‖γ ≤ c(t− s)θ‖f‖γ+2θ.

In other words, this means that if f ∈ Cγ+2θ then P·f ∈ CTC
γ (and in fact it

is θ-Hölder continuous in time). We also recall that Bernstein’s inequalities
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hold (see [1, Lemma 2.1] and [7, Appendix A.1]), that is for γ ∈ R there
exists a constant c > 0 such that

(12) ‖∇g‖γ ≤ c‖g‖γ+1,

for all g ∈ C1+γ . Using Schauder’s and Bernstein’s inequalities we can easily
obtain a useful estimate on the gradient of the semigroup, as we see below.

Lemma 2.5. Let γ ∈ R and θ ∈ (0, 1). If g ∈ Cγ then for all t > 0 we have
∇(Ptg) ∈ Cγ+2θ−1 and

(13) ‖∇(Ptg)‖γ+2θ−1 ≤ ct−θ‖g‖γ .

2.4. Further properties/tools. The following is an important estimate
which allows to define the pointwise product between certain distributions
and functions, which is based on Bony’s estimates. For details see [2] or [7,
Section 2.1]. Let f ∈ Cα and g ∈ C−β with α − β > 0 and α, β > 0. Then
the ‘pointwise product’ f g is well-defined as an element of C−β and there
exists a constant c > 0 such that

(14) ‖f g‖−β ≤ c‖f‖α‖g‖−β .

Remark 2.6. Using (14) it is not difficult to see that if f ∈ CTC
α and

g ∈ CTC
−β then the product is also continuous with values in C−β, and

(15) ‖f g‖CT C−β ≤ c‖f‖CT Cα‖g‖CT C−β .

3. The spaces DCγ and the action of the semigroup

In this section we introduce some other function spaces that will be central
in the analysis of the PDEs in this paper if we are to have solutions with
linear growth. The idea is to have functions with the same regularity as the
Cγ-spaces locally, that allow linear growth at infinity. On these spaces we
will show how the heat semigroup acts in terms of regularity, both in the
time- and in the space-variable.

For γ ∈ (0, 1) we define space DCγ as

DCγ := {h : Rd → R differentiable function s.t. ∇h ∈ Cγ}.

Note that the following inclusion holds:

C1+α ⊂ DCα.

On DCα we can introduce a topology, induced by the norm

(16) ‖h‖DCγ := (|h(0)| + ‖∇h‖γ) .

If h ∈ DCα then there exists a constant (which is h(0)) and a function h̃ ∈ Cα

(multidimensional) such that h(x) = h(0) + x · h̃. Indeed, that function h̃ is

given by
∫ 1
0 ∇h(ax)da.

Lemma 3.1. (DCα, ‖ · ‖DCα) is a Banach space.
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Proof. Let (hn)n be a Cauchy sequence in DCα. Then hn ∈ C1 and since
R and Cα are complete, we know that hn(0) → c ∈ R and ∇hn → g in Cα

hence uniformly. Now we write hn(x) = hn(0)+x
∫ 1
0 ∇hn(ax)da. We define

h(x) = c+x
∫ 1
0 g(ax)da, so that limn→∞ hn(x) = h(x). It is obvious that c =

h(0). Now we notice that ∇h ∈ S ′ so it is left to prove that ∇h = g in S ′ to
conclude. For any test function φ ∈ S we have 〈∇hn, φ〉 = 〈hn,−div(φ)〉 →
〈h,−div(φ)〉 as n → ∞. On the other hand 〈∇hn, φ〉 → 〈g, φ〉 hence we
conclude g = ∇h. �

Next we study the mapping properties of the semigroup Pt on DCα (and
on the classical spaces Cα+1) for some fixed α ∈ (0, 1). First we prove an
inequality that is the analogous of Schauder’s estimate (9) with θ = 0 on
DCα.

Lemma 3.2. If h ∈ DCα, then

(17) sup
s∈[0,T ]

‖Psh‖DCα ≤ c‖h‖DCα .

Proof. Using the definition of the norm in DCα we have

‖Psh‖DCα = |(Psh)(0)| + ‖∇Psh‖α =: B1(s) +B2(s).

Using the kernel of the semigroup and writing h(x) = h(0)+x ·
∫ 1
0 ∇h(ax)da

we get

B1(s) = |

∫

Rd

ps(y)h(y)dy|

≤ |

∫

Rd

ps(y)h(0)dy| + |

∫

Rd

ps(y)y ·

∫ 1

0
∇h(ay)dady|

≤ |h(0)|1 +

∫

Rd

ps(y)|y| sup
x

|∇h(x)|dy

≤ |h(0)| + c‖∇h‖α ≤ c‖h‖DCα .

On the other hand, since ∇ and Pt commute by Remark 2.3, we have

B2(s) = ‖∇Psh‖α = ‖Ps∇h‖α ≤ c‖∇h‖α ≤ c‖h‖DCα ,

having used Schauder’s estimate (9). This proves (17). �

Lemma 3.3. Let α ∈ (0, 1).

(i) The semigroup Pt maps Cα+1 into itself. Moreover if h ∈ C1+α+ν for
some ν > 0 such that α+ ν ∈ (0, 1), then P·h ∈ CTC

1+α.
(ii) The semigroup Pt maps DCα into itself. Moreover if h ∈ DCα+ν for

some ν > 0 such that α+ ν ∈ (0, 1), then P·h ∈ CTDCα.

Proof. Item (i) This is an obvious consequence of Schauder’s estimate (Lemma
2.4) and equation (11).

Item (ii) Let h ∈ DCα ⊂ S ′. Let t ≥ 0 be fixed. By Remark 2.3
∇Pth = Pt∇h, so that ∇Pth ∈ Cα (and this automatically implies that
Pth is a differentiable function of x).
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Next we show that t 7→ Pth is continuous with values in DCα if h ∈
DCα+ν . We need to show that for each t ≥ 0 we have

‖Pt+εh− Pth‖DCα

= |(Pt+εh)(0) − (Pth)(0)| + ‖∇Pt+εh−∇Pth‖α → 0 as ε→ 0.(18)

Concerning first term in (18) we note that since h ∈ DCα+ν then ∇h
belongs to Cα+ν , and ‖∇h‖∞ ≤ ‖∇h‖Cα+ν . We observe that for any t ≥ 0
and x ∈ R

d we have (Pth)(x) = E[h(W x
t )] where (W

x
t ) is a Brownian motion

starting at W0 = x. Hence

|(Pt+εh)(0) − (Pth)(0)| = |E[h(W 0
t+ε)− h(W 0

t )]|

≤ E[|h(W 0
t+ε)− h(W 0

t )|]

≤ ‖∇h‖∞E[|W 0
t+ε −W 0

t |]

= ‖∇h‖α+νE[|W
0
ε |]

=
√

2
πε

1
2 ‖∇h‖α+ν .(19)

The second term in (18) can be bounded by

(20) ‖∇Pt+εh−∇Pth‖α ≤ cεν/2‖∇h‖α+ν

by using the fact that ∇ and Pt commute by Remark 2.3 together with (11)
θ = ν/2.

Putting (19) and (20) together we get

‖Pt+εh− Pth‖DCα ≤ cε
ν∧1

2 ‖∇h‖α+ν ≤ cε
ν∧1

2 ‖h‖DCα+ν ,

which shows P·h ∈ CTDCα as wanted. �

Lemma 3.4. Let α ∈ (0, 1).

(i) Let h ∈ CTC
α+1. Then

∫ T
· Ps−·h(s)ds ∈ CTC

α+1 and ‖
∫ T
· Ps−·h(s)ds‖CT Cα+1 ≤

c‖h‖CT Cα+1.

(ii) Let h ∈ CTDCα. Then
∫ T
· Ps−·h(s)ds ∈ CTDCα and ‖

∫ T
· Ps−·h(s)ds‖CTDCα ≤

c‖h‖CT DCα.

Proof. We first show that given h ∈ CTDCα (resp. h ∈ CTC
α+1), then

∫ T−·
0 Psh(s + ·)ds ∈ CTDCα (resp.

