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Abstract 

Background: SARS-CoV-2 is a rapidly spreading disease affecting human life and the economy on a global scale. 
The disease has caused so far more then 5.5 million deaths. The omicron outbreak that emerged in Botswana in the 
south of Africa spread around the globe at further increased rates, and caused unprecedented SARS-CoV-2 infection 
incidences in several countries. At the start of December 2021 the first omicron cases were reported in France.

Methods: In this paper we investigate the spreading potential of this novel variant relatively to the delta variant that 
was also in circulation in France at that time. Using a dynamic multi-variant model accounting for cross-immunity 
through a status-based approach, we analyze screening data reported by Santé Publique France over 13 metropolitan 
French regions between 1st of December 2021 and the 30th of January 2022. During the investigated period, the 
delta variant was replaced by omicron in all metropolitan regions in approximately three weeks. The analysis con-
ducted retrospectively allows us to consider the whole replacement time window and compare regions with different 
times of omicron introduction and baseline levels of variants’ transmission potential. As large uncertainties regarding 
cross-immunity among variants persist, uncertainty analyses were carried out to assess its impact on our estimations.

Results: Assuming that 80% of the population was immunized against delta, a cross delta/omicron cross-immunity 
of 25% and an omicron generation time of 3.5 days, the relative strength of omicron to delta, expressed as the ratio of 
their respective reproduction rates, R̂omicron

R̂delta

 , was found to range between 1.51 and 1.86 across regions. Uncertainty 

analysis on epidemiological parameters led to R̂omicron

R̂delta

 ranging from 1.57 to 2.34 on average over the metropolitan 

French regions, weighted by population size.

Conclusions: Upon introduction, omicron spread rapidly through the French territory and showed a high fitness 
relative to delta. We documented considerable geographical heterogeneities on the spreading dynamics. The histori-
cal reconstruction of variant emergence dynamics provide valuable ground knowledge to face future variant emer-
gence events.
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Background
The SARS-CoV-2 pandemic first emerged in China in 
December 2019 and subsequently spread all over the 
world. Despite unprecedented control measures and 
availability of several vaccines, the virus persisted in 
populations and evolved into different lineages. These 

Open Access

*Correspondence:  thomas.haschka@icm-institute.org

1 Epidemiology and Modelling of Bacterial Escape to Antimicrobials, Institut 
Pasteur, 25-28, rue du Docteur Roux, 75015 Paris, France
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-022-07821-5&domain=pdf


Page 2 of 13Haschka et al. BMC Infectious Diseases          (2022) 22:815 

SARS-CoV2 mutations have been classified into different 
variants that have caused further isolated or overlapping 
epidemic waves in many countries [1]. In particular, vari-
ants with increased transmissibility, increased severity or 
immune escape were observed, and defined to be vari-
ants of concern (VOC). These VOCs were further named 
after the letters of the Greek alphabet.

The omicron SARS-CoV-2 VOC, first detected in 
Botswana in the south of Africa [2] in November 2021, 
spread rapidly around the world [3, 4]. The mutations 
observed on this variant are expressing a different form 
of the Spike protein [5], seemingly causing immune 
escape [6] and higher infection rates [7–10].

The detection of the omicron variant in France was 
noticed at the start of December 2021 [11]. Early assess-
ments of its dynamics pointed to a rapid growth and 
hence, a substantial spreading advantage over the delta 
variant, the circulating variant at that time in France [12, 
13]. Therefore, omicron has been attributed the poten-
tial to cause a large-scale epidemic wave [12–14]. The 
rate of daily detected cases, indeed, underwent unprec-
edented growth and over 300,000 detected cases per day 
were registered in the first half of January for this country 
consisting of a population of almost 67 million inhabit-
ants [15]. Here, we retrospectively analysed the dynamics 
of the emergence of the omicron variant and the replace-
ment of the delta variant across all French regions.All the 
data that we have at our disposal from Sante Publique 
France, which is further detailed in section 2.1, highlights 
only a negligible proportion of observed omicron sam-
ples at the beginning of December, and an almost 100% 
occurrence of omicron samples at the end of January for 
all French metropolitan regions. Therefore, we focused 
our study on a time-frame between December 2021 and 
January 2022. According to https:// outbr eak. info [16–18] 
and [19, 20] lineages besides BA.2 did not yet emerge in 
significant rates during that period. Lineage BA.2 itself 
did not account for more then 10% of samples by the end 
of January 2022 and we focused therefore on an omicron 
invasion on French territory that is BA.1 based.

In order to perform this study we developed a status-
based multi-variant compartmental model which was 
built upon [21]. This model allows us to simulate the 
coevolution of multiple variants independently and link 
them with an interaction matrix, accounting for cross 
immunity between the different variants. Hence, the 
model is perfectly adapted for the situation where one 
variant is replaced by another. Fitting this model to the 
data observed in France during the winter of 2021/2022 
allows us to quantify the relative advantage of the omi-
cron variant over the delta variant and its spatial hetero-
geneity on the replacement dynamics, by accounting for 

uncertainty in different factors, such as the generation 
time of a specific variant.

Methods
Data acquisition and preprocessing
PCR-confirmed cases associated with SARS-CoV-2 
mutations were obtained from Santé Publique France1 
for the 13 metropolitan French regions. The data includes 
the number of tests that underwent the screening for a 
selection of mutations in their amino acid sequence. Dif-
ferent mutations were monitored for their impact on 
viral functioning and because they were recognised as 
indicators of different VOCs. In particular, the E484K 
mutation is commonly used as an indicator of a beta or 
gamma variant and the L452R as an indicator of the delta 
variant. The absence of these two mutations is character-
istic of the alpha, omicron or other lineages, e.g. B.1.640. 
Periodic whole genome sequencing surveys showed that 
B.1.640 was circulating at a low level in France at the time 
of omicron introduction to be rapidly replaced by omi-
cron around mid December [12, 13]. The omicron lineage 
BA.5 could exert the L452R mutation but were accord-
ing to [16–18] not, or only in negligible quantities [19, 
20], present in metropolitan France in the investigated 
period. In late November 2021, a dedicated surveillance 
protocol was established in France targeting a set of 
mutations specific to the omicron variant. The initial set 
of mutations was soon updated to become in late Decem-
ber: deletion of site 69/70 and/or substitutions K417N 
and/or S371L-S373P and/or Q493R [22]. The protocol 
was initially adopted by certain laboratories to become 
progressively more widespread throughout December, 
early January.

