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Abstract13

Porous materials are widely used in the electronics industry and biomedical fields, where sintered silver,14

as an emerging representative of porous media, is a promising chip-connection material for adoption in15

third-generation power electronics. One of the important parameters to characterize the heat conduction16

capacity of porous sintered silver is the thermal conductivity. In this paper, a numerical model for calcu-17

lating the equivalent thermal conductivity of porous silver is proposed, based on a voxelized mesh, using18

finite difference method (FDM) instead of the commonly used finite element method (FEM). Comparisons19

between the two methods are carried out for the classical unit cells such as simple cubic, body-centered20

cubic, and face-centered cubic, as well as the silver-based stochastic model. The developed finite difference21

algorithm is valid, and consistent results are obtained.22

23
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1 Introduction27

With the widespread use of porous media in the electronics industry and biomedical fields, determining the28

equivalent thermal conductivity (ETC) of porous media is critical for the proper design of industrial equipment29

which can be subjected to severe thermal loading during service. In general, there are two ways for estimating30

the ETC of a material: analytical methods and numerical methods. Analytical methods consist of the formulas31

proposed by Voigt [1] and Reuss [2]. They determine the upper and lower bounds of a material’s ETC. Hashin32

and Shtrikman [3] used the variational theorem to derive bounds on the ETC of macroscopically homogeneous33

and isotropic two-phase materials. Other scholars have investigated and predicted the thermal conductivity of34

porous media using various models or direct estimating techniques, including Maxwell model [4] and Maxwell-35

Eucken model [5], etc. For other related models, a review is presented by Pietrak et al. [6].36

Due to the limits of analytical methods for materials with complex microstructure and morphology, such37

as nanostructured materials or some advanced composites, useful estimations of effective properties are not38

achievable. As a result, numerical approaches are very helpful for acquiring appropriate thermal properties.39

The finite element (FE) approach is a frequently used numerical method for analyzing porous materials on40

different scales in order to obtain useful equivalent properties. For example, El Moumen et al. [7] calculated41

∗Correspondence: muhe@hust.edu.cn , mu.he@foxmail.com †These authors contributed equally to this work.
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the ETC of porous materials at the microscopic scale using numerical homogenization techniques and mor-42

phological analysis. Florez et al. [8] investigated sintered porous media’s ETC. They demonstrated that the43

geometry of the solid matrix in a porous medium has a relevant effect. Signor et al. [9] studied the thermal44

conductivity with the change of porosity for sintered silver by using finite element analysis in a realistic 3D45

microstructure. Qing et al. [10, 11] proposed a quantitative technique for evaluating the influence of crack46

evolution on the ETC of porous sintered silver, and also proposed a numerical approach based on specific47

microstructural features to calculate the ETC by taking into account the aging response.48

Compared to the high usage of the finite element method (FEM), few people use finite difference method49

(FDM) in combination with the numerical homogenization (NH) method to calculate the ETC. Abudull and50

E [12] can be considered as pioneers in this field by developing the finite difference heterogeneous multiscale51

method (FD-HMM) for solving multiscale parabolic problems. The method is based on the heterogeneous52

multiscale method (HMM) and heterogeneous discretization, specifically focused on fine scales representing the53

size of tiny regions in the spatial domain. FD-HMM consists of two parts: a macroscopic solution generated on54

a coarse grid using the known data extracted from the microscopic model solution, and a microscopic solution55

that is solved from the original equations over a sparse (heterogeneous) spatial domain. Chen et al. [13, 14]56

used FD-HMM to handle the issues associated with unsaturated water flow in random porous material and57

later improved the FD-HMM scheme to simulate not only steady saturated flow problems in geostatistical58

stochastic porous media, but also transient saturated flow problems.59

Support operator method (SOM), regarded as one of the most powerful tools in solving anisotropic diffusion60

problems within the framework of finite difference methods, is also known as the mimetic finite difference61

method (MFDM). It was developed by Shashkov and Steinberg [15, 16], and they constructed discrete analogs62

of invariant differential operators like the divergence and gradient. With this method, operators must satisfy63

discrete analogs of the integral identities that associate the differential operators with their adjoints. Hyman64

et al.[17] incorporated the boundary conditions (Dirichlet, Neumann, and Robin conditions) into the MFDM65

on non-smooth logical rectangular grids. Morel et al. [18, 19, 20] used the MFDM to derive a cell-centered66

diffusion differencing scheme that gives a sparse matrix representation. In contrast, the traditional method of67

support operators gives a dense matrix representation. Günter et al. [21] offered two discretization techniques68

(asymmetric and symmetric schemes) on rectangular grids that employ the FDM and SOM conditions. They69

take a cautious approach by discretizing fluxes on the dual mesh. Thanks to Günter’s model, several researchers70

[22, 23, 24, 25, 26] have studied the thermal diffusion problem in magnetized plasma.71

As low-temperature sintering of silver nanoparticles is becoming a reliable technology for solder die attach-72

ment of electronic and optical components [27], it becomes necessary to develop numerical approaches with73

the ability to predict correctly the thermal performance of such materials. Fig.1 illustrates an example of74

sintered microstructure exhibiting a porous silver network and serving as a joint for heat dissipation between75

the active component and its substrate. The present paper extrapolates the Günter’s two-dimensional model76

to a three-dimensional model and achieves numerical homogenization for the equivalent thermal conductivity77

of low-temperature sintered silver particles by using C++ routines. The paper is organized as follows. Section78

