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Introduction

Let d ≥ 2 be an integer. Let f : C → C be a rational map of degree d, where C := C∪{∞} is the Riemann sphere. Consider a sequence (z n ) n≥0 satisfying z 0 ∈ C and z n+1 = f (z n ) for n ≥ 0. The point z 0 is a periodic point of period k if z k = z 0 for some minimal k ≥ 1. In that case, the multiplier of f at z 0 is the eigenvalue of

D z0 f •k : T z0 C → T z0 C.
The rational map f is

• a power map if it is conjugate to z → z ±d ;

• a Chebyshev map if it is conjugate to ±T d where T d is the unique polynomial of degree d satisfying T d (z + z -1 ) = z d + z -d ; • a Lattès map if there exist a torus T = C/Λ, with Λ ⊂ C a lattice of rank 2, a holomorphic endomorphism L : T → T and a nonconstant holomorphic map Θ : T → C such that the following diagram commutes:

T L / / Θ T Θ C f / / C.
Power maps, Chebyshev maps and Lattès maps are called finite quotients of affine maps by Milnor [M] and exceptional maps by Ji and Xie [JX]. In this note, we will use the second terminology.

As observed by Milnor in [M], if f is exceptional, the multipliers of f at all periodic points are contained in a discrete subring of C, thus in the ring of integers of some imaginary quadratic field. Milnor conjectured that the converse is true. In [H1] the third author proved the conjecture when d = 2 and in [JX] Ji and Xie proved the conjecture for all d ≥ 2.

Theorem 1 (Ji-Xie). Assume that O K is the ring of integers of some imaginary quadratic field and f : C → C is a rational map of degree d ≥ 2 whose multipliers all lie in O K . Then f is a power map, a Chebyshev map or a Lattès map.

In this note, we present their proof with a minor modification for one of the arguments. More precisely, our main contribution is Proposition 1.

After writing this note, the third author [H2] proved the following stronger result.

Theorem 2 (Huguin). Assume that K is a number field and f : C → C is a rational map of degree d ≥ 2 whose multipliers all lie in K. Then f is a power map, a Chebyshev map or a Lattès map.

Exceptional maps

Ritt [R] gave the following characterization of exceptional maps.

Lemma 1 (Ritt). Assume that f :

C → C is a rational map of degree d ≥ 2, φ : C → C is a nonconstant holomorphic map, α : C → C is an affine map and τ : C → C is a nontrivial translation such that • φ • α = f • φ and • φ • τ = φ. Then, f is an exceptional map.
The following generalization is essentially due to Ji and Xie (compare with [START_REF] Ji | Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics[END_REF]Lemma 2.9]).

Lemma 2. Assume that f : C → C is a rational map of degree d ≥ 2, φ : C → C is a nonconstant holomorphic map and α 1 : C → C and α 2 : C → C are affine maps such that

• α 1 and α 2 do not commute and

• φ • α 1 = f • φ = φ • α 2 .
Then, f is an exceptional rational map.

Proof. First, note that the affine map

τ := α 1 α -1 2 α 1 α 2 α -2 1 : C → C is a nontrivial translation.
Indeed, the differentials of α 1 and α 2 are linear maps, thus commute. Therefore, we have Dτ = id : C → C. In addition, τ = id since otherwise

α 1 α -1 2 α 1 α 2 α -2 1 = id =⇒ α 1 α -1 2 α 1 α 2 = α 2 1 =⇒ α -1 2 α 1 α 2 = α 1 =⇒ α 1 α 2 = α 2 α 1 ,
contradicting the fact that α 1 and α 2 do not commute.

Second, observe that

φ • α 1 α 2 = f • φ • α 2 = f •2 • φ = f • φ • α 1 = φ • α 2 1 , so that φ • τ = φ • α 1 α -1 2 α 1 α 2 α -2 1 = φ • α 2 α -1 2 α 1 α 2 α -2 1 = φ • α 2 1 α -2 1 = φ.
The result then follows from Lemma 1.

Escaping quadratic-like maps

An escaping quadratic-like map is a covering map g : U → V of degree 2 between open subsets of C, with V simply connected, and U compactly contained in V . If g : U → V is such a map, then U has two connected components U 1 and U 2 , each of which is simply connected.

Lemma 3. If f : C → C is a rational map of degree d ≥ 2, there exist an integer n ≥ 1 and open sets U V ⊂ C, such that the restriction f •n : U → V is an escaping quadratic-like map.
We say that such a restriction of f •n is an escaping quadratic-like map associated to f .