∫ T−·
0 Psh(s + ·)ds ∈ CTC

α+1), which is
equivalent to the first part of the claim in (ii) (resp. in (i)). To this aim, let
tn → t0. We have

∫ T−tn

0
Psh(s + tn)ds−

∫ T−t0

0
Psh(s + t0)ds

=

∫ T−t0

0
Ps[h(s + tn)− h(s + t0)]ds+

∫ T−tn

T−t0

Psh(s+ tn)ds.(21)

We denote by δ(h; s) the modulus of continuity of h in DCα (resp. in Cα+1).
Then the first integral in (21) is bounded in the DCα-norm using (17) (resp.
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in the Cα+1-norm using (9) with θ = 0 and γ = α+ 1) to get

‖

∫ T−t0

0
Ps[h(s + tn)− h(s + t0)]ds‖DCα

≤

∫ T−t0

0
‖Ps[h(s + tn)− h(s + t0)]‖DCαds

≤ c

∫ T−t0

0
‖h(s + tn)− h(s + t0)‖DCαds

= c

∫ T−t0

0
δ(h; tn − t0)ds

= c(T − t0)δ(h; tn − t0),

respectively

‖

∫ T−t0

0
Ps[h(s + tn)− h(s+ t0)]ds‖Cα+1 ≤ c(T − t0)δ(h; tn − t0),

which tends to 0 as n → ∞. The second integral in (21) is bounded again
using (17) (resp. using (9) with θ = 0 and γ = α+ 1) to get

‖

∫ T−tn

T−t0

Psh(s + tn)ds‖DCα ≤

∣

∣

∣

∣

∫ T−tn

T−t0

‖Psh(s+ tn)‖DCαds

∣

∣

∣

∣

≤ c

∣

∣

∣

∣

∫ T−tn

T−t0

‖h(s + tn)‖DCαds

∣

∣

∣

∣

= c

∣

∣

∣

∣

∫ T−tn

T−t0

‖h‖CTDCαds

∣

∣

∣

∣

= c|t0 − tn|‖h‖CTDCα ,

respectively

‖

∫ T−tn

T−t0

Psh(s + tn)ds‖Cα+1 ≤ c|t0 − tn|‖h‖CT Cα+1 ,

which tends to 0 as n→ ∞.
It is left to prove that ‖

∫ T
· Ps−·h(s)ds‖CTDCα ≤ c‖h‖CTDCα for point (ii)

(resp. ‖
∫ T
· Ps−·h(s)ds‖CT Cα+1 ≤ c‖h‖CT Cα+1 for point (i)). Using again (17)

(resp. (9) with θ = 0) we have

‖

∫ T

·
Ps−·h(s)ds‖CTDCα = sup

t∈[0,T ]
‖

∫ T

t
Ps−th(s)ds‖DCα

≤ sup
t∈[0,T ]

∫ T

t
‖Ps−th(s)‖DCαds

≤ c sup
t∈[0,T ]

∫ T

t
‖h(s)‖DCαds

≤ cT‖h‖CTDCα ,
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respectively

‖

∫ T

·
Ps−·h(s)ds‖CT Cα+1 ≤ cT‖h‖CT Cα+1 ,

which is the claim. �

In fact, it turns out that in the Cα spaces a stronger continuity result will
be needed, which is the following.

Lemma 3.5. If h ∈ CTC
(−β)+ then

∫ ·
0 P·−sh(s)ds ∈ CTC

1+α with any α ∈
[β, 1− β).

Proof. This is the adaptation of [9, Lemma 3.2] in the special case h ∈
CTC

−β ⊂ L∞([0, T ]; C−β). �

Analogously as for the Cγ+-spaces, for γ > 0 we also introduce the spaces

DCγ+ := ∪α>γDCα, DCγ− := ∩α<γDCα.

We will also use the spaces CTDCγ+ := C([0, T ];DCγ+). We remark that
f ∈ CTDCγ+ if and only if there exists α > γ such that f ∈ CTDCα, see
[10, Remark B.1]. Similarly, we use the space CTDC

γ− := C([0, T ];DCγ−);
we observe in particular that if f ∈ CTDCγ− then for any α < γ we have
f ∈ CTDCα.

4. Main results

In this section we prove existence, uniqueness, continuity properties and
various bounds for solutions to a class of parabolic PDEs with unbounded
terminal condition. This means that said solutions too are unbounded,
indeed they live in the space CTDCβ+. We also consider a special case of
this class where terminal conditions are bounded, hence also the solutions
are bounded, i.e. they live in CTC

(1+β)+.

4.1. Assumptions. We introduce here various assumptions concerning dis-
tribution-valued functions (b respectively g) needed below in the paper.

Assumption A1. Let 0 < β < 1/2 and b ∈ CTC
(−β)+(Rd). In particular

b ∈ CTC
−β(Rd). Notice that b is a column vector.

Next we introduce two assumptions concerning g and vT .

Assumption A2. We suppose that g ∈ CTC
(−β)+ and vT ∈ DC(1−β)−.

Assumption A3. We suppose that g ∈ CTC
(−β)+ and vT ∈ C(2−β)−.

The main difference between Assumption A3 and Assumption A2 is that
in the latter we allow the terminal condition to be unbounded, in particular
we can choose vT = id, while in the former the identity function is excluded.
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4.2. A class of PDEs with drifts in Besov spaces. Let b fulfill Assump-
tion A1 for the rest of Section 4. Let vT ∈ S ′ and t 7→ g(t, ·) be continuous
in S ′. We consider here PDEs of the form

(22)

{

∂tv +
1
2∆v +∇v b = λv + g

v(T ) = vT .

We consider weak and mild solutions, both defined in the space CTDCβ, as
detailed below. To shorten notation, we define

G(v) := λv + g.

Definition 4.1. Let v ∈ CTDCβ. We say that v is a weak solution of (22)
if for all ϕ ∈ S(Rd) we have that v satisfies

∫

Rd

ϕ(x)vT (x)dx−

∫

Rd

ϕ(x)v(t, x)dx +

∫ T

t

∫

Rd

1

2
∆ϕ(x)v(s, x)dxds(23)

+

∫ T

t

∫

Rd

ϕ(x) (∇v(s, x)b(s, x)) dxds =

∫ T

t

∫

Rd

ϕ(x)G(v)(s, x)dxds,

for all t ∈ [0, T ].

Notice that the notation
∫

Rd ϕ(x) (∇v(s, x)b(s, x)) dx is only formal be-
cause ∇v(s, ·)b(s, ·) is a distribution. In practice when we write the integral
we mean the dual pairing with ϕ, namely 〈ϕ,∇v(s)b(s)〉, where the pairing
in S,S ′ is well-defined as an element in C(−β)+ via the pointwise product
(14).

Definition 4.2. Let v ∈ CTDCβ. We say that v is a mild solution of (22)
if v satisfies

(24) v(t) = PT−tvT +

∫ T

t
Ps−t (∇v(s)b(s)) ds−

∫ T

t
Ps−t(G(v)(s))ds,

for all t ∈ [0, T ].

Note that for each s ∈ [0, T ] the product ∇v(s) b(s) appearing in (23) and

(24) is well-defined as an element of C(−β)+ using the pointwise product (14),
thanks to Assumption A1. Indeed since v ∈ CTDCβ and b ∈ CTC

−(β)+ we
can always choose ε > 0 such that b ∈ CTC

−β+ε so that −β+ ε+ β = ε > 0
and (15) holds. Moreover both integrals are well-defined as Bochner integrals
with values in S ′ because (s, r) 7→ Psh(r) is jointly continuous with values in
S ′ (where h is either ∇v b or G(v), and the continuity follows from Lemma
2.2).

For future use, it is convenient to properly define the singular operator
L, formally given by Lf = ∂tf + 1

2∆f +∇f b.

Definition 4.3. Let b satisfy Assumption A1. The operator L is defined as

L : D0
L → {S ′-valued continuous functions}

f 7→ Lf := ḟ + 1
2∆f +∇f b,
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where

D0
L := CTDCβ ∩ C1([0, T ];S ′).

Here f : [0, T ] × R
d → R and the function ḟ : [0, T ] → S ′ is the time-

derivative of f . Note also that ∇f b is well-defined and continuous using
(15) and Assumption A1. The Laplacian ∆ is intended in the weak sense.

Remark 4.4. We observe that if v ∈ CTDCβ is a weak solution, then it is
automatically differentiable in time with continuous derivative in S ′, hence
v ∈ D0

L. The same is true for v ∈ CTC
1+β by the inclusion of the spaces.

Using the operator L defined in Definition 4.3 and Remark 4.4, we see
that PDE (22) rewrites as

{

Lv = λv + g
v(T ) = vT .