2 presents the construction of the theoretical model. Section 3 is dedicated to the numerical FDM-based79

discretization of the 3D theoretical formulation. Section 4 illustrates the numerical solutions for some cases,80

then conducts some analyses and compares the results with the finite element solutions solved by Comsol.81

Section 5 studies three kinds of silver-based stochastic porous structures by numerical calculations. Finally,82

conclusions are drawn in Section 6. The developed FD algorithm in the paper can treat a series of geometrical83

configurations and has the advantages of (i) eliminating the computational time in the mesh generation, (ii)84

parallelizing the calculations easily and naturally. The FD algorithm also has a good anti-sawtooth ability85

and can get rid of the constraint of the interface between different material phases.86
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Figure 1: Microscopy of a sintered silver joint after delamination: (a)-(b) global view of the sintered Ag
layer and magnified view of the porous silver microstructure, (c)-(d) cross-section of the material and image
processing for evaluation of Ag volume fraction

2 Construction of the theoretical model87

2.1 Geometrical model88

Based on the described background, we consider for the sake of simplicity three typical types of lattice struc-89

tures: simple cubic crystal form (SC), body-centered cubic crystal form (BCC), and face-centered cubic crystal90

form (FCC), and their conjugated structures. The theoretical geometric models are shown in Fig. 2, where the91

spherical particles in Fig. 2a-c can represent either atomic/molecular clusters at mesoscopic scale, or stacked92

granules at the macroscopic scale. The spheres keep in touch or overlap with each other (marked in color) to93

meet practical situations: for example, in a mechanical system with large number of loose particles, they are94

deformed due to squeezing actions and therefore form contact surfaces; in a heat transfer system, the clusters95

of sintered silver will fuse together and penetrate into each other with the increase of sintering time, and the96

porosity of the overall structure reduces as the overlap area increases. Consequently, the use of these simple97

basic models can provide references for complex structures. In our case, these ideal arrangements of particles98

offer good approximations for real powder compacts prepared by sintering and serve to illustrate different99

packing factors of the particles with more or less porous silver particle networks [27].100

It is noted that the ideal geometrical models that we considered possess the property of spatial periodicity.101

The representative cell can be obtained by cutting out along the orthogonal edges illustrated in Fig.2d-f. In102

the subsequent study, the side length of the cell is taken to be the unit length LSC = LBCC = LFCC = 1.103

They are composed of two phases: a solid part consisting of silver contacting balls and a remaining void part104

filled with air. To calculate the equivalent thermal conductivity under normal conditions, it is necessary to105

ensure that the solid phases are connected as a single entity. However, considering only the solid phases will106

lead to the porosity of the studied structures varying only within a small range. Hence, in order to verify the107

robustness of our developed algorithm, their conjugated structure are also considered (see Fig. 2g-i), i.e., the108

gas phase and solid phase are swapped to obtain a broader range of porosity.109
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Figure 2: Illustration of geometrical models considered: (a)-(c) structures of simple cubic (SC), body-centered
cubic (BCC) and face-centered cubic (FCC), the colored parts indicate the overlaps; (d)-(f) the corresponding
periodical unit cells; (g)-(i) the corresponding conjugated structure models.

2.2 Physical model110

We investigate the equivalent thermal conductivity of the proposed structures and let Ω = [0, 1]3 be the domain111

of interest. The Ω should satisfy the general anisotropic thermal diffusion phenomenon, which is described by112

the following equations:113

−→q = −D · ∇T, ∂T

∂t
= −∇ · −→q + f (1)

where T represents the temperature field, D the thermal conductivity tensor of 2nd order, −→q the heat flux, ∇114

the spatial derivative operator and f is the source term. For an isotropic case, the conductivity tensor D is115

independent of directions and can be reduced to a scalar k.116

In this research, we focus mainly on steady-state conditions, and no source term is taken into account such117

that:118

∇ · −→q = 0 (2)
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The thermal problem should be completed by adding boundary conditions (BCs) to make the equations119

solvable. Under typical situations, the BCs prescribe the boundary’s temperature and/or flux, such that:120

T = T0 on ∂Ω(T )

−→q · −→n = q0 on ∂Ω(q)

(3)

where ∂Ω denotes the boundary of Ω, −→n the normal unit vector to the boundary, T0 and q0 are the temperature121

and heat flux on ∂Ω(T ) and ∂Ω(q), respectively.122

Following this physical model, a computational scheme based on the mimetic finite difference method123

(FDM) is developed in the next section and then compared with the traditional finite element method (FEM).124

3 Numerical discretization for 3D formulation125

3.1 Development of finite difference scheme based on the voxel grid126

The finite difference scheme we used is based on the theory proposed by Günter et al. [21]. We extend it from127

