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this paper. Correspondence to Jean-Laurent Casanova: casanova@rockefeller.edu; Qian Zhang: qzhang02@rockefeller.edu

COVID Human Genetic Effort, Etablissement Français du Sang Study Group, Constances Cohort, 3C-Dijon Study, Cerba HealthCare Group, Lyon Antigrippe Working Group,
and REIPI INF Working Group member names and affiliations are listed at the end of the end of the PDF.

© 2022 Zhang et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

Rockefeller University Press https://doi.org/10.1084/jem.20220514 1 of 18

J. Exp. Med. 2022 Vol. 219 No. 11 e20220514

https://orcid.org/0000-0002-9040-3289
https://orcid.org/0000-0002-0918-6804
https://orcid.org/0000-0003-0989-3178
https://orcid.org/0000-0002-5926-8437
https://orcid.org/0000-0002-1083-5787
https://orcid.org/0000-0002-7253-3135
https://orcid.org/0000-0001-9163-9122
https://orcid.org/0000-0001-5998-2051
https://orcid.org/0000-0002-2822-161X
https://orcid.org/0000-0003-3429-9605
https://orcid.org/0000-0002-0277-6692
https://orcid.org/0000-0002-2159-6507
https://orcid.org/0000-0002-1291-1042
https://orcid.org/0000-0002-8993-8905
https://orcid.org/0000-0001-8825-5400
https://orcid.org/0000-0002-6232-7717
https://orcid.org/0000-0002-5984-668X
https://orcid.org/0000-0002-0170-9965
https://orcid.org/0000-0001-9415-4657
https://orcid.org/0000-0002-9361-4049
https://orcid.org/0000-0003-2707-1979
https://orcid.org/0000-0001-5667-925X
https://orcid.org/0000-0003-3209-2563
https://orcid.org/0000-0003-2147-809X
https://orcid.org/0000-0001-8158-9934
https://orcid.org/0000-0002-1468-2458
https://orcid.org/0000-0002-9310-8322
https://orcid.org/0000-0002-4540-4282
https://orcid.org/0000-0001-8675-7968
https://orcid.org/0000-0003-1214-0302
https://orcid.org/0000-0001-9161-7361
https://orcid.org/0000-0003-0029-9383
https://orcid.org/0000-0002-8335-0262
https://orcid.org/0000-0001-6917-8980
https://orcid.org/0000-0002-8452-7963
https://orcid.org/0000-0001-5536-1661
https://orcid.org/0000-0001-5832-4014
https://orcid.org/0000-0002-4344-8644
https://orcid.org/0000-0002-0483-4470
https://orcid.org/0000-0001-5393-5529
https://orcid.org/0000-0002-6812-2739
https://orcid.org/0000-0002-8227-0877
https://orcid.org/0000-0002-2815-4234
https://orcid.org/0000-0002-5983-3897
https://orcid.org/0000-0002-3364-1213
https://orcid.org/0000-0002-7516-9471
https://orcid.org/0000-0002-6277-6408
https://orcid.org/0000-0003-1677-8901
https://orcid.org/0000-0002-0643-2256
https://orcid.org/0000-0002-1166-3956
https://orcid.org/0000-0002-0381-8049
https://orcid.org/0000-0001-8438-845X
https://orcid.org/0000-0002-4309-3775
https://orcid.org/0000-0003-3271-9856
https://orcid.org/0000-0001-8176-3955
https://orcid.org/0000-0002-4565-2454
https://orcid.org/0000-0002-6480-0758
https://orcid.org/0000-0002-7559-9527
https://orcid.org/0000-0001-7766-7266
https://orcid.org/0000-0003-3086-1058
https://orcid.org/0000-0002-5013-6884
https://orcid.org/0000-0002-5426-4648
https://orcid.org/0000-0003-2603-0323
https://orcid.org/0000-0002-7358-9157
https://orcid.org/0000-0001-7016-6493
https://orcid.org/0000-0001-7209-6257
https://orcid.org/0000-0001-6439-4705
https://orcid.org/0000-0002-6551-1827
https://orcid.org/0000-0002-7782-4169
mailto:casanova@rockefeller.edu
mailto:qzhang02@rockefeller.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1084/jem.20220514
http://crossmark.crossref.org/dialog/?doi=10.1084/jem.20220514&domain=pdf


Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine
disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight
patients) from a cohort of 279 patients (4.7%) aged 6–73 yr with critical influenza pneumonia. Nine and four patients had
antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies
neutralizing high and low concentrations, respectively, of IFN-ω. The patients’ autoantibodies increased influenza A virus
replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly
higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10−5), but not >70 yr of age (3.1 vs.
4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both
IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10−5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10−10). We also identified 10
patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-
threatening influenza pneumonia in patients <70 yr old.

Introduction
Seasonal influenza viruses (influenza A and B viruses [IAV and
IBV]) infect ∼18% of unvaccinated people each winter, ∼17% of
whom require medical attention (Hayward et al., 2014). Most
unvaccinated infected individuals present with only asymp-
tomatic infection or self-limited disease, but seasonal influenza
nevertheless accounts for ∼400,000 deaths from respiratory
causes per year worldwide (Iuliano et al., 2018; Paget et al.,
2019; Krammer et al., 2018) and ∼10% of admissions and
deaths from respiratory disease in hospitals (Cromer et al.,
2014). Mortality rates are even higher for virulent, pandemic
influenza viruses (Krammer et al., 2018). Why do a minority of
infected individuals suffer from life-threatening seasonal in-
fluenza, whereas the majority do not? Different viral strains
can explain year-to-year or region-to-region differences in
mortality (Medina and Garcia-Sastre, 2011; Tscherne and
Garcia-Sastre, 2011), but not interindividual variability within
a given region and time period (Casanova and Abel, 2020,
2021a, 2021b, 2022; Zhang et al., 2022). Efforts have been made
to identify human epidemiological risk factors. Aging is the
major epidemiological determinant of death from influenza
infection (Cromer et al., 2014; Paget et al., 2019; Iuliano et al.,
2018; Krammer et al., 2018). Despite differences in overall
mortality between the 32 countries with various levels of
vaccination coverage studied, it is clear that people aged 65–75
yr, and those >75 yr old, are 7–38 and 24–249 times more likely,
respectively, to die from respiratory influenza infection than
people <65 yr old (Iuliano et al., 2018). The age-dependent in-
crease in the risk of death, and the sharp increase in people >65
yr old in particular, remain unexplained, but has also been
reported for other respiratory viruses, including adenovirus,
respiratory syncytial virus (Watson and Wilkinson, 2021), and
SARS-CoV-2 (Piroth et al., 2020), suggesting the possibility
of shared immunological mechanisms. A few comorbid con-
ditions, such as chronic pulmonary diseases, are associated
with life-threatening influenza (Cromer et al., 2014). Both anti-
influenza vaccination and infections with influenza viruses
confer some protection against specific and, to a lesser extent,
cross-reactive influenza viruses (Krammer et al., 2018; Kostova
et al., 2013). However, a lack of immune memory is not, in it-
self, sufficient to cause critical influenza, as demonstrated by
patients with inherited and acquired deficiencies of T and B cell

adaptive immunity, whose impaired antibody responses to the
influenza vaccine do not seem to create a predisposition to
critical influenza (Zhang, 2020). Most, if not all, life-
threatening cases of influenza in vaccinated and unvaccinated
individuals, including those >65 yr old, remain unexplained at
the molecular and cellular levels.