Available records were used to describe the co-cir-
culation of omicron, delta and beta/gamma. Records 
with L452R mutation were interpreted as delta vari-
ant. E484K mutations were taken as indicator of beta/
gamma variant. These were counted in negligible frac-
tions but were kept for completeness. For omicron the 
two alternative options for data interpretations were sub-
ject to different potential biases. The use of the absence 
of L452R and E484K mutations as a proxy for omicron 
was biased around the onset of omicron invasion due 
to the co-circulation with other lineages. Given that 
omicron became dominant among the samples without 
L452R mutation at the very beginning of its invasion, as 
explained above, this biases had likely a limited effect on 
the whole replacement curve. On the other hand, the use 
of the omicron-specific set of mutations was likely biased 

1 https:// www. data. gouv. fr/ fr/ datas ets/ donne es- de- labor atoir es- pour- le- depis 
tage- indic ateurs- sur- les- mutat ions/

https://outbreak.info
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-pour-le-depistage-indicateurs-sur-les-mutations/
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-pour-le-depistage-indicateurs-sur-les-mutations/


Page 3 of 13Haschka et al. BMC Infectious Diseases          (2022) 22:815  

during the period from the end of November and begin-
ning of January when such an indicator was adjusted and 
gradually adopted throughout the French territory. Given 
our interest on the entire replacement period between 
the beginning of December and the end of January, we 
assumed in the baseline analysis omicron to be described 
by the absence of L452R and E484K mutations. Still, we 
considered the alternative indicator in the sensitivity 
analysis.

Visual inspection of the time series between 1st 
December 2021 and 31th January 2022 reveals that the 
invasion of omicron, more precisely the lineage BA.1, 
occurs approximately in three weeks in all the regions of 
metropolitan France. As such we defined for each region 
a window of opportunity of 20 days for the analysis. The 
onset of this window is defined by its midpoint, the 10th 

day, where omicron shall supplant the delta variant in 
absolute numbers, meaning that the omicron variant 
exceeds 50% of reported samples at this midpoint. This 
approach is outlined in Fig. 1 which represents the data 
of a typical French region and its selected 20 day win-
dow of opportunity (Fig.  1C). The dataset provided by 
Santé Publique France is smoothed over a 7-day sliding 
window.

Multi‑variant transmission model
We modelled the co-circulation of three variants. Inspired 
by [21], we proposed a status-based multi-variant compart-
mental model allowing us to evaluate the delta, omicron 
and residual beta/gamma variants simultaneously, which 
interact with each other using a cross-immunity term. A 
schematic overview of the model is shown in Fig. 1A. As 

Fig. 1 A A basic overview of the model. B The model paramterization possibilities. C As an illustration, percentages of delta and omicron obtained 
from Santé Publique France for the Ile-de-France region with the 20 day window of opportunity around the inflection point as it has been chosen for 
this modelling study
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outlined in this figure the main advantage of this model 
is that allows us to simulate multiple variants simultane-
ously taking the immunity acquired, due to the infection 
by one variant against an other variant into account. This 
property is modeled using a cross-immunity matrix ǫik . 
The authors of [21] have proposed a similar parsimonious 
process to model a large number of competing strains, with 
application to the influenza dynamics. We largely adapted 
this model in our study for the purpose of describing the 
dynamics of competing SARS-CoV-2 variants. The model 
is defined by the ordinary differential eqs. (1–4), where 
state variables stand for proportions of different compart-
ments in the population from the viewpoint of each variant 
i:

Si represents the population susceptible, Ei the incu-
bating non infectious population and Ii the population 
of infectious individuals. Compartment Ri models an 
immunized population that either underwent infection 
and recovered from the disease or has been vaccinated. βi 
represents the transmission rate, ηi is the immunity wan-
ing rate, δi the rate at which exposed individuals become 
infectious, or the inverse of the mean sojourn time in E 
compartment, and γi the recovery rate or the inverse of 
the infectiousness duration. Variant interaction is mod-
elled by a cross-immunity matrix, where element ǫik 
describes the acquired protection to an acquisition of 
variant i conferred by an infection with variant k. For a 
given reproduction rate at time t, R̂k(t) , the transmission 
rate βk can be obtained from:

where ak represents the immunization level in the pop-
ulation against variant k at the beginning of the study 
period. In further detail, in eq. (1) the Si n

k=1 ǫikβk Ik 
term models the cross-immunity and, at the same time, 
the exit from the susceptible compartment of newly 
infected individuals. It is therefore the most significant 
part of this model. Aforementioned βk as outlined in eq. 
(1), modulates the strength of the infection, while the ǫik 
matrix makes sure that variants i are also affected by a 
pull resulting from infected individuals Ik , and takes, as 

(1)dSi =

(

ηiRi − Si

n
∑

k=1

ǫikβk Ik

)

dt,

(2)dEi = (βiSiIi − δiEi)dt,

(3)dIi = (δiEi − γiIi)dt,

(4)Ri = 1− Si − Ei − Ii.

(5)βk =
R̂k(t = 0)γk

1− ak
,

such, care about the cross-immunity. Further equations 
of the model (2,3,4) follow standard SEIR modelling 
procedures, with the main difference being that index i 
accounts for multiple variants in coevolution. In the case 
of the omicron variant, the immunized fraction aomicron 
is obtained by multiplying the fraction of population 
immune against the delta variant adelta with the cross-
immunity between omicron and delta:

We assume that R̂k(t) is constant over the investigated 
period, and we define the relative epidemic fitness of var-
iant i to the delta variant as the ratio of reproduction 
rates: R̂i

R̂delta
.

Parameter values were either (i) based on literature 
values in the case of δi and γi , or (ii) hypothesised for 
ak , ηi and ǫik , with different values tested for robustness 
purposes for both (i) and (ii) (see Sect. 2.4), or (iii) esti-
mated from data for βi [related to R̂k , equation (5)]. In 
the baseline scenario, the mean generation time, which 
is expressed in our model for a variant i as 1/δi + 1/γi , 
was assumed equal to 5 days for delta, 3.5 days for omi-
cron [23] and 8 days for the other variants (beta/gamma) 
[24, 25]. The corresponding durations ( 1/δi and 1/γi ) in Ei 
and Ii compartments were assumed equal to (2,3) days, 
(1.4, 2.1) days and (5,3) days for delta, omicron and beta/
gamma variants, respectively. A further in detail over-
view of all rate constants evaluated is outlined in Table 1.

The model is integrated using a Runge-Kutta-Fehlberg 
(RKF) algorithm with variable step size [26]. Further we 
interpolate a third order polynomial on subsequent suc-
cessions of four obtained data points. This allows us to 
extract a value on the continuum between the start and 

(6)aomicron = adeltaǫ[delta,omicron].

