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This paper examines the lifetimes of alternative system configurations for a wireless sensor network
(WSN) in a circular region. The coverage region is divided into hexagonal cells, and the information from
each cell is combined and transmitted to the sink or to other cells. Sensors are equipped with directional
antennas that improve transmit/receive power efficiency and potentially reduce interference.
Simultaneous transmission to multiple cells is permitted, and the power level of different transmissions
can be controlled to different levels. Under the assumptions of uniform information density and uniform
sensor distribution, we show that for larger systems (with 800 cells or more) lifetime can be prolonged by
more than 10 times by introducing a limited number of transmission lines or line sinks to facilitate infor-
mation transfer to the main sink. Alternatively, introducing up to six secondary sinks can increase the
system lifetime by a factor of about 4.5 for the same size region. Our results imply that incorporating line
or secondary sinks may provide simple, low-cost solutions for extending system lifetime for larger WSN’s.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wireless Sensor Networks (WSN) are widely used to remotely
sense data from physical environments for digital systems. Ini-
tially, WSNs were designed for military purposes. Nowadays, with
massive connectivity enabled by 5G, various applications of WSN
interconnect to create a comprehensive Internet of Things (IoT)
ecosystem, where any object in our environment can be connected
and tracked through the Internet. Furthermore, the sensor-based
systems that comprise IoT enable communication between devices
without human intervention (Hashem et al., 2016; Alaba et al.,
2017). Consequently, besides traditional applications including
disaster monitoring, pollution monitoring, climate change, IoT
has extend the scope of WSN applications to smart homes, smart
cities, smart grids, smart agriculture, and so on (Nels and Singh,
2021; Gunduz and Das, 2020; Dileep, 2020).

The task of data collection in WSNs requires comprehensive and
efficient data fusion algorithms in order to meet system con-
straints. A major constraint is the limited energy capacity of the
sensor nodes. Nodes expend energy to receive data from other
nodes, then merge and retransmit so that the data eventually
reaches the base station (sink node). Data aggregation refers to
strategies used to decrease the amount of data transfer in WSN
so as to retain only useful information in the network (Nels and
Singh, 2021; Zhou et al., 2019; Djedouboum et al., 2020; Pundir
and Sandhu, 2021). Optimization of the data aggregation process
is known to be NP-hard (Chen et al., 2005; Titouna et al., 2018;
Gbadouissa et al., 2020). To address this issue, various architec-
tures and approaches have been developed (Khedo et al., 2010;
Coudert et al., 2015; Xie and Chen, 2017; Priya and Enoch, 2018;
Maivizhi and Yogesh, 2020; Ullah and Youn, 2020; Ullah et al.,
2021; Jan et al., 2021). These approaches rely on the fact that data
from sensor nodes includes redundant information which may be
reduced by data preprocessing, thus reducing transmission and
consequently network energy consumption. In most cases, spatial
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data correlation is exploited for this purpose, i.e. data from nearby
sensors is aggregated before transmission. This aggregation may be
repeated at multiple levels, leading to a hierarchical aggregation
model (Dhand and Tyagi, 2016; Xu et al., 2015).

Since data aggregation in WSNs produce large quantities of
data, many recent studies in this field use approaches from
machine learning and data sciences to perform data prediction so
as to decrease network energy consumption, data duplication,
bandwidth usage, packet delay as well as data loss due to node fail-
ure. Methods used include Least-Mean-Square and Root Mean
Squared Error analysis, ARIMA model for time series forecasting,
Kalman filtering, k-nearest neighbors algorithm and deep learning
algorithms (Nels and Singh, 2021; Ullah and Youn, 2020; Avinash
et al., 2015; Fu et al., 2016; Cheng et al., 2019; Zhang et al.,
2019; Aboubakar et al., 2020; Mohanty et al., 2020).

