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Abstract 

 

The Digital Twin (DT) is one of the most promising technologies in the digital transformation market. A digital 

twin is a virtual copy of a physical system that emulates its behaviour to predict failures and opportunities for 

change, prescribe actions in real-time, and optimise and/or mitigate unexpected events. Modelling the virtual 

copy of a physical system is a rather complex task and requires the availability of a large amount of information 

and a set of accurate models that adequately represent the reality to model. At present, the modelling depends 

on the specific use case. Hence, the need to design a modelling solution suitable for virtual reality modelling 

in the context of a digital twin. The paper proposes a new approach to design a DT by endeavouring the concept 

of "modelling patterns" and their invariance property.  Modelling patterns are here thought of as data-driven, 

as they can be derived autonomously from data using a specific approach devised to reach an invariance 

feature, to allows these to be used (and re-used) in modelling situations and/or problems with any given degree 

of similarity. 

The potentialities of invariance modelling patterns are proved here by the grace of a real industrial application, 

where a dedicated DT has been built using  the  approach here proposed.   
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ABBREVATIONS  

𝑪𝟏 Course of the plunger in the first phase 

𝑪𝟐 Course of the plunger in the second phase 

𝑪𝑪 Multiplied course 

CTS Critical-to-solution variables 

DT Digital Twin 

𝒄𝒍,𝒂𝒍,𝒊 Latent heat of aluminium 

𝒄𝒑,𝒂𝒍,𝒊 Specific heat of aluminium 

FCA Formal concept analysis 

𝑭𝒊𝒏𝒋,𝒊 Injection force  

𝑭𝑪 Clamping force 

𝒉𝟎 Specific enthalpy of environment  

𝒉𝒂𝒍 Specific enthalpy of aluminium 

MES Manufacturing Execution Systems 

𝑷𝟎 Environmental pressure 

𝑷𝒂𝟏 Accumulator pressure in the first stage 

𝑷𝒂𝟐 Accumulator pressure in the second stage 

𝑷𝒂𝑴 Accumulator pressure in the multiplied stage 

PF Final pressure 

PLC Programmable logical Controller 

PM Multiplied pressure 

PS Specific pressure 

𝑸𝒄,𝒊 Energy for casting 

𝑸𝒇,𝒊 Energy for melting 

𝑸𝒍,𝒊 Energy for the transformation 

RCA Relation concept analysis  

𝒔𝟎 Specific entropy of the environment 

𝒔𝒂𝒍 Specific entropy of aluminium 

𝑺𝒊𝒏𝒋 Injection surface 

SM Thickness of the product 

𝑻𝟎 Environmental temperature 

𝑻𝟏 Time of injection in the first phase 

𝑻𝟐 Time of injection in the first phase 

𝑻𝒇 Melting temperature 

𝑻𝒎𝒐 Mould temperature 

𝑻𝒔 Temperature of the ingots at the entry of the furnace 

𝑻𝒂𝒍,𝒊 Injection temperature of aluminium 

𝑻𝒍 Temperature loss during the injection stage 

TC Cycle time 

𝑽𝟏 Speed of the plunger in the first phase 

𝑽𝟐 Speed of the plunger in the second phase 

𝑽𝒂𝒍,𝒊 Volume of Aluminium 

𝑽𝒍 Volume of Aluminium Loss during the injection stage 

𝝆𝒂𝒍 Density of Aluminium 

 

 

  



INTRODUCTION 

 

The product and production system are becoming increasingly complex as the number of components, 

the frequency of market demand changes, and the need for related innovation increases. Digital 

representations are a significant opportunity to manage this complexity and improve decision-making 

accuracy using existing simulation and emulation tools [1]. A digital representation -above all, the 

digital twin - bridges the gap between the physical and virtual system, improving the interpretation 

of reality using sound data collection and interpretation [2]. A digital twin is “a set of adaptive models 

that emulate the behaviour of a physical system in a virtual system getting real-time data to update 

itself along its life cycle. The digital twin replicates the physical system to predict failures and 

opportunities for changing, to prescribe real-time actions for optimising and/or mitigating 

unexpected events observing and evaluating the operating profile system” [3]. It can be a model of a 

component, a system of components, or systems, such as pumps, motors, power plants, or production 

lines, etc. It requires a set of models appropriately representing the physical resources and the 

processes knowledge to usefully perform decisional support. Modelling such a digital copy of the 

physical system to perform real-time decision validation and process optimisation is quite a complex 

task, due to the number of variables and their relationships, also taking into account that functional 

relationships and constitutive laws are barely available on real components. Hopefully, a large amount 

of information may help to pursue the DT modelling goal, but better it may serve to recognise 

appropriate modelling patterns that synthesise information and extract the operational semantics of 

the modelled elements [4], [5]. Typically, it is hard to construct accurate digital models using 

traditional model-based approaches because of the recalled complexity and lack of appropriate 

knowledge [6]. The disunity in the literature on modelling the physical systems leads to the need to 

devise a new modelling solution to apply in DTs design applications to save time and  effort and 

improve the efficacy [7]. 

This paper proposes a novel methodology of a more structured and reliable modelling approach for 

DTs by endeavouring the invariance concept. The idea is to detect and formalise automatically 

invariant modelling patterns to interpret reality from historical data (of any granularity and type). 

Hereof, the research question that we raise and discuss is:  “How can the invariance concept may 

improve the modelling effort to implement DT?” - as a consequence of this ‘How to achieve invariant 

modelling patterns?’. The rationale behind this is that by appropriately building and recognising 

invariant modelling patterns, it is possible to infer knowledge of a system’s behaviour from reality 

(described, as an example, by data) and thus to describe (or even emulate) a system independently of 

its application context, thus capturing the essence of its behaviour and thus maximising the efficiency 

of the digital image of reality. Predefined data-driven patterns may represent invaluable knowledge 

from extracting digital models for different applications. Invariance in our idea guarantees the model's 

significativity by capturing the essence of any system’s behaviour independently of the specific 

application domain. Once this statement is proven, the question becomes how to derive criteria and a 

methodology to self-detect invariant modelling patterns-data-driven that can be used (and re-used) to 

create digital models of different systems or processes [8].  

The paper presents in section 1 an overview of the existing literature approaches to model a digital 

twin independently of the specific context of their use and drawbacks. After performing an exhaustive 

literature review, we discuss in section 2 the research question put into conceiving and structuring the 

modelling approach - in the form of modelling patterns - to allow more straightforward design, 



modelling, development, and maintenance of digital twins. Section 3 formalises the approach to 

detect and formalise data-driven invariant modelling patterns. Finally, mainly as proof of the 

approach presented, a case study is presented in section 4, where all possible data-driven patterns 

define how these can be used along with different applications. Section 5 presents the conclusions. 

 

1. DIGITAL TWIN  MODELLING APPROACHES  
 

Modelling manufacturing systems to design their Digital Twins requires efficient approaches to grab 

the variables' complexity, their interrelationships and the related links to performances. Numerous 

methods and tools have been proposed and developed in the literature to achieve this aim.  

A model is a representation of a system for a specific purpose [9] developed to understand and 

formalise a system [10], i.e. a collection of entities (e.g., people or machines) that act and interact 

together toward the accomplishment of some logical end [11]. Existing modelling approaches to 

design digital twins can be distinguished into three broad macro-classes: model-based, data-driven 

and hybrid approaches (that involve both models and data) [12], [13] as summarised in Figure 1 and 

explained below.  

 

 
Figure 1: Main classes of DT modelling approaches. 

 

Model-based approaches use mathematical equations to incorporate physical knowledge about a 

system's degradation/failure behaviours whenever available [14]. A model-based approach is 

considered a top-down approach. Top-down approaches interpret and incorporate incoming 

information based on prior knowledge, physical understanding and experiences into a set of models. 

[15]. Model-based approaches need small data but require mathematical models [2]. Model-based 

systems engineering (MBSE) and Model-driven architecture (MDA) are the main model-based 

approaches in digital twin applications. Model-based systems engineering (MBSE) is defined as: 

“formalised application of modelling to support system requirements, design, analysis, verification, 

and validation activities beginning in the conceptual design phase and continuing throughout 

development and later life-cycle phases” [16]. Aiming to support MBSE, diverse design languages 



and tools imposed into the whole design cycle are devised to precisely specify the design 

specification, including requirements, function and behaviour, such as System-modelling language 

(SysML) [17], Rational Rhapsody Developer, Modelica [18]. The Digital Twin is becoming 

increasingly relevant to Model-based systems engineering (MBSE) [19]. It extends the MBSE from 

engineering and manufacturing to the operation and service phases [20]. [21] presents the digital twin 

concept within the model-based systems engineering (MBSE) context. The context of the operation 

of the digital twin involves an instrumented testbed in which model-based systems engineering 

(MBSE) tools (e.g., system modelling and verification tools) and operational scenario simulations 

(e.g., discrete event simulations, agent-based simulations) are used to explore the behaviour of virtual 

prototypes in a what-if simulation [21], [22]. The model-driven architecture (MDA) is a software-

designed approach developed by the Object Management Group (OMG) [23]. MDA provides 

guidelines for structuring software specifications that are expressed as models, providing three types 

of models from three different viewpoints: the independent computation model (CIM), the platform-

independent model (PIM), and the platform-specific model (PSM). The key idea of MDA is the 

separation between upper-level business and the underlying implementation. In recent years, an 

increasing trend has been applying MDA to DTs' design. Typical works using MDA for digital twins 

are discussed in [24], [25]. Model-based approaches rely on the use of models to simulate the system's 

behaviour in different operating conditions, but these models are not easy to develop and keep 

updated during the system life-cycle [26]. Therefore, detailed domain knowledge of underlying the 

degradation processes leading to failure is required to develop physics-based models. The model-

based approaches require a priori knowledge of processes, which are usually developed based on 

fundamental comprehension of the physics of the process to be monitored [10]. The model is 

developed based on the understanding and the formalisation of the physics of the process. The success 

of model-based approaches depends on the model's accuracy, fidelity, and robustness [27]. These 

characteristics can be accurate when the degradation physics knowledge is sufficient and relevant. 

Therefore, the degradation process of a system cannot be described directly in a precise way due to 

the complexity and the variety that can characterise a particular system [17].  

In contrast to the model-based approaches, where a-priori knowledge about the process is needed, in 

data-driven approaches, a large amount of historical data [27] is required to discover tacit and explicit 

knowledge from data collection. Data-driven approaches are considered bottom-up because the 

models are built based on retrieving sensory information from the external environment [28], [29]. 