A first breakthrough came from human genetic studies of
rare children with life-threatening influenza pneumonia. In
2015, we reported autosomal recessive (AR) IRF7 deficiency in
an otherwise healthy 7-yr-old girl who had suffered from life-
threatening influenza pneumonia at the age of 3 yr (Ciancanelli
et al., 2015). She has since remained well with only annual in-
fluenza vaccinations and vaccination against COVID-19 for
prophylaxis. Two other patients with IRF7 deficiency suffering
from severe influenza pneumonia at the ages of 7 mo and 14 yr
have recently been reported (Campbell et al., 2022). IRF7 is a
transcription factor required for the production of the 17 type I
IFNs and three type III IFNs, with IFN-β not being strictly IRF7
dependent in some cell types (Ciancanelli et al., 2015; Zhang
et al., 2020b; Campbell et al., 2022). Plasmacytoid dendritic
cells from these patients produced no type I and III IFNs other
than IFN-β in response to IAV (Ciancanelli et al., 2015; Campbell
et al., 2022). Moreover, a 2-yr-old child with AR IRF9 deficiency
(Hernandez et al., 2018); three children with autosomal domi-
nant TLR3 deficiency (Lim et al., 2019), aged 5 wk and 5 and 9 yr;
three children with AR STAT1 deficiency, including two aged
1 mo and one aged 6 mo (Le Voyer et al., 2021); and a 10-mo-old
child with AR STAT2 deficiency (Freij et al., 2020) have all been
reported to have suffered from life-threatening influenza
pneumonia. TLR3 is an endosomal sensor of dsRNA that controls
tonic type I IFN levels in at least some nonhematopoietic cells
(Gao et al., 2021), whereas STAT1, STAT2, and IRF9 are the three
components of the type I and III IFN-driven ISGF3 transcription
factor (Zhang, 2020). Both IRF7- and TLR3-deficient respiratory
epithelial cells (RECs) derived from patients’ induced pluripo-
tent stem cells fail to control IAV replication (Lim et al., 2019;
Ciancanelli et al., 2015), a phenotype rescued by exogenous type
I or III IFN. These five genetic etiologies of life-threatening in-
fluenza pneumonia thus impair type I and III IFN immunity to
IAV. These cases revealed the indispensable role of human in-
trinsic (TLR3, IRF7, IRF9, STAT1, and STAT2 in RECs, in which
the virus replicates) and innate (IRF7 in plasmacytoid dendritic
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cells, in which the virus does not replicate) type I and III IFN
immunity in host defense against influenza (Casanova and Abel,
2021b, 2022; Duncan et al., 2021; Manry et al., 2022; Zhang et al.,
2022).

The genetic study of critical influenza pneumonia led to that
of critical COVID-19 pneumonia (Casanova and Abel, 2021b,
2022; Zhang et al., 2022). The COVID Human Genetic Effort
(http://www.covidhge.com; Casanova et al., 2020) found in-
born errors of TLR3-dependent or -independent type I IFN
immunity, including not only AR IRF7 deficiency but also AR
IFNAR1 deficiency, in previously healthy patients with critical
COVID-19 (Zhang et al., 2020b, 2022, Casanova and Abel,
2021b, 2022; Abolhassani et al., 2022; Campbell et al., 2022).
Following on from the 1984 description of autoantibodies (auto-
Abs) against type I IFNs in a single patient with disseminated
zoster (Pozzetto et al., 1984), we showed that preexisting
auto-Abs neutralizing type I IFNs underlie ≥15% of cases of
life-threatening COVID-19 pneumonia (Bastard et al., 2020;
Bastard et al., 2021a; Zhang et al., 2022; Puel et al., 2022) and
30% of severe adverse reactions to the yellow fever vaccine
(Bastard et al., 2021c). These findings have since been widely
replicated (Abers et al., 2021; Acosta-Ampudia et al., 2021;
Bastard et al., 2021d; Chang et al., 2021; Chauvineau-Grenier
et al., 2021; Goncalves et al., 2021; Koning et al., 2021;
Lemarquis et al., 2021; Meisel et al., 2021; Savvateeva et al.,
2021; Solanich et al., 2021; Troya et al., 2021; Van Der Wijst
et al., 2021; Vazquez et al., 2021; Wang et al., 2021; Ziegler
et al., 2021; Akbil et al., 2022; Busnadiego et al., 2022;
Carapito et al., 2022; Credle et al., 2022; Eto et al., 2022; Frasca
et al., 2022; Lamacchia et al., 2022; Mathian et al., 2022;
Raadsen et al., 2022; Simula et al., 2022; Soltani-Zangbar et al.,
2022). Individuals with auto-Abs against type I IFNs are, thus,
susceptible to at least two life-threatening viral infections.
These auto-Abs can be genetically driven, as in patients with
autoimmune polyendocrinopathy syndrome type 1 (APS-1) due
to AIRE mutations (Bastard et al., 2021d), T cell deficits due to
hypomorphic RAG1 or RAG2 mutations (Walter et al., 2015),
immune dysregulation, polyendocrinopathy, enteropathy, X-linked
due to FOXP3mutations (Rosenberg et al., 2018), or incontinentia
pigmenti due to NEMO mutations (Harris et al., 1992; Bastard
et al., 2020). These auto-Abs are also found in patients treated
with IFN-α or IFN-β (Vallbracht et al., 1981; Rudick et al., 1998) or
with systemic lupus erythematosus (Panem et al., 1982; Gupta
et al., 2016), thymoma (Shiono et al., 2003), or myasthenia gravis
(Bello-Rivero et al., 2004; Meager et al., 2003). Plasma contain-
ing such auto-Abs (diluted 1:10) can neutralize low (100 pg/ml)
or high (10 ng/ml) concentrations of the 13 types of IFN-α and/or
IFN-ω. The neutralization of IFN-β (10 ng/ml) is rarer. Re-
markably, we showed that these auto-Abs are common in the
general population, being present in 1% of individuals <70 yr old,
2.3% of those 70–80 yr old, and 6.3% of those >80 yr old (Bastard
et al., 2021a). These auto-Abs are the second most common de-
terminant of COVID-19 death after age (Zhang et al., 2020a,
2022; Bastard et al., 2021a; Casanova and Abel, 2021b, 2022;
Manry et al., 2022; Puel et al., 2022). We therefore hypothesized
that auto-Abs neutralizing type I IFNs might also underlie life-
threatening influenza pneumonia.