2D to 3D case and apply it to problems of thermal homogenization. The theory’s main idea indicates that a128

symmetric system is constructed in this scheme, where the duality and self-adjointness of differential operators129

are maintained for the mimetic finite difference method. We will gradually display this framework and derive130

each term in the thermal diffusion formula.131

Figure 3: Illustration of the 3D finite difference scheme based on voxel grid

First, a cartesian coordinate system {−→ex,−→ey ,−→ez} is defined in Fig.3. The subscripts {i, j, k} denote the132

spatial discretized grid points along the directions {x, y, z}, respectively. The gradient of the temperature ∇T133

at the center point (x, y, z) = (i+ 1/2, j − 1/2, k + 1/2) can be expressed by interpolation as:134

∂T

∂x

∣∣∣
i+ 1

2 ,j−
1
2 ,k+ 1

2

=
1

4∆x
· (Ti+1,j−1,k+1 + Ti+1,j−1,k + Ti+1,j,k+1 + Ti+1,j,k

− Ti,j−1,k+1 − Ti,j−1,k − Ti,j,k+1 − Ti,j,k)

∂T

∂y

∣∣∣
i+ 1

2 ,j−
1
2 ,k+ 1

2

=
1

4∆y
· (Ti+1,j,k+1 + Ti+1,j,k + Ti,j,k+1 + Ti,j,k

− Ti+1,j−1,k+1 − Ti+1,j−1,k − Ti,j−1,k+1 − Ti,j−1,k)

∂T

∂z

∣∣∣
i+ 1

2 ,j−
1
2 ,k+ 1

2

=
1

4∆z
· (Ti+1,j,k+1 + Ti+1,j−1,k+1 + Ti,j,k+1 + Ti,j−1,k+1

− Ti+1,j,k − Ti+1,j−1,k − Ti,j,k − Ti,j−1,k)

(4)
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By inserting these terms into the first formula of Eq.1 and applying the diffusion tensor D, we obtain the135

heat flux −→q at the center point:136

−→q i+ 1
2 ,j−

1
2 ,k+ 1

2
= −Di+ 1

2 ,j−
1
2 ,k+ 1

2
·
(
∂T

∂x

∣∣∣
i+ 1

2 ,j−
1
2 ,k+ 1

2

,
∂T

∂y

∣∣∣
i+ 1

2 ,j−
1
2 ,k+ 1

2

,
∂T

∂z

∣∣∣
i+ 1

2 ,j−
1
2 ,k+ 1

2

)T

(5)

To take the divergence over the heat flux, we have the 3D formulation of the thermal conduction problem:137

∇ · −→q =
1

4∆x
· (qx,i+ 1

2 ,j+ 1
2 ,k+ 1

2
+ qx,i+ 1

2 ,j+ 1
2 ,k−

1
2

+ qx,i+ 1
2 ,j−

1
2 ,k+ 1

2
+ qx,i+ 1

2 ,j−
1
2 ,k−

1
2

− qx,i− 1
2 ,j+ 1

2 ,k+ 1
2
− qx,i− 1

2 ,j−
1
2 ,k+ 1

2
− qx,i− 1

2 ,j+ 1
2 ,k−

1
2
− qx,i− 1

2 ,j−
1
2 ,k−

1
2
)+

1

4∆y
· (qy,i+ 1

2 ,j+ 1
2 ,k+ 1

2
+ qy,i− 1

2 ,j+ 1
2 ,k+ 1

2
+ qy,i+ 1

2 ,j+ 1
2 ,k−

1
2

+ qy,i− 1
2 ,j+ 1

2 ,k−
1
2

− qy,i+ 1
2 ,j−

1
2 ,k+ 1

2
− qy,i− 1

2 ,j−
1
2 ,k+ 1

2
− qy,i+ 1

2 ,j−
1
2 ,k−

1
2
− qy,i− 1

2 ,j−
1
2 ,k−

1
2
)+

1

4∆z
· (qz,i+ 1

2 ,j+ 1
2 ,k+ 1

2
+ qz,i− 1

2 ,j+ 1
2 ,k+ 1

2
+ qz,i+ 1

2 ,j−
1
2 ,k+ 1

2
+ qz,i− 1

2 ,j−
1
2 ,k+ 1

2

− qz,i+ 1
2 ,j+ 1

2 ,k−
1
2
− qz,i+ 1

2 ,j−
1
2 ,k−

1
2
− qz,i− 1

2 ,j+ 1
2 ,k−

1
2
− qz,i− 1

2 ,j−
1
2 ,k−

1
2
),

(6)

where the quantities qx, qy and qz are designated for the 3 components of the heat flux −→q along the 3 orthogonal138

directions {−→ex,−→ey ,−→ez}.139

3.2 Numerical Homogenization140

As shown previously, the representative volume element (RVE) Ω is composed of two phases: the silver domain141

Ωs and the air domain Ωa. Therefore, the thermal conductivity tensor D depends on the position x inside the142

RVE Ω, accordingly:143

Ω = Ωs ∪ Ωa

D(x) =

{
Ds x ∈ Ωs

Da x ∈ Ωa

(7)

where Ds is the conductivity tensor for silver and Da for air. The Fourier’s law can be rewritten as144

−→q (x) = −D(x) · ∇T (x) (8)

The spatial averages of the local heat flux and temperature gradient are defined by:145