Table 1 Values used in the sensitivity analysis for mean 
generation time and duration in E and I compartments for each 
variant, from [23–25]. All values are given in days

Description Delta Omicron

Mean generation time 5 3

Mean duration in E 1/δ 2 1.2

Mean infectiousness duration 1/γ 3 1.8

Mean generation time 5 3.5

Mean duration in E 1/δ 2 1.4

Mean infectiousness duration 1/γ 3 2.1

Mean generation time 5 4

Mean duration in E 1/δ 2 1.6

Mean infectiousness duration 1/γ 3 2.4

Mean generation time 5 6

Mean duration in E 1/δ 2 2

Mean infectiousness duration 1/γ 3 4

Mean immunity duration 1/η 1000 1000
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the end of the simulation performed with the model 
described herein. The source code for the model, written 
in C, has been made available on Github2.

Fitting the model to the data and initial conditions
The model was fitted to the reported proportions of sam-
pled variants for each French metropolitan region inde-
pendently. The fit was performed on a 20 days window 
starting 10 days prior the inflection point where the omi-
cron variant is present in more than half of the samples.

For all metropolitan French regions, initial conditions 
were obtained by collecting public estimates of SARS-
CoV-2 incidence and reproduction rates, for all variants 
combined, for the 6th, 13th and 20th of December from 
Santé Publique France3. More precisely, the initial condi-
tions were computed based on this data as follows: for 
each region, t = 0 represents the first day of the 20-day 
study period in our simulations. Depending on the date 
of the initial point of the study period, we define q(t = 0) 
and R̂delta(t = 0) to be the linear interpolations of these 
collected estimates for each region. If the first day of the 
20 days of the simulated window happens before the 6th 
of December or after the 20th of December, no interpola-
tion is performed and the values from the respective day 
are taken. Visual inspection confirms that 10 days prior 
the inflection point, at the beginning of our window of 
opportunity, omicron cases were still very rare. As such, 
the interpolated reproduction rate R̂ was entirely attrib-
uted to the delta variant and stayed constant through the 
study period.

For each region-associated time window, we used the 
obtained initial incidence rate q(t = 0) to set the initial 
conditions of compartments Ei(t = 0) and Ii(t = 0) as 
follows:

where Pi is the number of positive samples of variant i 
found in the data at the onset date of our study period. ui 
is a fit parameter which defines the initial proportion, for 
each variant i except delta variant.

Curve fitting was achieved using a standard gradient 
descent procedure. Parameters related to VOCs other 

Ei(t = 0) =

{

i = 1(delta) : 1
δ
q(t = 0) Pi(t=0)

∑n
i=1 Pi(t=0)

i �= 1(other) : ui
δ
q(t = 0) Pi(t=0)

∑n
i=1 Pi(t=0)

,

Ii(t = 0) =

{

i = 1(delta) : 1
γ
q(t = 0) Pi(t=0)

∑n
i=1 Pi(t=0)

i �= 1(other) : ui
γ
q(t = 0) Pi(t=0)

∑n
i=1 Pi(t=0)

,

than the delta variant, which was kept static, were opti-
mized by minimizing the following loss function inde-
pendently for each region:

for n variants and k sampled moments in time. Here Pi 
represents the observed data, as defined above, and 
δjEj(G, tl) the simulated incidence of new infectious 
individuals at time point tl as described by eq. (2), where 
G = {R̂i,ui : i �= 1(variants other than delta) } . Param-
eters minimizing the loss function L (6) were estimated. 
Mean estimates as well as standard variations across 
regions for the omicron reproduction ratio were calcu-
lated. We also computed estimates weighted according to 
the regions population size:

with N representing the total population of metropoli-
tan France and Nreg the population of a single region reg. 
R̂reg is the best result yielded by the gradient descent for 
R̂omicron obtained for the corresponding region.

As outlined in Fig. 1B, independent fits were performed 
in conjunction with parameter sweeps to overcome 
uncertainties as further detailed in Sect. 2.4.

Sensitivity analysis
As uncertainty still exists regarding some model param-
eters such as the generation time and few information is 
available on others such as variant-specific immunity in 
the population, we performed a sensitivity/uncertainty 
analysis to investigate the impact of the different model 
parameters on our estimates and subsequent variant 
dynamics.

More precisely, we varied: (i) the generation time of the 
omicron variant setting it to equal to 3, 3.5, 4 and 6 days 
as shown in Table 1 which summarizes tested values, (ii) 
the acquired immunity in the population a against vari-
ants prior to omicron obtained either by infection or 
vaccination, with a ∈ (0.2, 0.4, 0.6, 0.8) , and (iii) the cross-
immunity ǫ that this immunity confers to the omicron 
variant, with ǫ ∈ (0.25, 0.5, 0.75, 1.0).

First, the impact of varying model parameters in terms 
of model fitting was explored for all parameters (i)–(iii).

Second, the impact of the uncertainty in model param-
eters on replacement dynamics was investigated. When 
a new variant replaces the established variant, we can 

(7)L =

n
∑

j=1

k
∑

l=1

∣

∣

∣

∣

Pj(tl)
∑n

i=1 Pi(tl)
−

δjEj(G, tl)
∑n

i=1 δiEi(G, tl)

∣

∣

∣

∣

,

(8)

R̄ =
1

N

∑

reg

NregR̂reg,

σR =

√

√

√

√

1

N

∑

reg

Nreg(R̂reg − R̄)2,

2 https:// github. com/ hasch ka/ SIER_ multi varia nt_ epide mic/
3 https:// www. sante publi quefr ance. fr/ dossi ers/ coron avirus- covid- 19/ coron 
avirus- chiff res- cles- et- evolu tion- de- la- covid- 19- en- france- et- dans- le- 
monde

https://github.com/haschka/SIER_multivariant_epidemic/
https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-chiffres-cles-et-evolution-de-la-covid-19-en-france-et-dans-le-monde
https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-chiffres-cles-et-evolution-de-la-covid-19-en-france-et-dans-le-monde
https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-chiffres-cles-et-evolution-de-la-covid-19-en-france-et-dans-le-monde
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numerically quantify the relative fitness by means of �t , 
i.e. the time it takes for a new variant to rise from 10% to 
50% of positively tested cases in a population. This idea 
is illustrated in Fig. 4A, for both a less fitter new variant 
(orange) characterised by �t1 and a stronger new variant 
(blue) characterised by �t2 , respectively. To get a better 
understanding of the relationship between our fitness 
estimates and parameters a (ii) and ǫ (iii), we analysed in 
the model variations of:

as a function of the reproduction rate R̂new of the new 
variant, the cross-immunity between invading and 
established variant ǫ and the immunity a against the 
established variant. For these simulations, we fixed the 
reproduction rate R̂established of the established variant 
to 1.1. and evaluated our model on a grid varying R̂new , 
ǫ and a to evaluate resulting �t . R̂new was varied between 
1.2 and 2.2 in 31 increments of 0.34, whereas ǫ and a were 
given each four different values as detailed above, yield-
ing a total of 512 simulation scenarios.

