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A B S T R A C T   

Background: Walking speed (WS) represents a global marker of individual health and provides a simple and 
objective measure of motor performances for use in clinical and research settings. WS is most often measured 
over relatively short distances at usual (UWS) or fast (FWS) pace, using manual (e.g., stopwatch) or automated 
methods (e.g., photoelectric cells). As the time needed to walk over these distances is very short, we hypothesized 
that measurement error related to manual compared to automated WS measures is more pronounced for shorter 
distances and FWS and investigated the reliability and agreement of WS in a subsample of the Constances cohort 
at two paces and over two distances. 
Methods: We recruited 100 community-dwelling participants (50 % women) aged 45–70y (mean = 56.1y). WS 
was measured manually (stopwatches) and using photoelectric cells, at two paces (UWS/FWS) and over two 
distances (3 m/5 m). Agreement was examined using Bland and Altman plots and intraclass correlation co
efficients (ICC). 
Results: Participants were on average 169.8 cm tall, and their mean body mass index was 25.4 kg/m2. Agreement 
between manual stopwatches and photoelectric cells was excellent (ICCs between 0.92 and 0.97), but it was 
lower for smaller distances, with significantly lower ICCs over 3 m compared to 5 m both for UWS (differenceICC 
= − 0.04) and FWS (differenceICC = − 0.05). Bias of manual measures was constant for UWS and increased with 
increasing FWS. There were inter-rater effects, with better agreement for UWS and 5 m compared to FWS and 3 
m. 
Conclusions: Both distance and pace have an influence on the reliability of WS measures using manual timing 
methods. Our findings also suggest the presence of rater effects and better agreement for 5 m and UWS. These 
findings are helpful for the design of studies that include manual measures of WS, especially FWS, in order to 
reduce measurement error and suggest that longer distances are preferable.   

1. Introduction 

Walking speed (WS) represents a global marker of individual health 
[1–3], and one of the main frailty criteria in the elderly [4]. WS provides 
a simple and objective measure of motor performances for use in clinical 
and research settings [5–7]. Slower WS and steeper WS decline are 
associated with increased risk of unfavorable health outcomes 
(disability, dementia, death) [7–10]. 

WS measurement protocols vary across studies, as WS can be 
measured over different distances, at different paces, and using different 
start/end protocols or timing methods [6,11]. A systematic review of the 

literature showed that the type of starting procedure and length of the 
test distance had an influence of average WS; there was no overall dif
ference between manual and automated timing methods but individual 
studies showed significant differences in both directions [12]. Although 
some studies examined the reliability of WS measures [13–17], none 
investigated simultaneously the role of distance, pace, and timing 
methods. WS is most often measured over relatively short distances at 
usual (UWS) or fast (FWS) pace [18]. When WS is measured manually, 
measurement error may be higher over shorter distances and at a faster 
pace, as the time needed to walk over these distances is very short and 
the examiner needs to start and stop the stopwatch very fast. We 
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hypothesized that measurement error related to manual compared to 
automated WS measures is more pronounced for shorter distances and 
FWS. 

In a subsample of the Constances cohort [19,20], our aim was to 
compare at two paces (UWS/FWS) and over two distances (3 m/5 m) (i) 
the agreement between manual and automated (photoelectric cells) 
timing methods of WS, and (i) interrater agreement for manual 
measures. 

2. Methods 

2.1. Design and participants 

Participants were recruited in the Constances cohort [19,20] be
tween November 2015–February 2016. For the present substudy, we 
consecutively recruited a sex- and age-stratified (45–55 years; >55 
years) sample of 100 volunteers at the Health Screening Center (HSC) of 
the city of Lille. 

The French National Data Protection Authority and IRB of the Na
tional Institute for Medical Research approved the study protocol. All 
participants gave written informed consent. 

2.2. Walking speed 

WS was assessed using a dynamic protocol with a 1 m zone of ac
celeration/deceleration at each side of the test area. Participants per
formed 4 walks corresponding to the combination of two distances (3 m/ 
5 m) and paces (UWS: “walk at your usual pace”; FWS: “walk as fast as 
you can without running”). The order was the same for all the partici
pants (3 m-UWS; 3 m-FWS; 5 m-UWS; 5 m-FWS). Participants were 
invited to wear comfortable shoes and asked to remove them if wearing 
heels. Use of walking aids was allowed. Participants were allowed one 
trial before the actual measures. 