Results
Auto-Abs neutralizing IFN-α2 in 13 of 279 patients (4.7%) with
critical influenza
We recruited 279 patients from Belgium (31), Greece (5), Spain
(40, including some cases described previously; Lopez-
Rodriguez et al., 2016; Herrera-Ramos et al., 2014), Israel (1),
and France (202) who had been hospitalized for critical influ-
enza pneumonia, as defined by admission to an intensive care
unit (ICU) for acute respiratory distress syndrome (ARDS) fol-
lowing a diagnosis of influenza and treatment with invasive or
noninvasive mechanical ventilation or extracorporeal mem-
brane oxygenation (ECMO), between 2012 and 2021. 32 of the
279 patients died, and 247 survived. The patients were between
7 d and 94 yr old; 52% were male and 48% were female (Fig. 1 A).
We searched for circulating auto-Abs neutralizing type I IFNs in
luciferase-based neutralization assays, as previously performed
in patients with COVID-19 pneumonia and healthy donors
(Bastard et al., 2021a). We identified 13 patients with neutral-
izing auto-Abs (P1–13), including 6 patients with auto-Abs
neutralizing high concentrations (10 ng/ml) of both IFN-α2
and IFN-ω, 2 patients with auto-Abs neutralizing high con-
centrations of IFN-α2 and low concentrations (100 pg/ml) of
IFN-ω, 1 patient with auto-Abs neutralizing high concentrations
of IFN-α2 only, 1 patient with auto-Abs neutralizing low con-
centrations of both IFN-α2 and IFN-ω, and 3 patients with auto-
Abs neutralizing low concentrations of IFN-α2 only (Table 1 and
Fig. 1 B). None of the patients had auto-Abs neutralizing 10 ng/ml
IFN-β. We previously showed that auto-Abs against IFN-α2
neutralized the other 12 forms of IFN-α (Bastard et al., 2020;
Bastard et al., 2021a). Finally, we searched for auto-Abs against
type III IFNs in 5 of the 13 patients with auto-Abs against type I
IFNs. One of them (P3) had auto-Abs neutralizing IFN-λ1/IL-29
(half-maximal inhibitory concentration is 1:960 dilution for 12.5
pg/ml IL-29), but neither IFN-λ2 (IL-28A) nor IFN-λ3 (IL-28B;
not depicted).

Most patients with auto-Abs are male and <70 yr of age
The 13 auto-Ab–positive patients comprised 10 (77%) male pa-
tients and 3 female patients (23%); 1 of these patients was a child
(<16 yr, 7.7%), 9 were adults aged 16–69 yr (69%), and 3 were
elderly (≥70 yr old, 23%; Fig. 1 C). None of the auto-Ab–positive
patients had been vaccinated against influenza in the year pre-
ceding disease onset. As in patients with critical COVID-19 and
auto-Abs against type I IFNs (Bastard et al., 2021a; Bastard et al.,
2020), the population of auto-Ab–positive patients with life-
threatening influenza was mostly male, although this was not
statistically significant. Indeed, 6.9% of male patients with
critical influenza were auto-Ab positive, whereas only 2.2% of
female patients with critical influenza were auto-Ab positive.
The auto-Abs detectedwere of a similar nature to those observed
in patients with critical COVID-19 pneumonia, with most pa-
tients having auto-Abs neutralizing high concentrations of IFN-
α2 (∼70% in the influenza cohort and ∼60% in the COVID-19
cohort), a minority of patients having auto-Abs against IFN-ω
only, and even fewer auto-Abs against IFN-β only (Table 1). We
also recruited 38 patients with clinically diagnosed mild influ-
enza infection who did not require hospitalization during the
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same period, including 14 from Spain and 24 from Greece. These
patients were 18–80 yr old, and 57.9% were men. None of these
38 patients had auto-Abs neutralizing either high or low con-
centrations of IFN-α2, IFN-ω, or IFN-β (Fig. 1, A and B). Overall,
auto-Abs neutralizing IFN-α2 alone or with IFN-ωwere found in
4.7% of patients with life-threatening influenza pneumonia,
5.5% of patients <70 yr old, 6.9% of men with life-threatening
influenza, and 7.5% of men <70 yr old.

Individuals <70 yr old with auto-Abs against type I IFNs are at
risk of critical influenza
We previously tested 34,159 healthy men and women aged
20–100 yr to estimate the prevalence of auto-Abs neutralizing
type I IFNs in the uninfected general population (Bastard et al.,
2021a). We further tested 1,065 healthy children, 12 (1.1%) of

whom were found to be auto-Ab positive (Bastard et al., 2022b).
We then compared the prevalence of auto-Abs against type I IFN
between patients with life-threatening influenza and the general
population. We first compared the prevalence of auto-Abs
neutralizing at least low concentrations of IFN-α2 and/or IFN-
ω, which were present in the largest number of patients (13
carriers among the 272 individuals tested, 4.8%) and members of
the general population, in a sex- and age-adjusted Firth’s bias-
corrected logistic regression analysis. We found a general en-
richment in these auto-Abs in patients with critical influenza
relative to the general population (2.2%; odds ratio [OR] = 2.3,
95% confidence interval [CI] 1.2–3.9, P = 0.01; Fig. 2 A). We then
investigated the age effect in greater detail. We found a sig-
nificant interaction between age, classified into two groups
(younger individuals <70 yr old, and older individuals ≥70 yr

Figure 1. Auto-Abs neutralizing IFN-α2 and/or IFN-
ω in patients with critical influenza pneumonia.
(A) Age and sex distribution of the patients with crit-
ical influenza pneumonia or mild influenza infection.
(B) Luciferase-based neutralization assay to detect auto-
Abs neutralizing 10 ng/ml or 100 pg/ml IFN-α2, IFN-ω,
or IFN-β. Plasma samples from patients with critical
(red) or mild (black) influenza were diluted 1:10 in all
tests. HEK293T cells were transfected with the dual
luciferase systemwith IFN-sensitive response elements
(ISRE) before treatment with type I IFNs with or without
patient plasma, and relative luciferase activity (RLA) was
calculated by normalizing firefly luciferase activity
against Renilla luciferase activity. An RLA <15% of the
value for the mock treatment was considered to corre-
spond to neutralizing activity (dashed line; Bastard et al.,
2021a). Experiments were repeated at least twice, and
the average was plotted in the figure. (C) Age and sex
distribution of patients with auto-Ab neutralizing IFN-
α2 and/or IFN-ω (n = 13).
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old), and the presence of these auto-Abs. Indeed, the preva-
lence of auto-Abs was significantly higher in younger pa-
tients (5.7 vs. 1.1%, OR = 5.7, 95% CI 3.0–11.1, P = 2.2 × 10−5)
with critical influenza than in the general population,
whereas no significant enrichment was observed in older
patients (3.1 vs. 4.4%, OR = 0.80, 95% CI 0.27–2.4, P = 0.68),
consistent with the distribution of auto-Ab prevalence
across age groups (Fig. 2 A). In summary, these results
suggest that auto-Ab–positive individuals <70 yr of age have
a higher risk of developing critical influenza pneumonia
than auto-Ab–negative individuals.