As previously indicated, data aggregation helps to eliminate
similar data and not valuable data in order to properly and effi-
ciently use network resources. Therefore, some studies direct their
reflections on the development of mechanisms for an efficient use
of the bandwidth and a reduction of latency, packet loss and packet
delivery time. As one might naturally expect, the proposed
schemes include data compression techniques, data clustering
algorithm and data priority policy (Jan et al., 2021; Mantri et al.,
2013; Mohanty and Kabat, 2016; Devi et al., 2020; Babu et al.,
2021). The combination of these techniques allows efficient moni-
toring of data flows in the network and consequently better use of
network bandwidth and energy.

Another technique for reducing sensor power consumption is to
employ directional antennas (Wang et al., 2017; Dunlop and
Cortes, 2007) which produce more focused signals, thus both
reducing interference and increasing effective transmitted power.
The usefulness of directional antennas in increasing system capac-
ity is attested by their widespread use in wireless cellular commu-
nications systems (Liberti and Rappaport, 1994).

In this paper, we investigate a hierarchical spatial aggregation
scheme based on congruent hexagonal cells, such as are often used
in wireless cellular communications (Baltzis, 2011). The same
geometry was studied for WSNs in Debessu et al. (2011) and
Debessu et al. (2010): however, we consider alternative designs
that utilize directional transmission, and involve introducing either
repeaters that function essentially as secondary sinks, or power
lines that enable powered information transfer for sensors lying
along the power line. These innovations greatly reduce power con-
sumption, thus prolonging system lifetime.

The remainder of this paper is organized as follows. Section 2 is
devoted to the related work on data aggregation. The challenges
and related solutions are clearly identified and exposed. Section 3
focuses on the designing of an efficient data aggregation model
based on hexagonal cells. Section 4, we describes numerical simu-
lations and discuss our experimental results. Section 5 furnishes a
conclusion and proposes future research directions.
2. Related work

As pointed out in Pundir and Sandhu (2021), energy efficiency is
the most important performance criterion for data aggregation
since it determines network lifetime. Different researchers have
taken different approaches to improve energy efficiency including
network topology, data predication, data compression, data redun-
dancy elimination, security effects, routing, mobility impacts,
bandwidth management, latency and pack delivery ratio have been
carried out for efficient data fusion in WSN (Pundir and Sandhu,
2021; Jan et al., 2021; Devi et al., 2020; Wang et al., 2019; Gupta
and Sharma, 2019; Ahmed et al., 2019; Yadav and Mahapatra,
2021). These approaches are described briefly below.
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Network topology refers to the manner in which sensor nodes
are organized to capture and forward data in the network. The
cluster topology based on low energy adaptive clustering hierarchy
routing protocol (LEACH) (Heinzelman et al., 2000; Heinzelman,
2000) is the most well-known and widely-used architecture
designed for traffic control to minimize energy consumption by
selecting the cluster heads (CHs) among nodes which are responsi-
ble to transfer data to the base station or the next cluster head
(Pundir and Sandhu, 2021; Ahmed et al., 2019). To achieve this,
several studies seek to propose cluster head selection schemes that
avoid redundant data, more work load on CHs, and oversize clus-
ters which can lead to rapid CH discharge. For example the hybrid
energy efficient distributed (HEED) clustering algorithm takes both
residual energy and the node proximity into account to avoid
unbalanced clustering (Younis and Fahmy, 2004). Similarly, a
genetic algorithm clustering method is proposed in Yuan et al.
(2017) using the node density, the residual energy and the
expected node energy consumption. Observing that HEED leads
to cluster CHs variation during clusters election, the set of fuzzy
rules and the bacterial foraging method are used to develop vari-
ous clustering schemes in Gupta and Sharma (2019) in order to
limit hot spot formation that cause more work load on clusters.
The CH election must also consider network scalability. For this
purpose, based on K-means++, a novel Multi-Scale Parallel cluster-
ing (MSPK++) algorithm was proposed in Mydhili et al. (2020). The
network energy consumption is reduced by exploiting distributed
behavior of WSNs on both virtual and real cluster machines to bal-
ance the routing load. As highlighted in Pundir and Sandhu (2021),
the implementation of MSPK++ in real-world applications is complex.
In addition to the network topology, efficient data collection requires
building a comprehensive, efficient pattern of field coverage. To
achieve this, a very common strategy involves structuring the coverage
region into hexagonal cells (Carr et al., 1992). A distributed algorithm
that divides the network into hexagonal cells were proposed in Li et al.
(2014) to reduce aggregation latency under WSNs physical interfer-
ence. A cellular network configuration helps to handle simultaneous
transmissions which can cause interference, without needing an over-
all view of the information moving through the network. In the same
way, an analysis of network lifetime extension for data reporting using
hexagonal clustering was presented by Debessu et al. in Debessu et al.
(2011). The network lifetime was investigated through various data
reporting configurations including direct transmission to the base sta-
tion, transmission via random CHs position and data transfer using
CHs situated at the centers of hexagons. Similarly, Kumar et al.
Kumar et al. (2018) showed that a data aggregation scheme for WSN’s
based on hexagonal and Voronoi cells clusters led to reduced energy
consumption. Hexagonal patterns were also used by Ramkumara
et al. Ramkumar et al. (2021) for efficient relay nodes selection during
data routing in order to save nodes’ energy consumption.