Proposition 4.5. Weak and mild solutions of (22) are equivalent in CTDCβ.

Proof. (i) mild implies weak. Let v ∈ CTDCβ be a mild solution. For any
ϕ ∈ S we have

∫ T

t
〈v(s),

1

2
∆ϕ〉ds =

∫ T

t
〈PT−svT ,

1

2
∆ϕ〉ds

+

∫ T

t

∫ T

s
〈Pr−s∇v(r)b(r),

1

2
∆ϕ〉drds(25)

−

∫ T

t

∫ T

s
〈Pr−sG(v)(r),

1

2
∆ϕ〉drds.

The first term on the RHS of (25) gives

∫ T

t
〈PT−svT ,

1

2
∆ϕ〉ds =

∫ T

t
〈
1

2
∆PT−svT , ϕ〉ds

=

∫ T−t

0
〈
d

ds
PsvT , ϕ〉ds

= 〈PT−tvT , ϕ〉 − 〈vT , ϕ〉.
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The second and third terms on the RHS of (25) give

∫ T

t

∫ T

s
〈Pr−s[∇v(r)b(r)−G(v)(r)],

1

2
∆ϕ〉drds

=

∫ T

t

∫ r−t

0
〈Ps[∇v(r)b(r)−G(v)(r)],

1

2
∆ϕ〉dsdr

=

∫ T

t

∫ r−t

0
〈
d

ds
Ps[∇v(r)b(r)−G(v)(r)], ϕ〉dsdr

=

∫ T

t
〈Pr−t[∇v(r)b(r)−G(v)(r)], ϕ〉dr

−

∫ T

t
〈[∇v(r)b(r) −G(v)(r)], ϕ〉dr.

Putting these into (25) we get

∫ T

t
〈v(s),

1

2
∆ϕ〉ds =〈PT−tvT , ϕ〉 − 〈vT , ϕ〉+

∫ T

t
〈Pr−t[∇v(r)b(r)−G(v)(r)], ϕ〉dr

−

∫ T

t
〈[∇v(r)b(r)−G(v)(r)], ϕ〉dr

=〈v(t), ϕ〉 − 〈vT , ϕ〉+

∫ T

t
〈[∇v(r)b(r) −G(v)(r)], ϕ〉dr

which shows that v is also a weak solution.
(ii) weak implies mild. We proceed as follows. Given a weak solution

v ∈ CTDCβ that satisfies (23) we define

(26) u(t) := PT−tvT +

∫ T

t
Ps−t (∇v(s)b(s)) ds−

∫ T

t
Ps−tG(v)(s)ds.

We see that u is a mild solution of the heat equation with extra source terms
involving v, more specifically of

∂tu+
1

2
∆u = G(v)−∇v b; u(T ) = vT .

By using (i) with λ = 0 and g = G(v) −∇v b we have that u is also a weak
solution of the above PDE. Now we take the difference v̄ = v − u and see
that v̄ fulfills

v̄(t, ·) = −

∫ T

t

1

2
∆v̄(s, ·)ds; v̄(T ) = 0,

hence v̄ is a weak solution of the heat equation with zero terminal condition
so we have v̄ = 0, which implies that u = v and so u is a mild solution by
(26). �



A PDE WITH NEGATIVE BESOV DRIFT 15

4.3. Linear growth solutions. In this subsection we consider equation
(22) and pick a terminal condition vT fulfilling Assumption A2. We will show

below that solutions of (22) exist in the space CTDC(1−β)− and are unique
in the space CTDCβ+. If furthermore the terminal condition is bounded
(Assumption A3) then the solution will also be bounded.

Given ρ ≥ 0, we introduce an equivalent norm in CTDCα, respectively
CTC

α+1, defined as

(27) ‖f‖
(ρ)
CTDCα := sup

t∈[0,T ]
e−ρ(T−t) (|f(t, 0)|+ ‖∇f(t)‖α) ,

respectively

(28) ‖f‖
(ρ)
CT Cα+1 := sup

t∈[0,T ]
e−ρ(T−t)

(

sup
x

|f(t, x)|+ ‖∇f(t)‖α

)

.

Notice that those norms are equivalent to those defined in (16) (resp. (4)).
With these norms the pointwise products estimates corresponding to those
from Remark 2.6 will become, for α > β,

(29) ‖fg‖
(ρ)

CT C−β ≤ c‖f‖
(ρ)
CT Cα‖g‖CT C−β .

We start with a preliminary result.

Lemma 4.6. Let ℓ ∈ CTC
−β and ρ ≥ 1. Then for every t ∈ [0, T ] and for

every α ∈ [β, 1− β) we have

(30) ‖

∫ T

t
Ps−tℓ(s)ds‖

(ρ)
CT Cα+1 ≤ c‖ℓ‖

(ρ)

CT C−βρ
α+β−1

2 ,

and in particular,

‖

∫ T

t
Ps−tℓ(s)ds‖

(ρ)
CTDCα ≤ c‖ℓ‖

(ρ)

CT C−βρ
α+β−1

2 ,

where c depends on α and β.

Proof. We recall that for f ∈ CTC
α+1 then f ∈ CTDCα and ‖f‖CTDCα ≤

‖f‖CT Cα+1 by (27) and (28). For this reason, we will only prove (30). We

bound each term in the ρ-equivalent norm (28) in Cα+1 separately. Let us
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denote by f(t, x) :=
∫ T
t (Ps−tℓ(s)) (x)ds. The sup term in (28) gives

sup
x

|f(t, x)| = sup
x

∣

∣

∣

∣

∫ T

t
(Ps−tℓ(s)) (x)ds

∣

∣

∣

∣

=

∥

∥

∥

∥

∫ T

t
Ps−tℓ(s)ds

∥

∥

∥

∥

∞

≤

∥

∥

∥

∥

∫ T

t
Ps−tℓ(s)ds

∥

∥

∥

∥

α

≤

∫ T

t
‖Ps−tℓ(s)‖α ds

≤ c

∫ T

t
(s− t)−

α+β
2 ‖ℓ(s)‖−βds,

having used (9) from Lemma 2.4. Now multiplying by e−ρ(T−t) and taking
the supremum over t, using (28) we get

sup
t∈[0,T ]

e−ρ(T−t) sup
x

|f(t, x)|

≤ c sup
t∈[0,T ]

∫ T

t
e−ρ(s−t)(s− t)−

α+β
2 e−ρ(T−s)‖ℓ(s)‖−βds

≤ c‖ℓ‖
(ρ)

CT C−β sup
t∈[0,T ]

∫ T

t
e−ρ(s−t)(s− t)−

α+β
2 ds.(31)

The latter integral can be bounded noting that θ := α+β
2 < 1 by choice of

α, thus

∫ T

t
e−ρ(s−t)(s− t)−θds ≤

∫ ∞

0
e−sρs−θds

≤

∫ ∞

0
e−xx−θρ−1+θdx

= Γ(−θ + 1)ρ−1+θ,

where

(32) Γ(η) :=

∫ ∞

0
e−xxη−1dx

denotes the Gamma function. Thus (31) gives

(33) sup
t∈[0,T ]

e−ρ(T−t) sup
x

|f(t, x)| ≤ c‖ℓ‖
(ρ)

CT C−βρ
α+β−2

2 ,

where c depends on α and β.
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The term with the α-norm of ∇f in (28) is bounded with similar compu-
tations as above but using (13) in place of (9) to get

sup
t∈[0,T ]

e−ρ(T−t)‖∇f(t)‖α

≤ c sup
t∈[0,T ]

e−ρ(T−t)

∫ T

t
(s − t)−

α+β+1

2 ‖ℓ(s)‖−βds.

Proceeding as between (31) and (33) and using the fact that α+β+1
2 < 1, we

get

sup
t∈[0,T ]

e−ρ(T−t)‖∇f(t)‖α ≤ c‖ℓ‖
(ρ)

CT C−βρ
α+β−1

2 .(34)

Combining (33) and (34), and using the fact that ρ
α+β−2

2 ≤ ρ
α+β−1

2 since
ρ ≥ 1, we conclude. �

Theorem 4.7. Let b satisfy Assumption A1.

(i) Let vT and g satisfy Assumption A2. Then there exists a mild solu-

tion v to (22) in CTDC(1−β)− which is unique in CTDCβ.
(ii) Let vT and g satisfy Assumption A3 (in particular vT is bounded).