Data-driven approaches are designed to detect hidden patterns and knowledge by analysing a massive 

amount of historical data [30]. The data-driven approaches can be classified into supervised and 

unsupervised [31]. Supervised is the task of inferring a function from labelled training data. It aims 

to build a model that can correctly predict the output of an unseen instance by observing a set of 

labelled instances [32]. Supervised data mining attempts to explain the behaviour of the target as a 

function of a set of independent attributes [33]. The principal supervised mining techniques are 

classification and regression [34]. These techniques predict target categories [33] and numeric values 

[34]. The primary strength of the supervised approaches is that these approaches do not require a high 

level of domain knowledge [35].  The supervised learning across the digital twin is applied for the 

system’s failure prediction (Asimov et al., 2018) or the prediction of the remaining useful life (RUL) 

of the physical twin (Z. Liu et al., 2018). The major weaknesses are the massive amounts of data 

needed for training a reliable model [36]. Instead, unsupervised learning [37] only discovers an 

internal representation from input data. The principal unsupervised mining techniques are clustering, 

association rule mining (for example, Formal concept analysis (FCA) technique), and sequential 



pattern discovery. The clustering technique aims to split a set of data into subsets (clusters) with 

similar characteristics [37]. The Association technique aims to detect the probability of the co-

occurrence of items in a collection [38]. The sequential patterns discovery technique aims to identify 

associations or patterns over time [39]. The goal is to model the states of a process generating the 

sequence trends and the report deviation over time. In digital twins, these techniques are used for 

creating autonomous clusters for different working regimes to analyse machine conditions (Lee et al., 

2014a), (Banerjee et al., 2017), (Ding et al., 2019). The primary strength of the unsupervised data-

driven approaches is the possibility of discovering tacit knowledge from a set of data, such as 

unknown faults and operation patterns [40]. The major weaknesses are the massive amounts of data 

for training a reliable model, and the results and the performances depend on the quality of training 

data [41]. Unsupervised data-driven approaches require a-priori knowledge model [36] to find 

valuable knowledge. Data-driven approaches allow integrating parameters across different domains 

(e.g., product, process, and logistics) into models that would be difficult to build with the traditional 

model-based approaches. Data-driven approaches extract helpful features from collected data to 

characterise the current state and, thus, the degradation trend. Using data-driven approaches is 

possible to transform data into relevant information and reliable behavioural models [42], [43]. Data-

driven approaches involve massive data sets and high dimensionality. The major limitation of data-

driven approaches is the prerequisite of sufficient training data relevant to the failure/degradation 

under study.  

Recently, there has been a growing interest in data-driven and model-based integration approaches to 

provide accurate results. The combination of data collected during the system with the system's 

physical models can address the lack of model-based and data-driven approaches [44], [45], [46]. The 

existing hybrid approaches can mainly be categorised into series and parallel approaches.  A series 

approach combines a physics-based model with prior knowledge about the process and a data-driven 

model that serves as a state estimator of unmeasured process parameters that are hard to model by 

first principles [47]. In [48], a model-based approach is used to define the failure threshold, while a 

data-driven approach calibrates the model to make the results more accurate and narrow the 

uncertainty of model results [49]. A parallel approach can benefit from the advantages of physics-

based and data-driven models, such that the output of the resulting hybrid model is more accurate 

[50], [47]. In [51], a data-driven approach is applied to infer a measurement model, while a model-

based approach describes the system's behaviour. Hybrid approaches combine the advantages of both 

approaches [41], [52], [53]. The existing hybrid approaches are series and parallel approaches. A 

hybrid series approach obtains the prior knowledge of the physics-based model in the first step and 

attains unmeasured process parameters by data-driven approaches in the second step. A hybrid 

parallel approach learns from model-based and data-driven approaches at the same time. Despite the 

advantages and the potentials of the hybrid approaches, the main obstacle is the lack of a standard 

framework or methodology to apply [41] and the complexity of the selection, combination and 

parameter tuning of various methods. The advantages and disadvantages of each approach are 

summed up in Table 1. 
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Table 1: Comparison of Modelling Approaches for DT design. 

 

DT Macro-Approaches PRO’S CON’S 

Model-based • Accurate to describe degradation/ 

failure behaviours [54]. 

• Provide knowledge about the 

degradation/ failure [55]. 

• Require a small amount of data 

[55]. 

• Integrate the physical 

understanding of the system into 

the fault detection and diagnosis 

process [56]. 

•  Incorporate the interactions with 

the environment into the fault 

detection and diagnosis process 

[54]. 

 

 

• Hard to observe the degradation 

process directly [56]. 

• Require an explicit mathematical 

model and rely on a set of 

assumptions and approximations 

[55]. 

• The performances depend on the 

robustness of the model [56]. 

• Physics-based models developed 

in laboratories need to be adapted 

to simulate the real environment 

in practice [55]. 

• The estimation becomes more 

difficult if the system complexity 

increases [54]. 

• Models rely on a set of 

assumptions and approximations 

[56]. 

• The model-based approaches are 

not suitable for large-scale and 

complex systems [55]. 

 

Data-driven • Un-necessary to model various 

degradation/failure physics 

precisely [57].  

• Require little domain knowledge 

[41]. 

• Easier to implement [41]. 

• Handle high-dimensional and 

correlated process variables [57]. 

• Suitable for complex systems and 

large-scale systems [58]. 

• Automatic discovery of patterns or 

models from a data set [57]. 

• Discovery of tacit knowledge in the 

data [57]. 

•  They can reduce time and cost 

since they do not require the 

development of models [58]. 

 

• Reliance on relevant and quality 

data [58]. 

• The quality of the results and the 

performances rely on training 

data and may degrade once the 

system is working in an unknown 

condition (i.e. outside of the 

training data) or is affected by 

unknown faults [41]. 

• High effort in preprocessing step 

to extract useful information from 

data with a high computational 

cost [41].  

Hybrid • Combine the advantages of model-

based and data-driven approaches 

to provide better diagnostic 

systems [41]. 

 

• The complexity of the selection, 

combination and parameter 

tuning of various methods [41]. 

 

 

 

 

 



2. INVARIANT MODELLING PATTERNS 

 

A summary of approaches for modelling digital twins has been presented to understand how physical 

settings can be modelled. From the above, it is clear that modelling means first recognising critical-

to-solution (CTS) variables and then grabbing the hidden relationships between those variables that 

determine a given system behaviour (this latter can sometimes be confounded with the expected 

performances of the same system). Stated in this way, it is clear that the modelling effort becomes 

overwhelming by using model-based or, on the contrary, data-driven approaches, which are keen to 

work well once the decision maker clarifies the decisional scenario. The approaches developed so far 

to solve specific problems lack of a clear and systematic methodology to model and develop virtual 

models (DTs), i.e. to make explicit the embedded knowledge behind physical systems. In Object-

oriented programming (OOP) [59], a pattern is defined as: “a problem which occurs over and over 

again in our environment, and then describes the core of the solution to that problem, in such a way 

that you can use this solution a million times over without ever doing it the same way twice" [60]. 

Patterns in OOP help transfer the same solution among different implementations [61]. However, 

patterns in OOP are conceived and designed from experts.  

This paper aims to prove that recognising recurring behaviours of systems thanks to patterns detected 

within data may significantly reduce the modelling complexity and make the decisional task of 

building the Digital Twin more objective. The expected results is a modelling paradigm in the form 

of invariant modelling patterns which allow more straightforward design, modelling, development, 

and hopefully maintenance of digital twins. Patterns have some trade-offs and limitations: experts are 

expected to develop and update the new pattern, i.e., this pattern-recognition process is not unmanned. 

Furthermore, the main consequence of using patterns is applying them across the same objects with 

the risk of applying too many unnecessary design patterns. In this context, the proper research 

challenge is thus how to identify automatically invariant modelling patterns within data, as 

schematised  in Figure 2.  

 

Figure 2: The research contribution 

 

The invariance concept is the core of our proposed DT-design methodology, provided the capability 

to recognise invariant patterns means to identify a recurring structure within system components and 

thus to define “elementary behaviour” or a set of variables that never changes despite their 

instantiation. As consequence, it may therefore be then the case to create a library of patterns to form 

a sort of grammar of a helpful language to describe/represent the components of a model and then to 

build a DT.  



In mathematics, invariance refers to a property of an object (say class) which remains unchanged after 

any operations applied to the object [62]. In physics, invariance, also defined as symmetry, is the 

property possessed by an entity not to be modified by applying a transformation. Each property (also 

called symmetry properties) is always associated with conserving a physical quantity [63]. Scaling 

up the reasonings to a higher level of abstraction, we can refer to Wigner  [64] speculating on the idea 

of symmetry and invariance principles stating that << There is a strange hierarchy in our knowledge 

of the world around us. … There is, nevertheless, a structure in the events around us, that is, 

correlations between the events of which we take cognisance>>.  

The idea proposed here is that knowledge behind the explicated correlations between CTS variables 

allows forecasting system behaviour and thus predicts the potential outcomes of uncertain events. To 

a certain extent, a DT is no more than a sophisticated model of reality, an implicit law embedding 

structured information aimed to perform the same scope: to predict the uncertain future evolution of 

a system, even the most difficult to foresee. In the context of building a DT for manufacturing 

systems, patterns are a means to recognise a feature or characteristic of a physical entity, as already 

stated. We can then extend the definition of invariance to a pattern in the context of building DTs: an 

invariant pattern describes/emulates an object/system independently of the context of the application 

of the system. Here we applied the concept of symmetry to patterns, provided a symmetrical pattern 

maintains the same features/attributes in different fields of application: a pattern will here be 

considered invariant as long as it has a behavioural symmetry over time or other contexts, thus leading 

to an unchanged behaviour at changing the reference domain (field of application). It is clear that 

symmetry will be a function of the quality and typology of the description of the system, more than 

of the specific system’s features and state variables themselves.  

Citing again [64], recognising invariance is thus the prerequisite to discovering events and advancing 

the world's knowledge. Invariance per sé thus is a value in building DT as it gives confidence in the 

model components' quality, provided these do not depend anymore on the specific situation. Invariant 

Modelling Patterns are thus useful in terms of i) identifying modelling constructs by explicating 

knowledge of the system’s behaviour; ii) simplifying the modelling effort by allowing to transfer of 

an explicit feature (say system behaviour)  among different modelling implementations, and iii) 

providing a weak proof of modelling quality and consistency thanks to recognising similarity in 

system’s behaviour: the larger the similarities, the higher the consistency of the model. This latter 

point needs further speculation: manufacturing systems may be strongly different, but this is true 

depending on the point of view. Suppose one considers the physical aspects (i.e., logistics, materials, 

operational parameters, etc.), in this case, this difference appears evident, but if one considers the 

functional point of view (e.g., the satisfaction of needs) - at a higher level of abstraction- these 

differences may disappear. Patterns are those constructs able to capture functions (say, the behaviour 

of systems) and thus are susceptible to remain unchanged over time or space. It is then evident how 

the concept of “standardisation” of patterns (i.e. the capability of recognising classes or categories of 

patterns) may be an objective approach in building DT models to gain the confidence of the 

previously-mentioned model quality and consistency itself.   