The time taken to perform the test was recorded simultaneously by 
photoelectric cells (Racetime2 kit light radio, MicroGate®) and by three 
trained neuropsychologists who used manual stopwatches. Two neuro
psychologists recorded the time for approximatively half of the partic
ipants each (raters 1A and-1B), while the third (rater 2) recorded the 
time for all participants. We divided the distance (300–500 cm) by the 
time recorded at the nearest centisecond to estimate WS in cm/s. 

2.3. Statistical methodology 

We used paired t-tests to test for differences in mean WS. Agreement 
was examined using Bland and Altman plots [21] and intraclass corre
lation coefficients (ICC) [22]. 

Bland and Altman plots allow a graphical visualization and quanti
fication of agreement between two methods. The plot includes a scatter 
plot of the difference (Y-axis) and average of the two measures (X-axis). 
Limits of agreement (LoA) delimit the interval in which 95 % of the 
differences are found. A smaller range between the two limits indicates 
better agreement. The plot also includes the average difference (or bias) 
and its 95 % confidence interval (CI). If two measures are on average 
concordant, bias is not significantly different from 0; if bias is different 
from 0, one method provides higher/lower values than the other. 

One limitation of this approach, however, is that it assumes that bias 
is constant across all the values of the measure [21,23]. We tested this 
assumption by regressing the difference on the mean of the measures 
modelled using restricted cubic splines with three knots located at the 
percentiles; we tested whether splines improved model’s fit compared to 
linear regression (PSpline). If this test was not significant (PSpline > 0.05), 
we then tested whether there was a linear relation between the differ
ence and the mean (PLinear); if not (PLinear > 0.05), we concluded that 
bias was constant. 

ICCs were computed using a 2-way random effects model for abso
lute agreement [24]. We compared two ICCs by computing their 

difference and 2.5th and 97.5th percentiles using the bootstrap (n =
5000). If the 2.5th–97.5th percentiles interval did not include 0, we 
concluded that there was a significant difference between two ICCs. 

We used the methods described above to assess: (i) agreement be
tween timing methods (manual vs. photoelectric cells): we compared 
WS measures taken by the photoelectric cells and rater 2; and (ii) 
interrater variability: we compared measures taken by rater 2 to those 
taken by raters 1A and 1B. 

In sensitivity analyses, we repeated these analyses in two age groups 
(45-55y, >55y). Due to the lower number of participants in each group, 
we used a less stringent significant threshold of P ≤0.10 for PSpline and 
PLinear. 

According to our calculations of statistical power (Supplementary 
Methods), our sample size was sufficient for assessing agreement be
tween automated and manual timing methods by the Bland− Altman 
method with statistical power of 80 % [25]. 

Statistical analyses were performed using SAS 9.4 (Institute Inc., 
Cary, NC, USA). 

3. Results 

One hundred adults (50 % women) aged 45-70y (mean age = 56.1y, 
standard deviation [SD] = 7.5) participated in the study; their charac
teristics are shown in Supplementary Table S1. Older participants ten
ded to be in poorer health than younger ones. One participant used a 
cane. 

Mean (SD) WS is shown in Table 1. Overall, participants walked 
slower over 3 m compared to 5 m at usual pace (P < 0.001), while they 
walked faster over 3 m compared to 5 m at fast pace (P between < 0.001 
and 0.030). As expected, older participants walked slower than younger 
ones. 

The average times needed to cover 3 m and 5 m were small (<4 s). 
For instance, for photoelectric cells, the average time needed to cover 3 
m was 2.36 s (SD = 0.57) for UWS and 1.57 s (SD = 0.34) for FWS, 
compared to 3.69 s (SD = 0.86) for UWS and 2.69 s (SD = 0.60) for FWS 
for 5 m. 

3.1. Agreement between manual stopwatches and photoelectric cells 

Table 2 presents the agreement between WS measured with manual 
stopwatches (rater 2) and photoelectric cells. All combinations of dis
tance and pace showed excellent agreement (ICCs between 0.92 and 
0.97). However, agreement was lower for smaller distances, with 
significantly lower ICCs over 3 m compared to 5 m, both for UWS (dif
ferenceICC = − 0.04) and FWS (differenceICC = − 0.05). For a given dis
tance, agreement was similar for UWS and FWS (3 m-differenceICC =

0.01; 5 m-differenceICC = 0.00). 
Fig. 1 and Supplementary Table S2 show results of Bland and Altman 

analyses. There was no significant relation between the difference and 
mean for UWS, suggesting that bias was constant as UWS increased. 
UWS measures with the manual stopwatch tended to be lower than those 
taken with photoelectric cells, with a more pronounced average bias for 
3 m (1.6 cm/s, 95 % CI = − 0.1, 3.4) than 5 m (0.9 cm/s, 95 % CI = − 0.3, 
2.1). Limits of agreement were wider for 3 m than 5 m. 