Then the unique mild solution v of PDE (22) is also bounded, more

precisely v ∈ CTC
(2−β)−.

Remark 4.8. One could relax Assumption A2 (resp. Assumption A3) for

vT and only ask that vT ∈ DCβ+ (resp. vT ∈ C(1+β)+). In this case the

unique solution would no longer belong to CTDC(1−β)− (resp. CTC
(2−β)−)

but only to CTDCβ+ (resp. CTC
(1+β)+).

Proof of Theorem 4.7. We start with an arbitrary α ∈ (β, 1 − β). The case
α = β will be explained at the end of the proof. Let T denote the solution
operator, namely for v ∈ C([0, T ];DCα) we define T v as

(35) T v(t) := PT−tvT +

∫ T

t
Ps−t (∇v(s)b(s)) ds−

∫ T

t
Ps−t(λv(s)+g(s))ds.

We prove both items of the theorem in two steps, first showing stability
and then the contraction property. Notice that Assumption A3 implies
Assumption A2.

Step 1 - stability. We suppose Assumption A2 (resp. Assumption A3).
We show that T : CTDCα → CTDCα (resp. T : CTC

α+1 → CTC
α+1).

The term PT−tvT ∈ DCα (resp. PT−tvT ∈ Cα+1) is continuous in t by Lemma
3.3, item (ii) (resp. item (i)) since vT ∈ DCα+ν (resp. vT ∈ C1+α+ν) for all
ν > 0 such that α+ ν < 1− β by Assumption A2 (resp. Assumption A3).
Since v ∈ CTDCα (resp. v ∈ CTC

α+1) and b ∈ CTC
(−β)+, then by Remark

2.6 ∇vb ∈ CTC
(−β)+. Moreover g ∈ CTC

(−β)+ by assumption. Thus we can

apply Lemma 3.5 to deduce that
∫ T
· Ps−· (∇v(s)b(s)) ds +

∫ T
· Ps−·g(s)ds ∈

CTC
α+1 ⊂ CTDCα.
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Finally by Lemma 3.4 item (ii) (resp. item (i)), t 7→
∫ T
t Ps−tλv(s)ds is

continuous with values in DCα (resp. Cα+1).
Step 2 - contraction. Next we show that T is a contraction in CTDCα

(resp. CTC
α+1).

To this aim it is convenient to use the equivalent norm in CTDCα (resp.
CTC

α+1) introduced in (27) (resp. (28)). Let v1, v2 ∈ CTDCα (resp. v1, v2 ∈
CTC

α+1). Then

T v1(t)− T v2(t) =

∫ T

t
Ps−t ((∇v1(s)−∇v2(s))b(s)) ds

+ λ

∫ T

t
Ps−t(v1(s)− v2(s))ds

=: B1(t) +B2(t).(36)

We consider B1 first. By Lemma 4.6 with ℓ = ∇(v1 − v2)b and using (29)
we get

‖B1‖
(ρ)
CTDCα = ‖

∫ T

t
Ps−t (∇(v1 − v2)(s)b(s)) ds‖

(ρ)
CTDCα

≤ c‖∇(v1 − v2)b‖
(ρ)

CT C−βρ
α+β−1

2

≤ c‖b‖CT C−β‖∇(v1 − v2)‖
(ρ)
CT Cαρ

α+β−1

2 ,

≤ c‖b‖CT C−β‖v1 − v2‖
(ρ)
CTDCαρ

α+β−1

2 ,(37)

respectively

(38) ‖B1‖
(ρ)
CT Cα+1 ≤ c‖b‖CT C−β‖v1 − v2‖

(ρ)
CT Cα+1ρ

α+β−1

2 .

We now bound B2 in (36). We use Lemma 3.2 (resp. Schauder’s estimate
(9) with θ = 0) to get

‖B2‖
(ρ)
CTDCα = sup

t∈[0,T ]
e−ρ(T−t)‖λ

∫ T

t
Ps−t(v1(s)− v2(s))ds‖DCα

≤ λ sup
t∈[0,T ]

∫ T

t
e−ρ(T−t)‖Ps−t(v1(s)− v2(s))‖DCαds

≤ λ sup
t∈[0,T ]

∫ T

t
e−ρ(s−t)ce−ρ(T−s)‖v1(s)− v2(s)‖DCαds

≤ cλ sup
t∈[0,T ]

∫ T

t
e−ρ(s−t)‖v1 − v2‖

(ρ)
CTDCαds

≤ cλ‖v1 − v2‖
(ρ)
CTDCαρ

−1

≤ cλ‖v1 − v2‖
(ρ)
CTDCαρ

α+β−1

2 ,(39)
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respectively

(40) ‖B2‖
(ρ)
Cα+1 ≤ cλ‖v1 − v2‖

(ρ)
CT Cα+1ρ

α+β−1

2 .

Combining (37) and (39) (resp. (38) and (40)) and plugging them in (36)
we get

(41) ‖T v1 − T v2‖
(ρ)
CTDCα ≤ c(λ+ ‖b‖CT C−β)ρ

α+β−1

2 ‖v1 − v2‖
(ρ)
CTDCα ,

respectively

(42) ‖T v1 − T v2‖
(ρ)
CT Cα+1 ≤ c(λ+ ‖b‖CT C−β)ρ

α+β−1

2 ‖v1 − v2‖
(ρ)
CT Cα+1 .

Now choosing ρ large enough so that (recalling that α+β−1
2 < 0)

(43) c(λ+ ‖b‖CT C−β )ρ
α+β−1

2 ≤
1

2
,

we get

(44) ‖T v1 − T v2‖
(ρ)
CTDCα ≤

1

2
‖v1 − v2‖

(ρ)
CTDCα ,

respectively

(45) ‖T v1 − T v2‖
(ρ)
CT Cα+1 ≤

1

2
‖v1 − v2‖

(ρ)
CT Cα+1 ,

for all v1, v2 ∈ CTDCα (resp. v1, v2 ∈ CTC
α+1). By Banach fixed point

theorem we conclude that there exists a unique fixed point v ∈ CTDCα

(resp. in CTC
α+1) of T , which is the unique mild solution v ∈ CTDCα to

(22).
Since this is true for all α ∈ (β, 1−β), then under Assumption A3 existence

holds in the smaller space CTDC(1−β)−. At this point we observe that we can
choose α = β in all computations above, but one must replace ‖b‖CT C−β with

‖b‖CT C−β+ε for some small ε such that 2β−ε+1 > 0, and the powers ρ
α+β−1

2

must be replaced by ρ
2β−ε−1

2 . In conclusion (44) and (45) still hold for α = β,
hence and uniqueness holds in the larger space CTDCβ, which proves item
(i). Moreover when Assumption A2 holds then the unique solution belongs
to CTC

(2−β)−. �

Lemma 4.9. Let b satisfy Assumption A1, vT and g satisfy Assumption A3
and let λ > 0. Let α ∈ (β, 1 − β) such that vT ∈ Cα+1. Let v be the unique
solution of (22) given in Theorem 4.7 item (ii) and Remark 4.8. Then there
exists an increasing function Rλ such that

‖v‖CT Cα+1 ≤ Rλ(‖b‖CT C−β )(‖vT ‖Cα+1 + ‖g‖CT C−β).

Proof. For the map T defined in (35) we have

‖T v‖
(ρ)
CT Cα+1 ≤ ‖T v − T 0‖

(ρ)
CT Cα+1 + ‖T 0‖

(ρ)
CT Cα+1 .

Using (42) with v1 = v and v2 = 0 we get

‖T v − T 0‖
(ρ)
CT Cα+1 ≤ c(λ+ ‖b‖CT C−β )ρ−θ‖v‖

(ρ)
CT Cα+1 ,
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where θ = 1−α−β
2 > 0. On the other hand

T 0 = PT−tvT +

∫ T

t
Ps−tg(s)ds,

so using Lemma 4.6

‖T 0‖
(ρ)
CT Cα+1 ≤ ‖PT−tvT ‖

(ρ)
CT Cα+1 + ‖

∫ T

·
Ps−·g(s)ds‖

(ρ)
CT Cα+1

≤ ‖PT−tvT ‖CT Cα+1 + c‖g‖
(ρ)

CT C−βρ
−θ

≤ ‖vT ‖Cα+1 + c‖g‖
(ρ)

CT C−βρ
−θ.