Risk of critical influenza according to the nature of the auto-
Abs against type I IFNs
We then performed the same logistic regression analyses taking
into account all combinations of auto-Abs based on the nature
and concentration of type I IFNs neutralized. All combinations
of auto-Abs neutralizing different concentrations of IFN-α2,
with or without IFN-ω, were significantly associated with
critical influenza, albeit to different extents (Fig. 2 B). The
presence of auto-Abs neutralizing high concentrations of both
IFN-α2 and IFN-ω was associated with the highest risk of de-
veloping critical influenza in the overall sample (OR = 11.7, 95%
CI 4.6–25.5, P = 1.3 × 10−5). The presence of auto-Abs neutral-
izing high concentrations of IFN-α2 only, low concentrations of
both IFN-α2 and IFN-ω, or IFN-α2 only was associated with a

three to five times higher risk of developing critical influenza
(Fig. 2 B). Furthermore, the presence of auto-Abs neutralizing
high concentrations of both IFN-α2 and IFN-ω had an even
stronger impact in the subsample of subjects <70 yr old (OR =
139.9, 95% CI 42.3–462.5, P = 3.1 × 10−10), and this effect was
even more marked in men <70 yr old (OR = 167.3, 95% CI
33.3–840.2, P = 3.2 × 10−7). The presence of auto-Abs neutral-
izing high concentrations of IFN-α2 only or low concentrations
of both IFN-α2 and IFN-ω resulted in a 20–80 times higher risk
of developing critical influenza in patients <70 yr, whereas the
presence of auto-Abs neutralizing low concentrations of IFN-
α2 only resulted in an almost seven times higher risk of de-
veloping critical influenza in patients <70 yr (Fig. 2 B). We
identified no patients with auto-Abs neutralizing IFN-ω only or
IFN-β, whereas these antibodies were found in 1.4 and 0.2% of
the general population, respectively (Bastard et al., 2021a). The
absence of such antibodies in the patients in our sample was
probably due to the small size of the sample tested, but this
finding nevertheless suggests that the presence of such anti-
bodies in the general population does not confer a strong
predisposition to critical influenza, if, indeed, it increases
susceptibility at all. In summary, the risk of critical influenza
increased with both the concentration and number of type I
IFNs neutralized by the auto-Abs. These findings are consistent
with those previously reported for patients with critical
COVID-19 pneumonia (Bastard et al., 2021a).

Figure 2. Enrichment in auto-Ab–positive
cases among patients with critical influenza
pneumonia. (A) Prevalence of auto-Ab–positive
cases among patients with critical influenza (n =
279, red bars) and in the general population (n =
34,159, black bars). *, P < 0.05; ****, P < 10−5.
(B) OR for the presence of auto-Abs, by sex and
age, relative to the general population, with ad-
justment of the comparison by means of Firth’s
bias-corrected logistic regression. The horizontal
bars indicate the upper and lower limits of the
95% CIs. α + ω, auto-Abs neutralizing both
IFN-α2 and IFN-ω; α ± ω, auto-Abs neutralizing
IFN-α2 with or without IFN-ω; α, auto-Abs neu-
tralizing IFN-α2 only; *, P < 0.05; **, P < 10−2; ***,
P < 10−3; ****, P < 10−4.
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The auto-Abs neutralized the antiviral function of type I IFNs
in respiratory epithelial-like A549 cells infected with IAV
These findings suggested that auto-Abs might block the antiviral
activity of type I IFNs against IAV in vivo. We tested this hy-
pothesis by subjecting an REC line, A549, to pretreatment with
IFN-α2, with or without patient plasma, before infecting the
cells with IAV (Cal/09 virus expressing mCherry). We then
determined the percentage of mCherry-positive cells with an
imaging cytometer, as an indicator of IAV replication (shown as
percentage infection). Serial titration showed that the minimum
concentration of IFN-α2 required for robust antiviral activity
was 20 pg/ml, which blocked ∼40% of IAV infection. We found
that plasma from auto-Ab–positive patients completely neu-
tralized 20 pg/ml IFN-α2 at a dilution of 1:100, as shown by the
IAV infection rate of 100% (Fig. 3 A).We then further diluted the
patients’ plasma to titrate neutralization capacity. We found
that, when diluted 1:10,000, plasma from four of the six patients
tested still effectively blocked the antiviral activity of 20 pg/ml
IFN-α2 (Fig. 3 A). Thus, the auto-Abs from the patients tested
blocked the anti-IAV activity of type I IFNs in vitro, thereby
facilitating viral replication. These findings also indicate that
some patients have auto-Abs with such high titers and/or af-
finity that they can block the antiviral activity of type I IFNs at
concentrations beyond the physiological range (>20 pg/ml).
Overall, we found that auto-Abs against type I IFNs from pa-
tients with critical influenza pneumonia neutralized the pro-
tective function of type I IFNs against IAV in vitro. For six
patients (two auto-Ab–positive and four auto-Ab–negative) from
whomplasma sampleswere collected at multiple time points, we
found that neutralization capacity remained stable for ≥4 wk

after admission (Fig. 3 B), consistent with previous observations
in patients with life-threatening COVID-19 and auto-Abs neu-
tralizing type I IFNs (van derWijst et al., 2021; Shaw et al., 2021).

Neutralizing auto-Abs block the antiviral function of type I
IFNs in reconstituted human airway epithelia (HAE) infected
with IAV
We tested the hypothesis that auto-Abs block the antiviral ac-
tivity of type I IFNs against IAV in HAE grown in an air–liquid
interface, which mimics the physiological environment for IAV
and SARS-CoV-2 infections in primary human cells (Pizzorno
et al., 2019; Pizzorno et al., 2020). We treated HAE cells with
2 ng/ml IFN-α2 (24 h before and 1 h after IAV infection) in the
presence or absence of patient plasma (1:100 dilution) and in-
fected the cells with IAV (H1N1 pdm09). IFN-α2 strongly in-
hibited viral replication, as indicated by the 50% tissue culture
infectious dose (TCID50) andM gene copy numbers (Fig. 4, A and
B). We tested plasma from seven patients with critical influenza
and auto-Abs neutralizing 10 ng/ml IFN-α in luciferase assays at
a 1:10 dilution. Plasma from six of the seven patients blocked the
antiviral activity of 2 ng/ml IFN-α2 at a 1:100 dilution. More
importantly, IAV infection led to a decrease in transepithelial
electrical resistance (TEER), a measurement of the integrity of
the epithelial barrier. IFN-α2 treatment can protect the epithe-
lial barrier from IAV, thereby maintaining TEER. Plasma from
five of the seven patients with severe influenza tested blocked
the protective function of IFN-α2 (Fig. 4 C). Thus, IAV replica-
tion is associated with a loss of epithelial integrity, whereas type
I IFN treatment is not. We also tested type III IFNs, including
IFN-λ1 (IL-29), -λ2 (IL-28A), and -λ3 (IL-28B), in the same HAE