Alternatively, the difference and mean of both 3 m- and 5 m-FWS 
were significantly associated (Fig. 1, Supplementary Table S2). For 3 m- 
FWS, the relation between the difference and mean was not linear 
(PSpline = 0.038). The average bias appeared to be null before 200 cm/s; 
after this threshold, the stopwatch overestimated WS and the difference 
increased with increasing FWS (Fig. 1-B). Although the scatterplot 
suggests a similar pattern for 5 m-FWS (Supplementary Fig. S1), a linear 
relation between the mean and difference was not rejected (PSpline =

0.27) and we used linear regression for our main analyses showing that 
the stopwatch underestimated FWS at slower speed and overestimated 
FWS at faster speed (PLinear = 0.007; Fig. 1-D). 

A similar pattern of increasing bias with increasing FWS was present 
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in younger and older participants, except for 5 m-FWS in younger par
ticipants for which bias was constant (Supplementary Table S3, Sup
plementary Fig. S2). 

3.2. Inter-rater agreement between manual stopwatches 

Table 2 presents inter-rater agreement for manual stopwatches 
(raters 1A and 1B compared to rater 2). Agreement between raters 1A 
and 2 was excellent (ICCs between 0.91 and 0.95); it tended to be lower 
for 3 m than 5 m-WS, but differences were not statistically significant. 
ICCs between raters 1B and 2 were lower (ICCs between 0.83 and 0.93). 
The ICC for 5 m-UWS was significantly higher than that for 5 m-FWS. 

Supplementary Table S2 and Supplementary Figs. S3 and S4 present 
results of Bland and Altman analyses. The difference and mean of WS 
were not correlated for all combinations of distance and pace, thus 
suggesting that biases were constant. Compared to rater 2, rater 1A 
provided significantly faster WS measures for all combinations (mean 
differences between 2.7 and 4.4 cm/s). Compared to rater 2, rater 1B 
provided significantly slower 5 m-WS (UWS: − 3.2 cm/s; FWS: − 5.3 cm/ 
s), and tended to provide faster 3 m-WS but the difference was not sig
nificant. For both raters, the interval between LoAs was smaller for UWS 
than FWS, and for 5 m compared to 3 m for both paces, thus suggesting 
better agreement for UWS and 5 m. 

Results tended to be similar in younger and older participants; 
however, bias was related to mean WS for 5 m-UWS in younger par
ticipants and 3 m-UWS in older ones (Supplementary Fig. S5, Supple
mentary Fig. S6). 

4. Discussion 

In this study, we examined the reliability and agreement of WS 
measures in community-dwelling participants aged 45–70y while taking 
into account distance (3 m/5 m) and pace (UWS/FWS). There was an 
excellent agreement between WS measured with photoelectric cells and 
stopwatches, but agreement was lower for 3 m than 5 m, both for UWS 
and FWS. For FWS, reliability decreased with increasing speed, thus 
suggesting that measurement error is higher for those who walk faster. 
Our findings also suggest the presence of rater effects and better 
agreement for 5 m and UWS. Age-stratified analyses tended to show 
similar patterns in younger and older participants. 

Manual timers are an inexpensive and simple method to measure WS 
[6]. However, their use introduces an error attributable to raters’ effects 
[16,26]. This error exists despite training and explicit protocols [16], 
and is likely due to differences in stopwatch triggering [12,16]. The 
shorter the distance and the faster WS, the faster the tester needs to press 
the stopwatch. We therefore hypothesized that agreement would be 
lower for shorter distance and faster pace, and our findings are consis
tent with this hypothesis. 

Although agreement between stopwatches and photoelectric cells 
was excellent, consistent with previous studies [6,13,15,16], it was 
lower for 3 m than 5 m independently of pace. Furthermore, Bland and 
Altman analyses showed that bias increased with FWS. This pattern was 
more pronounced for 3 m- than 5 m-FWS, likely due to a larger vari
ability of differences as reflected by a wider interval between LoAs. A 
similar pattern was described in 34 cognitively impaired individuals, in 

Table 1 
Description of walking speed measured by photoelectric cells and stopwatches.  