Combining the estimates above we have

‖T v‖
(ρ)
CT Cα+1 ≤ c(λ+ ‖b‖CT C−β)ρ−θ‖v‖

(ρ)
CT Cα+1 + ‖vT ‖Cα+1 + c‖g‖

(ρ)

CT C−βρ
−θ.

Choosing ρ = [2c(λ+ ‖b‖CT C−β )]1/θ so that c(λ+ ‖b‖CT C−β)ρ−θ = 1
2 we get

‖T v‖
(ρ)
CT Cα+1 ≤

1

2
‖v‖

(ρ)
CT Cα+1 + ‖vT ‖Cα+1 +

c

2c(λ+ ‖b‖CT C−β)
‖g‖

(ρ)

CT C−β .

Since v is a solution then T v = v and we get

‖v‖
(ρ)
CT Cα+1 ≤ 2‖vT ‖Cα+1 + 2

1

2(λ+ ‖b‖CT C−β )
‖g‖

(ρ)

CT C−β

≤ 2‖vT ‖Cα+1 +
1

λ
‖g‖

(ρ)

CT C−β .(46)

Using ‖v‖CT Cα+1 = supt∈[0,T ] e
ρ(T−t)e−ρ(T−t)‖v(t)‖Cα+1 ≤ eρT ‖v‖

(ρ)
CT Cα+1 , the

bound (46) and ‖g‖
(ρ)
CT Cα+1 ≤ ‖g‖CT Cα+1 we get

‖v‖CT Cα+1 ≤ eρT ‖v‖
(ρ)
CT Cα+1

≤ 2eρT ‖vT ‖Cα+1 + eρT
1

λ
‖g‖

(ρ)

CT C−β

≤ 2eρT max{1,
1

λ
}(‖vT ‖Cα+1 + ‖g‖CT C−β).

Recall that we chose ρ = [2c(λ + ‖b‖CT C−β)]1/θ and since θ > 0 the result

follows with Rλ(x) := 2 exp{[2c(λ + x)]1/θT}max{1, 1λ}. �

A special case of interest of PDE (22) is the following. Let idi(x) = xi,
which clearly belongs to D0

L, see Definition 4.3. Thus L idi is well-defined
and gives L idi = bi. An immediate consequence of Theorem 4.7 point (i)
with λ = 0, vT = xi, g = bi is the following corollary, taking into account
that idi ∈ CTDCβ.

Corollary 4.10. The function idi is the solution of Lv = bi; v(T ) = idi
(unique in CTDCβ).
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4.4. Properties of the solution: bounds and continuity. Another par-
ticular case of interest of PDE (22) is given when g is chosen to be the ith
component of the drift b and the terminal condition is zero. We denote by
ui the solution in this case, that is

(47)

{

∂tui +
1
2∆ui +∇uib = λui − bi

ui(T ) = 0.

Remark 4.11. Since PDE (47) is a special case of (22) where g = −bi and

vT = 0, by Theorem 4.7 the solution ui exists in CTC
(2−β)− and is unique

in CTDCβ (indeed Assumption A3 is automatically satisfied for vT and g if
b satisfies Assumption A1).

Remark 4.12. Let b ∈ CTC
0+. Then the unique solution u to (47) coincides

with the classical solution in C1,2+ν (see [12, Theorem 5.1.9], see also [11,
Theorem A.3]).

Indeed, if b ∈ CTC
0+ then b ∈ C0,ν([0, T ] × R

d) for some ν > 0 by [11,
Remark A.2], so by [12, Theorem 5.1.9] there exists a (unique) solution ū
in C1,2+ν to PDE (47). Moreover b ∈ CTC

0+ ⊂ CTC
(−β)+ hence u is the

unique solution of (47) in CTC
(1+β)+. We moreover have the inclusion

C1,2+ν ⊂ CTC
(1+β)+, thus ū = u ∈ C1,2+ν.

Proposition 4.13. Let b satisfy Assumption A1, in particular b ∈ CTC
−β+ε

for some ε > 0 such that θ := 1+2β−ε
2 < 1. Let ui, i = 1, . . . , d be the unique

solution of (47) as given in Remark 4.11. Then the following holds.

(i) The solution ui is bounded in (t, x), that is, there exists a constant
c such that

sup
(t,x)∈[0,T ]×Rd

|ui(t, x)| ≤ c.

(ii) There is a constant C(β, ε) such that choosing λ with

(48) λ1−θ ≥ C(β, ε)‖b‖CT C−β+ε,

then we have

sup
(t,x)∈[0,T ]×Rd

|∇ui(t, x)| ≤
1

2
.

Proof. For simplicity of notation we drop the subscript i in the rest of the
proof. We know that u ∈ CTC

1+β by Remark 4.11.
Item (i) By (4) we have

sup
(t,x)∈[0,T ]×Rd

|u(t, x)| ≤ sup
t∈[0,T ]

‖u(t)‖1+β = ‖u‖CT C1+β <∞.

Item (ii) By (3) we have

sup
(t,x)∈[0,T ]×Rd

|∇u(t, x)| ≤ sup
t∈[0,T ]

‖∇u(t)‖β .



22 ELENA ISSOGLIO AND FRANCESCO RUSSO

Assume now (we will show it below) that the unique solution u of (47) is
also a solution of the integral equation

(49) u(t) =

∫ T

t
e−λ(s−t)Ps−t (∇u(s)b(s)) ds−

∫ T

t
e−λ(s−t)Ps−tb(s)ds.

From (49) we take the gradient on both sides and calculate its norm in Cβ.
We use Schauder’s estimates (9), Bernstein’s inequality (12), and the fact
that ∇u(s)b(s), b(s) ∈ C−β+ε by pointwise product (14) to get

‖∇u(t)‖β ≤

∫ T

t
‖∇(e−λ(s−t)Ps−t (∇u(s)b(s)))‖βds

+

∫ T

t
‖∇(e−λ(s−t)Ps−tb(s))‖βds

≤c

∫ T

t
(‖e−λ(s−t)Ps−t (∇u(s)b(s)) ‖β+1 + ‖e−λ(s−t)Ps−tb(s)‖β+1)ds

≤c

∫ T

t
e−λ(s−t)(s− t)−

1+2β−ε
2 (‖∇u(s)‖β + 1) ‖b(s)‖−β+εds

≤c

∫ T

t
e−λ(s−t)(s− t)−

1+2β−ε
2 ds(1 + sup

s∈[0,T ]
‖∇u(s)‖β)‖b‖CT C−β+ε ,

where c varies from line to line but it depends only on β and ε. Since
θ := 1+2β−ε

2 < 1 by assumption, the integral is bounded from above by

Γ(1 − θ)λθ−1 by a change of variable s̃ = λ(s − t) and using the definition
of the Gamma function (32). We get

sup
t∈[0,T ]

‖∇u(t)‖β ≤ cΓ(1− θ)λθ−1(1 + sup
t∈[0,T ]

‖∇u(t)‖β)‖b‖CT C−β+ε ,

that is

sup
t∈[0,T ]

‖∇u(t)‖β(1− cλθ−1Γ(1− θ)‖b‖CT C−β+ε) ≤ cΓ(1− θ)λθ−1‖b‖CT C−β+ε

and choosing λ according to (48) with C(β, ε) = 3cΓ(1− θ) we have

sup
t∈[0,T ]

‖∇u(t)‖β ≤
cΓ(1− θ)λθ−1‖b‖CT C−β+ε

1− cΓ(1− θ)λθ−1‖b‖CT C−β+ε

≤
1

2
,

as wanted.
It is left to prove that (49) holds. We can multiply both sides of (49) by

e−λt to obtain

e−λtu(t) =

∫ T

t
e−λsPs−t (∇u(s)b(s)) ds−

∫ T

t
e−λsPs−tb(s)ds.

Setting b̂(s) := e−λsb(s) we observe that the equation above writes

e−λtu(t) =

∫ T

t
Ps−t

(

∇e−λsu(s)b(s)
)

ds−

∫ T

t
Ps−tb̂(s)ds,
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which is the mild form of the PDE (recall that mild and weak solutions are
equivalent in CTDCβ by Proposition 4.5)

(50)

{

∂tv +
1
2∆v +∇v b = −b̂

v(T ) = 0,

where v(t) := e−λtu(t). Therefore to show that (49) holds it is enough
to show that if u is a weak solution of (47), then v(t) = e−λtu(t) is a
weak solution of (50). For u weak solution of (47) then u ∈ C1([0, T ];S ′)
and (50) readily holds by time-differentiation. Moreover v ∈ CTDCβ since
u ∈ CTDCβ. �

Next we consider another special case of PDE (22). Let us define the
vector-valued function φ : Rd → R

d as

(51) φ(t, x) := u(t, x) + x,

where u = (u1, . . . , ud)
⊤ and ui is the solution of (47), unique in the sense

of Remark 4.11, for i = 1, . . . , d. We define φ as a column vector.