The clustering methods presented above do not consider in gen-
eral the nodes mobility. However, it is well know that the mobility
factor can save energy consumption in WSN. Following this logic,
the network lifetime is improved in heterogeneous nodes environ-
ment by using a mobile sink, which helps to reduce the communi-
cation cost between CHs and sink in Mantri et al. (2016). The
proposed cluster-based data aggregation algorithm (MHCDA) orga-
nizes the network in two layers. The static layer, which is com-
posed of source nodes and CHs, and the mobile layer, which is
bring out by the sink mobility through the network. In this archi-
tecture, each CH exploits data correlation from its member sources
node to limit packets transmission. Subsequently, a mobile sink
moves through the network for data gathering from the CHs. In
the same vein, a cluster-chain mobile agent routing (CCMAR) pro-
tocol was proposed in Sasirekha and Swamynathan (2017). To per-
form data aggregation, the proposed protocol first combines the
cluster-chain routing algorithm presented in Du et al. (2003) and



Fig. 1. Network system.
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the (LEACH) for CHs formation. Afterwards, a mobile agent is
deployed for data collection and data forwarding to further reduce
energy consumption during data transmission to the sink node. In
static WSNs, the nodes closer to the sink generally die faster
because of unbalance traffic among nodes. To cope with this issue,
an Enhanced Power Efficient Gathering in Sensor Information Sys-
tems (EPEGASIS) clustering, which include mobile sink and chain-
based routing was proposed in Wang et al. (2018). Data aggrega-
tion involves also the selection of optimal paths to transmit data.
For this purpose, a mobile sink and a greedy scheme for interclus-
ter communication are used in Wang et al. (2019) to choose low
energy consumption paths when transferring data.

Data compression and data redundancy elimination are the clas-
sical mechanisms used in data aggregation to reduce communication
overhead that has a direct impact in nodes depletion, latency, packet
delivery and network congestion (Maivizhi and Yogesh, 2020; Jan
et al., 2021; Ahmed et al., 2019; Mantri et al., 2016; Sasirekha and
Swamynathan, 2017). To address the data redundancy issue, the
authors of Jan et al. (2021) proposed a lightweight twofold data
aggregation. At the source node level, similarity analysis is realized
by decreasing or increasing the weight of the captured data. When
a given node senses a data, the value of the current captured data
is compared to that of the previous sensing data based on a modified
version of Euclidean distance function. If the two data values are
equal, the current captured data is discarded by increasing its weight
with 1. However, if the value is less the defined threshold, the value
of the previous captured data is set to the average of the current data
and that of the previous data. In the case where the data values are
different, the weight of the current data is set to 0 to say that there
is no similarity between data. The effectiveness of the proposed
scheme is established through data loss ratios, node integrity and
energy consumption levels. A multilevel redundant data elimination
and energy efficient algorithm, Data Redundancy-controlled Energy
Efficient Multi-hop (DREEM) was proposed in Ahmed et al. (2019).
DREEM is a protocol combining cluster and statistical tests with an
appropriate threshold. To remove similar data, DREEM divides the
network in small and big clusters. The small cluster head (SCH)
aggregates data from source nodes and forwards to the big cluster
head (BCH). Then after, the surface sink collects data from BCHs. In
addition to the improvement of the network lifetime, DREEM helps
to enhance the throughput of the network.