Results
Regional fits and relative fitness of omicron against delta 
in metropolitan France
For metropolitan France in its entirety we find that the 
relative fitness of the omicron variant over the delta vari-
ant R̂omicron

R̂delta
 is equal to 1.72. This value was obtained by 

assuming that 80% of the population was immunized 
against delta either by natural infection or vaccination 
and hence set a = 0.8 . Further we estimated that one 
fourth of this delta-immune population procured a par-
tial immunity against omicron and thus set 
ǫ[delta,omicron] = 0.25 . Finally generation times of 5 days 
for the delta and 3.5 days for omicron variant where 
assumed respectively.

For this specific scenario, region specific assumed val-
ues for R̂delta ans estimated values for R̂omicron are dis-
played in Additional file  1: Table  S1, and replacement 
curves and associated fits for all regions are reported in 
Fig.  2. The general trend is globally well reproduced by 
the model in all regions. The lowest fitness estimate was 

(9)�t10%−50%(R̂new, ǫ, a),

obtained for Corsica, with R̂omicron

R̂delta
= 1.51 , while the high-

est for Nouvelle-Aquitaine, with R̂omicron

R̂delta
= 1.86 . Distribu-

tion of fitness values is summarised in Fig. 3. The different 
regions assessed by this study feature variations in popu-
lation density. Especially the Île-de-France region stands 
out with a population density larger than 1000 inhabit-
ants per square kilometer. We investigated this matter as 
shown in Additional file  1: Fig. S9 in the supporting 
information and did not find any correlation between 
population density of a region and the relative transmis-
sion rates obtained for it.

Sensitivity to uncertain model parameters
As a result of the robustness analysis on fitting, when the 
generation time of omicron is sampled at 3, 3.5, 4 and 6 
days, we can remark that the relative strength of the omi-
cron variant increases as the generation time approaches 
the generation time of the delta variant. The resulting 
shift in relative fitness can be observed in comparing 
Fig. 3 and Additional file 1: Fig. S1 to S3 or S4 to S7 if the 
data is interpreted with the alternative definition of omi-
cron, found in the supporting information.

During our parameter sweep, the minimal relative fit-
ness R̂omicron

R̂delta
 of 1.38 is observed for Corsica as the genera-

tion time for omicron is set to 3 days. The 
Nouvelle-Aquitaine region exhibits the maximum value 
of 1.99 as the generation time for omicron is 4 days. 
Assuming a generation time of 5 days for delta and 3 days 
for the omicron variant we find that the average relative 
fitness R̂omicron

R̂delta
 , weighted by regional population size, 

ranged from 1.58 to 1.61. Increasing the generation time 
of omicron from 3 to 6, the relative fitness is increased to 
2.31–2.34 in average. Estimates according to generation 
time assumptions are detailed in Table 2.

Estimates of omicron relative fitness do not seem to 
depend on the assumptions on cross-immunity conferred 
by previous immunity to delta in preventing omicron 
acquisition (Table 2 and Fig. 3). Varying the preimmuni-
zation levels of the population at the onset of the omicron 
invasion does not affect relative fitness values obtained 
from our model either. When varying these parameters, 

Fig. 2 Omicron and delta SARS-CoV-2 variant proportions among positive samples in the regions respective window of opportunity, 10 days before 
and after the omicron variant exceeds 50%. Dots are representing proportions reported from sampled data published by Santé Publique France. 
Lines represent simulated data with estimated parameter values, here with a delta-omicron cross-immunity of 25% and an initial population that is 
80% immunized against the delta variant. The generation time assumed here is 5 days for the delta variant and 3.5 days for the omicron variant

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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resulting fits and errors are similar to the ones shown 
in Fig. 2. The detailed outputs at region level have been 
made available on the Github repository4.

Note that, despite no effect of cross-immunity on omi-
cron relative fitness was observed here, the correspond-
ing transmission rate of the model β , as outlined in eq. 
(5), varies with variations of preimmunization a against 
delta and cross immunity ǫ by the predetermined factor 

γomicron(1−a)
γdelta(1−aǫ[delta,omicron])

 , even if almost constant relative fit-

ness rates R̂omicron

R̂delta
 are reported in Table 2.

Figure  4B outlines the expected values of �t as a 
function of the variant parameters as defined in eq. (9). 
Simulations show that, at relatively high fitness levels, 
as those found in real omicron and delta variant data 
(

R̂new
R̂established

> 1.5
)

 , immunity and cross-immunity play a 
negligible role in the time needed, �t , to reach the 
replacement of an established variant by a new fitter 
variant. In simulations, as R̂new

R̂established
 rises, variations in 

preimmunization a and cross-immunity ǫ values 
become irrelevant and do not influence the time needed 
for a new variant to supplant an established one.

Discussion
In this article we present a mechanistic model to simu-
late a multivariant epidemic of SARS-CoV-2. The model 
was used to analyse SARS-CoV-2 variant data reported 
by Santé Publique France between 1st of December 2021 
and 30th of January 2022 on the proportions of differ-
ent mutations occurring in a specially sampled subset of 
PCR tests at the French regional level. We detail how this 
model can be applied in order to evaluate the fitness of an 
emerging variant, relatively to established SARS-CoV-2 
variants. Knowing the relative fitness of a new emerging 
variant against a previously observed variant, and having 
a model at hand to describe the dynamics of all variants 
is important for decision-makers in order to evaluate the 
risks caused by the epidemic and carefully plan future 
stress exhorted on public health systems, the economy 
and other affected areas.

Using the modeling framework outlined herein, we 
quantify the transmissibility advantage of the omicron 
variant as outlined in Table 2 and Figs. 2 and 3. The rela-
tive fitness between the omicron and delta variant is 
expressed by the fraction R̂omicron

R̂delta
 and was found to range 

between 1.51 and 1.86 across regions when assuming that 
80% of the population was immunized against delta, a 
cross delta_omicron cross-immunity of 25% and an omi-
cron generation time parameterized to 3.5 days.