Figure 3. Neutralizing auto-Abs block the
antiviral function of IFN-α2 in IAV-infected
A549 epithelial cells. (A) A549 cells were
treated with 20 pg/ml exogenous IFN-α2 with or
without patient plasma (titrated to the dilutions
indicated on the x axis), anti–IFN-α2 monoclonal
antibody, and healthy donor plasma overnight
before infection with IAV Cal/09 virus expressing
NS1-mCherry (CalNSmCherry) at an MOI of 0.5.
The day after infection, the percentage of the
cells infected was determined with a Celigo
(Nexcelcom) imaging cytometer. The dotted line
at 64.98% represents the mean percentage in-
fection in cells treated with 20 pg/ml IFN-α2
in the absence of plasma or anti–IFN-α2
antibody. Experiments were repeated four times.
(B) Longitudinal testing of six patients with life-
threatening influenza pneumonia (two positive
and four negative for auto-Abs), with the assay as
described in A.
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system. We showed that 20 ng/ml type III IFNs also inhibited
IAV replication and maintained normal TEER, although less ef-
fectively than IFN-α2 (Fig. 4, D and E). Interestingly, plasma
from two patients did not block the protective function of IFN-
α2, and one of these plasma samples did not block the antiviral
activity of 2 ng/ml IFN-α2 completely when diluted 1:100 (Fig. 4,
A–C). This was probably due to the high dilution of plasma in the
HAE culture, to minimize nonspecific inhibition and toxicity
due to the presence of human plasma. This observation may also
suggest that differentiated RECs in the air–liquid interface and
HEK293T cells respond differently in neutralization assays. We
thus studied the biological consequences of auto-Abs in the HAE
system with a Nanostring hybridization-based assay for multi-
plex mRNA detection and relative quantification for a panel of
immune response genes.We found that IFN-α2 treatment or IAV

infection induced the expression of IFN-stimulated genes (ISGs)
in HAEs, and that this expression was blocked by auto-
Ab–positive plasma from patients (Fig. 5, A and B). Consistent
with TEER measurements, the levels of proinflammatory cyto-
kines, including IL-6 and IL-1A, were higher in the presence of
auto-Abs and high viral titers, further suggesting that viral
replication led to epithelial damage and inflammation (Fig. 5 C).
The levels of auto-Abs in the blood are correlated with, but not
identical to, those in the respiratory tract (Lopez et al., 2021;
Ziegler et al., 2021; Zhang et al., 2022), and the patient plasma
used in the HAE culture was diluted 1:100, whereas a dilution of
1:10 was used for neutralization assays with HEK cells. In sum-
mary, the auto-Abs found in the patients with critical influenza
blocked the antiviral function of IFN-α2 in respiratory models
in vitro, increasing viral replication and tissue damage, together

Figure 4. Neutralizing auto-Abs block the
antiviral function of IFN-α2 in IAV-infected
HAE cultures. (A–F) HAE reconstituted from
human nasal primary cells and maintained in an
air–liquid interface were either left untreated or
treated with 2 ng/ml exogenous IFN-α2a (A–C)
or 20 ng/ml exogenous IL-29, IL-28A, or IL-28B
(D–F), in the presence of inactivated patient
plasma (1:100 diluted) for 24 h before IAV in-
fection. Cells were treated again on the baso-
lateral side with same concentration of IFN-α2a
or IFN-λ1/IL-29, IFN-λ2/IL-28A, or IFN-λ3/IL-
28B in the presence of patient plasma (n = 7) 1 h
after IAV infection. These seven patients had
auto-Abs neutralizing IFN-α at 10 ng/ml, but not
IFN-β or -λ. HAE apical poles were washed, 54 h
after infection, and titrated by TCID50 determi-
nation (A and D) and quantitative RT-PCR (B and
E). Changes in TEER (ΔTEER) were measured as
a surrogate for the integrity of HAE (C and F).
Previously identified auto-Ab–positive (auto-Ab
[+]) or auto-Ab [−] plasma samples were used as
controls. Experiments were repeated three times.
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with the production of proinflammatory cytokines by
damaged cells.

Auto-Abs neutralizing IFN-α2 and/or IFN-ω in five additional
cohorts of patients hospitalized with influenza pneumonia
In five other independent cohorts of 130 patients hospitalized for
influenza pneumonia from Chile (82), Spain (45), France (1),

Belgium (1), and Taiwan (1), including 84 patients requiring
oxygen therapy (65%), screening for auto-Abs was performed by
ELISA rather than neutralization assays (Fig. 6, A and B). Auto-
Abs against IFN-α2 and/or IFN-ω were detected by ELISA in 27
patients (20%) aged 1–97 yr (65% of whomweremale), including
15 patients requiring oxygen therapy. Because of the limited
volumes of sample available, we tested only plasma samples

Figure 5. ISG and proinflammatory responses in IAV-infected HAE cultures. HAE reconstituted from human nasal primary cells and maintained in an
air–liquid interface were either left untreated or treated with 2 ng/ml exogenous IFN-α2a in the presence of inactivated patient plasma (1:100 dilution) for 24 h
before IAV infection. Cells were treated again on the basolateral side with 2 ng/ml IFN-α2a in the presence of patient plasma 1 h after IAV infection. RNA was
isolated 54 h after infection, and NanoString analysis was performed with a panel of immune response genes. (A) Heatmap of gene expression profiles from
unsupervised analysis (Euclidean distance matrix, Ward’s method) generated by scaling and centering log10-transformed normalized gene expression (ex-
pressed as fold-change induction relative to mock conditions) and based on the full 96-gene panel. Gene and sample clustering is indicated by dendrogram
trees above and to the left, respectively, of the heatmap. Gene clustering distinguished ISGs (cluster 1) from proinflammatory genes (cluster 2; Table S1). (B and
C) Relative expression (mean) levels of two ISGs, IFI44L and IFIT1 (B), and two proinflammatory cytokines, IL-6 and IL1A (C), based on NanoString analysis on
total cellular RNA extracted after infection. Gene expression is expressed as a fold-change induction relative to mock conditions (untreated/uninfected). AAb−,
auto-Ab–negative plasma; AAb+, auto-Ab–positive plasma.
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from these ELISA-positive patients in our luciferase-based
neutralization assays (Fig. 6 B). Only 10 of the 27 patients had
neutralizing auto-Abs (P14–23): 3 with auto-Abs neutralizing
high concentrations of IFN-α2, IFN-ω, and IFN-β (P14–16), 4 with
auto-Abs neutralizing high concentrations of IFN-α2 and IFN-ω
(P17–20), 1 with auto-Abs neutralizing high concentrations of
IFN-α2 and low concentrations of IFN-ω (P21), 1 with auto-Abs
neutralizing high concentrations of IFN-α2 only (P22), and
1 with auto-Abs neutralizing high concentrations of IFN-ω only
(P23; Fig. 6 C and Table 1). 8 of the 10 patients required oxygen,
including 4 intubated and ventilated and 1 who died from critical
pneumonia (P15). Overall, 7.7% of the patients in these 5 cohorts
were found to have auto-Abs neutralizing IFN-α2 and/or IFN-ω.
The 10 patients included 3 children (30%), 3 adults under <70 yr
old (30%), and 4 elderly patients (40%); 7 of the patients were
male (70%; Fig. 6 D). Like the 13 patients identified in the pre-
vious cohort, an enrichment in male patients was observed
among patients with neutralizing auto-Abs. However, there
were more elderly patients in these additional cohorts, probably
owing to a recruitment bias (Fig. 6, A and D; and Table 1). These
data further suggest that auto-Abs against type I IFN are asso-
ciated with influenza pneumonia. They also suggest that ELISA-
based assays can be used as a screening method, albeit of limited
diagnostic value and with many more false positives than neu-
tralization. Furthermore, some ELISA-negative cases may actu-
ally have neutralizing auto-Abs (not tested here), thereby
constituting false negatives, as shown in our previous study of
COVID-19 (Bastard et al., 2021a). The results from these five
additional cohorts cannot be used for the calculation of prevalence

or ORs due to the lack of screening by neutralization, but they add
weight to the notion that auto-Abs against type I IFNs increase
susceptibility to hypoxemic influenza pneumonia.