Another practical use of the idea of invariant modelling patterns is in terms of modelling efficiency 

since it allows reusable and parameterised modelling constructs corresponding to physical behaviours 

already recognised in advance to be easily re-applied in different situations. Through the invariant 

modelling patterns, the modelling time could thus be significantly reduced. Given the complexity of 

the reality of manufacturing systems, it is of significant interest to automate this pattern search to 

form the pattern library to support the modelling effort.  



The practical methodology proposed in this paper starts with identifying patterns from historical data 

observed at multiple scales and levels. Accordingly, the detection and recognition of invariant 

modelling patterns are done by data-driven analysis. Patterns are here identified as characteristic and 

invariant structures or modules in data extracted from manufacturing systems. Invariant modelling 

patterns represent recurrent information or behaviour of a system that emerges as an outcome from 

historical data like the product, order, equipment, processing, and equipment information [65].  Once 

identified and made explicit, patterns provide a strong indication of the behaviour of a system and are 

typically described quantitatively. A pattern will thus represent an elementary unit (modules) of the 

modelling scheme that allows for building the overall virtual model of a given physical system or 

problem. The resulting library of patterns may automatically help to identify recurrent behaviours to 

"reproduce" real systems functioning and thus simulate and emulate it through a digital twin.  

The advantages of invariant modelling methodology proposed will then be the reliability in modelling 

and the modularity, which facilitate the development and maintenance of digital twins. 

Modularisation, therefore, can improve DT modelling efficiency as it allows different patterns to be 

separated and recombined with the advantages of flexibility and reusability. This approach can 

dramatically reduce the workload and time required for developing DT. Based on patterns,  the model 

building may result in just integrating selected constructs. At system change, the designer needs only 

to adjust or select the correct patterns, and the virtual DT model may hopefully be automatically 

rebuilt. We will show in the following sections how to detect, apply and especially re-use predefined 

functional patterns that are systematically developed and logically interlinked for the configuration 

of a holistic manufacturing system thanks to the industrial case discussed. The rest of the paper will 

be aimed at explaining and providing evidence of this idea of pattern standardisation as a novel 

approach to model DT: although it will not be formal proof, it will allow readers to speculate on the 

idea and draw their conclusions on this topic. 

 

 

3. AUTOMATIC DEFINITION OF INVARIANT MODELLING 

PATTERNS  
 

Identifying an invariant modelling pattern also requires the design of a methodological approach to 

recognise recurrent data structures and formalise their syntax and semantics. The further step 

presented here is a methodology for automatically detecting repeatable modelling patterns through 

data-driven analysis, which corresponds to typical behavioural characteristics of systems and, thus, 

derives solutions to commonly occurring modelling problems from this knowledge.  

The methodological process of detecting invariant modelling patterns data-driven is shown in Figure 

3 and consists of the following steps:  

 (1) the first step is to identify the systems to analyse and the choice of products and the related 

manufacturing process;  

(2) A model-based approach aims to model the system by describing the function, the structure, and 

the behaviour;  

(3) the model-based approach thus draws a detailed representation of the system under consideration, 

enabling the selection of critical data to be collected and analysed; 

(4) when the system and the data type are selected, the data-driven approach can be applied to 

automatically detect and discover associations and relationships among data. Formal concept analysis 

(FCA) or Relation concept analysis (RCA) data-driven techniques are applied at this stage to analyse 



manufacturing data and try to identify patterns under the shape of association rules. The associations 

can describe recurrent behaviours of the system and codify tacit knowledge that can be used to 

understand the system's behaviour better.  

(5) The fifth step consists in analysing discovered associations based on the model developed in (2) 

to extract knowledge from data and define the physical meaning of the associations.  In this way, 

invariant modelling patterns based on data-driven analyses can be detected; 

(6) Patterns need to be formalised for use within different contexts with minimum effort.  

(7) invariant modelling patterns can better help to design the virtual model, such as its corresponding 

digital twin. These can significantly advantage reusability among systems or processes operating in 

a similar condition. 

According to the above, the proposed DT-modelling approach consists of eight different stages, put 

in a cycle as shown in Figure 3: 1) definition of the system; 2) system modelling; 3) data selection; 

4) knowledge discovery; 5) knowledge extraction; 6) knowledge formalisation; 7) definition of design 

criteria for building a digital twin; 8) knowledge re-use. The first three steps are model-based oriented 

because these are functional to generally build the physics of the manufacturing system and select the 

right set of information to design a DT. Steps (4)-(8) are data-driven-oriented to access a sizeable 

amount of data to detect a priori all the possible invariant patterns behaviour in which performance 

degradation can occur. The following paragraphs explain every single stage in detail. 

 

 
Figure 3: Invariant Modelling Patterns Methodology 

 
3.1 DEFINITION OF THE SYSTEM 

 

The first step for defining data-driven patterns is the definition of the system to be analysed by 

recognising the main variables and their interrelationships. For the definition of the system, it is 

necessary to identify the scenario under analysis.  The approach for defining how to select a system 

is presented and described, as an example, in [66], [67], [68]. It consists of applying a thermodynamic 

model for selecting and designing a system. This thermodynamic view of the system represents a 



guideline to structure the critical variables and the paths to digitalise processes for the intelligent 

control of the core production processes [67], [68]. 

 

3.2 SYSTEM MODELLING  

 

System modelling aims to show how system components, their contents (Properties, Behaviours, 

Constraints), and their relationships interact [27]. MBSE approach is adopted in this stage using 

SysML as a modelling language. SysML is “a general-purpose graphical modelling language for 

representing systems that may include combinations of hardware, software, data, people, facilities, 

and natural objects”. SysML provides nine interrelated types of diagrams to reproduce and describe 

a system defining the requirements, the structure, and the behaviour for identifying the possible 

decisions or actions. The advantage of using SysML as a modelling standard is describing the syntax 

and semantics behind any system [69]. The modelling stages to be performed are described below 

and summarized in Figure 4:  

1) Modelling requirements and use cases to represent system requirements provides a detailed 

description of a user's requirements and the system's functionality. A requirement specifies a 

capability or condition that must (or should) be satisfied, a function that a system must 

perform, or a condition a system must achieve. Requirement (req) and use case diagrams (uc) 

can be applied in this stage. 

2) Modelling the system structure using the block definition diagram (bdd) to model a system in 

blocks defining the relationships between them, such as their hierarchical relationship.  A 

block represents a modular structural unit that describes a system structure. It can define a 

type of logical or conceptual entity, a physical entity (e.g., a system), hardware, software, or 

data component. Blocks have different structural and behavioural features. The structural 

features of a block are the properties. Properties describe a block’s structural aspects in terms 

of its relationship to other blocks and its quantifiable characteristics. Value properties describe 

quantifiable physical performance, and other block characteristics, such as weight or speed. 

Behavioural features declare the set of services that characterise the blocks. 

3) Modelling the relationships between blocks in the internal definition diagram (ibd) to specify 

the internal structure of a single block. The ibd diagram provides an inner vision of every 

block in the block definition diagram to define the physical connection between two entities 

that communicate through an item flow.  

4) Modelling constraints in the parametric diagrams (par). Constraints can correspond to any 

mathematical or logical expression, including time-varying expressions and differential 

equations. It can be re-used and bound with other constraints to represent complex sets of 

equations. A constraint block defines a set of parameters related to each other by a constraint 

expression. Parameters may have types, units, quantity kinds, and probability distributions. 

Constraint blocks can be defined in model libraries to facilitate specific types of analysis 

(performance, mass properties, thermal, etc.). The parametric diagram (par) shows how 

constraint properties are connected by binding their parameters to one another and the value 

properties of blocks.  

5) Modelling the behaviour of the system in state machine diagrams (stm). A state represents a 

condition in the life of a block, and it is used to define which kind of change it undergoes in 

response to the occurrence of an event or a guard condition and what behaviours it performs.  

The state machine diagram is a dynamic behavioural diagram that shows the sequences 



of states that an object or an interaction goes through during its lifetime in response to events. 

The state machine diagram simulates how the states change based on internal or external 

events. Typically, state machine diagrams describe the state-dependent behaviour of a block 

throughout its life cycle in terms of its states and the transitions between them.  

SysML analyses the system requirements and the visual development of the system components, 

structure and behaviour. It is a graphical representation of the static structure and the dynamic 

behaviour of a system as it is. 

 

 
Figure 4: SysML Modelling Views 

 

3.3 DATA SELECTION  

 

The previous steps enable the model of the system, features, and performances, developing an 

understanding of the application domain and the relevant prior knowledge. The availability of 

knowledge about the processes allows for clearly tracking the system features and system evolution. 

The main idea is to select and collect data on which data-driven patterns discovery can be performed. 

Data selection is defined as the process of determining the appropriate data type and source and 

suitable instruments to collect data that includes a set of actions to complete. The first is creating a 

target data set, selecting a set, or focusing on a subset of variables or data samples. Second is data 

cleaning and pre-processing, where basic operations include removing noise, collecting the necessary 

information to model or account for noise, deciding on strategies for handling missing data fields, 

and accounting for time-sequence information and known changes. The third action comprises the 

merging of data from multiple data stores. This process must be carefully performed to avoid 

redundancies and inconsistencies in the resulting data set. Typical operations accomplished within 

the data integration are identifying and unifying variables and domains, the analysis of attribute 

correlation, duplicating tuples, and detecting conflicts in data values of different sources. Those 

actions enable collecting and converting data into information, sharing the information acquired, 



formalising the knowledge, joint performance measurements, and leveraging the skills and 

knowledge [67]. 

 

3.4 KNOWLEDGE DISCOVERY: Data-driven analysis for detecting invariant modelling 

patterns 

 

Formal concept analysis (FCA) or relation concept analysis (RCA) algorithms are applied at this level 

to detect data-driven patterns.  FCA or RCA derive relationships and associations rules between 

objects described through attributes (e.g., operational parameters or manufacturing performance). The 

FCA is an unsupervised classification method oriented at knowledge representation and data-driven 

analysis [70]. This approach lets us elicit the conceptual structure of “object × attribute” datasets [71]. 