Method N Usual walking speed (cm/s) Fast walking speed (cm/s) 

3 m 
Mean (SD) 

5 m 
Mean (SD) 

P-paired 
t-Test 

3 m 
Mean (SD) 

5 m 
Mean (SD) 

P-paired 
t-test 

Overall 
Photoelectric cells  99 132.7 (24.3) 140.7 (24.3)  <0.001 198.0 (32.4) 192.0 (31.5)  <0.001  

Stopwatch 
Rater 1A  49 131.8 (26.9) 139.1 (27.7)  <0.001 204.1 (37.7) 191.7 (34.5)  <0.001 
Rater 1B  51 134.4 (22.3) 140.5 (22.1)  <0.001 198.1 (32.2) 191.1 (29.9)  0.008 
Rater 2  100 131.1 (24.7) 139.8 (24.6)  <0.001 197.4 (35.3) 192.8 (33.5)  0.030 

49a 128.1 (25.4) 135.7 (26.0)  <0.001 199.7 (38.6) 189.0 (34.6)  <0.001 
51b 134.0 (23.9) 143.7 (22.7)  <0.001 195.1 (32.1) 196.5 (32.3)  0.65  

45–55 years 
Photoelectric cells  52 138.1 (19.3) 145.3 (19.3)  <0.001 204.6 (22.8) 200.2 (25.0)  0.003  

Stopwatch 
Rater 1A  30 140.6 (22.7) 145.5 (23.3)  0.032 211.7 (26.0) 201.8 (25.7)  0.019 
Rater 1B  23 137.2 (19.1) 143.7 (17.3)  0.031 204.2 (23.3) 199.5 (24.2)  0.23 
Rater 2  53 136.1 (19.4) 144.3 (19.9)  <0.001 205.6 (26.6) 199.0 (25.7)  0.009 

30a 136.2 (21.3) 142.0 (21.0)  0.033 209.0 (28.6) 197.2 (26.6)  <0.001 
23b 136.0 (17.2) 147.3 (18.4)  0.001 201.1 (23.7) 201.2 (24.9)  0.97  

>55 years 
Photoelectric cells  47 126.7 (27.9) 135.6 (28.2)  <0.001 190.7 (39.5) 182.9 (35.5) <0.001  

Stopwatch 
Rater 1A  19 117.8 (27.7) 129.0 (31.6)  <0.001 192.1 (49.5) 175.9 (41.0)  0.002 
Rater 1B  28 132.1 (24.8) 138.0 (25.4)  0.002 193.1 (37.7) 184.2 (32.6)  0.013 
Rater 2  47 125.4 (28.6) 134.7 (28.3)  <0.001 188.1 (41.5) 185.9 (39.7)  0.52 

19a 115.3 (26.4) 125.7 (30.4)  0.004 185.0 (47.8) 176.0 (42.0)  0.086 
28b 132.3 (28.4) 140.8 (25.6)  0.002 190.2 (37.4) 192.6 (37.3)  0.62 

SD, standard deviation. Fast walking speed was always greater than usual walking speed (all P < .0001). 
a Participants with WS measured by rater 1A. 
b Participants with WS measured by rater 1B. 
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analyses combining results of several 6 m-WS measures (UWS/FWS, 
single/dual-task) [15]. Another study of 1177 community-dwelling 
Korean adults aged 70-84y assessed for 4 m-UWS showed that the dif
ference between automated and manual measures increased with 
increasing WS, and that manual measures tended to increasingly un
derestimate, rather than overestimate, WS at the highest values; 

however, non-linear effects were not examined in that study [17]. 
When WS is only measured once, the excellent agreement between 

stopwatches and photoelectric cells, as already reported [6,13,15], 
suggests that manual WS measures are reliable. However, there 
appeared to be some differences across raters, as in previous studies 
[16,26], with better agreement for UWS and 5 m. These results support 

Table 2 
Intraclass correlation coefficients (ICC).  