Discussion
We found that almost 5% of patients with critical influenza
pneumonia studied internationally had auto-Abs neutralizing
IFN-α2 alone or with IFN-ω. We showed that these auto-Abs
neutralized 10 ng/ml or at least 100 pg/ml type I IFNs in plas-
ma diluted 1:10. The population of patients with critical influ-
enza pneumonia was significantly enriched in auto-Ab–positive
cases relative to a small sample of individuals with mild influ-
enza infection or a much larger sample of individuals from the
general population. The neutralizing auto-Abs blocked the an-
tiviral activity of 20 pg/ml IFN-α2 in A549 cells infected with
IAV, even when diluted 1:1,000. They also blocked the antiviral
activity of IFN-α2 in HAEs infected with IAV in vitro, further
suggesting that the auto-Abs were detrimental in IAV-infected
human RECs in vivo. We showed that auto-Abs neutralizing
IFN-α2 alone or with IFN-ω were present in almost 5% of pa-
tients with life-threatening influenza pneumonia, including
∼6% of patients <70 yr old, ∼7% of men, and ∼8% of men <70 yr
old. Auto-Abs neutralizing type I IFNs can also underlie life-
threatening COVID-19 pneumonia and severe adverse re-
actions to the live attenuated yellow fever virus vaccine
(Pozzetto et al., 1984; Bastard et al., 2020, 2021a, 2021c, Casanova
and Abel, 2021b, 2022; Goncalves et al., 2021; Lopez et al., 2021;
Zhang et al., 2022). Notably, the discovery of AR inborn errors of

Figure 6. Auto-Abs neutralizing IFN-α2 and/
or IFN-ω in ELISA-positive patients hospital-
ized with influenza pneumonia in additional
cohorts. (A) Age and sex distribution of patients
from Chile, Spain, France, Belgium, and Taiwan
hospitalized for influenza pneumonia (n = 130).
(B) Patient plasma samples were tested by
ELISA for auto-Abs against IFN-α2 and -ω. Pa-
tient plasma samples were diluted 1:50 before
being added to plates coated with 2 μg/ml
rhIFN-α or rhIFN-ω. HRP-conjugated goat anti-
serum against human IgG or IgA was added to
final concentration of 2 μg/ml. OD was mea-
sured. Each plasma sample was tested once.
(C) Luciferase-based neutralization assay to de-
tect auto-Abs neutralizing 10 ng/ml or 100 pg/ml
IFN-α2, IFN-ω, or IFN-β. Plasma samples from
ELISA-positive patients were diluted 1:10 in all
tests. HEK293T cells were transfected with the
dual luciferase system with IFN-sensitive re-
sponse elements (ISRE) before treatment with
type I IFNs with or without plasma from pa-
tients, and relative luciferase activity (RLA) was
calculated by normalizing firefly luciferase ac-
tivity against Renilla luciferase activity. An RLA
<15% the value for the mock treatment was
considered to indicate that the antibodies were
neutralizing (dashed line). (D) Age and sex dis-
tribution of patients with auto-Ab neutralizing
IFN-α2 and/or IFN-ω (n = 10).
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type I and III IFN immunity in patients with life-threatening
influenza pneumonia (mutations of IRF7, STAT2, and IRF9;
Ciancanelli et al., 2015; Hernandez et al., 2018; Lim et al., 2019;
Freij et al., 2020) led to that of overlapping (IRF7) and other
(IFNAR1) AR etiologies of critical COVID-19 pneumonia (Asano
et al., 2021; Zhang et al., 2020b), and conversely, the discovery of
AR IFNAR1 deficiency and auto-Abs against type I IFNs in pa-
tients with critical COVID-19 pneumonia (Bastard et al., 2020;
Bastard et al., 2021a) led to that of auto-Abs against type I IFNs in
patients with critical influenza. It is intriguing that the known
patients with AR IFNAR1 or IFNAR2 deficiency did not suffer
from critical influenza (Bastard et al., 2022a; Hernandez et al.,
2019; Bastard et al., 2021b; Duncan et al., 2022; Duncan et al.,
2015). This may reflect the small number of patients diagnosed,
their previous viral illnesses (e.g., MMR disease), prompting
influenza vaccination, and an ascertainment bias. Our findings
suggest that IFNAR1- or IFNAR2-deficient patients may be prone
to critical influenza.

The greater enrichment in patients with auto-Abs against
type I IFNs among patients with critical COVID-19 than among
those with critical influenza is also intriguing. Indeed, although
individuals with auto-Abs neutralizing these type I IFNs are 3–
12 times more likely overall to develop critical influenza pneu-
monia than the general population, the overall prevalence of
these auto-Abs in patients with critical influenza pneumonia is
close to 5%, a figure significantly lower than the 15% of critical
COVID-19 pneumonia patients with these antibodies (Bastard
et al., 2021a). This observation may reflect the higher viru-
lence of SARS-CoV-2 than of seasonal influenza viruses in un-
vaccinated individuals. We can speculate that a value of 15%
would have been found among patients with critical influenza
due to the 1918 H1N1 virus or in other, more recent influenza
pandemics (Reichert et al., 2012; Krammer et al., 2018). We can
also speculate that the lower the induction of type I IFNs by the
virus, the higher the virulence, and the greater the vulnerability
of individuals with auto-Abs against type I IFNs or with IFNAR1
or IFNAR2 deficiencies or other inborn errors of type I IFN
immunity (Chen et al., 2021). Moreover, previous anti-influenza
vaccination or infections with one or more related influenza
viruses may mitigate the clinical impact of infections with new
viral strains, including those in patients with auto-Abs against
type I IFNs. The age-stratified analysis of our data supports
this hypothesis. Indeed, we showed an enrichment in auto-
Ab–positive cases among patients <70 yr of age, but not in
older patients. Auto-Abs against type I IFNs were found in only
three sick children, consistent with previous observations that
pathogenic auto-Abs against type I IFNs are rare in children
(Bastard et al., 2021a). Moreover, a strong enrichment in auto-
Ab–positive cases was observed for younger patients (<70 yr
old), with an OR of ∼7–140 depending on the nature of the auto-
Abs, but not for older patients. The same trend was observed in
patients with critical COVID-19 pneumonia (Manry et al., 2022),
suggesting that risk factors other than auto-Abs contribute to
critical influenza in the elderly.