Theorem 4.14. Each component φi, for i = 1, . . . , d, of the function φ
defined in (51) is the unique solution of

(52)

{

Lφi = λ(φi − idi)
φi(T ) = idi

in CTDCβ.

Proof. Using the linearity of the PDEs for ui and idi (see Corollary 4.10
and Remark 4.11) it is easy to check that each component φi, for i = 1, . . . d
solves (52). By Theorem 4.7 item (i) we also have that φi is the unique
solution of (52). �

Proposition 4.15. Let φ be given by (51). Then φ ∈ D0
L and the time-

derivative φ̇i is in CTC
(−β)− for all i = 1, . . . d.

Proof. In this proof we drop the subscript i for ease of writing.
By Theorem 4.14 and Remark 4.4 we have φ ∈ D0

L. Using (52) we get

Lφ = λ(φ − id) with φ(T ) = id, therefore concerning the time-derivative φ̇
we have

∫ t

0
φ̇(s, ·)ds = −

∫ t

0

1

2
∆φ(s, ·)ds −

∫ t

0
∇φ(s, ·) b(s, ·)ds +

∫ t

0
λu(s, ·)ds.

Since φ ∈ CTC
(2−β)− by Remark 4.8, we have ∆φ ∈ CTC

(−β)− and ∇φ ∈
CTC

(1−β)−. Moreover b ∈ CTC
(−β)+, so ∇φ b ∈ CTC

(−β)+ by (14), and

u ∈ CTC
(2−β)−. Thus φ̇ ∈ CTC

(−β)−. �

In the following proposition we show that φ enjoys other useful properties
when λ is large enough.

Proposition 4.16. Let φ be given by (51).
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(i) We have φ ∈ C0,1 and ∇φ ∈ CTC
(1−β)−. In particular ∇φ is uni-

formly bounded.
(ii) For λ as in Proposition 4.13 we have that φ(t, ·) is invertible for all

t ∈ [0, T ], with the (space-)inverse denoted by

(53) ψ := φ−1(t, ·).

Moreover ψ ∈ C0,1, ∇ψ is uniformly bounded and ∇ψ(t, ·) ∈ C(1−β)−

for all t ∈ [0, T ] and supt∈[0,T ] ‖∇ψ(t, ·)‖1−α <∞ for all α < β.

Proof. Item (i). The fact that φ ∈ C0,1 follows from the fact that both

id and u are in C0,1, since u ∈ CTC
(2−β)− by Theorem 4.7. By the same

regularity property of u we also have ∇φ ∈ CTC
(1−β)−.

Item (ii). To show that φ(t, ·) is invertible one can proceed like in the
proof of [6, Lemma 22]. This proof uses the fact that |∇u(t, x)| ≤ 1

2 for λ

satisfying (48) from Proposition 4.13. We can also easily see that ψ ∈ C0,1.
Indeed ∇φ is non-degenerate, ∇ψ = ∇φ(ψ)−1 so that (t, x) 7→ ∇ψ(t, ·) is
continuous since φ ∈ C0,1 and ψ ∈ C0,1. Here the superscript−1 denotes the
matrix inverse. Finally we prove that ∇ψ(t, ·) ∈ C(1−β)− for all t ∈ [0, T ].
We drop the time variable by ease of notation. We notice that |∇φ| is
lower bounded by 1

2 because ∇φ = ∇u+ id, hence |(∇φ)−1| is bounded by
some constant C independent of time and so |∇ψ| is bounded, where | · |
denotes the Frobenious norm. Therefore ψ is Lipschitz. Using the fact that
∇φ ∈ CTC

(1−β)− , |∇φ−1| is bounded and that ψ is Lipschitz, we have for
y, z ∈ R

d

|∇ψ(y) −∇ψ(z)| = |∇φ(ψ(y))−1 −∇φ(ψ(z))−1|

= |∇φ(ψ(z)))−1 (∇φ(ψ(z)) −∇φ(ψ(y)))∇φ(ψ(y))−1|

≤ |∇φ(ψ(z)))−1| |∇φ(ψ(z)) −∇φ(ψ(y))| |∇φ(ψ(y))−1 |

≤ C|∇φ(ψ(z)) −∇φ(ψ(y))|

≤ C|ψ(z) − ψ(y)|1−β−ν

≤ C|z − y|1−β−ν ,

for any ν > 0, where we recall that C does not depend on time. �

We now state and prove a continuity result for PDEs with bounded or
unbounded solutions.

Lemma 4.17. Let Assumption A1 hold. Let λ > 0 be fixed. Let bn be a
sequence converging to b in CTC

−β , gn → g in CTC
−β. Then

(i) if vnT → vT in DC(1−β)− then vn → v in CTDC(1−β)−;

(ii) if vnT → vT in C(2−β)− then vn → v in CTC
(2−β)−,

where vn is the unique solution of (22) with b replaced by bn, g replaced by
gn and vT replaced by vnT .

In particular ∇vn → ∇v in CTC
(1−β)−.
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Proof. We show both items at the same time.
To show that vn → v in CTDC(1−β)− (resp. in CTC

(2−β)−) we have to
show that for all α < 1− β such that vn → v in CTDCα (resp. in CTC

1+α).

Since vnT → vT in DC(1−β)− (resp. in C(2−β)−) for all α < 1 − β such that
vnT → vT in DCα (resp. in C1+α ), we fix any α < 1 − β. We show that

‖vn − v‖
(ρ)
CTDCα → 0 (resp. ‖vn − v‖

(ρ)
CT C1+α → 0) as n → ∞, where the

superscript (ρ) denotes the ρ-equivalent norm introduced in Section 2. Using
the definition of mild solution we have

vn(t)− v(t) = PT−t(v
n
T − vT )

+

∫ T

t
Ps−t

(

∇vn(s)bn(s) +∇v(s)bn(s)−∇v(s)bn(s)−∇v(s)b(s)
)

ds

+

∫ T

t
Ps−t(g

n(s)− g(s))ds + λ

∫ T

t
Ps−t(v

n(s)− v(s))ds.

Let us calculate the ‖ · ‖DCα-norm (resp. ‖ · ‖C1+α-norm) of the quantity
above:

‖vn − v‖
(ρ)
CTDCα = sup

0≤t≤T
e−ρ(T−t)‖vn(t)− v(t)‖DCα

≤ sup
0≤t≤T

e−ρ(T−t)‖PT−t(v
n
T − vT )‖DCα

+ ‖

∫ T

t
Ps−t

(

(∇vn(s)−∇v(s))bn(s)
)

ds‖
(ρ)
CTDCα

+ ‖

∫ T

t
Ps−t

(

∇v(s)(bn(s)− b(s))
)

ds‖
(ρ)
CTDCα

+ ‖

∫ T

·
Ps−·(g

n(s)− g(s))ds‖
(ρ)
CTDCα

+ λ sup
0≤t≤T

e−ρ(T−t)‖

∫ T

t
Ps−t(v

n(s)− v(s))ds‖DCα

=: B1 +B2 +B3 +B4 +B5,

(respectively ‖vn − v‖
(ρ)
CT C1+α =: B1 + B2 + B3 + B4 + B5, where the norm

in DCα is substituted by the one in C1+α).
The terms B1 and B5 are bounded using Lemma 3.2 (resp. (9) with θ = 0)
to get

B1 ≤ sup
0≤t≤T

‖Pt(v
n
T − vT )‖DCα ≤ c‖vnT − vT ‖DCα ,

B5 ≤ λ

∫ T

t
e−ρ(s−t)e−ρ(T−s)‖vn(s)− v(s)‖DCαds ≤ cρ−1‖vn − v‖

(ρ)
CTDCα ,

(respectively similar estimates where the norm in DCα is substituted by the
one in C1+α).
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For B2 and B3 we apply Lemma 4.6 and (29) twice and for the term B4 we
only apply Lemma 4.6 to get

B2 ≤ c‖bn‖CT C−β‖∇(vn − v)‖
(ρ)
CT Cαρ

α+β−1

2 ≤ c‖bn‖CT C−β‖vn − v‖
(ρ)
CTDCαρ

α+β−1

2 ,

B3 ≤ c‖bn − b‖CT C−β‖∇v‖
(ρ)
CT Cαρ

α+β−1

2 ≤ c‖bn − b‖CT C−β‖v‖
(ρ)
CTDCαρ

α+β−1

2 ,

B4 ≤ c‖gn − g‖
(ρ)

CT C−βρ
α+β−1

2 ,

(respectively similar estimates where the norm in DCα is substituted by the
one in C1+α). Thus we have

‖vn − v‖
(ρ)
CTDCα ≤ c‖vnT − vT ‖DCα

+ c‖bn‖CT C−β‖vn − v‖
(ρ)
CTDCαρ

α+β−1

2

+ c‖bn − b‖CT C−β‖v‖
(ρ)
CTDCαρ

α+β−1

2

+ c‖gn − g‖
(ρ)

CT C−βρ
α+β−1

2 + cρ−1‖vn − v‖
(ρ)
CTDCα ,

(respectively similar estimates where the norm in DCα is substituted by the
one in C1+α).

