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On a sum of a multiplicative function linked to the divisor function over the set of integers B-multiple of 5 BOUDERBALA Mihoub

n≤x n∈B d(n) d * (n) = 16π 2 123 p (1 - 1 2p 2 + 1 2p 3 )x + O x ln 8
ln 10 +ε , (x ⩾ 1, ε > 0) , where B is the set which contains any integer that is not a multiple of 5, but some permutations of its digits is a multiple of 5.

Introduction and main result

A positive integer is called A-multiple of 5 if a permutation of its digits is a multiple of 5, comprising the identity permutation (for example 50, 55, 505, 5505,. . . ). A positive integer is called B-multiple of 5 if it is not a multiple of 5, but some permutations of its digits is multiples of 5 (for example 51, 53, 107, 151,. . . ). For practical reasons, A represents the set of all integers A-multiple of 5, and B represents the set of all integers B-multiple of 5.

In this paper, we will use deep analytic methods to give an asymptotic formula to the following sum

n≤x n∈B d(n) d * (n) , (1) 
where

d(n) = d|n 1 and d * (n) = d|n (d,n|d)=1
1, (n denotes a strictly positive integer ).

In order to estimate the sum (1) by noting that the function

d(n) d * (n) is multiplicative,
we first recall by the following two concepts of the Riemann zeta function:

We have for all s ∈ C, such that Re(s) > 1,

ζ(s) = p (1 - 1 p s ) -1 , and 
ζ(s) = 1 + 1 s -1 -s ∞ 1 {t} t s + 1 dt,
where {t} denotes the fractional part of the real t.

Recall that according to this last form, the function ζ extends to a meromorphic function on Re(s) > 0, which has a simple pole at s = 1 with residue 1 and no other poles. Moreover, if a is a strictly positive constant, we have, in the region of the plane defined by the inequalities σ ≥ Secondly, we present the first effective formula of Perron (see [3, p.147]

): Let f (s) = ∞ n=1 a(n) n s
, the Dirichlet series of finite absolute convergence abscissa σ a . Then, if x ≥ 1, T ≥ 1 and c > max(0, σ a ), we have the following asymptotic formula

n≤x a(n) = 1 2πi c+iT c-iT f (s) x s s ds + O x c n≥1 |a(n)| n c (1 + T |ln(x/n)| .
In the following, we will present the main result that has been proven: Theorem 1.1. For any real x ≥ 1, we have the following asymptotic formula

n≤x n∈B d(n) d * (n) = 16π 2 123 p (1 - 1 2p 2 + 1 2p 3 )x + O x ln 8 ln 10 +ε , where π 2 6 p (1 - 1 2p 2 + 1 2p 3 ) ≃ 1.4276565 • • • , and ε > 0.
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The proof of the theorem is based on the following lemmas:

Lemma 1.2. Let q be a prime number or q = 1. So for any real number x ≥ 1, we have the following asymptotic formula n≤x

D(qn) = 2q 2 -q 2q 2 -2q + 1 π 2 6 p (1 - 1 2p 2 + 1 2p 3 )x + O(x 1 2 +ε ), wher D(n) = d(n) d * (n)
, and ε denotes a positive real number.

Proof. For a prime number q and a complex number s such that Re(s) > 1, we put

f (s) = ∞ n=1 D(qn) n s ,
Then, by the product formula Eulerian [1, p.230] , we get

f (s) = ∞ α=0 ∞ n 1 =1 (n 1 ,q)=1 D(q α+1 n 1 ) q αs n s 1 = ∞ α=0 α + 2 2q αs ∞ n 1 =1 (n 1 ,q)=1 D(n 1 ) n s 1 = ∞ 1 2 α=0 α + 1 q αs + 1 q αs p (p,q)=1 1 + ∞ k=1 D p k p ks , then f (s) = 1 2   ∞ α=0 1 q αs 2 + ∞ α=0 1 q αs   p 1 + ∞ k=1 D p k p ks 1 1 + ∞ k=1 D(q k ) q ks = 1 2    1 1 -1 q s 2 + 1 1 -1 q s    ζ(s)ζ(2s) p 1 - 1 2p 2s + 1 2p 3s 2 (q s -1) 2 2q 2s -2q s + 1 = 2q 2s -q s 2q 2s -2q s + 1 ζ(s)ζ(2s) p 1 - 1 2p 2s + 1 2p 3s . We notice that the function f (s), is convergent if Re(s) > 1 2
, where we recall here that

ζ(s) = 1+ 1 s -1 -s ∞ 1 {t} t s + 1
dt. According to Perron's formula, for all x ≥ 1 and T ≥ 1, we

getting n≤x D(qn) = 1 2πi 3 2 +iT 3 2 -iT f (s) x s s ds + O( x 3 2 +ε T ), (2) 
such that ε is a positive real.