Proof. Let z 1 ∈ C be a repelling periodic point for f of period r ≥ 1 which is not contained in the forward orbit of a critical point of f . Let V 1 ⊂ C be a simply connected neighborhood of z 1 such that the inverse branch h 1 of f •r fixing z 1 is defined on V 1 with h 1 (V 1 ) V 1 .
Since z 1 is in the Julia set of f and since the iterated preimages of z 1 are dense in the Julia set of f which contains no isolated point, there exist

z 2 ∈ V 1 {z 1 } and an integer s ≥ 1 such that f •s (z 2 ) = z 1 . Let V ⊂ V 1 be a simply connected neighborhood of z 1 such that • h 1 (V ) V , • the inverse branch h 2 of f •s sending z 1 to z 2 is defined on V and • h 2 (V ) V 1 \ {z 1 }. Let m 1 ≥ 1 be sufficiently large so that W 2 := h •m1 1 • h 2 (V ) V . Let m 2 ≥ 1 be sufficiently large so that W 1 := h •m2 1 (V ) V W 2 . Set k 1 := h •m2 1 : V → W 1 and k 2 := h •m1 1 • h 2 : V → W 2 .
Note that k 1 is an inverse branch of f •n1 with n 1 := m 2 r and k 2 is an inverse branch of f •n2 with n 2 := m 1 r + s. Set

n := n 1 n 2 = m 2 r(m 1 r + s) and U := k •n2 1 (V ) ∪ k •n1 2 (V ).
Then, the restriction of f •n from U to V is an escaping quadratic-like map associated to f .

Affine escaping quadratic-like maps

An escaping quadratic-like map g : U → V is affine if the restriction of g to each connected component of U coincides with the restriction of an affine map.

In addition, two escaping quadratic-like maps g 1 :

U 1 → V 1 and g 2 : U 2 → V 2 are conjugate if there exists a holomorphic isomorphism φ : V 2 → V 1 such that the relation φ • g 2 = g 1 • φ holds on U 2 .
Lemma 4. Let f : C → C be a rational map of degree d ≥ 2. If an escaping quadratic-like map associated to f is conjugate to an affine escaping quadratic-like map, then f is an exceptional map.

Proof. Assume that f •n : U → V is an escaping quadratic-like map associated to f , that g : U → V is an affine escaping quadratic-like map and that φ :

V → V conjugates g : U → V to f •n : U → V , i.e., φ • g = f •n • φ.
By assumption, U has two connected components U 1 and U 2 and the restrictions of g to U 1 and U 2 coincide with the restrictions of affine maps α 1 : C → C and

α 2 : C → C to U 1 and U 2 . The relations φ • α 1 = f •n • φ and φ • α 2 = f •n • φ hold on U .
Since the affine maps α 1 : C → C and α 2 : C → C are repelling, we may use any of those two relations to extend φ : V → V to a global meromorphic map φ : C → C. We then have

φ • α 1 = f •n • φ = φ • α 2 on C.
The affine maps α 1 and α 2 have distinct fixed points, respectively in U 1 and U 2 . Thus, they do not commute. It follows from Lemma 2 that f •n is an exceptional map, and so, f is an exceptional map (a rational map is exceptional if and only if its iterates are exceptional).

The proof of Theorem 1

It follows from Lemma 3 and Lemma 4 that Theorem 1 is a consequence of the following result.

Proposition 1. Let O K be the ring of integers of some quadratic imaginary field. If g is an escaping quadratic-like map whose multipliers at all periodic points belong to O K , then g is conjugate to an affine escaping quadratic-like map.

The proof will occupy the rest of the note. From now on, we assume that g : U → V is an escaping quadratic-like map whose multipliers at all periodic points belong to O K . Let U 1 and U 2 be the two connected components of U . Set:

g 1 := g| U1 , g 2 := g| U2 , h 1 := g -1 1 : V → U 1 and h 2 := g -1 2 : V → U 2 .
Let p 1 ∈ U 1 be the unique (repelling) fixed point of g 1 : U 1 → V and let λ 1 be its multiplier. Similarly, let p 2 ∈ U 2 be the unique (repelling) fixed point of g 2 : U 2 → V and let λ 2 be its multiplier.

The sequence of univalent maps ψ n : V → C defined by

ψ n (z) := h •n 1 (z) -p 1 h •n 1 (p 2 ) -p 1 converges to a univalent map ψ : V → C such that ψ(p 1 ) = 0, ψ(p 2 ) = 1 and ψ • g 1 = λ 1 × ψ. Replacing g by ψ • g • ψ -1 if necessary, we may therefore assume that p 1 = 0, p 2 = 1 and g 1 (z) = λ 1 z.
We need to prove that g 2 is an affine map.