Similarly to (43) but replacing ‖b‖CT C−β with supn ‖b
n‖CT C−β , we choose

ρ ≥ 1 such that

c(1 + sup
n

‖bn‖CT C−β)ρ
α+β−1

2 ≤
1

2
,

so that combining the estimates above and moving to the left-hand side the
terms involving vn − v we get

1

2
‖vn − v‖

(ρ)
CTDCα ≤c‖vnT − vT ‖DCα + c‖gn − g‖

(ρ)

CT C−βρ
α+β−1

2

+ c‖bn − b‖CT C−β‖v‖
(ρ)
CTDCαρ

α+β−1

2 ,

(respectively similar estimates where the norm in DCα is substituted by the
one in C1+α). The proof is concluded. �

Remark 4.18. Following the proof of Lemma 4.17, it is easy to see that a
slightly weaker convergence remains valid under slightly weaker assumptions,
namely

(i) if vnT → vT in DCβ+ then vn → v in CTDCβ+;

(ii) if vnT → vT in C(1+β)+ then vn → v in CTC
(1+β)+.

In particular ∇vn → ∇v in CTC
β+.

Lemma 4.19. Let bn → b in CTC
−β. Let λ be such that

(54) λ1−θ = C(β, ε)max{sup
n

‖bn‖CT C−β+ε , ‖b‖CT C−β+ε}

with θ := 1+2β−ε
2 < 1 and C(β, ε) chosen according to Proposition 4.13 item

(ii). Let φn be defined as in (51) but with b replaced by bn and let ψn be the
(space-)inverse of φn as in (53). Then we have
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(i) un → u,∇un → ∇u, φn → φ and ψn → ψ uniformly on [0, T ]× R
d;

(ii) ‖∇φn‖∞ and |φn(0, 0)| are uniformly bounded in n.

Proof. We choose λ according to (54) as done in (48). This implies

(55) sup
(t,x)∈[0,T ]×Rd

|∇un(t, x)| ≤
1

2

by Proposition 4.13 part (ii).
Item (i) By Lemma 4.17 part (ii) we have un → u in CTC

α+1 thus un → u
and ∇un → ∇u, uniformly on [0, T ]×R

d. Since φn − φ = un − u, then also
φn → φ uniformly on [0, T ]× R

d.
The rest of the proof follows the same ideas of [6, Lemma 24, part (iii)].

We recall the basic elements of the proof for ease of reading. Let us prove
the uniform convergence of ψn to ψ. Given y ∈ R

d, we know that for every
t ∈ [0, T ] and n ∈ N there exist x (t) , xn (t) ∈ R

d such that

x (t) + u (t, x (t)) = y

xn (t) + un (t, xn (t)) = y

and we have called x (t) and xn (t) by ψ (t, y) and ψn (t, y) respectively. Then
from (55) we get

|xn (t)− x (t)| ≤ sup
(t,x)∈[0,T ]×Rd

|∇un(t, x)| |xn (t)− x (t)|

+ sup
(t,x)∈[0,T ]×Rd

|un(t, x)− u(t, x)|

⇒ |xn (t)− x (t)| ≤2 sup
(t,x)∈[0,T ]×Rd

|un(t, x)− u(t, x)| ,

namely

|ψn (t, y)− ψ (t, y)| ≤ 2 sup
(t,x)∈[0,T ]×Rd

|un(t, x)− u(t, x)| ,

which implies that ψn → ψ uniformly on [0, T ]× R
d.

Item (ii) To show that ‖∇φn‖∞ is bounded uniformly in n we simply
observe that ∇φn(t, x) = id +∇un(t, x) and use (55).

To prove that |φn(0, 0)| = |un(0, 0)| is uniformly bounded we observe that

un → u in CTDC(1−β)− by Lemma 4.17 part (i), hence there exists α < 1−β
such that un → u in CTDCα and so

sup
n≥1

|un(0, 0)| ≤ c sup
n≥1

‖un‖CTDCα ,

which concludes the proof. �

5. On some separable Besov-Hölder type spaces

In the companion paper [11] we use a special class of PDEs like (1) for
some applications in stochastic analysis. In particular, the PDE plays a
role in the formulation of the martingale problem for stochastic differential
equations with distributional drifts b. For more details on the latter, see
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[11, Section 4]. The class of PDEs that we use in [11] are PDEs of the
form Lf = g, where the element g is a function (instead of a distribution)
that, most importantly, lives in a space which is separable. The spaces
CTC

0+ would be the natural choice since it contains only functions, but it
is not separable. It would be separable if one restricted them to functions
with compact support, however the class CTC

0+
c of functions in CTC

0+ with
compact support is not closed under the topology of CTC

0+ and not rich
enough for our purpose. Thus here we introduce and investigate a further
class of function spaces, namely the closure of CTC

0+
c with respect to the

topology of CTC
0+. These spaces turn out to be separable and rich enough

to be used in our application to stochastic analysis. In this section, we prove
some useful results about these space, most importantly separability.

Lemma 5.1. Let f be a Schwartz distribution with compact support. We
have f ∗ pt ∈ S for all t > 0.

Proof. We will show that the Fourier transform F(pt ∗ f) of pt ∗ f is in
S. Since f is a compactly supported Schwartz distribution we apply [14,
Theorem 26, page 91] to write f as the finite sum

∑

ν ∂
νh with h some

continuous function with compact support. By linearity it is enough to
show that F(∂νh∗pt) ∈ S, where h some continuous function with compact
support. In this case we have

F(∂νh ∗ pt) = F(h ∗ ∂νpt) = F(h)F(∂νpt),

and this belongs to S since F∂νpt ∈ S and Fh ∈ C∞
b by an easy calculation.

�

We denote by Cc = Cc(R
d) the space of Rd-valued continuous functions

with compact support. For γ ≥ 0 we denote by Cγ
c = Cγ

c (Rd) the space of
elements in Cγ with compact support. Similarly when γ is replaced by γ+ or
γ−, for γ ≥ 0. When defining the domain of the martingale problem we will
work with spaces of functions which are the limit of functions with compact
support, so that they are Banach space. More precisely, let us denote by
C̄γ
c = C̄γ

c (Rd) the space

C̄γ
c := {f ∈ Cγ such that ∃(fn)n ⊂ Cγ

c and fn → f in Cγ}.

As above we denote the inductive space and intersection space as

C̄γ+
c := ∪α>γ C̄

α
c , C̄γ−

c := ∩α<γ C̄
α
c .

We also introduce the space CT C̄
γ+
c and observe that f ∈ CT C̄

γ+
c if and only

if there exists α > γ such that f ∈ CT C̄
α
c , by [10, Remark B.1 part (ii)].

We will state and prove several useful properties of such spaces. Let us
start by showing that CT C̄

γ
c is an algebra.

Proposition 5.2. The space CT C̄
γ
c is an algebra for γ ∈ (0, 1).