Figure  3 displays the increased transmissibility of the 
omicron variant compared to the delta variant as a distri-
bution across all French regions. Using parameter 
sweeps, notably across different delta-omicron cross-
immunities and preimmunity levels to the delta variant, 
we showed that this result was very robust and is almost 
not influenced by different hypotheses about the values 
of these two features at the beginning of December. These 
results are outlined in Table 2. Across all scenarios, our 
weighted average estimates of the increased transmissi-
bility found for the omicron variant compared to the 
delta variant ranged from R̂omicron

R̂delta
= 1.57 to R̂omicron

R̂delta
= 2.34 

Table 2 Resulting estimates for a range of scenarios varying 
delta-to-variant cross-immunity ( ǫ ), preimmunized populations 
proportion (a) and generation time (GT). The table displays 
R̂omicron/R̂delta values (weighted mean across regions). Further 
minimum and maximum values for variance across regions 
as well as means of the loss function (6), both weighted by 
population size, are outlined at the bottom of each generation-
time associated scenario .

a = 0.2 a = 0.4 a = 0.6 a = 0.8

GT (delta 5, omicron 3) days

 ǫ = 0.25 1.589 1.591 1.595 1.607

 ǫ = 0.5 1.592 1.565 1.594 1.608

ǫ = 0.75 1.590 1.590 1.593 1.603

 ǫ = 1.0 1.588 1.587 1.585 1.580

 Variance σ 2 = [0.006− 0.022]

 Loss L = [1.26− 1.85]

GT (delta 5, omicron 3.5) days

 ǫ = 0.25 1.705 1.707 1.711 1.724

 ǫ = 0.5 1.704 1.706 1.711 1.725

 ǫ = 0.75 1.705 1.705 1.707 1.720

 ǫ = 1.0 1.704 1.704 1.702 1.696

 Variance σ 2 = [0.008− 0.009]

 Loss L = [1.39− 1.42]

GT (delta 5, omicron 4) days

 ǫ = 0.25 1.823 1.824 1.827 1.838

 ǫ = 0.5 1.823 1.823 1.826 1.838

 ǫ = 0.75 1.823 1.823 1.824 1.835

 ǫ = 1.0 1.823 1.822 1.820 1.814

 Variance σ 2 = [0.012− 0.013]

 Loss L = [1.48− 1.54]

GT (delta 5, omicron 6) days

 ǫ = 0.25 2.317 2.321 2.328 2.344

 ǫ = 0.5 2.317 2.319 2.325 2.343

 ǫ = 0.75 2.317 2.324 2.340 2.340

 ǫ = 1.0 2.316 2.315 2.312 2.307

  Variance σ 2 = [0.018− 0.019]

 Loss L = [1.65− 1.73]

4 https:// github. com/ hasch ka/ French- Regio nal- Omicr on- Invas ion

https://github.com/haschka/French-Regional-Omicron-Invasion
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over metropolitan French regions. It is worth mentioning 
that these results were obtained based on the absence of 
the L452R mutation only to identify omicron. Results for 
different variant indicators to describe omicron are high-
lighted in Additional file 1: Table S2 and Figures S3–S6.

Two studies provided early assessment of omicron 
initial spread in France [12, 13]. The study in [13] quan-
tified the doubling time of omicron at the national 
level and for the Île de France and Centre-Val de Loire 
regions—the only two regions reporting substantial 

Fig. 3 Distribution of R̂omicron

R̂delta

 by regions shown by a 40 bins histogram between the values 1 and 3, when varying the cross-immunity ǫ and 

preimmunization level a (preinf ). The generation time was 5 days for the delta variant and 3.5 days for the omicron variant
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spread in the community at the time of the study—
reporting values ranging between 1.8 and 2.5 days. The 
additive advantage in transmission was estimated at 
105% by [12] from nationwide data. Our analysis con-
siders the whole period of omicron replacement in all 
13 regions in metropolitan France. Results confirm the 

rapid spread of omicron and provide estimates com-
patible with [12]. We highlight a variation in omicron 
fitness by region with a 20% deviation between the 
minimum and maximum transmission advantage rela-
tive to the weighted average across regions.

Fig. 4 A Illustration for �t10%−50% [defined in eq. (9)] taking two examples: a less fitter new variant (orange, �t1 ) and stronger new variant (blue, 
�t2 ) curves, respectively. B �t10%−50% for different relative fitness R̂(t = 0)omicron/R̂(t = 0)delta , preimmunization (a) and cross-immunity ( ǫ ) values. 
We see that in the regime of R̂(t = 0)omicron/R̂(t = 0)delta > 1.5 , preimmunization and cross-immunity play a minor role in the steepness of variant 
replacement. On x-axis labels, “new” ans “established” stand for omicron and delta, respectively
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Our analysis is also comparable with previous studies 
made outside of France. Similar estimates of main 
parameters were indeed provided for Great Britain 
[23]. The British study finds an implied transmission 
advantage of omicron in the range of 160–210%. Prior 
studies from South Africa data find values either 
slightly above ours R̂omicron

R̂delta
 [7] ranging from 1.8 to 3.2, 

with a mean variation over the month of November 
2021 to be between 2.3 and 2.6, or in a second study [8] 
below our results with values for R̂omicron

R̂delta
 lying between 

0.75 and 2.0. Interestingly, a study using Danish data [9] 
estimated much higher values R̂omicron

R̂delta
 3.19 with a 95% 

confidence interval ranging from 2.82 to 3.61. Differ-
ences in the estimates may depend on different factors, 
including the surveillance protocols, the precise defini-
tion of the transmission advantage, and the modelling 
approach used for the data analysis.

The preimmunization levels of the population as well as 
different hypotheses about delta-omicron cross-immu-
nity have almost no effect on the relative fitness estimates 
(Table 2 and Additional file 1: Table S2), possibly due also 
to identifiablity issues. Our simulations supported this 
result, showing that variations in ǫ[delta,omicron] and a are 
not expected to yield significant deviations in the dynam-
ics of variant replacement when R̂omicron

R̂delta
 is high enough 

( > 1.5 ) (Fig. 4).
The relative fitness R̂omicron

R̂delta
 is however sensitive to 

hypotheses regarding differences in generation time 
between the delta and omicron variants. We investigated 
four values 3, 3.5, 4 and 6 days, for the generation time 
duration of the omicron variant, while keeping the delta 
variant at a constant generation time of 5 days. Although 
estimates distributions across regions were not changed, 
a shift towards higher values of R̂omicron

R̂delta
 was observed as 

the generation time for the omicron was variant 
increased. Results for comparing different generation 
times are outlined in Table  2 and in Fig.  3 as well as in 
Additional file 1: Figs. S1-S5 in the supporting informa-
tion. This result is coherent with a previously published 
analysis of omicron invasion in Great Britain [23].