146

< −→q >=
1

|Ω|

∫
Ω

−→q (x)dV < ∇T >=
1

|Ω|

∫
Ω

∇T (x)dV (9)

where |Ω| is the total volume of the RVE, −→q (x) and T (x) can be determined by applying a given temperature147

boundary condition; < −→q > and < ∇T > can be calculated by integrating the corresponding local fields148

over the domain Ω, then dividing it by the total volume. In the case of a two-phase problem, the integration149

operation is reduced to the multiplication of each −→q (x) and < ∇T (x) > by the volume fraction of the point150

at which they are located.151

Consequently, the macroscopic equivalent thermal conductivity D∗ is defined such that:152

< −→q >= −D∗· < ∇T > . (10)

To numerically obtain each component of the tensor D∗ in Eq.10, the RVE needs to be simulated three times153

by applying boundary conditions in three orthogonal directions, respectively.154

3.2.1 Periodic geometry structures155

The current study makes use of periodic boundary conditions for determining the equivalent thermal conduc-156

tivity of the porous structures since the considered geometrical models are constructed on the basis of periodic157

RVEs. As described previously, periodic geometrical particle arrangements such as SC, BCC, and FCC lattices158

as well as their conjugated forms are selected to be investigated.159
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3.2.2 Periodic boundary condition and numerical algorithm160

In order to study the thermal behavior of inhomogeneous materials in great detail, we need to specify the161

appropriate boundary conditions for the domain of interest Ω. Standard boundary conditions can be kine-162

matically uniform (KUBC), statically uniform (SUBC), and periodic (PBC). Uniform displacement–traction163

(orthogonal mixed) boundary conditions (MUBC) are less known, which were introduced by Hazanov and164

Amieur (1995), Hazanov (1998) [28, 29]. Nemat-Nasser and Hori (1993) [30] indicated that results obtained165

from SUBC under-estimate the macroscopic stiffness, while KUBC over-estimates the results. Suquet (1987)166

[31] stated that PBC-based predictions lie between these two bounds, and Ostoja-Starzewski (2006) [32] showed167

that the MUBC predictions are also between the results from SUBC and KUBC. Due to the periodicity of168

our considered structures, periodic boundary conditions are recommended in this study for estimating the169

equivalent thermal conductivity of the considered unit cells with different porosities.170

The definition of the periodic boundary conditions for elasticity problems can be expressed as the following171

equation:172

u+(x)− u−(x) = ε0∆x, ∀x ∈ ∂Ω (11)

where u+ and u− denote the displacement field on a pair of parallel boundary surface, ∆x denotes the constant173

distance between parallel planes and ε0 is a given macroscopic strain.174

Figure 4: RVE with periodic boundary conditions

The PBC for temperature field T is similarly created. By substituting the u to the temperature T , and175

the term ε0∆x to the temperature variation ∆T in Eq.11, we obtain:176

T+(x)− T−(x) = ∆T, ∀x ∈ ∂Ω (12)

More specially, the equations applied in a lattice (see Fig.4) to predict the equivalent thermal conductivity are177

shown below:178

· Face-BCC′B′ and Face-ADD′A′:179

TFace−BCC′B′ − TFace−ADD′A′ = ∆Tx (13)

· Face-ADCB and Face-A′D′C′B′:180

TFace−ADCB − TFace−A′D′C′B′ = ∆Ty (14)

· Face-ABB′A′ and Face-DCC′D′:181

TFace−ABB′A′ − TFace−DCC′D′ = ∆Tz (15)

· Edge-AA′, Edge-BB′, Edge-CC′ and Edge-DD′:

TEdge−AA′ − TEdge−DD′ = ∆Tz

TEdge−CC′ − TEdge−DD′ = ∆Tx (16)

TEdge−BB′ − TEdge−CC′ = ∆Tz
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· Edge-AB, Edge-DC, Edge-D′C′ and Edge-A′B′:

TEdge−AB − TEdge−A′B′ = ∆Ty

TEdge−AB − TEdge−DC = ∆Tz (17)

TEdge−DC − TEdge−D′C′ = ∆Ty

· Edge-BC, Edge-B′C′, Edge-A′D′ and Edge-AD:

TEdge−BC − TEdge−AD = ∆Tx

TEdge−BC − TEdge−B′C′ = ∆Ty (18)

TEdge−B′C′ − TEdge−A′D′ = ∆Tx

· Vertice-A, Vertice-B, Vertice-C and Vertice-D:

TV ertice−A − TV ertice−D = ∆Tz

TV ertice−C − TV ertice−D = ∆Tx (19)

TV ertice−B − TV ertice−C = ∆Tz

· Vertice-A′, Vertice-B′, Vertice-C′ and Vertice-D′:

TV ertice−A′ − TV ertice−D′ = ∆Tz

TV ertice−C′ − TV ertice−D′ = ∆Tx (20)

TV ertice−B′ − TV ertice−C′ = ∆Tz

· Vertice-B and Vertice-B′:182

TV ertice−B − TV ertice−B′ = ∆Ty (21)

where ∆Tx, ∆Ty and ∆Tz are the difference of temperature between Face-BCC′B′ and Face-ADD′A′, be-183

tween Face-ADCB and Face-A′D′C′B′ and between Face-ABB′A′ and Face-DCC′D′, respectively. In order to184

calculate the components (Dij) of the composite’s equivalent thermal conductivity tensor, the RVE must be185

numerically simulated three times using suitable magnitudes ∆Tx, ∆Ty and ∆Tz .186