WS test ICC (95 % CI) Difference between ICCs (95 % CI)a 

Comparison between timing methods: photoelectric cells vs. stopwatch by rater 2 (N ¼ 99) 
3 m UWS 0.93 (0.90, 0.95) 3 m UWS–3 m FWS 0.01 (− 0.03, 0.05) 
3 m FWS 0.92 (0.88, 0.95) 3 m UWS–5 m UWS ¡0.04 (¡0.07, ¡0.02) 
5 m UWS 0.97 (0.96, 0.98) 3 m FWS–5 m FWS ¡0.05 (¡0.09, ¡0.02) 
5 m FWS 0.97 (0.95, 0.98) 5 m UWS–5 m FWS 0.00 (− 0.01, 0.02)  

Comparison between raters using a stopwatch 
Raters 1A and 2 (N = 49)    

3 m UWS 0.92 (0.88, 0.95) 3 m UWS–3 m FWS 0.01 (− 0.05, 0.06) 
3 m FWS 0.91 (0.87, 0.94) 3 m UWS–5 m UWS − 0.03 (− 0.09, 0.02) 
5 m UWS 0.95 (0.91, 0.97) 3 m FWS–5 m FWS − 0.02 (− 0.07, 0.02) 
5 m FWS 0.93 (0.90, 0.95) 5 m UWS–5 m FWS 0.02 (− 0.02, 0.06) 

Raters 1B and 2 (N = 51)    
3 m UWS 0.88 (0.83, 0.92) 3 m UWS–3 m FWS 0.06 (− 0.05, 0.18) 
3 m FWS 0.83 (0.75, 0.88) 3 m UWS–5 m UWS − 0.05 (− 0.12, 0.01) 
5 m UWS 0.93 (0.89, 0.95) 3 m FWS–5 m FWS − 0.01 (− 0.14, 0.14) 
5 m FWS 0.84 (0.76, 0.89) 5 m UWS–5 m FWS 0.09 (0.00, 0.22) 

WS: walking speed; ICC: intraclass correlation coefficient; CI: confidence interval; UWS: usual walking speed; FWS: fast walking speed. 
Bold values represent differences that were significantly different from 0. 

a Confidence intervals of differences were estimated by bootstrapping 

Fig. 1. Bland-Altman plots for the agreement between measures of walking speed taken with a stopwatch (rater 2) and photoelectric cells. 
The red line corresponds to the average bias (solid line) together with its 95 % confidence interval. The green lines correspond to the lower and upper limits of 
agreement (LoA, solid line), together with their 95 % confidence intervals. 
Bias is constant for panels A and C, while it depends on mean walking speed in panels B and D. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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using longer distances for manual WS measures. Moreover, a reduced 
number of highly experienced testers and standardized protocols should 
be preferred. 

When WS is measured repeatedly using manual measurements to 
estimate WS decline in longitudinal studies, our findings suggest that 
measurement error may bias estimates of WS decline, in particular for 
FWS over short distances; this is because decline is steeper in those with 
faster baseline WS [8], so that measurement error will be more pro
nounced at baseline than over the follow-up. Therefore, longer distances 
are preferable in studies with repeated manual WS measures, in 
particular for FWS. Our study does not allow to determine the best 
distance, but suggests that distances ≥5 m are recommended. Alterna
tively, if only short distances are available, automated methods should 
be preferred. 

To our knowledge, our study is the only one to have examined reli
ability and agreement of WS measurements with manual and automated 
timing methods over two distances at different paces. Previous studies 
mainly involved older and predominantly female populations 
[14,26,27], while our stratified sample included younger participants 
and as many men as women. Given their younger age, participants from 
our study walked faster than those included in previous studies; how
ever, age-stratified analyses showed similar findings in older and 
younger participants. One limitation of our study is that the order of the 
tests was not randomized; this likely explains our observation of faster 5 
m-UWS compared to 3 m-UWS, while 3 m-FWS was faster than 5 m-FWS. 
A previous study that randomized the order of the walks found no dif
ference in FWS or UWS over 4 m and 8 m [14]. In our study, participants 
walked over 3 m (UWS then FWS) and then over 5 m (UWS then FWS). 
Returning to UWS after FWS could have induced faster 5 m-UWS 
compared to 3 m-UWS. For FWS, fatigue or reduced motivation may 
have led to slower 5 m-FWS compared to 3 m-FWS. In addition, age- 
stratified analyses were based on a smaller number of participants 
than our main analyses, and may have failed to show small differences 
between the two age groups. 

In conclusion, in agreement with our working hypothesis, our find
ings suggest that both distance and pace have an influence on mea
surement error of WS using manual timing methods. These findings have 
implications for the design of studies aimed at measuring WS. 
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Appendix A. Supplementary data 

Supplementary material include the characteristics of the partici
pants (Supplementary Tables S1), Bland and Altman analyses (Supple
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stopwatch and photoelectric cells for 5 m-FWS using splines (Supple
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mentary Figs. S3 to S6). Supplementary data to this article can be found 
online at https://doi.org/10.1016/j.exger.2022.111987. 
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