Now, if we choose a linear contour integral of s = 3 2

± iT to s = 1 2 ± iT, in this case the function F (s) = f (s)
x s s , admits a simple pole in s = 1, then

1 2πi 3 2 -iT 1 2 -iT + 3 2 +iT 3 2 -iT + 1 2 +iT 3 2 +iT + 1 2 -iT 1 2 +iT f (s) x s s ds = Re s f (s) x s s , 1 . Note that lim s→1 ζ(s)(s -1) = 1,

and we can get immediately

Re s f (s) 

x s s , 1 = 2q 2 -q 2q 2 -2q + 1 π 2 6 p 1 - 1 2p 2 + 1 2p 3 x,
R(s) = 2q 2s -q s 2q 2s -2q s + 1 ζ(2s) p 1 - 1 2p 2s + 1 2p 3s , we obtain 1 2πi 3 2 -iT 1 2 -iT + 1 2 +iT 3 2 +iT ζ(s)R(s)
x s s ds

≪ 3 2 1 2 ζ(σ + iT )R(s) x 3 2 T dσ ≪ x 3 2 +ε T = x 1 2 +ε , and 1 2πi 1 2 -iT 1 2 +iT ζ(s)R(s) x s s ds ≪ T 0 ζ( 1 2 + it)R(s) x 1 2 t dt ≪ x 1 2 +ε .
So by estimate

1 2πi 3 2 -iT 1 2 -iT + 1 2 +iT 3 2 +iT + 1 2 -iT 1 2 +iT f (s) x s s ds ≪ x 1 2 +ε ,
and from the formula (2), we get n≤x

D(qn) = 2q 2 -q 2q 2 -2q + 1 π 2 6 p (1 - 1 2p 2 + 1 2p 3 )x + O(x 1 2 +ε ).
Lemma 1.3. For any real x ≥ 1, we have the following asymptotic formula

n≤x n∈A D(n) = π 2 6 p (1 - 1 2p 2 + 1 2p 3 )x + O(x ln 8
ln 10 +ε ).

(3)

wher D(n) = d(n) d * (n)
, and ε denotes a positive real number.

Proof. For any real x ≥ 1, it is clear that there is a positive integer k such that 10 k ≤ x ≤ 10 k+1 . Consequently, k ≤ log x ≤ k + 1. According to the definition of the set A, we know that the number of integers (≤ x) that is not in A is 8 k+1 . Indeed, there are 8 integers composed of a single number, they are 1, 2, 3, 4, 6, 7, 8, 9; there are 8 

D(n) = n≤x D(n) - n≤x n / ∈A D(n) = n≤x D(n) + O     n≤x n / ∈A x ε     = n≤x D(n) + O x ln 8 ln 10 +ε = π 2 6 p (1 - 1 2p 2 + 1 2p 3 )x + O x ln 8 ln 10 +ε .
This proves Lemma 3.

2 Proof of theorem 1.1

In this section, we complete the proof of Theorem. From the definition of the set A and set B, we know the relation between them. Therefore This completes the proof of the theorem.
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1 2 , σ ≥ 1 -

 21 a/ log |t| , and σ ≤ 2, the following majoration ζ(σ + it) ≪ O (log |t|) , for |t| large enough (see [2, p.54 -55] ).

3 ≃

 3 1.4276565 . . . By taking T = x, and f (s) = ζ(s)R(s), where

  Now we use the two results of Lemmas 2 and 3, we get

  2 integers composed of two digits; ... ; the number of integers composed of k digits is 8 k . Since 8 k ≤ 8 log x = x Now we apply the lemma 2 with q = 1, we get
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				ln 10					
	we get							
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