In anisotropic case, the thermal conductivity tensor D∗ has 9 components. To calculate the components187

D∗11, D∗21, D∗31, the following values could be applied:188

∆Tx 6= 0, ∆Ty = 0, and ∆Tz = 0 (22)

To calculate the components D∗12, D∗22, D∗23:189

∆Tx = 0, ∆Ty 6= 0, and ∆Tz = 0 (23)

To calculate the components D∗13, D∗23, D∗33:190

∆Tx = 0, ∆Ty = 0, and ∆Tz 6= 0 (24)

In isotropic case, the tensor D∗ is diagonal and can be reduced as D∗ = k∗I, where the k∗ is the scalar ther-191

mal conductivity. Our research is concentrated on isotropic situations as the studied geometric configurations192

are macroscopically isotropic.193

4 Results and comparisons194

In this section, we will display the results obtained by our home-made finite difference (FD) codes. For the195

sake of code verification, the finite element (FE) simulation results based on the Comsol Multiphysics program196

are used as benchmarks. First, we take the BCC structure as an example to analyze the mesh convergence.197

Then, the simulated local fields (such as the temperature field and the heat flux field) by FD are compared198

with that by FE. Finally, the equivalent thermal conductivity is calculated as a function of porosity and also199

compared with the theoretical formula.200
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4.1 Convergence analysis and computational time201

The convergence analysis is applied to a case of the unit BCC structure, where the sphere radii are all equal to202

0.46, thus resulting in a volume fraction of 79.89%. The boundary conditions we used are described in Eq.22203

such that ∆Tx = 1, ∆Ty = 0, and ∆Tz = 0. We fix the temperature of one vertex on the left side to 19◦C so204

that the right side is 20◦C (room temperature). The thermal conductivity of silver is 429 W· m−1·K−1 and205

that of air is 0.0257 W· m−1·K−1. To study the convergence of thermal conductivity, different refinements206

of mesh-grid are used, i.e. from 10 thousand to 2 million elements. The results are shown in Table 1 and in207

Fig.5a.208

Table 1: Convergence results of different mesh levels by FED and FEM.
Number of voxel cells by FDM 15625 91125 274625 614125 1953125

Equivalent thermal conductivity 233.09 232.04 229.26 226.23 224.79

Number of finite elements 17677 36961 132968 446553 2348718
Equivalent thermal conductivity 227.54 226.10 224.38 223.86 223.35

0 .0 0 .5 1 .0 1 .5 2 .0
Number of elements ×10

224

226
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232
Simulation results by FDM
Simulation results by FEM

E
qu

iv
al

en
t t

he
rm

al
 c

on
du

ct
iv

ity
 (

W
·m

  ·
K

  )

6

-1
-1

(a) (b)

Figure 5: Illustration of (a) convergence and (b) computational time

According to Fig.5a, we find that firstly, the equivalent thermal conductivity exhibits some fluctuations but209

they are reasonable. These small fluctuations can be explained by the nature of voxel meshing which results in210

slight variations of the volume fraction of silver when the mesh density is increased. Secondly, the convergence211

rate of the finite difference method is very close to that of FEM, which shows the stability and robustness212

of the FD algorithm. Finally, when we compare the equivalent thermal conductivity obtained for a number213

of elements greater than 500 thousand elements, the results remain nearly unchanged (226 W· m−1·K−1 by214

FDM, 224 W· m−1·K−1 by FEM) and the error between the two methods is less than 1%.215

Furthermore, we have compared the computational time from different algorithms with different platforms216

when solving the system of linear equations (see Fig.5b). Our developed FD codes (by C++ routine) is based217

on the library “EIGEN”. Direct and iterative solvers are tested for comparison. Algorithms by Comsol and218

Matlab are also illustrated as benchmarks. Three iterative solvers (PCG, MINRES, BICGSTAB) are used in219

Matlab. Default direct solvers are used when not indicated in the legend. It can be seen from the figure that:220

(i) the computational time depends considerably on the algorithms and solvers; (ii) the iterative methods are221

generally faster than the direct methods; (iii) the developed FD codes with iterative algorithm (the solid line222

with blue squared marker) manifest a pertinent and preferable computational time when compared with other223

curves.224

Thereafter, we will use the FD system that we developed to calculate and compare the temperature field225

and the heat flow field for different geometrical models at different porosities.226
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4.2 Simulation results of local fields227

To proceed with the comparison of local fields, several geometrical models are selected as examples in this228

section. The first one is the SC model with the volume fraction of silver equal to 67.18%, which is shown in229

Fig.6 (corresponding to a sphere radius equal to 0.55). The overall temperature field (see Fig.6a for FDM,230

Fig.6b for FEM) and heat flux field (see Fig.6c for FDM, Fig.6d for FEM) as well as their middle cross231

sections (see Fig.6e-h) are displayed. The unit structure is divided into 45× 45× 45 = 91125 cubic voxel cells232

by FDM, while it is divided into 31460 tetrahedral finite elements by FEM. We can see from the figure that the233

distributions of the temperature and the heat flux fields by the two methods are comparable and consistent,234

which demonstrates again the validity of the FD system we developed in this study.235