Likewise, to further reduce the communication cost in a dense
WSN where massive data are generated, a data compression tech-
nique is employed. In Azar et al. (2019), an adaptive version of
error-bounded lossy compression scheme based on Squeeze (SZ)
algorithm was proposed to reduce the amount of forwarding data
with no effect in data quality. SZ uses bounded errors to control the
information loss and to appreciate the compression ratio. The per-
formance studies show that when data are compressed before
transmission, the battery level of IoT nodes decreases slowly. In
the same way, SZ is combined with compressed sensing, discrete
wavelet transform and deep learning model to build time series
compression for efficient bandwidth usage and network lifetime
extension (Azar et al., 2020). Compression allows the reconstruc-
tion of signal from a fewer number of measurements whereas
discrete wavelet transform uses filters to split the signal for
time–frequency representation. The deep learning method helps
to classify original data from approximation data.
3. System model

3.1. Model assumptions and notation

In this paper, we consider a sensor network with a single sink
node, and with sensors densely distributed in a circular region sur-
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rounding the sink node (see Fig. 1). For the purposes of this paper,
we assume uniform density of sensors throughout the region (the
model can easily be modified to accommodate nonuniform
density). We also assume that sensors are grouped into congruent
hexagonal cells, and the sensors from each cell send their
information to a single node at the center of the cell where the
information is aggregated before being passed to the sink. Cell
nodes may pass their information directly to the sink node, or
indirectly via other cell nodes. A cell node’s information can also
be split into multiple channels, which can then be reassembled
at the sink node. Cell nodes can also multiplex together informa-
tion from several other cell nodes, with negligible information loss
or overhead.

Our notation is defined as follows. In all definitions, the index j
ranges from 1 to N, and the index i ranges from 0 to N.

� aj P 0 is the information per time associated with cell node j
that is to be transmitted the sink;
� cj P 0 is the current energy capacity left in cell node j;
� tij > 0 is the power cost to cell node j of transmitting a unit of
information to cell node i (which may also include processing
power cost). In general, tij is a convex function of the distance
between nodes i and j;
� xij P 0 is the information per unit time that flows from node j to
node i.

We suppose that the values aj and tij remain approximately con-
stant over the time interval of interest.

3.2. Model constraints

The total information processed by cell node j per time is equal
to the information originating from j (i.e. aj) plus the information
per time that flows into node j from other nodes. This information
is subsequently transmitted to other nodes. This balance between
inflowing and outflowing information for each node gives an
equality constraint for each node j; j ¼ 1; . . .N as follows:
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XN
i¼0

xij ¼ aj þ
XN
i¼1

xji

 !
; j ¼ 1; . . . ;N ð1Þ

The sum of the N Eqs. (1) gives:

XN
j¼1

XN
i¼0

xij ¼
XN
j¼1

aj þ
XN
j¼1

XN
i¼1

xji

)
XN
j¼1

x0j ¼
XN
j¼1

aj:

ð2Þ

Eq. (2) guarantees that all information eventually flows to the
sink node at 0.

We also impose a nonnegativity constraint on the information
flows xij, and prohibit flows from nodes to themselves:

xij P 0; xii ¼ 0; 0 6 i; j 6 N: ð3Þ
3.3. Maximization of network lifetime

In the case where nodes’ energy capacities are limited, the net-
work can no longer fully function when any node’s energy reserve
is depleted. The remaining lifetime of any node at current energy
usage is given by the node’s remaining energy capacity divided
by its rate of consumption (i.e. power). Due to linearity, it is not
necessary to look for time-dependent solutions, since a time-
averaged strategy will have the same system lifetime.