It provides tools to group the data and to recognise formal patterns by representing them as a hierarchy 

of formal concepts (nodes) organised in a semi-ordered set named lattice (Wille, 2002), as shown in 

Figure 5. Relational concept analysis (RCA) [72] extends FCA to multi-relational datasets. RCA 

admits multiple objects in its input format, each organised as a separate context, plus a set of binary 

relations between contexts. RCA considers relations between objects from different contexts (tables) 

and builds a set of connected lattices. RCA will be revealing concepts that FCA –over the aggregated 

context with all possible nestlings of a depth up to the limit– will miss [73]. Relation concept analysis 

(RCA) extends FCA to processing multi-relational datasets, each providing attributes and 

relationships among them [72].  

The FCA/RCA data table/tables consist of a set of objects (O) in rows and attributes (A) in columns, 

as shown in Table 2. Data are gathered within a (formal) context,  a triple K = (O, A, I), where O and 

A are non-empty sets, and I (I ⊆ O × A) is a binary relationship [77], where (o, a) ∈ I, also written 

oIa, means that the object o bears the attribute a. The formal context (O, A, I) of an input matrix of n 

rows and m columns consists, as shown in Table 2,  of a set of objects defined as O = 

{𝑂𝑏𝑗1, 𝑂𝑏𝑗2, 𝑂𝑏𝑗3, … 𝑂𝑏𝑗𝑛}, a set of attributes defined as A= {𝐴𝑡𝑡𝑟1, 𝐴𝑡𝑡𝑟2, 𝐴𝑡𝑡𝑟3 … 𝐴𝑡𝑡𝑟𝑚} and a 

binary relation I defined as 𝑂𝑏𝑗𝑖, 𝐴𝑡𝑡𝑟𝑗 ∈ 𝐼 if and only if the intersection of i-th row and j-th column 

is not blank [78]. The symbol “X” indicates the existence of a relationship (I) between an object and 

an attribute, while the symbol “•” indicates the absence of it [79].  

 

Table 2: FCA Formal Context, K = (O, A, I) where I (I ⊆ O × A) 
 

O 

A 

𝐴𝑡𝑡𝑟1 𝐴𝑡𝑡𝑟2 𝐴𝑡𝑡𝑟3 𝐴𝑡𝑡𝑟4 𝐴𝑡𝑡𝑟5 

𝑂𝑏𝑗1 X • X • • 

𝑂𝑏𝑗2 • X • X • 

𝑂𝑏𝑗3 • X X • X 

𝑂𝑏𝑗4 X I X • • 

𝑂𝑏𝑗5 • • X • • 

𝑂𝑏𝑗6 • • • X X 

𝑂𝑏𝑗7 • X X • • 



𝑂𝑏𝑗8 X • X X • 

𝑂𝑏𝑗9 X X X X X 

 

Given a set of objects (O), a set of attributes (A), and defined relations (I) between objects and 

attributes, a formal concept (node) represents a subset of objects (O) sharing the same subset of 

attributes (A), as displayed in Figure 5, where each node represents a concept. A concept is constituted 

by its extension, which consists of all objects belonging to the concept and its intention, which 

comprises all attributes shared by those objects. FCA/RCA algorithm converts the data tables 

automatically into connected concepts [75] to detect association rules between the objects and 

attributes from a single or different dataset [76], [77]. This understanding allows the formal discovery 

of association rules among concepts, consequently recognising which concepts are closely related 

based on the shared attributes [74]. 

 

Figure 5: Example of Concept Lattice generated using FCA [80] 

 

An association rule in FCA/RCA is a pair (X,Y) written as:  

ID_Association.Rule:  <o> X🡪  < o> Y [s,c]                                                                                  (1) 

It embodies information about co-occurrences of X and Y in objects from O where: 

● ID_Association.Rule: Identification Number of a Concept. 

● <o>: the number of objects that share the same association rule. 

● X is the association rule source (IF), i.e. the subset of objects sharing the same subset of 

attributes that generates Y. 

● Y is the association rule target (THEN), i.e. the subset of attributes generated by X. 

● Support (s) and confidence (c) are two classical association evaluation metrics.  

https://en.wikipedia.org/wiki/Subset


The support (s) is the number of transactions that include items in the {X} as a percentage of 

the total transactions. It measures how frequently the collection of items occurs together as a 

percentage of all transactions.  

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠(𝑜𝑏𝑗𝑒𝑐𝑡𝑠)𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑋 𝑎𝑝𝑝𝑒𝑎𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠(𝑜𝑏𝑗𝑒𝑐𝑡𝑠)
                                         (2) 

Confidence (c) measures how often each item in Y appears in transactions that contain items 

in X also. 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋∪𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
                                                                                          (3) 

 

For example, if we consider the attribute 𝐴𝑡𝑡𝑟1, the attribute 𝐴𝑡𝑡𝑟2 in Table 2 and the association rule 

(𝐴𝑡𝑡𝑟1 → 𝐴𝑡𝑡𝑟2), FCA/RCA calculate the support of 𝐴𝑡𝑡𝑟1 and the confidence of the association rule as 

follows: 

Association Rule: (𝐴𝑡𝑡𝑟1 → 𝐴𝑡𝑡𝑟2)  

● 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴𝑡𝑡𝑟1) =
4

9
= 0.4 

● 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴𝑡𝑡𝑟2) =
5

9
= 0.55 

● 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴𝑡𝑡𝑟1 ∪ 𝐴𝑡𝑡𝑟2) =
2

9
= 0.55 

● 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴𝑡𝑡𝑟1 → 𝐴𝑡𝑡𝑟2) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴𝑡𝑡𝑟1∪𝐴𝑡𝑡𝑟2)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴𝑡𝑡𝑟1)
=

2/9

4/9
= 0.2 

 

An association rule is very useful in analysing data and discovering patterns where a pattern is: “a 

formal structure knowledge about objects, by giving association rules between attributes describing 

the objects”. These latter are evaluated and selected based on the support and confidence values equal 

to 50% and 100% accordingly.   

The RCA/FCA approach described above has been adapted herein to model a generic manufacturing 

system. A  manufacturing system is “a collection of integrated equipment and human resources 

whose function is to perform one or more processing and/or assembly operations on a raw material, 

part or set of parts” [7]. It can thus be conceived, as shown in Figure 6, as a set of manufacturing 

transformations, where these latter correspond to the manufacturing system's operations. The inputs 

are the n≥0 input operating parameters to perform a given industrial transformation (that produces 

the final good). Performances measure the efficiency/efficacy of this transformation and thus can be 

schematised as outputs to our scopes (see Figure 6). A manufacturing system can then be conceived 

as a set of manufacturing transformations over time (say, the objects in table 2) and the operating 

parameters and the performance are the input and output, respectively (say, the attributes in table 2). 

 

 
Figure 6: Logic schematisation of a Manufacturing Transformation for DT modelling purposes. 

 

The RCA data-driven technique is more suitable for analysing a manufacturing system because it can 

simultaneously process and link input and output attributes. Our idea of RCA’s application seems 

good to detect invariant modelling patterns for building DTs of a manufacturing system. The generic 



RCA data structure is presented in Figure 7. To apply RCA to model the manufacturing system 

presented in Figure 6, it is necessary to create and process two different tables. The first table (D1) 

represents the input attributes, i.e. machined parts over time (objects O) and operating parameters 

(attributes A). The second table (D2) stores the output attributes, i.e. machined parts over time 

(objects O) and performance parameters (attributes A). The formal context (O, A, I) of table D1 

consists, as shown in Figure 7,  of a set of objects defined as O = {𝑂𝑏𝑗1, 𝑂𝑏𝑗2, 𝑂𝑏𝑗3, … 𝑂𝑏𝑗𝑛}, and a 

set of attributes defined as A= {𝑋1, 𝑋2, 𝑋3 … 𝑋𝑚}. The formal context (O, A, I) of table D2 consists, 

as shown in Figure 7,  of a set of objects defined as O = {𝑂𝑏𝑗1, 𝑂𝑏𝑗2, 𝑂𝑏𝑗3, … 𝑂𝑏𝑗𝑛}, and a set of 

attributes defined as A= {𝑌1, 𝑌2, 𝑌3 … 𝑌𝑚}. 

An invariant modelling pattern, detected through RCA, has the form:  

ID_Association.Rule:<o> 𝑋1, 𝑋𝑚 🡪 < 𝑜 > 𝑌𝑚 [s,c]                                                                      (4) 

This represents a direct correlation and relationship between one or more operating parameters 

{𝑋1, 𝑋2, 𝑋3 … 𝑋𝑚} with one or more performance {𝑌1, 𝑌2, 𝑌3 … 𝑌𝑚}. The confidence metric measures 

the association rule's accuracy between operating parameters and performances. Based on the support 

and confidence metrics, the association rule allows quantifying the existence of a relationship 

between parameters formally and thus detecting an invariant behaviour of any given element (say, 

process) in a manufacturing system. In particular, a pattern recognizes a possible performance 

behaviour based on a specific instantiation set of operating parameters. Thus, the association rules 

are strong proof of the existence of a generic relationship between parameters of a given 

manufacturing process, while the Support and Confidence metrics provide the instantiation of a given 

process.  

Provided that our pattern-based approach to developing a Digital Twin relies on a general definition 

and use of patterns, we can put the following statement: once you have a set of patterns for any given 

system/process, it is possible to build an effective Digital Twin, whose reasoning will be based on the 

knowledge embedded into the set of patterns mentioned above. Optimisation problems, which are 

those typical problems we are facing in supporting decision-making using digital twins – at least in 

the manufacturing domain – are typically definable using patterns as a way of representing knowledge 

(i.e. relationships between process parameter /cause/ and related performances decay /effect/) helpful 

in getting to the solution. As an outcome of all of these reasonings, it is thus possible to model a 

digital twin of any manufacturing system once the existence of an invariant relationship between its 

parameters has been proved: performances will then be consistently recognised, modelled and 

predicted through the operating parameters identified by the domain expert fo the specific domain 

(say manufacturing system).  This latter point is still subject to the subjective decision of the expert, 

as in most of the present industrial applications.   

 



 
Figure 7: RCA design for a generic Manufacturing System 

 

 

3.5 KNOWLEDGE EXTRACTION: Invariant Modelling Pattern Data-driven 

 

This stage searches for data-driven patterns of interest in a particular representational form. The 

concept lattice supports knowledge extraction. The users can significantly detect patterns by correctly 

performing the preceding steps. Recognising a pattern and defining the correct mining is possible by 

evaluating it with the models performed in step 2. For analysis patterns to be reusable, they must be 

described concisely and consistently. We have devised the structure, shown in Figure 8, to formalize 

the patterns. The template lends a uniform structure to the information, making data-driven patterns 

easier to learn, compare, and use. This step also involves the visualisation of the extracted patterns 

and models. Each pattern is composed of six sections: 

1. ID PATTERN: defines the univocal pattern ID identification. 

2. PATTERN NAME: identifies the name and the function of the pattern. 

3. DESCRIPTION: This short description answers the following questions: What does the 

data-driven pattern do? What design or modelling issue does it address? 