The results for the SC conjugated model are shown in Fig.7. The fraction of silver is 32.82%. The numbers236

of voxel cells and that of finite elements are the same as in the non-conjugated model. It can be seen that the237

temperature and the heat flux fields in this situation by the two methods are also matched and coordinated,238

which shows the effectiveness of the FD algorithm in the conjugated model.239

Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -1400 -1200 -1000 -800 -600 -400 -200 -0.0081

Heat flux (W·m-2)
-180 -140 -100 -60 -20 -0.0081

Figure 6: SC model with the volume fraction of silver equal to 67.18%: (a) temperature field by FDM, (b)
temperature field by FEM, (c) heat flux field by FDM, (d) heat flux field by FEM, (e) temperature field in
cross section xOy by FDM, (f) temperature field in cross section xOy by FEM, (g) heat flux field in cross
section xOy by FDM, (h) heat flux field in cross section xOy by FEM.
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Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -790 -650 -550 -450 -350 -250 -150 -50 -0.008

Figure 7: SC conjugated model with the volume fraction of silver equal to 32.82%: (a) temperature field by
FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d) heat flux field by FEM, (e) temperature
field in cross section xOy by FDM, (f) temperature field in cross section xOy by FEM, (g) heat flux field in
cross section xOy by FDM, (h) heat flux field in cross section xOy by FEM.

The second model is the BCC structure with the volume fraction of silver equal to 79.89%, which is shown240

in Fig.8 (corresponding to a sphere radius equal to 0.46). The structure contains 91125 cubic voxel cells by241

FDM, and 36961 tetrahedral finite elements by FEM. Meanwhile, Fig.9 displays the BCC conjugated model242

with the fraction of silver being 20.11%. Both the temperature field and the heat flux field exhibit good243

agreement in terms of trends and values.244

(c)(a) (b) (d)

(e) (f) (g) (h)

-720 -500 -400 -300 -200 -100 0 6.6

-320 -250 -100 -50 2.2

Temperature (°C)
19 19.2 19.4 19.6 19.8 20.0 -600

Heat flux (W/m^2)

-200 -150
Heat flux (W/m^2)

（W·m-2)

（W·m-2)

Figure 8: BCC model with the volume fraction of silver equal to 79.89%: (a) temperature field by FDM, (b)
temperature field by FEM, (c) heat flux field by FDM, (d) heat flux field by FEM, (e) temperature field in
cross section xOy by FDM, (f) temperature field in cross section xOy by FEM, (g) heat flux field in cross
section xOy by FDM, (h) heat flux field in cross section xOy by FEM.
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Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -480 -400 -300 -200 -100 6.6

Figure 9: BCC conjugated model with the volume fraction of silver equal to 20.11%: (a) temperature field by
FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d) heat flux field by FEM, (e) temperature
field in cross section xOy by FDM, (f) temperature field in cross section xOy by FEM, (g) heat flux field in
cross section xOz by FDM, (h) heat flux field in cross section xOz by FEM.

The third geometrical model is the FCC structure with the volume fraction of silver equal to 88.07%, which245

corresponds to a sphere radius equal to 0.38. The structure contains 91125 cubic voxel cells by FDM, and 35340246

tetrahedral finite elements by FEM. The results of local fields are shown in Fig.10, and the FCC conjugated247

model with the fraction of silver equal to 20.11% is analyzed in Fig.11. One can find similar trends with248

the previous geometries, thus similar conclusions can be drawn. To sum up, the developed FDM algorithm249

can treat a series of situations and has some advantages such as: (i) it uses simple rule of voxel meshing to250

reduce the computational time; (ii) it has a good anti-sawtooth ability and can get rid of the constraint of the251

interface between the silver and the air; (iii) FDM can obtain comparable results as the finite element method.252
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Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -710 -600 -500 -400 -300 -200 -100 1.2

Figure 10: FCC model with the volume fraction of silver equal to 88.07%: (a) temperature field by FDM, (b)
temperature field by FEM, (c) heat flux field by FDM, (d) heat flux field by FEM, (e) temperature field in
cross section xOy by FDM, (f) temperature field in cross section xOy by FEM, (g) heat flux field in cross
section xOy by FDM, (h) heat flux field in cross section xOy by FEM.

Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -330 -250 -150 -50 -0.0063-200 -100

-94 -80 -70 -60 -50 -40 -30 -20 -10 -0.0063
Heat flux (W·m-2)

Figure 11: FCC conjugated model with the volume fraction of silver equal to 11.93%: (a) temperature field by
FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d) heat flux field by FEM, (e) temperature
field in cross section xOy by FDM, (f) temperature field in cross section xOy by FEM, (g) heat flux field in
cross section xOy by FDM, (h) heat flux field in cross section xOy by FEM.

4.3 Evolution of the equivalent thermal conductivity253

In this section, we calculate the equivalent thermal conductivity of the aforementioned models by using Eq.10254

for various volume fraction of silver. To make the volume fraction of silver vary in a given unit cell (SC, BCC255

or FCC), the positions of the corresponding silver particles are kept unchanged while their radii are uniformly256

increased to reduce the voids. The results of the simulations are shown in Fig.12. We draw the following257
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Figure 12: Evolution of the equivalent thermal conductivity as a function of the volume fraction for the various
models. The star symbols represent the values obtained by FEM. The cross symbols, the circle markers, the
triangle-down markers correspond to the values of FDM with 45× 45× 45, 85× 85× 85 and 125× 125× 125
voxels, respectively. The tree markers designate the values calculated by theoretical formula of Maxwell.