Using the terminology defined above, the energy consumption

of node j is given by
PN

i¼0tijxij, so the remaining lifetime of node j

is
PN

i¼0
tijxij
cj

� ��1
. Thus system lifetime may be maximized by solving

the following minimization problem: Minimize U, subject to con-
straints (1), (3) and

U P
XN
i¼0

tijxij
cj

; j ¼ 1; . . . ;N: ð4Þ

We will refer to U in (4) as the system’s depletion rate, since the
system lifetime is U�1. The solution to (4) may be readily found
using linear programming.

3.4. Sectorization of uniform model

The geometry of the model has 12-fold symmetry, in the sense
that one 30� slice of the hexagon can be mapped to 11 other similar
slices through rotations and reflections. Because of linearity, any
non-symmetric solution can be symmetrized to obtain a solution
that will be at least as good as the original solution. It suffices
therefore to look for solutions with 12-fold symmetry. Thus we
may solve the equations for a single 30� slice, then map the solu-
tion to all other slices.

Algorithm1 Optimization algorithm pseudocode for a single
sector for a uniform hexagon model

Input: nMax: Maximum distance from hexagon to sink
Output: Location xVec and yVec of hexagons; information

matrix infoMx; and power matrix powerMx
1: Compute the upper bound of number of hexagons in a

sector: kMax( nMax � ðnMaxþ 1Þ=2
2: Generate (xVec; yVec) coordinates of hexagons in the sector

(some of these will be too far away and are removed)
3: Compute the matrix of inter-hexagon distances dhsqMx
4: Remove hexagons with distance > nMax from the sink from

xVec; yVec; dhsqMx. Let nHex = number of remaining
hexagons.
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5: Create nHex� nHex 0–1 matrixmaskMx to indicate possible
information flows between hexagons. nz = sum(maskMx).

6: Initialize to zero: objective vctor objVec (1� nz); inequality
constraints vector bVec ðnHex� 1Þ; inequality constraint
matrix Aineq (nHex� nzþ 1); equality constraint vector
cVec (nHex� 1); equality constraint matrix Aeq
(nHex� 1� nzþ 1).

7: for ih 1 to nHex do
8: add a new row constraint to Aineq
9: if hexagon is on edge of sector then
10: Only 1

2of hexagon is included in sector
11: end if
12: end for
13: for ih 1 to nHex do
14: add a new row constraint to Aeq
15: if hexagon is on edge of sector then
16: Only 1

2of hexagon is included in sector
17: end if
18: end for
19: infoVec = solution of linear program with parameters

objVec;Aineq; bVec;Aeq and cVec
20: Reshape infoVec vector to nHex� nHex matrix
21: Double the information for hexagons on boundary
22: Compute powerMx( infoMx� dhsqMx (elementwise)
The complete solution for all sectors may be obtained from the
solution for one sector by successive duplication via reflection, as
follows. To duplicate the first sector, we employ the polar coordi-
nate representation of hexagon positions. Let /max be the maxi-
mum polar angle for hexagons in the sector. Then the hexagons
in the second sector are obtained by reflecting the hexagons in
the first sector around the / ¼ /max line. Mathematically, this cor-
responds to the polar coordinate transformation:

ðr;/Þ ! ðr;2/max � /Þ ð5Þ
Following this, the second sector is similarly duplicated to obtain
the third sector, and so on until all 12 sectors are generated.

4. Results

4.1. Simulation parameter values

In this study we consider a uniformmodel where all nodes have
the same information density:

ajaand ¼ cj ¼ c 81 6 j 6 N: ð6Þ
It is sufficient to consider the case a ¼ c ¼ 1: if xij;U correspond to
the solution with a ¼ c ¼ 1, then the solutions for different values of
a; c are given by axij; aUc . We also assume a quadratic power law for
transmission power:

tij / distði; jÞ2; ð7Þ
where distði; jÞ is the distance from cell node i to cell node j. This
assumption corresponds to a free space path loss propagation
model with uniform background noise (Richards, 2008), which is
most suitable for a sensor field with uniformly-distributed sensors.
Because of the low data rates involved (as well as directional trans-
mission), we may ignore the effect of possible interference between
signals from different nodes. In the simulations, distances are nor-
malized so that the distance between any cell node and its closest
neighbors is 1.
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The regions used in this study are circular with radii ranging
from 9 to 12. However, we have also verified that larger regions
display similar behavior.
Fig. 3. Power flow for single sink.
4.2. Information and power flow for single-sink system configuration