During 2021, prior to the omicron wave, several stud-
ies have hypothesized different scenarios for the winter 
period 2021/2022. Sah et al. [27] have built several models 
to predict the situation in the USA. These authors state 
that immune escape has to be coupled with increased 
transmission rates for a variant to be successful. Dyson 
et  al. [28] also explored, through various models, the 
dynamics of several hypothetical variants. The authors of 
[28] show that immune escape can slowly develop future 
waves that might not be easily predictable and can hit the 
population at later stages of the pandemic. Compared to 

our study, [27, 28] make long term predictions while we 
focus on the short period of quick replacement by omi-
cron of the delta variant which lasted, as outlined, only 3 
weeks.

As the analyzed data is not derived from whole genome 
sequencing but rather from the identification of specific 
mutations of the virus genome, the data published by 
Santé Publique France that tracks omicron strains 
allowed for different interpretations of the dataset. Here, 
we adopted the L452R mutation as an indicator for the 
delta variant, in presence of the mutation, and the omi-
cron variant, in its absence. An alternative approach con-
sists in combining the mutation L452R taken as a proxy 
for the delta variant with the set of omicron-specific 
mutations—deletion of site 69/70 and/or substitutions 
K417N and/or S371L-S373P and/or Q493R—as an indi-
cator for omicron. The use of the two different indicators 
yields two distinct time series for each studied regions. 
Using only L452R both as an indicator for delta, in the 
presence of the mutation, as well as for omicron, in the 
absence of the mutation, yields less fluctuations in the 
time series, as outlined by the comparison of Fig. 2 and 
Additional file 1: Fig. S6. Using only this single mutation 
may in principle overestimate the omicron proportion at 
the onset of the omicron invasion, as a small non-delta 
fraction was continuously present in the dataset. How-
ever, the bias is likely to be limited in that full genome 
sequencing data showed that omicron become rapidly 
dominant among other variants without the L452R muta-
tion during the first weeks of December [12, 13]. The 
time series based on multi-mutation definition were also 
analysed and relative fitness values R̂omicron

R̂delta
 were evalu-

ated. A larger omicron fitness was estimated as we ana-
lysed this second time series. This could be explained by 
the progressive mounting of this surveillance protocol 
concomitant with the omicron invasion, which may have 
biased the observation of the omicron dynamics. The dif-
ferent results for the two representations are outlined in 
the Table 2 and Additional file 1: Table S2. However, both 
definitions led to estimates that were consistent with 
those reported by various studies around the globe [7–9, 
23].

No significant correlation between population density 
and effective omicron relative fitness as outlined by Addi-
tional file  1: Fig. S9 in the supporting information was 
observed. Several regional socio-demographic influencing 
factors could lead to changes in the spread of the different 
variants as outlined for instance in [29]. Focusing here on 
the relative fitness between omicron and delta, we did not 
pursue these issues further, as we found that population 
density appears to be decorrelated from the relative fit-
ness between the two variants, and that the relative fitness 
does not seem to vary as strongly as demography.
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Conclusion
We estimated that as omicron replaced delta in France dur-
ing winter 2021/2022, the relative fitness of the omicron 
variant compared to the delta variant, R̂omicron

R̂delta
 , ranges from 

1.57 to 2.34. We propose here a multi-variant framework 
that enables short-term analysis of the epidemiological 
characteristics of an emerging variant using epidemiologi-
cal data. The model presented here could be easily applied 
to other dynamic systems describing the evolution of epi-
demic diseases evolving into different variants.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12879- 022- 07821-5.

Additional file 1. Additional results of sensitivity analysis.

Acknowledgements
Not applicable.

Author contributions
TH, CP, BR, EV and LO conceptualized the model and designed the analysis. TH 
implemented the model and estimation algorithm in CP, BR, EV and LO para-
metrized the model for the simulations. TH extracted the data and performed 
the data analyses. TH, CP, BR, EV and LO wrote the manuscript. All authors read 
and approved the final manuscript.

Funding
This project received funding from the European Union’s Horizon 2020 
research and innovation program under grant agreement No 101016167, 
ORCHESTRA (Connecting European Cohorts to Increase Common and Effec-
tive Response to SARS-CoV-2 Pandemic).

Availability of data and materials
The epidemiological model used to perform the analyses herein is available at 
https:// github. com/ hasch ka/ SIER_ multi varia nt_ epide mic. Raw regional results 
are made available at https:// github. com/ hasch ka/ French- Regio nal- Omicr 
on- Invas ion. Input data concerning regional variant sampling that has been 
processed herein is provided by Santé Publique France and available at: https:// 
www. data. gouv. fr/ fr/ datas ets/ donne es- de- labor atoir es- pour- le- depis tage- 
indic ateurs- sur- les- mutat ions/

Declarations

Ethics approval and consent to participate
All methods were carried out in accordance with relevant guidelines and 
regulations.  Studies involving human participants: No human individual can 
be personally identified in this study, and as such this section is not applicable.  
Administrative permissions required to access the raw data: All data that was 
used during this study is approved and made openly available by the French 
government, the governing bodies are in this case Santé Publique France and 
the French open data initiative https:// www. data. gouv. fr. No further consent 
is needed.  Anonymization of the data: No personal individual can be traced 
from the data published by Santé Publique France and the French open data 
initiative https:// www. data. gouv. fr, and as such this section is not applicable.  
Consent for publication where human participants can be identified: Not 
applicable, see above.

Consent for publication
The authors declare that they all agree with the publication of this paper. 
No further consent is needed as no further identifiable individuals have 
participated in this study, and the data used for this study was made publicly 
available by Santé Publique France and the French open data initiative https:// 
www. data. gouv. fr.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Epidemiology and Modelling of Bacterial Escape to Antimicrobials, Institut 
Pasteur, 25-28, rue du Docteur Roux, 75015 Paris, France. 2 CESP, Anti-infective 
evasion and pharmacoepidemiology research team, U1018, INSERM Uni-
versité Paris-Saclay, UVSQ, 2, Avenue de la Source de la Bièvre, 78180 Mon-
tigny-Le-Bretonneux, France. 3 Université Paris-Saclay, INRAE, MaIAGE, Domaine 
de Vilvert, 78350 Jouy-en-Josas, France. 4 MIVEGEC, Université Montpellier, IRD, 
CNRS, 911, avenue Agropolis, 34394 Montpellier, France. 5 INSERM, Institut 
Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, 
75012 Paris, France. 