4. ASSOCIATION RULE (FCA/RCA): this is an example of discovered associations among 

concepts based on FCA/RCA data-driven analysis. 

5. MODELLING VIEW (SysML): this graphical SysML representation presents the 

modelling views defining properties, behaviours, and constraints. This section will help users 

understand the more abstract description of the pattern. 

6. APPLICABILITY: defines how the pattern can be applied and defines how to recognise 

these situations. Concrete examples are also important because they help users choose which 

modelling solutions can be used.  

 



 
Figure 8: Invariant Modelling Pattern Structure 

 

3.6 KNOWLEDGE FORMALISATION: WEB LIBRARY OF DATA-DRIVEN PATTERNS 

 

The recognised knowledge needs to be formalised to be understandable and accessible to the users. 

Database management systems can store, collect, merge, and manage data from heterogeneous 

sources. Each pattern can be easily formalised, analysed, and applied. 

 

3.7 DESIGN CRITERIA FOR MODELLING DIGITAL TWIN 

 

The formalised data-driven patterns represent the design criteria for building efficient and 

straightforward end-user digital twins’ interfaces to support the employees in decision-making. A 

data-driven pattern can include rules, constraints and deductions related to the production processes, 

such as the constraint of the processing capability of specific equipment. These can be formalised in 

algorithms to make the DT judge, evaluate, optimise and/or predict.  

 

 

3.8 KNOWLEDGE RE-USE 

 

The formalised knowledge can be used in other systems to design digital twins or to model other 

applications. In this way, data-driven patterns can be combined to create effortlessly dynamic models 

based on the specific application. 

 

4. CASE STUDY: Die Casting Aluminium Process 

The approach presented in section 3 has been tested for validation on a real manufacturing process of 

the company Master Italy s.r.l., an Italian SME that produces small hardware for civil window frames. 

 

4.1 DEFINITION OF THE SYSTEM 

 

The product and the processes are the steel corner and die-casting aluminium, according to the 

analysis presented in [68]. Die-casting aluminium is a manufacturing process in which molten metal 



is poured or forced into steel moulds. The moulds, also known as tools or dies, are created using steel 

and are specially designed for each project. The total cycle time is short, typically around 33-35 

seconds. The process cycle of die-casting aluminium consists of four main phases described below 

and summarized in Table 3, making explicit the technological modelling performed by an expert. 

1. Melting: the aluminium enters the solid state and exits in the molten state. 

Die-casting requires that aluminium is heated well into its liquid phase for injection. The 

melting point of aluminium is: 680-700 °C (𝑇𝑎𝑙). Once melted and taken up to the proper 

temperature, the aluminium is transferred to each die-cast machine. Each die-cast machine 

has its holding furnace, which maintains the molten aluminium at temperature while waiting 

for use in the die-cast machine.  

2. Injection: the molten aluminium is injected into the mould through a plunger. 

The molten metal, maintained at a set temperature in the furnace, is then transferred into a 

chamber where it can be injected into the die. When a die-cast machine is ready for its next 

cycle (die is closed, ready for the shot), an automated ladle takes a prescribed volume of 

molten aluminium (𝑉
𝑎𝑙

) from the holding furnace and pours it into the mould. Once pouring 

is complete, the injection phases begin. The first injection phase is slow (𝑇1) where the plunger 

moves forward at a low speed (𝑉1). After a prescribed distance (𝐶1), the plunger enters (𝐶2) 

an intermediate speed phase (𝑉2) where the speed is increased to fill the mould. Once this is 

complete (𝑇2), the machine enters a fast phase where speed is significantly increased to fill 

the part cavity with aluminium (CC) 

3. Cooling: the molten aluminium solidifies in the mould cavity. 

After the part cavity is filled and the plunger has stopped moving, the hydraulic cylinder 

pushing the plunger is pressurised to a higher pressure (PM). This pressure holds the molten 

metal in the dies during solidification. When the cavity is filled, and the molten metal 

solidifies, the final shape of the casting is formed. The die cannot be opened until the cooling 

time has elapsed and the casting is solidified. Clamping force (FC) must be applied to the die 

to keep it securely closed while the metal is injected. After a prescribed amount of time (TC), 

the die opens the ejector or moves half of the die. 

4. Extraction: an ejection mechanism pushes the product out of the mould cavity.  

Once the injection cycle is completed and the machine is fully open, the die-cast is pushed 

out, and the die-cast thickness (SM) is controlled to prevent quality defects. A die-cast 

represents an injection cycle. The die-cast contains 36 steel corners. It means 36 steel corners 

are produced for each injection cycle every 33 seconds or recast in case of a quality problem. 

 

Table 3: Die-casting Aluminium Technological Parameters 
 

Die-cast Phases Parameter Unit Definition 

Melting 𝑇𝑎𝑙  °C The melting point temperature of aluminium 

 

 

 

 

Injection 

𝑉𝑎𝑙  m3 Volume of Aluminium 

𝑇1 sec Time of injection in the first phase 

𝑉1 m/sec Velocity of injection in the first phase 

𝐶1 m Course of injection in the first phase 

𝑇2 sec Time of injection in the second phase 

𝑉2 m/sec Velocity of injection in the second phase 

𝐶2 m Course of injection in the second phase 



CC m Multiplied course 

 PM Pa Multiplied Pressure 

FC N Clamping Force 

TC sec Cycle-time 

 SM m Die-cast thickness 

 

The expert classified the die-casting thermodynamic parameters upon a deep analysis as follows [68]: 

● Main parameters already controlled:  𝑉𝑎𝑙, 𝑇𝑎𝑙 , 𝑇𝑓 , 𝐶1, 𝐶2, 𝐶𝐶, 𝑇1, 𝑇2, 𝑃𝑀, 𝐹𝐶, 𝑆𝑀, 𝑇𝐶 

● Main parameters not yet controlled are: 𝑉𝑙, 𝑇𝑠, 𝑇𝑙 , 𝑇0, 𝑃0, 𝑇𝑚𝑜 , 𝑃𝑎1, 𝑃𝑎2, 𝑃𝑎𝑀   

● Derived parameters controlled are: 𝑉1, 𝑉2, 𝑃𝑆, 𝑃𝐹 

● Non-controllable parameters are: 𝜌𝑎𝑙, 𝑐𝑝,𝑎𝑙, 𝑐𝑙,𝑎𝑙, ℎ0, ℎ𝑎𝑙 , 𝑠0, 𝑠𝑎𝑙 

The main controlled parameters are the parameters related to the volume and the temperature of the 

aluminium (𝑉𝑎𝑙, 𝑇𝑎𝑙), the melting temperature of the aluminium (𝑇𝑓), the course of the plunger in the 

first, second and multiplied phases of the injection stage (𝐶1, 𝐶2, 𝐶𝐶), the time of mould filling  in the 

injection stage (𝑇1, 𝑇2), the multiplied pressure (𝑃𝑀), the clamping force (𝐹𝐶), the thickness of the 

product (𝑆𝑀) and the cycle time (𝑇𝐶). The main parameters to control are, namely: the volume of 

aluminium loss during the injection stage (𝑉𝑙), the temperature of the solid ingots at the entry of the 

furnace (𝑇𝑠), the temperature loss during the injection stage (𝑇𝑙), the environmental temperature and 

pressure (𝑇0, 𝑃0), the temperature of the mould (𝑇𝑚𝑜), the pressure of the accumulator in the first, 

second and multiplied stage (𝑃𝑎1, 𝑃𝑎2, 𝑃𝑎𝑀). The derived parameters controlled are the speed in the 

first and the second phase of the injection stage (𝑉1, 𝑉2) and the specific and final pressure (𝑃𝑆, 𝑃𝐹). 

The non-controllable parameters are the density of aluminium (𝜌𝑎𝑙), specific heat and latent heat of 

aluminium (𝑐𝑝,𝑎𝑙 , 𝑐𝑙,𝑎𝑙), specific enthalpy of environment and aluminium (ℎ0, ℎ𝑎𝑙), specific entropy 

of the environment and the aluminium (𝑠0, 𝑠𝑎𝑙).  

 

 4.2 SYSTEM MODELLING 

 

SysML has been applied according to the steps presented in section 3.2 to model 1) Structural 

composition, interconnection, and classification; 2) Constraints on the physical and performance 

properties; 3) Function-based and state-based behaviour; 4) Allocations between behaviour, structure, 

and constraints. 

Firstly, the use case and requirements diagrams are designed, as shown in Figure 9, to depict some of 

the high-level functionality of the die-casting process using the SysML Rational Rhapsody software. 

The programmable logic controller (PLC) and the manufacturing execution system (MES) monitor 

the die-casting operating parameters and performance, respectively (say, D1 and D2 attributes in 

section 3.4). PLC is an industrial digital computer that monitors the technological parameters listed 

in Table 3.  The manufacturing Execution System (MES) is the information system that monitors 

performance, i.e. productivity and machine downtimes. For this reason, ‘Monitor technological 

parameters’ and ‘Monitor machine downtime’ are defined as use cases for the process under analysis. 

The correlation between operating/technological parameters and machine downtime (performance) 

allows a better understanding of the system's behaviour for building the predictive behaviour models 

of the die-casting Digital Twin. Thereby, ‘Correlate technological parameters to machine downtime’ 

https://en.wikipedia.org/wiki/Digital_computer


is added as an included use case to refine the requirement: ‘Predictive manufacturing’, i.e. building a 

DT for the die-casting aluminium process to predict and prevent all possible failures. 

 

 
Figure 9: Use Case Diagram 

 

Secondly, the die-casting aluminium process is modelled in a block definition diagram (bdd) in Figure 

10, composed of four blocks representing the die-casting process phases: melting, injection, cooling, 

and extraction described in section 4.1 and Table 3. Each block is also described by a set of value 

properties, i.e., a quantifiable property with units, dimensions, and probability distribution. For 

example, the melting subsystem is a block characterised by three value properties, namely aluminium 

temperature (𝑇𝑎𝑙), melting temperature (𝑇𝑓), and aluminium temperature at the solid state (𝑇𝑠) with 

a unit of Celsius. Constraint blocks are modelled on the same diagram to define the main 

thermodynamic and physical equations associated with each block's value properties. 

 



 
Figure 10: Block Definition Diagram of Die-casting Process (bdd) 

 

A second block definition diagram is designed in Figure 11 to the list of parameters monitored and 

controlled on-site by the programmable logic controller (PLC) and the manufacturing execution 

system (MES).  