(1) The equivalent thermal conductivities of SC, BCC, FCC, and their conjugated models increase with259

the increase of the silver fraction. This is consistent with the fact that the conductivity of silver (429 W·260

m−1·K−1) is larger than the air’s one (0.0257 W· m−1·K−1).261

(2) From Fig.12a,c,e, one can find that as the silver volume fraction increases, a better agreement between262

the FDM and the FEM results is found. The largest difference between the two methods in the three models263

occurs for the lowest values of the silver volume fraction when the silver particles are just contacting each264
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other in the respective unit cells (i.e. the radius of spherical silvers for SC model is 0.5, for BCC model is265 √
3/4 ≈ 0.433, for FCC model is

√
2/4 ≈ 0.354; and the corresponding volume fraction of silver for SC model266

is 0.555, for BCC model is 0.713, for FCC model is 0.779). This is caused by the inherent property of the267

voxel meshing which has poor capabilities for approximating curved surfaces like those of the spherical silver268

particles. Voxel meshing produces sawtooth shaped surfaces when mesh density is small. By increasing the269

mesh density, the values of FDM gradually tend to those of FEM. It is to say that the FDM is more sensitive270

to lower volume fractions of silver, especially when the spheres are merely contacting.271

(3) In contrast, from Fig.12b,d,f, one could not find the similar sensitivities. It is because for the conjugated272

models, the silvers regions are connected in a different way. The conjugated connections ensure that the silver273

phase forms always a contiguous part. Consequently, the volume fraction of silver can take values in a wider274

range (i.e. from 0 to 1). We can see that the results obtained from FDM for different mesh densities and from275

FEM are superimposed very well at both low and high fraction values. We also introduce Maxwell’s analytic276

formula [4]:277

Deq

Dm
= 1 +

3φ

(
Df+2Dm

Df−Dm
)− φ

(25)

where Dm represents the thermal conductivity of matrix, Df the thermal conductivity of fillers, Deq the278

equivalent conductivity of the whole structure, and φ is the volume fraction of fillers. This formula is valid279

only in the case of low φ according to Pietrak et al. [6] (under about 25%), which corresponds to the situation280

when the volume fraction of silver is above 75%. When comparing all the three results, it turns out that the281

FDM and the FEM curves can fit well with the Maxwell’s formula not only in the expected fraction, but also282

between 50% and 75%. This proves the accuracy and effectiveness of the finite difference algorithm, even in a283

sparse mesh density of 453.284

Fig.13 compares the equivalent thermal conductivity of SC, BCC and FCC models. One can find that the285

value of this property for the SC structure is larger than the ones for the BCC/FCC structures for an identical286

fraction of silver (or porosity). It indicates that changing the inner organization pattern of a structure can287

significantly impact its thermal property.288
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Figure 13: Comparison of the equivalent thermal conductivity between the SC, BCC and FCC models.

Fig.14 compares the equivalent thermal conductivities of the non-conjugated models with those of the289

corresponding conjugated models. It can be found that the results for the conjugated structures are larger290

than the ones for the non-conjugated structures for the three models, when making the comparison at the291

same porosity. This confirms that the conjugated structures are more conductive. By altering the topology or292

morphology of a structure, the thermal property can thus be changed greatly.293
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(a) SC and SC conjugated models
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(b) BCC and BCC conjugated models
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(c) FCC and FCC conjugated models

Figure 14: Comparison of equivalent thermal conductivity between the non-conjugated and the conjugated
models.

5 Stochastic granular models294

To further test the usability of the developed FD algorithm in other situations, we additionally consider a kind295

of stochastic models. Fig.15 illustrates the geometrical models of the stochastic structure. The structures are296

set to unit size and composed of two phases: silver and air. In order to make the spherical silver particles297

connect with each other to form a continuous entirety, an overlap is proposed herein (for example, this can298

mimic the neck formation between silver particles after the sintering process). The generation method of these299

spheres is discussed in [27, 33]. Here, 56 spheres are generated, and their radii obey a normal distribution.300

In Figs.15, three cases are considered: Case 1 is a stochastic model with minimal overlap between particles,301

having an average particle radius of 0.139 and a standard deviation of 0.026 (silver fraction = 0.663); Case 2 is302

a stochastic model with a larger overlap, having an average particle radius of 0.146 and a standard deviation303

of 0.028 (silver fraction = 0.734); and Case 3 is the conjugated structure of Case 2 with an average particle304

radius of 0.059 and a standard deviation of 0.011, i.e., keeping the silver fraction constant (silver fraction =305

0.734) and replacing the silver phase with air and the air phase with silver (this can mimic the situation of306

air bubbles in solids). To ensure the periodicity of these models, spheres that go out from one surface will be307

enforced to re-enter from the opposite surface. The simulation results of the equivalent thermal conductivity308

are shown in Table 2.309
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Figure 15: Geometrical illustration of three random models. (a) case 1: volume fraction of silver = 66.3%, (b)
case 2: volume fraction of silver = 73.4% , (c) case 3: conjugated structure with volume fraction of silver =
73.4% (i.e. the silver is for the matrix, and the air is for the sphere inclusion).