Finally, our data highlight the major impact of the nature and
concentration of type I IFNs neutralized by circulating auto-Abs
on the risk of developing critical influenza pneumonia, as

previously shown for COVID-19 pneumonia (Bastard et al.,
2021a). After adjustment for age and sex, patients with auto-
Abs neutralizing high concentrations of both IFN-α2 and IFN-ω
were found to have the highest risk of critical influenza
pneumonia (OR = 139.9 in patients <70 yr old, OR = 11.7 for all
ages), whereas patients with auto-Abs neutralizing low con-
centrations IFN-α presented a smaller increase in the risk of
critical pneumonia (OR = 6.6 in patients <70 yr old, OR = 2.8 for
all ages). We identified only one patient with auto-Abs neu-
tralizing high concentrations of IFN-ω only, and such antibodies
were also rare in patients with critical COVID-19 pneumonia
(0.8%; Bastard et al., 2021a). We found no patients with auto-
Abs neutralizing IFN-β only, whereas such antibodies were
found in almost 1% of patients with critical COVID-19 pneu-
monia (Bastard et al., 2021a). All auto-Abs neutralizing IFN-
α2 also neutralize the other 12 subtypes of IFN-α, but auto-Abs
neutralizing IFN-ω or IFN-β neutralize only a single subtype of
IFN (Bastard et al., 2021a; Bastard et al., 2020), making it less
likely that such antibodies underlie critical seasonal influenza.
It would be interesting to screen patients with critical influenza
for auto-Abs neutralizing type III IFNs. These auto-Abs might
contribute to influenza and other severe viral infections, es-
pecially of the respiratory tract (Lim et al., 2019). Overall, auto-
Abs neutralizing type I IFNs can underlie at least three severe
viral diseases, with an apparently greater risk of critical
COVID-19 pneumonia than of critical influenza, while the risk
of yellow fever vaccine disease is more difficult to estimate,
given the small number of patients tested. These auto-Abs may
also underlie other viral diseases, including severe disease
caused by the varicella zoster virus, as disseminated zoster was
the clinical manifestation of the first patient with causal auto-
Abs against type I IFN ever described, by Ion Gresser in 1984
(Pozzetto et al., 1984; Walter et al., 2015; Busnadiego et al.,
2022; Mathian et al., 2022).

Materials and methods
Patients
We recruited 279 patients from Belgium (31), Greece (5), Spain
(40, including some cases described previously; Lopez-
Rodriguez et al., 2016; Herrera-Ramos et al., 2014), Israel (1),
and France (202) who had been hospitalized for critical influ-
enza pneumonia, as defined by admission to an ICU for ARDS
following a diagnosis of influenza and treatment with invasive
or noninvasive mechanical ventilation or ECMO between 2012
and 2021. From the same clinical centers in Greece (24) and
Spain (14), we recruited patients with mild influenza infections
not requiring hospitalization during the same period. In addi-
tion, we recruited five other independent cohorts of 130 patients
hospitalized for influenza pneumonia from Chile (82), Spain
(45), France (1), Belgium (1), and Taiwan (1), including 84 pa-
tients requiring oxygen therapy (65%). All the patients were
diagnosed with influenza infection by PCR. We previously tested
34,159 healthy men and women aged 20–100 yr to estimate the
prevalence of auto-Abs neutralizing type I IFNs in the unin-
fected general population (Bastard et al., 2021a). We further
tested 1,065 healthy children, 12 of whom (1.1%) were found to be
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auto-Ab–positive (Bastard et al., 2022b). Written informed
consent was obtained in the country of residence of the patients,
in accordance with local regulations, and with institutional re-
view board approval. Experiments were conducted in the United
States, France, and Estonia in accordance with local regulations
and with the approval of the institutional review board. Ap-
proval was obtained from the French Ethics Committee “Comité
de Protection des Personnes,” the French National Agency for
Medicine and Health Product Safety, the “Institut National de la
Santé et de la RechercheMédicale,” in Paris, France (protocol no.
C10-13), and the Rockefeller University Institutional Review
Board in New York, NY (protocol no. JCA-0700). For the Chilean
samples, clinical and epidemiological data and the correspond-
ing clinical specimens were collected after informed written
consent was obtained under protocol 16-066, which was re-
viewed and approved by the Scientific Ethics Committee for
Health Sciences (CECSaludUC) at Pontificia Universidad Católica
de Chile.

Luciferase reporter assays
The blocking activity of anti–IFN-α2 and anti–IFN-ω auto-Abs
was determined with a reporter luciferase assay. Briefly,
HEK293T cells were transfected with a plasmid containing the
firefly luciferase gene under the control of the human ISRE
promoter in the pGL4.45 backbone and a plasmid constitutively
expressing the Renilla luciferase for normalization (pRL-SV40).
Cells were transfected by incubation for 24 h with the plas-
mids and X-tremeGene9 transfection reagent (ref. number
6365779001; Sigma-Aldrich). Cells in DMEM (Thermo Fisher
Scientific) supplemented with 2% FCS and 10% healthy control
or patient serum/plasma (after inactivation at 56°C, for 20 min)
either were left unstimulated or were stimulated with IFN-
α2 (ref. number 130-108-984; Miltenyi Biotec) or IFN-ω (ref.
number SRP3061; Merck), at a concentration of 10 ng/ml or 100
pg/ml, or IFN-β (ref. number 130-107-888; Miltenyi Biotech) at
10 ng/ml, for 16 h at 37°C. Each sample was tested once for each
cytokine and dose. Finally, cells were lysed for 20 min at room
temperature, and luciferase levels were measured with the
Dual-Luciferase Reporter 1000 assay system (ref. number
E1980; Promega), according to the manufacturer’s protocol.
Luminescence intensity was measured with a VICTOR-X Mul-
tilabel Plate Reader (PerkinElmer Life Sciences). Firefly lucif-
erase activity values were normalized against Renilla luciferase
activity values. These values were then normalized against the
median induction level for nonneutralizing samples and ex-
pressed as a percentage. Samples were considered neutralizing if
luciferase induction, normalized against Renilla luciferase ac-
tivity, was <15% of the median value for controls tested the same
day. For 35 patients whose plasma did not neutralize 100 pg/ml
IFN-α2 or IFN-ω, we did not perform the neutralization assay
with 10 ng/ml IFN-α2/-ω due to the limited volume of plasma
available.

Functional evaluation of IFN auto-Abs
A549 cells (CRM-CCL-185; ATTC) were cultured in DMEM
(Gibco) supplemented with 10% FBS (PEAK) and penicillin-
streptomycin (Gibco), at 37°C, under an atmosphere containing

5% CO2. Cells were tested periodically for mycoplasma con-
tamination, with negative results in all cases.

A549 cells were used to seed 96-well plates at a density of 3 ×
103 cells/well. The next day, a commercial anti–IFN-α2 antibody
(catalog number 21100-1; R&D Systems) of plasma samples were
serially diluted (10-fold) and incubated with 20 pg/ml recom-
binant IFN-α2 (catalog number 11101-2; R&D Systems) for 1 h at
37°C (starting concentration: plasma samples = 1/100 and
anti–IFN-α2 antibody = 1/100). The cell culture medium was
then removed from the 96-well plates and replaced with the
plasma/antibody–IFN-α2 mixture. Each sample was tested once,
in triplicate. The plates were incubated overnight, and the
plasma/antibody–IFN-α2 mixture was removed by aspiration.
The cells were then washed three times with PBS to remove
potential anti-influenza neutralizing antibodies and infected
with a recombinant Cal/09 virus expressing NS1-mCherry
(CalNSmCherry) at a multiplicity of infection (MOI) of 0.5.
16 h after infection, cells were fixed with 4% formaldehyde,
washed twice with PBS, and stained with DAPI. The percentage
of infected cells was quantified with a Celigo (Nexcelcom)
imaging cytometer.