As mentioned previously, WSN systems commonly have a sin-
gle sink node at the center of the covered region to serve the entire
area. To prolong system lifetime, we may introduce powered sec-
ondary sink nodes, which can transmit information to the central
sink without depleting their capacities. Alternatively, we may run
several transmission and/or power lines radially from the source
that connect hexagons to the central sink, effectively reducing
the transmission power for these hexagons to zero. The secondary
sinks and lines used can have different geometries. In the follow-
ing, we demonstrate the lifetimes of various system geometries.

Fig. 2 displays the patterns of information flow for a system
with a single central sink. A region with a radius of 9 hexagons is
shown, but regions of all sizes show similar patterns. The color of
the dot in each hexagon indicates the combined total information
flow from the given hexagon to all sink nodes. The colored arrows
from each hexagon indicate the direction and size of all informa-
tion flows to neighboring nodes.

The information flow in Fig. 2 follows a very regular pattern.
The flow from any given node is divided between flows directly
to the sink node (represented by the colored dots in each hexagon)
and flows to neighboring nodes (represented by arrows to adjacent
hexagons). The same is true for all other system configurations
examined in this study, and it appears to be true in general. It
may be seen that outer hexagons’ adjacent flows all move directly
towards six symmetrically-arranged rays along which the stepwise
information flow is also large. But within an inner hexagon with
radius roughly half of the region radius, the adjacent flows no
longer move towards these rays but rather parallel to them.

Fig. 2 shows that with a single central sink, the information
flows from nodes adjacent to the sink are almost 18 times as large
as the information associated with a single hexagon.

Fig. 3 shows the power flows associated with the information
flows in Fig. 2. In this case, the colored dot in each hexagon indi-
cates the base 10 logarithm of the power flow from the given hexa-
gon directly to the sink (according to the color scale in the figure).
The arrows between hexagons give the base 10 logarithms of
power flows between adjacent hexagons. The figure shows that
many nodes expend most of their power for direct transmission
Fig. 2. Information flow for single sink.

7915
to source–this is to avoid overloading the nodes along the six rays
referred to in the previous paragraph, which pass information
down to the central sink. Indeed, the direct-to-source power
expenditure is nearly equal for most hexagons, except for those
along the six rays mentioned above where more power is spent
for adjacent transmission, because the information concentration
is highest along these rays.
4.3. Information and power flow for system configurations based on
6-fold symmetry

The information and power flows shown in Figs. 2 and 3 respec-
tively suggest that a system configuration that focuses on reducing
the energy of transmission along the six symmetrical rays would
reduce the need for direct transmission from other nodes, thus pro-
longing system lifetime. One possible way of doing this would be
to introduce effective line sinks (in the form of transmission lines
or power lines) into the system along the six ray directions, so that
information can be transmitted along these directions at negligible
cost. Fig. 4 shows the information flow for a system design with six
line sinks. In the figure, hexagons that lie along line sinks are indi-
cated with black crosses. The information diffuses towards the line
Fig. 4. Information flow for 6 line sinks.



Fig. 6. Information flow for 6 secondary sinks.

Fig. 7. Power flow for 6 secondary sinks.
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sinks, from whence it is passed directly to the main sink. The max-
imum information flow from nodes adjacent to sink nodes is about
2.5, which is greatly reduced compared to the information flow of
18 for nodes adjacent to the main sink in Fig. 2. The corresponding
power flow is shown in Fig. 5, where the power scale is the same as
in Fig. 3. Clearly, the direct-to-sink power flow from hexagons in
the region has been greatly reduced. Indeed, some hexagons have
no direct power flow, and all flow is to adjacent hexagons.

A different way to reduce the large information and flows in
Figs. 2,3 would be to introduce secondary sources (such as repea-
ters) at locations along the six rays. Figs. 6,7 show the information
and power flows respectively for such a system. It is clear from
comparison with Fig. 3 that this system configuration is also effec-
tive in reducing power consumption compared to the original
single-sink system. The information and power flows are more
complex, because there are now seven different nodes that attract
power flow. Some of the power flows away from the central node
and towards secondary nodes.