The programmable logic controller (PLC) monitors and records the run-time of the following 

operating parameters: the univocal ID of the injection cycle (MEASSETID), the name of the article to 

product (ARTICLECODE), the name of the machine (RESOURCENAME), data and time for each 

MEASSETID (TIMESTAMPLOCAL), the number of injection cycle for a single production order 

(N_INJECTION). Furthermore, it monitors and records the following operating parameters: the course 



of the plunger in the first phase (𝐶1) and in the second phase (𝐶2)  of the injection stage, the time of 

injection in the first (𝑇1) and in the second phase (𝑇2), the speed in the first (𝑉1) and in the second 

phase (𝑉2) of the injection, the multiplied course (𝐶𝐶), the multiplied pressure (𝑃𝑀), the specific 

pressure (𝑃𝑆), the final pressure (𝑃𝐹), the clamping force (𝐹𝐶), the thickness of the product (𝑆𝑀) 

and the cycle time (𝑇𝐶). Each parameter has a minimum value (MIN) and a maximum value (MAX) 

that are listed as value properties, in the block PLC, as follows: MIN_C1, MIN_T1, MIN_V1, MIN_C2, 

MIN_T2, MIN_V2, MIN_CC, MIN_PM, MIN_PF, MIN_PS, MIN_FC, MIN_SM, MIN_TC, MAX_C1, 

MAX_T1, MAX_V1, MAX_C2, MAX_T2, MAX_V2,  MAX_CC, MAX_PM, MAX_PF, MAX_PS, MAX_FC, 

MAX_SM, MAX_TC. The PLC automatically generates alarms if a machine malfunction occurs based 

on the minimum and maximum values. 

The MES system controls multiple elements of the production process (e.g. inputs, personnel, 

machines and support services) to monitor the production output and performances. The parameters 

listed as value properties in the block MES, are univocal ID (ID_RKD), day of production 

(DAY_SHIFT), day and time (DATA_TIME), a possible state of the machine (STATE), possible 

activities of the machine (ACTIVITIES), name of the machine (RESOURCE), name of the employee 

(WORKER), the ID of the production order (PRODUCTION_ORDER), name of articles to product 

(ARTICLE), duration time of a setup (SETUP_TIME), duration time of production (UPTIME), 

duration time of maintenance downtime (MAINTENANCE_TIME), duration of a downtime 

(DOWNTIME), the quantity of conformed products (CONFORMED_QUANTITY), the quantity of 

discarded products (DISCARDED_QUANTITY), number of injection cycles during the production 

time (N_MOULDED), the univocal ID of a machine downtime (ID_ MACHINE_DOWN_TIME), 

description of a possible machine downtime (DESCRIPTION_ MACHINE_DOWN_TIME), shift 

(morning/afternoon/evening) (N_SHIFT), number of products for each injection cycle (N_PIECES). 

 



 
Figure 11: Block Definition Diagram (bdd) 

 

Thirdly, the internal block diagram (ibd) is designed in Figure 12, showing how the two-block 

definition diagrams (Figures 11-12) presented above interact. The system starts with a data 

acquisition system using appropriate sensors to record signals such as course, pressure, speed, 

temperature, etc. The programmable logic controller (PLC) stores the values of the technological 

parameters from connected sensors or input devices. It processes the data and triggers outputs based 

on pre-programmed parameters (MIN and MAX values for each parameter) to monitor the injection, 



cooling and extraction phases. The manufacturing execution system (MES) tracks production data to 

monitor the process's performance and productivity, recording all process downtime. 
 

 
Figure 12: Internal Block Definition Diagram (ibd) 

 

Fourthly, the parametric diagram in Figure 13 is created to model equations defined in the constraint 

blocks in Figure 8. For the sake of conciseness and vice versa, only a part of the die-casting equations 

is shown in Figure 13 to display the bindings between constraint parameters in different constraint 

expressions to create a composite system of equations. 

 



 
Figure 13: Parametric Diagram (par) 

 

Lastly, the process’s dynamic behaviour is expressed in the state machine diagram (stm) in Figure 

14. The state diagram reproduces how the PLC records and evaluates the parameters defined in Figure 

11, recognising four different states (see Table 4): 

● RECASTING (red) when a PLC parameter is out of range, it causes the 

recasting of the injection cycle (≈ 36 products). 𝑉2, PM, FC, SM, and TC 

are the critical parameters because If 𝑉2, PM, FC, SM, and TC are equal to or below the 

minimum value or greater than or equal to the maximum value, there is the recasting of the 

injection cycle. A recasting is recognised as scrap (DISCARDED_QUANTITY) by the MES. 

● NOT CONFORMED (burgundy): when a PLC parameter is out of range, but it does not 

generate the recasting of the injection cycle.  

● CHECK (yellow): when a PLC parameter is close out of range. 

● CONFORM (green): when a PLC parameter operates into the defined range. 

The numbers 1-5 define five different ranges of values where each parameter can operate based on 

the machine setup. 

 

 



Table 4: PLC Parameters States Example 
 

PARAMETER DATA TYPES RANGE STATE (S) S 

C1- Course First Phase  NUMBER(10)    C1_1 NOT CONFORMED   

C1- Course First Phase  NUMBER(10)    C1_2 CHECK  

C1- Course First Phase  NUMBER(10)    C1_3 CONFORMED  

C1- Course First Phase  NUMBER(10)    C1_4 CHECK  

C1- Course First Phase  NUMBER(10)    C1_5 NOT CONFORMED  

 

V2- Speed Second Phase NUMBER(10)    V2_1 RECASTING  

V2- Speed Second Phase NUMBER(10)    V2_2 CHECK  

V2- Speed Second Phase NUMBER(10)    V2_3 CONFORMED  

V2- Speed Second Phase NUMBER(10)    V2_4 CHECK  

V2- Speed Second Phase NUMBER(10)    V2_5 RECASTING  

 

 

The state chart diagram in Figure 14 models the dynamic behaviour of the die-casting aluminium. 

The state machine diagram shows the possible state of each parameter and the events that can trigger 

a transition between the states. The process is initiated in the ‘OFF’ state. When it is ready to be 

evaluated, the ‘EvOn’ event triggers a transition from the ‘ON’ state to ‘READ’ state, as shown in 

Figure 14a. Upon entry to the ‘READ’ state, a timed event triggers a transition to ‘VERIFY_C1’ state 

in a time interval of 3 seconds. Once the process has entered in ‘VERIFY_C1’ state, it immediately 

transitions to the neutral state. A time event of 2 seconds triggers a transition to the condition 

connectors. It splits a single segment into several branches. Branches are labelled with guard 

conditions that are evaluated contemporary to determine which branch satisfies the condition. The 

connector evaluates if the value C1=150 activates the state C1_1 or C1_2 or C1_3 or C1_4 or C1_5 

(Figure 14a). A time event of 3 seconds triggers a transition to the ‘VERIFY_T1’ state. The logic is 

the same as the one just presented. The guard conditions for the ‘VERIFY_V2’ state in Figure 14b 

are evaluated based on the constraint (𝑉2 =
𝐶2

𝑇2
 ) modelled in the parametric diagram in Figure 13. If 

the state V2_1 or V2_5 are activated, the number of DISCARDED_QUANTITY is calculated as 

follows: 
 

 tm(1000)/setDISCARDED_QUANTITY( DISCARDED_QUANTITY +1                                                       (5) 

When also the ‘VERIFY_SM’ state is evaluated as shown in Figure 14c, the presence of a fault or a 

machine downtime should be detected. It requires the knowledge of all possible correlations between 

technological parameters with machine downtime for predicting all possible faults or breakdowns. 

For this reason, the RCA application aims to detect invariant modelling patterns in the knowledge 

discovery and extraction stages. 

 

 

 



 
Figure 14: State Chart Diagram (stm) 

 

 

Figure 14a: Verify C1 

Figure 14b: Verify V2 

Figure 14c: Detect Failures 



4.3 DATA SELECTION  

 

Two databases have been selected and analysed according to the logic explained in section 3.4 and 

steps 4.1 and 4.2. As described in section 3.4, the first table (D1-X) represents the input attributes of 

a manufacturing system, i.e. machined parts over time (objects O) and operating parameters 

(attributes A). The second table (D2-Y) stores the output attributes, i.e. machined parts over time 

(objects O) and performance parameters (attributes A). For the manufacturing system under analysis 

(Figure 15), the operating parameters are collected and stored in the PLC machine (see Table 3 and 

Figures 10-11), while the performances are measured by the Manufacturing execution system (MES 

- see Figure 11). In this case study, the operating parameters (𝑋𝑖) are the technological parameters of 

a die-casting aluminium process, while the performance (𝑌𝑖) are assessed as machine downtimes. 

PLC data need to be gathered and combined with MES data to define all possible and existing 

correlations between technological parameters (𝑋𝑖) and machine downtime (𝑌𝑖). This aims to discover 

explicit and tacit functional patterns for modelling the behaviour of a DT able to optimize the die-

casting process's efficiency (i.e. prediction or reduction of downtime, waste reduction, maintenance 

and quality optimization). 

 

 
Figure 15: D1 and D2  Relationships for die-casting aluminium process 

 

4.4 KNOWLEDGE DISCOVERY: Data-driven analysis for detecting invariant modelling 

patterns 

 

The PLC and MES databases cover the last 18 months of production. D1 table (PLC) has 57.779 

objects (O) and 67 attributes (A). D1 objects (𝑂𝐵𝑖𝐷1) are the injection cycle. D1 attributes (𝐴𝑇𝑖𝐷1) 

are PLC technological parameters listed in Table 3 (say, input attributes in section 3.4).  

D2 table (MES) has 57.779 objects (O) and 19 attributes (A). D2 objects (𝑂𝐵𝑖𝐷2 = 𝑂𝐵𝑖𝐷1) are the 

injection cycles. D2 attributes (𝐴𝑇𝑖𝐷2) are the machine downtime problems listed in Table 6 (say, 

output attributes in section 3.4). RCA runs on two different tables, as shown in Figure 16. The objects 

and attributes of each RCA table are listed in Tables 5 and 6. The outcome is the lattice shown in 

Figure 17 that allows the detection of all possible patterns between the technological parameters and 

machine downtime. 



 

 
Figure 16: RCA Data Structure 

 
Table 5: RCA Objects (O) of each Database (D1, D2) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 6: RCA Attributes (A) of each Database (D1, D2, D3) 
 

 
 

4.5  KNOWLEDGE EXTRACTION 
 

Applying the RCA, 7.743 association rules (possible patterns) have been detected automatically using 

the INCLOSE IV algorithm [76]. Here, we focus on 50% support (s) and 100% confidence (c) rules. 

The RCA lattice is shown in Figure 17. 