Received: 25 June 2022   Accepted: 31 October 2022

References
 1. Ge Y, Zhang W-B, Liu H, Ruktanonchai CW, Hu M, Wu X, Song Y, Ruktanon-

chai NW, Yan W, Cleary E, Feng L, Li Z, Yang W, Liu M, Tatem AJ, Wang J-F, 
Lai S. Impacts of worldwide individual non-pharmaceutical interventions 
on COVID-19 transmission across waves and space. Int J Appl Earth Obs 
Geoinf. 2022;106: 102649. https:// doi. org/ 10. 1016/j. jag. 2021. 102649.

 2. Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, Anyaneji 
UJ, Bester PA, Boni MF, Chand M, Choga WT, Colquhoun R, Davids M, 
Deforche K, Doolabh D, Engelbrecht S, Everatt J, Giandhari J, Giovanetti 
M, Hardie D, Hill V, Hsiao N-Y, Iranzadeh A, Ismail A, Joseph C, Joseph 
R, Koopile L, Pond SLK, Kraemer MU, Kuate-Lere L, Laguda-Akingba O, 
Lesetedi-Mafoko O, Lessells RJ, Lockman S, Lucaci AG, Maharaj A, Mahl-
angu B, Maponga T, Mahlakwane K, Makatini Z, Marais G, Maruapula D, 
Masupu K, Matshaba M, Mayaphi S, Mbhele N, Mbulawa MB, Mendes A, 
Mlisana K, Mnguni A, Mohale T, Moir M, Moruisi K, Mosepele M, Motsatsi 
G, Motswaledi MS, Mphoyakgosi T, Msomi N, Mwangi PN, Naidoo Y, Ntuli 
N, Nyaga M, Olubayo L, Pillay S, Radibe B, Ramphal Y, Ramphal U, San 
JE, Scott L, Shapiro R, Singh L, Smith-Lawrence P, Stevens W, Strydom A, 
Subramoney K, Tebeila N, Tshiabuila D, Tsui J, van Wyk S, Weaver S, Wib-
mer CK, Wilkinson E, Wolter N, Zarebski AE, Zuze B, Goedhals D, Preiser 
W, Treurnicht F, Venter M, Williamson C, Pybus OG, Bhiman J, Glass A, 
Martin DP, Rambaut A, Gaseitsiwe S, von Gottberg A, de Oliveira T. Rapid 
epidemic expansion of the sars-cov-2 omicron variant in Southern Africa. 
medRxiv. 2021. https:// doi. org/ 10. 1101/ 2021. 12. 19. 21268 028.

 3. Thakur V, Ratho RK. Omicron (b.1.1.529): a new sars-cov-2 variant of con-
cern mounting worldwide fear. J Med Virol. 2021. https:// doi. org/ 10. 1002/ 
jmv. 27541.

 4. Organization WH, et al. COVID-19 weekly epidemiological update, edition 
70, 2021;2021.

 5. Mannar D, Saville JW, Zhu X, Srivastava SS, Berezuk AM, Tuttle KS, Marquez 
C, Sekirov I, Subramaniam S. Sars-cov-2 omicron variant: Ace2 binding, 
cryo-em structure of spike protein-ace2 complex and antibody evasion. 
bioRxiv. 2021. https:// doi. org/ 10. 1101/ 2021. 12. 19. 473380.

 6. Hu J, Peng P, Cao X, Wu K, Chen J, Wang K, Tang N, Huang A-l. Increased 
immune escape of the new sars-cov-2 variant of concern omi-
cron. Cell Mol Immunol. 2022;19(2):293–5. https:// doi. org/ 10. 1038/ 
s41423- 021- 00836-z.

 7. Abbott S, Sherratt K, Gerstung M, Funk S. Estimation of the test to test distri-
bution as a proxy for generation interval distribution for the omicron variant 
in England. medRxiv. 2022. https:// doi. org/ 10. 1101/ 2022. 01. 08. 22268 920.

 8. Nishiura H, Ito K, Anzai A, Kobayashi T, Piantham C, Rodríguez-Morales 
AJ. Relative reproduction number of sars-cov-2 omicron (b.1.1.529) com-
pared with delta variant in South Africa. J Clin Med. 2022. https:// doi. org/ 
10. 3390/ jcm11 010030.

 9. Ito K, Piantham C, Nishiura H. Relative instantaneous reproduction 
number of omicron sars-cov-2 variant with respect to the delta variant 
in Denmark. J Med Virol. 2022;94(5):2265–8. https:// doi. org/ 10. 1002/ jmv. 
27560.

 10. Lundberg AL, Lorenzo-Redondo R, Ozer EA, Hawkins CA, Hultquist JF, 
Welch SB, Prasad PV, Oehmke JF, Achenbach CJ, Murphy RL, White JI, 
Havey RJ, Post LA. Has omicron changed the evolution of the pandemic? 

https://doi.org/10.1186/s12879-022-07821-5
https://doi.org/10.1186/s12879-022-07821-5
https://github.com/haschka/SIER_multivariant_epidemic
https://github.com/haschka/French-Regional-Omicron-Invasion
https://github.com/haschka/French-Regional-Omicron-Invasion
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-pour-le-depistage-indicateurs-sur-les-mutations/
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-pour-le-depistage-indicateurs-sur-les-mutations/
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-pour-le-depistage-indicateurs-sur-les-mutations/
https://www.data.gouv.fr
https://www.data.gouv.fr
https://www.data.gouv.fr
https://www.data.gouv.fr
https://doi.org/10.1016/j.jag.2021.102649
https://doi.org/10.1101/2021.12.19.21268028
https://doi.org/10.1002/jmv.27541
https://doi.org/10.1002/jmv.27541
https://doi.org/10.1101/2021.12.19.473380
https://doi.org/10.1038/s41423-021-00836-z
https://doi.org/10.1038/s41423-021-00836-z
https://doi.org/10.1101/2022.01.08.22268920
https://doi.org/10.3390/jcm11010030
https://doi.org/10.3390/jcm11010030
https://doi.org/10.1002/jmv.27560
https://doi.org/10.1002/jmv.27560


Page 13 of 13Haschka et al. BMC Infectious Diseases          (2022) 22:815  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

JMIR Public Health Surveill. 2022;8(1):35763. https:// doi. org/ 10. 2196/ 
35763.

 11. France SP. COVID-19: Point épidémiologique hebdomadaire du 2021. 
Santé Publique France 2021.

 12. Sofonea MT, Roquebert B, Foulongne V, Verdurme L, Trombert-Paolantoni 
S, Roussel M, Haim-Boukobza S, Alizon S. From delta to omicron: analys-
ing the sars-cov-2 epidemic in France using variant-specific screening 
tests (September 1 to December 18, 2021). medRxiv. 2022. https:// doi. 
org/ 10. 1101/ 2021. 12. 31. 21268 583.