HAE infection with IAV
Influenza seroneutralization assay in Madin-Darby canine
kidney cells
Plasma samples were serially diluted in MEM (Lonza) supple-
mented with 2 mM L-glutamine (Gibco), 100 U/ml penicillin,
100 µg/ml streptomycin (Gibco), and 1 µg/ml acetylated trypsin
from bovine pancreas (Sigma-Aldrich). Serial dilutions were
mixed with 100 TCID50 of A/Lyon/969/2009 H1N1 virus and
incubated at 37°C for 1 h. We then inoculated 96-well plates
containing confluent Madin-Darby canine kidney cells in 150 μl
of supplemented MEM in quadruplicate with 50 μl per well of
the plasma-virus dilutions and incubated the plates at 37°C,
under an atmosphere containing 5% CO2. After 96 h of incuba-
tion, we checked for cytopathic effects by microscopy. The anti-
influenza seroneutralization titer for each plasma sample is
expressed as the inverse of the highest dilution at which no
cytopathic effects were observed in at least two of the four wells.

Viral infection and IFN treatment in reconstituted HAE
MucilAir HAE reconstituted from human nasal primary cells
(pool of 14 donors with no identified diseases) were provided by
Epithelix SARL andmaintained in an air–liquid interface at 37°C,
under an atmosphere containing 5% CO2, in specific culture
medium in Costar Transwell inserts according to the manu-
facturer’s instructions. The day before infection (day −1), HAE
were mock-treated or treated via the basolateral pole with 2 ng
recombinant IFN-α2a or 20 ng recombinant IFN-λ1/IL-29, IFN-
λ2/IL-28A, or IFN-λ3/IL-28B (PBL Assay Science) in 700 μl
MucilAir culture medium. We assessed the functional neutral-
izing effect of anti–IFN-I antibodies, by incubating recombinant
IFN-α2a, IFN-λ1/IL-29, IFN-λ2/IL-28A, or IFN-λ3/IL-28B (37°C,
1 h) with a 1% final dilution of inactivated (56°C, 30 min) patient
plasma, containing or not containing anti–IFN-α antibodies,
before addition to HAE. On the day after this IFN treatment, the
apical poles of the HAE were gently washed twice with warm
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OptiMEM (Gibco, Thermo Fisher Scientific) and infected with
150 μl of a dilution of A/Lyon/969/2009 H1N1 virus in Opti-
MEM, at an MOI of 0.1, in the presence or absence of plasma.
Basolateral treatment with recombinant IFN (with or without
plasma) was repeated 1 h after infection in the same conditions
as on day −1. Changes in TEER were measured with a dedicated
Volt-Ohm meter (EVOM2, Epithelial Volt/Ohm Meter) and
expressed in Ohm/cm2. At 54 h after infection, the apical poles
of the HAE were washed with warm OptiMEM and collected in
two tubes: one for TCID50 determination and the other for viral
genome quantification by quantitative RT-PCR. HAE cells were
harvested in RLT buffer (Qiagen), and total RNA was ex-
tracted with the RNeasy Mini Kit (Qiagen) for gene expres-
sion analyses.

Transcriptomic analyses in reconstituted HAE
We hybridized 200 ng total RNA from HAE cells with a cus-
tomized 96-gene panel, with counting on an nCounter FLEX
platform according to the manufacturer’s instructions. Table S1
provides more information about the panel and the genes ana-
lyzed. Data processing and normalization were performed with
nSolver analysis software (v4.0; NanoString Technologies), and
the results are expressed as a fold-change induction relative to
mock (untreated/uninfected) conditions. A heatmap of gene
expression profiles from unsupervised hierarchical clustering
(Euclidean distance matrix with Ward’s method) was generated
with Genomics Suite 7 (Partek).

ELISA
ELISAs were performed as previously described (Puel et al.,
2022). In brief, 96-well ELISA plates (MaxiSorp; Thermo
Fisher Scientific) were coated by incubation overnight at 4°C
with 2 μg/ml rhIFN-α and rhIFN-ω (R&D Systems). Plates were
then washed (PBS/0.005% Tween), blocked by incubation with
the same buffer supplemented with 5% nonfat milk powder,
washed, and incubated with 1:50 dilutions of plasma samples
from the patients or controls for 2 h at room temperature (or
with specific mAbs as positive controls). Each sample was tested
once. Plates were thoroughly washed. HRP-conjugated Fc-
specific IgG fractions from polyclonal goat antiserum against
human IgG or IgA (Nordic Immunological Laboratories) were
added to a final concentration of 2 μg/ml. Plates were incubated
for 1 h at room temperature and washed. Substrate was added
and OD was measured.

Statistical analysis
OR and P values for the effect of auto-Abs neutralizing each
type I IFN on critical influenza relative to healthy individuals
from the general population, adjusted for age in four cate-
gories (<16, 16 to <50, 50 to <70, and ≥70 yr) and sex, were
estimated by means of Firth’s bias-corrected logistic re-
gression (Firth, 1993; Heinze and Schemper, 2002), as im-
plemented in the logistf package of R software. We tested for
an interaction between the effect of auto-Abs and age, by
adding an age × auto-Abs interaction term to the logistic
regression model, with age classified into two categories
(<70 yr vs. ≥70 yr).

Online supplemental material
Table S1 provides more information about the panel and the
genes analyzed.

Acknowledgments
We thank Dr. Cato Jacobs for her contribution to the sampling of
UZLeuven patients in Belgium.

The Laboratory of Human Genetics of Infectious Diseases is
supported by the Howard Hughes Medical Institute, the
Rockefeller University, the St. Giles Foundation, the National
Institutes of Health (NIH; R01AI088364 and R01AI163029),
the National Center for Advancing Translational Sciences,
NIH Clinical and Translational Science Award program (UL1
TR001866), the Fisher Center for Alzheimer’s Research Foun-
dation, the Meyer Foundation, the JPB Foundation, the French
National Research Agency (ANR) under the “Investments for the
Future” program (ANR-10-IAHU-01), the Integrative Biology of
Emerging Infectious Diseases Laboratory of Excellence (ANR-10-
LABX-62-IBEID), the French Foundation for Medical Research
(EQU201903007798), the ANRS-COV05, ANR-RHU program
ANR-21-RHUS-08, ANR GENVIR (ANR-20-CE93-003), ANR
GenMISC (ANR-21-COVR-0039), and ANR AABIFNCOV (ANR-
20-CO11-0001) projects, the European Union’s Horizon 2020
research and innovation program under grant agreement 824110
(EASI-genomics), the HORIZON-HLTH-2021-DISEASE-04 pro-
gram under grant agreement 01057100 (UNDINE), the Square
Foundation, Grandir–Fonds de solidarité pour l’enfance, the
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Table S1 is provided online and lists more information about the panel and the genes analyzed.
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