Table 2: Comparison of the equivalent thermal conductivity for random models with FDM and FEM.
Mean value µ

of sphere radius
Standard deviation
σ of sphere radius

Silver
fraction

Dxx by FDM Dxx by FEM
Relative

error
Case 1

(Silver spheres)
0.139 0.026 0.663 188.8 178.3 5.87%

Case 2
(Silver spheres)

0.146 0.028 0.734 248.9 239.8 3.66%

Case 3
(Air spheres)

0.059 0.011 0.734 278.9 278.3 0.216%

By comparing Case 1 and Case 2, we find that the equivalent thermal conductivity obtained by the two310

methods are very similar, and the finite difference method is closer to the finite element method as the overlap311

portion increases. This result also verifies our conclusion in the previous section that the voxelized mesh does312

not simulate the interfaces well when the material with a larger thermal conductivity has a narrow connection313

area. By comparing the equivalent thermal conductivity in Case 2 and Case 3, it can be found that the FD314

simulation of the conjugated structure is better than that of the normal structure when the silver fraction315

remains the same. The relative errors of the three cases are all below 6%.316

Fig. 16 shows the random model with the fraction of silver equal to 73.4% (corresponding to an average317

radius of 0.146 and a standard deviation of 0.028). The structure contains 614125 cubic voxel cells by FDM,318

and 473920 tetrahedral finite elements by FEM. By comparing the temperature fields (see Fig.16a,b,e,f), we319

find that the distributions obtained by the two methods are quite consistent. If comparing the distribution320

of the heat flux field (see Fig.16c,d,g,h), it is shown that the overall trend is the same, but in some junctions321

between different silver spheres, the finite element method is slightly better than the finite difference method,322

which is caused by the voxelized mesh, as the silver sphere connections inside the random system are more323

complex and require a more dense mesh to approximate finely the curved interfaces at these locations.324

Fig. 17 shows the conjugated random model with the fraction of silver equal to 73.4% (corresponding to an325

average radius of 0.059 and a standard deviation of 0.011). The structure contains 614125 cubic voxel cells by326

FDM, and 94396 tetrahedral finite elements by FEM. From the figures we can see that both the distributions327

of the temperature and of the heat flux fields by the two methods are almost identical.328
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Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0

Heat flux (W·m-2)

-1000 -800 -600 -400 -200 0 110-1220

-850 -700 -500 -100 10-300

Figure 16: Stochastic model with the volume fraction of silver equal to 73.4%: (a) temperature field by FDM,
(b) temperature field by FEM, (c) heat flux field by FDM, (d) heat flux field by FEM, (e) temperature field
in cross section xOz by FDM, (f) temperature field in cross section xOz by FEM, (g) heat flux field in cross
section yOz by FDM, (h) heat flux field in cross section yOz by FEM.

Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -600 -500 -400 -300 -200 -100 0.49-770

Heat flux (W·m-2)
-610 -500 -400 -300 -200 -100 -0.027

Figure 17: Stochastic conjugated model with the volume fraction of silver equal to 73.4%: (a) temperature
field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d) heat flux field by FEM, (e)
temperature field in cross section xOz by FDM, (f) temperature field in cross section xOz by FEM, (g) heat
flux field in cross section yOz by FDM, (h) heat flux field in cross section yOz by FEM.
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6 Conclusions and perspectives329

In this paper, we developed a voxel-based finite difference method to investigate the equivalent thermal con-330

ductivity of various composite materials or structures. The structures are spherical filler models and composed331

of two phases: silver and air. Three typical geometries (SC, BCC, FCC models) as well as stochastic models332

are analyzed. Comparisons are carried out with the finite element method and the theoretical formula of333

Maxwell. The following conclusions can be summarized.334

First, our proposed algorithm yielded comparable results with the FEM, whether when handling the classi-335

cal SC, BCC, FCC models or complex stochastic models. Second, the developed FD algorithm is less sensitive336

to the density of mesh and has a good anti-sawtooth ability. Finally, with the natural advantage of FDM in337

parallel computing, the proposed method is scalable in terms of computational efficiency.338

For perspectives regarding other approaches to calculate thermal properties, atomistic or molecular simula-339

tion method might also be considered. However, difficulties or limitations persist in the current circumstance.340

As for the atomistic simulation, a DFT-based ab-initio calculation could deal with this scenario; but it is341

challenging to compute silver clusters of such size since the spherical particle mentioned in the study is of mi-342

crometer scale. It means that a single particle may contain billions of atoms and the state-of-the-art technology343

still lacks computational power.344

As for the method of molecular dynamics (MD) which may carry a larger model, the dominant influencing345

factor in thermal conduction of a metal is the electron, rather than the phonon. Ab-initio MD based two-346

temperature model may solve the coupling problem of electrons and phonons, but it is normally for bulk347

materials instead of porous ones, as the electron grid is difficult to be coupled into the interfaces between pores348

and phonon lattices. Hence, new coupling algorithms are expected to be developed.349

Furthermore, mounting experiments to measure the thermal conductivity is a whole subject that is being350

studied and implemented, in particular with AFM microscope equipped with tips meant for electric measure-351

ments. We leave this extension for future work.352
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wärmeleitfähigkeit der bestandteile. 1932.372
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