 

 



 
 

Figure 17: RCA Lattice and detected Patterns (P1,P2,P3) 

 

The RCA lattice analysis (Figure 17) enabled the identification of three main invariant modelling 

patterns represented in Figure 18 and described as follows:  

P1 The downtime problems called: Thickness =16, Thickness =15, Thickness <=14, Micro-stop 

for SM_LimLow (say, problems 1-4 in Table 6) are caused by the following technological 

parameters: 𝐶1, 𝐶2, CC, SM_1, SM_2.  

P2 All recasting problems (say, problems 8-19 in Table 6)  are associated with the following 

parameters: SM_5, 𝑉2_1, 𝑉2_5, 𝑇2_1, 𝑇2_5, PS_1, PS_5, PM_1, PM_5, TC_5. 

P3 The machine downtime related to the component problem, electrical maintenance and 

mechanical maintenance (say, problems 5-7 in Table 6)  is generated by PM_2, PM_4, FC_2, 

and FC_4 parameters. 

 

 

 

 

 

 

 

 

 

 

Figure 17a: RCA Lattice Figure 17b: P1 Pattern 

Figure 17c: P2 Pattern Figure 17d: P3 Pattern 



 
Figure 18: Invariant Modelling Patterns out of the RCA analysis 

 

The physical meaning of each data-driven pattern has been defined using the models discussed in 

paragraph 4.2. Each pattern has been formalised according to the template presented in section 3.5 

and represented in Table 7. 

 

 

 

 

 

 

 

 

 

 

 

  

   

PATTERN P1 PATTERN P2 PATTERN P3 



Table 7: The List of Invariant Modeling Patterns identified by RCA Data-driven Analyses based on SysML models 

 

P1: MOULD FILLING PATTERN 

1. ID: P1 

2. PATTER NAME: MOULD FILLING PATTERN 

3. DESCRIPTION: the pattern aims to show and describe the correlations between the 

parameters C1, C2, and CC. The pattern represents the course of the plunger for filling the 

mould. This impacts the quality of the product (SM). 

4. P1 EXAMPLE OF ASSOCIATION RULE (Concept): 
1: C1,C2,CC,SM_1  🡪 Microstop [0.5,1]                                                                                          

 
The set of data includes: 

● Plunger course 𝑪𝟏 (mm) in the first phase of the injection stage 

● Plunger course 𝑪𝟐 (mm) in the second phase of the injection stage 

● Plunger course CC (mm) in the multiplied phase of the injection stage 

● Product thickness SM (mm²) 

5. P1 SYSML MODEL 

VIEW: 

6. P1 APPLICABILITY: Use mould filling pattern for: 
● Modelling and preventing problems of micro-stop. 

● Modelling and preventing problems during filling processes. 

● Modelling the behaviour of the plunger course. 

● Modelling the behaviour of an injection system. 

 

https://context.reverso.net/traduzione/inglese-italiano/problems
https://context.reverso.net/traduzione/inglese-italiano/filling


 

P2: MACHINE RESTART PATTERN 

1. ID: P2 

2. PATTER NAME: MACHINE RESTART PATTERN 

3. DESCRIPTION: the pattern aims to show and describe the correlations between V2, 

T2, PM, PS, SM, TC. The pattern denotes the restart of the machine after a machine 

downtime. The restart of a machine generates a recasting of the product. 

4. P2 EXAMPLE OF ASSOCIATION RULE (Concept): 

2: TC_5, PM_1, PS_1, V2_5, T2_5, SM_5  🡪 Restart_Machine [0.5,1]                                                                                          

 

The set of data includes: 

● Plunger speed 𝑽𝟐 (m/sec) in the second phase of the injection stage. 

● Plunger time 𝑻𝟐 (msec) in the second phase of the injection stage. 

● Multiplied pressure PM (Pa) in the multiplied phase of the injection stage 

● Specific pressure PS (Pa) 

● Product thickness SM (mm²) 

● Cycle time TC (sec) 

5. P2 SYSML MODEL VIEW:  
 

 

6. P2 APPLICABILITY: Use machine restart pattern for: 

● Modelling and preventing problems of recasting. 

● Modelling the restart of a machine. 

 
 

P3 CLAMPING SYSTEM PATTERN 



1. ID: P3 

2. PATTER NAME: CLAMPING SYSTEM PATTERN 

3. DESCRIPTION: the pattern aims to show and describe the correlations between PM, 

PS, and FC. The pattern identifies the cooling stage of the die-casting aluminium 

process. The multiplied pressure are the clamping force are the parameters for 

monitoring the state of the clamping system. The clamping force FC and multiplied 

pressure PM values can generate mechanical problems. 

4. P3 ASSOCIATION RULE (Concept): 
3: PM_2, FC_2 🡪 Maintenance [0.5,1]                                                                                          

 

The set of data includes: 

● Clamping Force FC (kN) 

● Multiplied Pressure PM (Pa) 

5. P3 SYSML MODEL VIEW 

6. P3 APPLICABILITY: Use clamping system pattern for: 

● Modelling the behaviour of a clamping system (e.g., mould clamping). 

● Modelling and preventing mechanical breakdown. 

 

 

 

 

 

 

 

 

4.6 KNOWLEDGE FORMALISATION: WEB LIBRARY OF PATTERNS 

 

https://www.sciencedirect.com/topics/engineering/hydraulic-pressure


A Web platform based on SQL language in the Oracle database has been created, as shown in Figure 

19.  Structured Query Language (SQL) is the standard language that can be used for storing, 

manipulating and retrieving data stored in a relational database to 1) Execute queries against the 

database; 2) Create stored procedures in a database; 3) Create dashboards to represent the meaning 

of each data-driven construct. In this case, SQL has been applied for formalising and instantiating the 

patterns described in Table 7, creating, in this way, analytical reports for the employees. 

 

 

Figure 19: Web Platform for Data-driven patterns 

 

4.6.1 MOULD FILLING PATTERN (P1)   

 

The pattern P1 has been formalised in the web platform to describe and analyse the micro-stop 

machine downtime. The pattern presents the correlation between the following parameters: 

● Plunger course 𝐶1 (mm) in the first phase of the injection stage 

● Plunger course 𝐶2 (mm) in the second phase of the injection stage 

● Plunger course CC (mm) in the multiplied phase of the injection stage 

● Product thickness SM (mm²) 

The daily micro-stop dashboard shown in Figure 20 allows an understanding of the frequency of this 

problem over time, the duration and the economic impact of each occurrence. 

It is possible to click on each occurrence to understand the degradation trends of SM over time, as 

shown in Figure 21. The red line indicates the threshold value of SM (SM Min). When SM is 

equal to or below SM_Min, the injection cycle (≈ 36 products) is recast. 

The dashboard shows that a recasting always precedes a micro-stop. The requirement is to predict 

SM before the threshold value. It is necessary to discover the relationship between SM, C1, C2 and 

CC. In particular, the dashboard Pattern Values in Figure 22 demonstrate that C1 and C2 are inversely 

proportional as a function of SM. All possible combinations between C1, C2, CC and SM need to be 

explored to define how to detect all possible behaviour of the system. 

 

 



 

Figure 20: Daily Micro-stop 

 

 
Figure 21: SM Values 

 

 

Figure 22: Pattern Values 

 

All correlations are split into three main categories, as shown in Figure 23: 

● The green area indicates all possible combinations between C1, C2 and CC when SM is 

greater than SM_Min. These combinations define when the process is functioning correctly. 

● The yellow area indicates all possible combinations between C1, C2 and CC when SM is close 

to the threshold value.  

● The red area indicates all possible combinations between values C1, C2 and CC when SM is 

equal to or below SM_Min. These combinations indicate a system failure and the machine's 

consequent micro-stop. 

For the case study under analysis, the pattern P1 can be instantiated to predict possible micro stop 

downtimes avoiding quality problems and product recasting. 



 

 

Figure 23: Pattern Analysis for Prediction 

 

4.6.2 MACHINE RESTART PATTERN (P2)  

 

The pattern P2 has been designed in the platform to explore the restart behaviour of the die-casting 

process. The pattern presents the correlation between the following parameters: 

● Plunger speed 𝑉2 (m/sec) in the second phase of the injection stage. 

● Plunger time 𝑇2 (msec) in the second phase of the injection stage. 

● Multiplied pressure PM (Pa) in the multiplied phase of the injection stage 

● Specific pressure PS (Pa) 

● Product thickness SM (mm²) 

● Cycle time TC (sec) 

The dashboard in Figure 24 has been created to demonstrate that whenever a downtime occurs, the 

restart of the machine presents one or more parameters above listed, out of the threshold value. The 

parameters 𝑉2, 𝑇2PM and PS could present values greater than or below the threshold value, while 

SM and TC only present values greater than a threshold value. It is possible to click on each downtime 

problem (cause code), as shown in Figure 25, to analyse which parameter causes it frequently and 

which value assumes. In this case, the instantiation of the pattern P2 helps prevent downtimes, 

avoiding possible product recasting caused by machine restarting. 

 



 
Figure 24: Number of Stops Machine 

 

 
Figure 25: Restart Machine Pattern Analysis 

 

4.6.3 CLAMPING SYSTEM PATTERN (P3)  

 

The pattern P3 has also been designed in the platform to evaluate the correlation between the 

following two parameters: 

● Clamping Force FC (kN) 

● Multiplied Pressure PM (Pa) 

The dashboard percentage of mechanical failure in Figure 26 has been created to comprehend the 

number of occurrences of mechanical maintenance for each month. 

 



The yellow dashed lines represent the thresholds values. Each intended line represents the trend of 

each mechanical maintenance downtime occurrence over time. The result is that FC is inversely 

proportional to PM. It means that if an occurrence presents values of FC or PM above or below the 

line, it is possible to detect possible incoming maintenance problems. In the first scenario in Figure 

27, the first four occurrences of June 2018 have been investigated. PM operate below the lower range 

than FC is in range. In the second scenario in Figure 28, the last four June 2018 have been investigated 

to demonstrate that the situation is inverse in this case. FC operate above the upper range than PM is 

in the range. 

The instantiation of this last pattern (P3) can help predict failures of the process caused by mechanical 

maintenance.  



 
Figure 26: Mechanical Failures 

 

The first scenario  

 

 
Figure 27: Scenario I: FC and PM Trends over Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The second scenario   

 

 
Figure 28: Scenario II: FC and PM Trends over Time  

 

4.7 CRITERIA FOR DIGITAL TWIN DESIGN 

 

The patterns described (P1, P2, P3) in sections 4.5 and 4.6 have been instantiated to design the digital 

twin of the die-casting process to predict micro-stop and mechanical problems, as shown in Figure 

29. The proposed solution consists of a realistic production environment but is “augmented” with 

intrinsic technological knowledge. With our approach, the physical settings interact with the digital 

space, according to specific properties and rules, to understand: 

● The behaviour of the process. 

● The correlations between technological parameters. 