 13. Mazzoli M, Di Domenico L, EMERGEN-Consortium, Colizza V. Early assess-
ment of the omicron variant’s presence and growth rate in regions of 
France. Epix-lab reports 2021;(35).

 14. Andronico, Alessio and Tran Kiem, Cécile and Bosetti, Paolo and Paireau, 
Juliette: Impact du variant omicron sur l’épidémie covid-19 et son con-
trôle en france métropolitaine durant l’hiver 2021–2022. 2021.

 15. France SP. COVID-19: Point épidémiologique hebdomadaire du 2022. 
Santé Publique France 2022.

 16. Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng G, 
Haag E, Zeller M, Aceves CM, Zaiets K, Cano M, Zhou J, Qian Z, Sattler R, 
Matteson NL, Levy JI, Lee RT, Freitas L, Maurer-Stroh S, Suchard MA, Wu C, 
Su AI, Andersen KG, Hughes LD. Outbreak.info genomic reports: scalable 
and dynamic surveillance of sars-cov-2 variants and mutations. medRxiv. 
2022. https:// doi. org/ 10. 1101/ 2022. 01. 27. 22269 965.

 17. Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng 
G, Haag E, Zeller M, Aceves CM, Zaiets K, Cano M, Zhou J, Qian Z, Sattler 
R, Matteson NL, Levy JI, Lee RT, Freitas L, Maurer-Stroh S, Suchard MA, 
Wu C, Su AI, Andersen KG, Hughes LD. French Variant Report: outbreak.
info accessed 19 September 2022. https://outbreak.info/location-
reports?loc=FRA. 2022.

 18. Khare, S., Gurry, C., Freitas, L., Schultz, M.B., Bach, G., Diallo, A., Akite, N., Ho, 
J., Lee, R.T., Yeo, W., Curation Team, G.C., Maurer-Stroh, S. GISAID’s role in 
pandemic response. China CDC Wkly. 2021;3(49):1049–51.

 19. Sofonea MT, Roquebert B, Foulongne V, Morquin D, Verdurme L, Tromb-
ert-Paolantoni S, Roussel M, Bonetti J-C, Zerah J, Haim-Boukobza S, Alizon 
S. Analyzing and modeling the spread of SARS-CoV-2 omicron lineages 
BA1 and BA2, France, September 2021-February 2022. Emerg Infect Dis. 
2022;28(7):1355–65.

 20. Mazzoli M, Di Domenico L, EMERGEN-Consortium, Colizza V. Assessment 
of the omicron ba.2 sub-lineage presence and growth rate in regions of 
France. Epix-lab reports. 2022;36.

 21. Gog JR, Grenfell BT. Dynamics and selection of many-strain pathogens. 
Proc Natl Acad Sci. 2002;99(26):17209–14. https:// doi. org/ 10. 1073/ pnas. 
25251 2799.

 22. France SP. Communiqué de presse: Variant omicron: quelle surveillance 
mise en place? 2021.

 23. Abbott S, Sherratt K, Gerstung M, Funk S. Estimation of the test to test 
distribution as a proxy for generation interval distribution for the omicron 
variant in England. medRxiv. 2022. https:// doi. org/ 10. 1101/ 2022. 01. 08. 
22268 920.

 24. Jones TC, Biele G, Mühlemann B, Veith T, Schneider J, Beheim-Schwar-
zbach J, Bleicker T, Tesch J, Schmidt ML, Sander LE, Kurth F, Menzel P, 
Schwarzer R, Zuchowski M, Hofmann J, Krumbholz A, Stein A, Edelmann 
A, Corman VM, Drosten C. Estimating infectiousness throughout sars-
cov-2 infection course. Science. 2021;373(6551):5273. https:// doi. org/ 10. 
1126/ scien ce. abi52 73.

 25. Pagel C, Yates CA. Tackling the pandemic with (biased) data. Science. 
2021;374(6566):403–4. https:// doi. org/ 10. 1126/ scien ce. abi66 02.

 26. Fehlberg E. Klassische runge-kutta-formeln vierter und niedrigerer 
ordnung mit schrittweiten-kontrolle und ihre anwendung auf wärmel-
eitungsprobleme. Computing. 1970;6(1):61–71. https:// doi. org/ 10. 1007/ 
BF022 41732.

 27. Sah P, Vilches TN, Shoukat A, Fitzpatrick MC, Pandey A, Singer BH, Mogha-
das SM, Galvani AP. Quantifying the potential dominance of immune-
evading sars-cov-2 variants in the united states. medRxiv. 2021. https:// 
doi. org/ 10. 1101/ 2021. 05. 10. 21256 996.

 28. Dyson L, Hill EM, Moore S, Curran-Sebastian J, Tildesley MJ, Lythgoe KA, 
House T, Pellis L, Keeling MJ. Possible future waves of sars-cov-2 infection 
generated by variants of concern with a range of characteristics. Nat 
Commun. 2021;12(1):5730. https:// doi. org/ 10. 1038/ s41467- 021- 25915-7.

 29. Mogi R, Spijker J. The influence of social and economic ties to the spread 
of COVID-19 in Europe. J Popul Res. 2021. https:// doi. org/ 10. 1007/ 
s12546- 021- 09257-1.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.2196/35763
https://doi.org/10.2196/35763
https://doi.org/10.1101/2021.12.31.21268583
https://doi.org/10.1101/2021.12.31.21268583
https://doi.org/10.1101/2022.01.27.22269965
https://doi.org/10.1073/pnas.252512799
https://doi.org/10.1073/pnas.252512799
https://doi.org/10.1101/2022.01.08.22268920
https://doi.org/10.1101/2022.01.08.22268920
https://doi.org/10.1126/science.abi5273
https://doi.org/10.1126/science.abi5273
https://doi.org/10.1126/science.abi6602
https://doi.org/10.1007/BF02241732
https://doi.org/10.1007/BF02241732
https://doi.org/10.1101/2021.05.10.21256996
https://doi.org/10.1101/2021.05.10.21256996
https://doi.org/10.1038/s41467-021-25915-7
https://doi.org/10.1007/s12546-021-09257-1
https://doi.org/10.1007/s12546-021-09257-1

	Retrospective analysis of SARS-CoV-2 omicron invasion over delta in French regions in 2021–22: a status-based multi-variant model
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data acquisition and preprocessing
	Multi-variant transmission model
	Fitting the model to the data and initial conditions
	Sensitivity analysis

	Results
	Regional fits and relative fitness of omicron against delta in metropolitan France
	Sensitivity to uncertain model parameters

	Discussion
	Conclusion
	Acknowledgements
	References