Proof. Let f, g ∈ CT C̄
γ
c . By [10, Remark B.1], we know that there exists a

sequence (fn)n ⊂ CTC
γ
c (resp. (gn)n) such that fn → f (resp. gn → g) in
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CTC
γ . Clearly fngn ∈ CTC

γ
c so it remains to show that fngn → fg in CTC

γ .
We have fngn − fg = (fn − f)gn + f(gn − g) so it is enough to show that
(fn− f)gn → 0 and f(gn− g) → 0 in CTC

γ . We show the first term only, as
the second can be handled the same (but easier). Using the norm (3) we need
to bound two terms. The first one is supt∈[0,T ] ‖(fn(t, ·) − f(t, ·))gn(t, ·)‖∞
and it clearly converges to 0 by assumptions on fn, gn. As for the Hölder
seminorm for all t ∈ [0, T ] we have

|(fn − f)(t, x)gn(t, x)− (fn − f)(t, y)gn(t, y)|

≤ |[(fn − f)(t, x)− (fn − f)(t, y)]gn(t, x)|

+ |(fn − f)(t, y)[gn(t, x)− gn(t, y)]|

≤ ‖fn − f‖CT Cγ |x− y|γ sup
t,x

|gn(t, x)|

+ sup
t,x

|(fn − f)(t, x)|‖gn‖CT Cγ |x− y|γ .

Using this we conclude that

sup
t∈[0,T ]

sup
x 6=y

|(fn − f)(t, x)gn(t, x)− (fn − f)(t, y)gn(t, y)|

|x− y|γ
→ 0,

by the fact that fn → f uniformly and ‖fn − f‖CT Cγ and ‖gn‖CT Cγ are
bounded. �

Lemma 5.3. We have

(56) S ⊂ C̄γ+
c

for γ ∈ R. In particular, S is included in the closure C̄c of the space of
continuous functions with compact support Cc with respect to the topology of
uniform convergence.

Proof. It is enough to show the claim for every γ ≥ 0. We only prove (56)
since the closure of the space of continuous functions with compact support
Cc(R

d) with respect to the topology of uniform convergence contains C̄γ+
c .

Let χ : R → R+ be a smooth function such that

χ(x) =







0 x ≥ 0
1 x ≤ −1
∈ (0, 1) x ∈ (−1, 0).

We set χn : Rd → R as χn(x) := χ(|x| − (n+ 1)). In particular

χn(x) =







0 |x| ≥ n+ 1
1 |x| ≤ n
∈ (0, 1) otherwise.

Let f ∈ S. We set fn(x) := f(x)χn(x). Clearly fn ∈ Cγ+
c .

Step 1. For any multi-index m we first show that Dmfn → Dmf uni-
formly.

Notice that Dm(fn − f) = Dm(f(1 − χn)) is a finite sum of terms of
the form DlfDk(1 − χn) for some finite |l|, |k| ≤ |m|. One can show that
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supx |D
k(1 − χn)(x)| ≤ ‖Dkχ‖∞ by the definition of χn. Let ε > 0. Since

f ∈ S there exists n(ε) such that for all |x| > n(ε) then |Dlf(x)| < ε for all
l such that |l| ≤ |m|. For |x| > n(ε) we have

|Dlf(x)Dk(1− χn)(x)| ≤ ‖Dkχ‖∞ε.

This shows uniform convergence of DlfDk(1 − χn) to 0, hence uniform
convergence of Dm(fn − f) to zero.

Step 2. Let α ∈ (0, 1). For any multi-index m it remains to show that

sup
|x−y|<1

|Dm(f(1− χn))(x) −Dm(f(1− χn))(y)|

|x− y|α

converges to 0 as n→ ∞. We clearly have that

|Dm(f(1− χn))(x) −Dm(f(1− χn))(y)|

|x− y|α
≤ ‖∇Dm(f(1− χn))‖∞|x− y|1−α

by finite increments theorem, hence we reduce to Step 1. �

Lemma 5.4. (i) For any γ ∈ R the space S is dense in C̄γ+
c .

(ii) S is dense in C̄c.

Proof. Item (i) We observe that S ⊂ C̄γ+
c , see Lemma 5.3. Let γ ∈ R and

f ∈ C̄γ+
c . By the definition of the space we can reduce to the case f ∈ Cγ+

c .
We mollify f using the heat semigroup Pε, that is we consider Pεf = pε ∗ f
where pε is the heat kernel. By Lemma 5.1 we have Pεf ∈ S. By (10) we
also have that Pεf → f in Cγ+.

Item (ii) The result follows from the fact that Pεf → f uniformly, for
f ∈ Cc and that S ⊂ C̄c by Lemma 5.3. �

The next three lemmata will be used below to prove that the spaces are
separable.

Lemma 5.5. Let f : [0, 1] → B where (B, ‖ · ‖) is a Banach space. Then

the sequence (fn)n defined by fn(t) :=
∑n

j=0 f(
j
n)t

j(1 − t)n−j
(

n
j

)

converges

uniformly to f .

Proof. The polynomials (fn)n are also know as Bernstein polynomials, often
denoted by Bn(f, t) that is

(57) Bn(f, t) := fn(t) :=

n
∑

j=0

f(
j

n
)tj(1− t)n−j

(

n

j

)

.

Bernstein polynomials have the property that they can be expressed as ex-
pectations of suitable random variables, which is useful in the computations
below. In particular, let U1, . . . , Un ∼ U(0, 1) be independent uniform r.v.s
and let

Sn(t) :=
1

n

n
∑

j=1

1[0,t)(Uj).
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Since Sn(t) is a binomial r.v. with parameter n and t, then clearly

(58) Bn(f, t) = E[f(Sn(t))].

Let ε > 0. Since f is uniformly continuous, there exists δ > 0 such that
if |t− s| ≤ δ then ‖f(t)− f(s)‖ ≤ ε. Let t ∈ [0, 1], by (58) we have

‖fn(t)− f(t)‖ =‖E[f(Sn(t))− f(t)]‖

≤E[‖f(Sn(t))− f(t)‖1{|Sn(t)−t|≤δ}]

+ E[‖f(Sn(t))− f(t)‖1{|Sn(t)−t|>δ}]

=:I1(t) + I2(t).

Now

I1(t) ≤ εP(|Sn(t)− t| ≤ δ) ≤ ε.

Concerning I2(t), being Sn(t) a binomial random variable with parameter n
and t,

Var(Sn(t)) =
1

n
(t− t2).

Using this and by Chebyshev inequality we get

I2(t) ≤2‖f‖∞P(|Sn(t)− t| > δ)

≤2‖f‖∞
Var(Sn(t)− t)

δ2

≤2‖f‖∞
(t− t2)

nδ2
.

Now taking the supremum over t ∈ [0, 1] we get supt∈[0,1] I2(t) ≤
1
2‖f‖∞

1
nδ2

and putting this together with the bound for I1(t) we obtain

lim sup
n→∞

sup
t∈[0,1]

‖fn(t)− f(t)‖ ≤ lim sup
n→∞

sup
t∈[0,1]

(I1(t) + I2(t)) ≤ ε.

Since ε > 0 is arbitrary, the proof is concluded. �

Lemma 5.6. Let E be an inductive space of the form E = ∪α∈NEα, with
Eα Banach space. If E is separable then CTE is separable.

Proof. Without loss of generality we choose T = 1. Let f ∈ CTE and we
consider the functions

fn(t) :=

n
∑

j=0

f(
j

n
)tj(1− t)n−j

(

n

j

)

.

We now use the fact that CTE = ∪α∈NCTEα by [10, Remark B.1], where
the space CTEα can be equipped with the norm supt ‖f(t)‖Eα . By this
fact, there exists α such that f ∈ CTEα, in particular fn ∈ CTEα for all n.
By Lemma 5.5 fn converges to f in CTEα, which by the fact stated above
implies it converges also in CTE. We have thus reduced our problem to
polynomials of the form

∑n
j=1 ajt

j with aj ∈ Eα. We conclude the proof
by using the fact that E is separable, thus there exists a countable dense
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subset of E, say P, so that every polynomial
∑n

j=1 ajt
j can be approached

by a sequence of polynomials of the type
∑n

j=1 qjt
j with qj ∈ P. �

Lemma 5.7. (i) For any γ ∈ R the space C̄γ+
c is separable.

(ii) C̄c is separable.

Proof. This follows from Lemma 5.4. �

Corollary 5.8. The space CT C̄
γ+
c is separable for any γ ∈ R.

Proof. Notice that by definition C̄γ
c is a Banach space and the inductive

space C̄γ+
c is separable by Lemma 5.7, so we conclude using Lemma 5.6. �
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