4.1.

A special sequence of periodic points. In their proof, Ji and Xie consider a particular sequence of periodic points of g. This sequence may be defined as follows. For n ≥ 0, let z n be the unique fixed point of the map

h 2 • h •n 1 : V → U 2 .
Then, z n is a periodic point of g of period n + 1. In particular the multiplier ρ n of g at z n belongs to O K . Note that as n → +∞, we have that

z n → α := h 2 (0) so that z n = h 2 z n λ n 1 = α + β λ n 1 + o 1 λ n 1 with β := αh 2 (0).
Then, 1) with a := g 2 (α) and b := βg 2 (α) = α g (α) g (α) .

ρ n = λ n 1 g 2 (z n ) = λ n 1 a + b + o(
Lemma 5. We have that ρ n = aλ n 1 + b for n large enough.

Proof. Write ρ n = aλ n 1 + b + ε n with ε n → 0 as n → +∞. We have that

λ 1 ρ n -ρ n+1 ∈O K = (λ 1 -1)b + λ 1 ε n -ε n+1 -→ n→+∞ 0 .
Thus, (λ 1 -1)b belongs to the closure of O K , i.e., to O K .

Since O K is discrete, we have that λ 1 ρ n -ρ n+1 = (λ 1 -1)b for n large enough, i.e., ε n+1 = λ 1 ε n . Since |λ 1 | > 1 and ε n → 0 as n → +∞, we have that ε n = 0 for n large enough.

A differential equation.

Lemma 6. The holomorphic map g 2 : U 2 → V satisfies the differential equation

(E) ∀z ∈ U 2 , g 2 (z) = a + b g 2 (z) z .
Proof. Note that for n large enough, we have that

λ n 1 g 2 (z n ) = z n and g 2 (z n ) = ρ n λ n 1 = a + b λ n 1 = a + b g 2 (z n ) z n .
Since the sequence (z n ) n≥1 accumulates at h 2 (0) ∈ U 2 , the function g 2 satisfies the differential equation (E).

Remark. Equation (E) is linear and so, may be easily solved. However, we shall not use the explicit form of the solutions.

Lemma 7. We have that

g 2 (α) λ 2 = 1 + ν 1 -λ 2 with α := h 2 (0) and ν := p 2 g 2 (p 2 ) g 2 (p 2 ) .
Proof. Evaluating Equation (E) at z = p 2 = g 2 (p 2 ), we obtain

λ 2 = g 2 (p 2 ) = a + b.
In addition, differentiating Equation (E), we obtain

∀z ∈ U 2 , g 2 (z) = b g 2 (z) z - g 2 (z) z 2 .
Since λ 2 = g 2 (p 2 ) and a = g 2 (α), we have that

ν = p 2 g 2 (p 2 ) g 2 (p 2 ) = λ 2 -g 2 (α) 1 - 1 λ 2 .
This last equality may be rewritten in the required form.

Conclusion.

For each integer k ≥ 1, consider the escaping quadratic-like map

g k : U 1 ∪ h •k 2 (V ) → V defined by g k (z) = λ 1 z if z ∈ U 1 g •k 2 (z) if z ∈ h •k 2 (V ).
Then, all the periodic points of g k are periodic points of g and their multipliers still belong to O K . In addition, g k fixes p 2 with multiplier λ k 2 . According to Lemma 7, we have that

(g •k 2 ) (α k ) λ k 2 = 1 + ν k 1 -λ k 2 with α k := h •k 2 (0) and ν k := p 2 (g •k 2 ) (p 2 ) (g •k 2 ) (p 2 )
.

A rather elementary computation (in fact, it is the composition rule for nonlinearities) yields

ν k = ν 1 + λ 2 ν 1 + λ 2 2 ν 1 + • • • + λ k-1 2 ν 1 = 1 -λ k 2 1 -λ 2 ν 1 .
In particular,

ν k 1 -λ k 2 =
ν 1 1 -λ 2 does not depend on k ≥ 1. As a consequence, for all k ≥ 1,

g 2 (α k+1 ) λ 2 • (g •k 2 ) (α k ) λ k 2 = (g •(k+1) 2 ) (α k+1 ) λ k+1 2 = (g •k 2 ) (α k ) λ k 2 .
Thus, ∀k ≥ 1, g 2 (α k+1 ) = λ 2 . The sequence (α k ) k≥2 accumulates at p 2 ∈ U 2 . So, g 2 (z) = λ 2 for all z ∈ U 2 and g 2 is an affine map as required. This completes the proof of Proposition 1.
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