4.4. Information and power flow for system configurations based on 3-
fold symmetry

An intermediate approach between the single-sink and six-sink
configurations would be to introduce effective line or point sinks
along three symmetrical directions. Figs. 8–11 show information
and power flows for a three secondary line and point sinks, respec-
tively. The observed flows have similar characteristics to the 6-line
flows in Figs. 4 and 9.

4.5. Direct comparison of alternative system configurations

Figs. 12 and 13 directly compare the system lifetimes for the
five alternative system configurations described above,for two dif-
ferent region sizes. In the graphs, system lifetimes are scaled so
that the y axis shows the relative system lifetime compared to
the base configuration with no secondary nodes or lines. The
curves for the solutions with secondary nodes show scaled system
lifetime as a function of secondary sink position, measured in hexa-
gons from the center of the region. Lines for other solutions are flat
because these systems have no secondary sinks.

The graphs show that a system with six line sinks consistently
has the longest lifetime. Furthermore, the relative advantage of line
sinks compared to basic and secondary node solutions increases
with increasing region size. This tendency is clarified in Fig. 14,
Fig. 5. Power flow for 6 line sinks.
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which shows that the relative advantage of line solutions com-
pared to the basic solution increases about 3 times when the
region size is increased from 4 to 20 hexagons.

In contrast to line solutions, the relative advantage of solutions
with secondary nodes compared to the basic solution increases
only slightly as the region size increases, as shown in Fig. 14. Both
Fig. 12 and Fig. 13 show that the best position for secondary sinks
is roughly 2/3 of the distance to the edge of the region. This makes
sense because this placement minimizes the maximum distance to
the nearest sensor for points in the region.
5. Discussion and conclusion

This paper presents a detailed investigation of the lifetimes of
alternative system configurations for a WSN in a circular region.
The region is divided into hexagonal cells, and the information
from each cell is combined and directionally transmitted to the
sink or to other cells. Simultaneous transmission to multiple cells
is permitted, and the power level of different transmissions can



Fig. 8. Information flow for 3 line sinks.

Fig. 9. Power flow for 3 line sinks.

Fig. 10. Information flow for 3 secondary sinks.

Fig. 11. Power flow for 3 secondary sinks.

Fig. 12. System lifetime enhancement for various system configurations, for a
region with a radius of 12 hexagons.

Fig. 13. System lifetime enhancement for various system configurations, for a
region with a radius of 20 hexagons.
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Fig. 14. Relative lifetime for different solutions as a function of region size. All
lifetime values for each region size are normalized by dividing by the lifetime for
the basic solution for the same region size.

Fig. 15. Normalized lifetime for different solutions as a function of region size. All
lifetime values are normalized by dividing by the lifetime for the basic solution for a
region with a radius of 4 hexagons.
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be controlled to different levels. Under the assumptions of uniform
information density and uniform sensor distribution, system life-
time can be greatly prolonged by introducing a limited number
of transmission lines or repeaters to facilitate information transfer.
Line sinks are more effective than secondary point sinks, and their
relative effectiveness increases as the size of the coverage region
increases. Fig. 14 shows that using six line sinks for a region with
a radius of 20 hexagons increases the system lifetime by a factor
of 12. Indeed, Fig. 15 shows that a system with radius 20 hexagons
that uses line sinks has about the same lifetime as a basic (single-
sink) system with 1/5 the radius, while providing coverage for an
area 25 times larger.

Our results indicate that symmetric line sinks hold promise as a
practical alternative for a WSN with extended lifetime. Naturally,
the introduction of line sinks brings additional cost, so
cost-benefit tradeoffs may vary from situation to situation. By
quantifying the improvements in performance, our results provide
essential information for a cost-benefit analysis.
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Future work may investigate non-uniform systems, or systems
with irregular shape having multiple sinks. Eqs. (1)–(4) are still
valid in more general systems. Further investigation with latency
is also left for future work.
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