● The correlations between parameters and effects like quality defects, maintenance problems. 

The digital twin has been designed to support the employees in the decision-making process to:  

● Identify the several quality problems of the components autonomously, compared to the 

standards (dimensions, tolerances, finishes, quantity). 

● Alert operators through proper alarm systems about abnormal or out-of-tolerance situations.  

● Analyse and correlate the symptoms and causes of failures and defects in production. 

● Support the choice of corrective actions to eliminate the detected failures and defects. 

 



 
Figure 29: Digital Twin of Die-casting Aluminium Process 

 

The gathered data from the shop floor level are aggregated, analysed and interpreted in the digital 

environment according to the conditions listed in Table 8. The conditions are defined and formalised 

based on the platform's patterns shown and analysed. A condition is associated with a possible state 

that a digital twin can detect and recognise. 

 

Table 8: DT States based on the P1, P2, and P3 Patterns 

 

STATE_I

D 
STATE_NAME STATE_CONDITIONS  

DECISION-

SUPPORT 

(ACTION TO 

DO) 

ID 

PATTERN  

0 
"Machine Works 

without Problems" 
- 

If the DT detects 

STATE 0, it will 

understand that 

process is 

working 

properly. 

- 

1 
"Prediction Micro-

Stop" 

SM_LimLow<=SM<=SM_LimUp

p 

If the DT detects 

STATE 1, it will 

suggest that the 

employees 

should clean the 

machine. If the 

action will be not 

performed there 

will be a 

recasting in 

5minutes.  

Mould Filling 

Pattern 

(P1)  



2 
"Recasting for 

Micro-Stop" 

V2<=LimLow OR V2=>LimUpp 

OR 

T2<=LimLow 0R T2>= LimUpp 

PM<=LimLow OR PM>=LimUpp 

OR PS<=LimLow OR PS 

>=LimUpp SM>=LimUpp OR 

TC>=LimUpp 

If the DT detects 

STATE 2, it will 

understand that 

there is a 

Recasting due to 

a Restart 

Machine 

Machine Restart 

Pattern 

(P2) 

3 
"Prediction 

Mechanical 

Maintenance" 

LimLow<=PM<=LimUpp OR 

LimLow<=PM<=LimUpp OR 

LimLow<=FC<=LimUpp OR 

LimLow<=FC<=LimUpp 

If the DT detects 

STATE 3, it will 

suggest that the 

employees 

should perform 

mechanical 

maintenance on 

the mould 

otherwise, a 

machine 

downtime will 

occur in one hour 

(estimated time 

of intervention 

1.5h) 

Clamping 

System Pattern 

(P3) 

4 
"Recasting for 

Micro-Stop" 
SM<=LimLow 

If the DT detects 

STATE 4, it will 

understand that 

there is a 

Recasting due to 

a micro-stop 

Mould Filling 

Pattern 

(P1) 

5 
"Stop Machine for 

Mechanical 

Maintenance" 

FC<=LimLow OR FC>=LimUpp 

If the DT detects 

STATE 5, it will 

understand that 

the machine is on 

downtime due to 

maintenance.  

Clamping 

System Pattern 

(P3) 

 

 

The knowledge extracted from patterns has been encapsulated in the designed algorithm below that 

supports the digital twin in judging, evaluating, optimising, and/or predicting all possible states based 

on predefined conditions explored in sections 4.6.1-4.6.2.  

 

DT Algorithm built on P1,P2 and P3 STATES AND CONDITIONS:  

→Verify State "Prediction Micro-Stop" 

 IF cur_stringa.SM BETWEEN LimLow AND LimUpp THEN v_stato_rkd := 1; END IF; 

  

 →Verify State "Re-start Machine" 

 IF v_stato_rkd = 0 AND  

 (cur_stringa.V2 <= LimLow OR cur_stringa.V2 >= LimUpp 

 OR cur_stringa.T2 <= LimLow OR cur_stringa.T2 >= LimUpp  

 OR cur_stringa.PM <= LimLow OR cur_stringa.PM >= LimUpp 

 OR cur_stringa.PS <= LimLow OR cur_stringa.PS >= LimUpp 

 OR cur_stringa.SM >= LimUpp 



 OR cur_stringa.TC >= LimUpp 

 ) 

 THEN v_stato_rkd := 2;  

 END IF; 

  

 →Verify State "Prediction Mechanical Maintenance" 

  

 IF v_stato_rkd = 0 AND cur_stringa.TIMESTAMPLOCAL >= TO_DATE('01-03-2022','DD-MM-YYYY')  

AND 

 (cur_stringa.PM BETWEEN LimLow AND LimUpp)  

 OR 

(cur_stringa.FC BETWEEN LimLow AND LimUpp) OR (cur_stringa.FC BETWEEN LimLow AND  

LimUpp) 

 ) 

 THEN  

 v_stato_rkd := 3;  

 END IF; 

 IF v_stato_rkd = 0 AND cur_stringa.TIMESTAMPLOCAL < TO_DATE('01-03-2022','DD-MM-YYYY') AND 

 ( (cur_stringa.PM LimLow AND LimUpp) OR  

 (cur_stringa.FC BETWEEN LimLow AND LimUpp) OR (cur_stringa.FC BETWEEN LimLow AND  

LimUpp) 

 ) 

 THEN  
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 v_stato_rkd := 3;  

 END IF; 

  

 →Verify "Recasting for Micro-Stop" 

 IF v_stato_rkd = 0 AND  

 ( cur_stringa.SM <= LimLow 

 ) 

 THEN  

 v_stato_rkd := 4;  

 END IF; 

 

 →Verify State "Stop Machine for Mechanical Maintenance" 

  

 IF v_stato_rkd = 0 AND  

 ( cur_stringa.FC <= LimLow OR cur_stringa.FC >= LimUpp 

 ) 

 THEN  

 v_stato_rkd := 5;  

 END IF; 

 

The digital twin can receive, read and evaluate possible performances (states) of the process based 

on the values of the operating parameters. The digital twin can recognise and predict four different 

behaviours (performance) of the die-casting process in the following sequence  described in Figure 

30: 

 

 

 



DIGITAL TWIN OF DIE CASTING ALUMINIUM 

1. At 07-09-2019 18:39:30🡪The Digital Twin does not detect any problem  

(RECOGNIZE STATE 0) 

 

 

2. At 07-09-2019 18:42:00🡪 The digital twin predicts that a micro-stop problem will happen in 5 

minutes based on C1, C2, CC and SM values. The DT prescribes to the employees which action 

performs. 

(RECOGNIZE STATE 1) 

 

 

3. At 07-09-2019 18:43:00🡪: The digital twin informs the employees that a problem of micro-stop 

occurred because they did not perform the action prescribed in the state 1. 

(RECOGNIZE STATE 4) 

 



 

4. At 07-09-2019 18:46:00🡪 The digital twin detects the restart machine after 3 minutes of downtime 

due to the value of V2 and TC.   

(RECOGNISE STATE 2)  

 

 
Figure 30: Digital Twin of the die-casting Aluminium Process based on Patterns P1,P2 and P3 

 

4.8 Knowledge Re-use 
 

The formalized knowledge can be used to design the digital twin of other manufacturing processes 

based on the knowledge formalized in Table 7.  

 

5. DISCUSSION AND CONCLUSIONS 

 

According to the literature review performed in section 1, one significant limitation is that modelling 

a digital copy of physical systems is quite complex, and generally, the modelling action has a specific 



validity depending on the application type. The core DT-modelling methodology presented in this 

paper is to create invariant modelling patterns extracted from a data-driven analysis to have the chance 

to re-use them as macro-programs in different applications. This may bring an enormous value of 

standardisation over different technological applications and a deeper understanding of related 

problems. The paper presents a new methodology approach for discovering data-driven modelling 

patterns for digital twin design. The formalisation approach presented in section 3, for discovering 

data-driven patterns goes in this direction. It involves the combination of data-driven and model-

based approaches with design patterns to define and identify invariant modelling. The iterative 

approach consists of eight different stages appropriately coordinated to make this almost usable in 

any production case.  

The case study presented to demonstrate the validity of the methodology was firstly defined in SysML 

to describe the requirements, the structure, and the related behaviour. Adopting the relation concept 

analysis (RCA) method was the key to automatically detecting tacit associations in data and thus, 

automatically detecting invariant modelling patterns.  

A digital twin prototype has been developed as in section 4musing the proposed methodology 

presented in section 3 and instantiating the data-driven patterns discussed in sections 4.4 and 4.5.  

Pattern detection can be a prerequisite for building an intelligent system like a Digital Twin. The DT 

consists of a set of accurate models with complex structures and behaviour that reflect the real-time 

operations of the physical system to predict possible failures.  The literature review does not present 

a uniform modelling approach for   DT’s. Even though multiple tools and methods have been 

proposed, a consistent modelling procedure is still missing, which can support the demand-oriented 

selection of tools/methods for DT  modelling based on established DT modelling requirements. It is 

difficult to build an accurate model for a DT using model-based approaches due to the complexity of 

a physical system. The lack of a univocal reference architecture leads to developing Digital Twin 

solutions using different approaches, models and data.  

Standard Digital Twin solutions would be desirable to provide design criteria and constraints with 

reference architectural aspects, reference information model and communication protocols are clearly 

defined. The proposed DT-design  methodology allows deriving a criterion to self-detect modelling 

patterns that can be used (and re-used) to create digital models of different systems or processes. The 

approach combines a model-based with a data-driven technique. SysML (model-based) that is part of 

our methodology allowed to model and formalize a manufacturing system's static structure and 

dynamic behaviour. RCA (data-driven) also adopted served to detect invariant modelling patterns, 

which can be applied to any manufacturing system. Our approach relies on the invariance recognition 

in data in the form of modelling patterns. Recognising the  invariance allows the DT modelling 

efficiency, flexibility and reusability in several different manufacturing systems. A manufacturing 

system here is in fact conceived as a set of manufacturing operations where the inputs (𝑋𝑖) are the 

operating parameters, and the outputs (𝑌𝑖) are the performance. This generalization allows the patterns 

detection that can be instantiated for designing and modelling a DT: a pattern here discovers a possible 

configuration of operating parameters that generate a specific performance.  

In the case study discussed, the discovered patterns defined which technological parameters 

combination causes a potential downtimì,where this latter  represents a degradation of performance. 

This technological knowledge, once instantiated, defines how to build a DT able to recognize a 

potential system degradation, and predict and prevent this latter based on the operating profile.   

 



Future research may be devoted  to enrich the pattern’s semantics and to create a comprehensive 

library of formalised data-driven patterns. Other data sets, such as logistic, product, and customer 

data, need to be selected to extract new data-driven constructs and create a consistent library of 

patterns.  
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