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Abstract

Generalized CP-nets (gCP-nets) extend standard CP-nets by 
allowing conditional preference tables to be incomplete. Such 
generality is desirable, as in practice users may want to ex-press 
preferences over the values of a variable that depend only on 
partial assignments for other variables. In this paper we study 
aggregation of gCP-nets, under the name of multi-ple gCP-nets 
(mgCP-nets). Inspired by existing research on mCP-nets, we 
define different semantics for mgCP-nets and study the 
complexity of prominent reasoning tasks such as dominance, 
consistency and various notions of optimality.

Introduction
What committees, modern technology and holiday destina-
tions have in common is that (i) they come in a variety of 
options, all customizable into many possible configura-
tions, thus generating a combinatorial domain; and (ii) they 
can be the object of complex, often conflicting preferences. 
Hence, one challenge in processing batches of preferences 
over large combinatorial domains is that complex relations 
over such domains have to be collectively aggregated. Apart 
from having to provide an intuitive and compact way for ex-
pressing preferences over outcomes, a system that aims to 
offer nuanced suggestions to groups, rather than just indi-
viduals, must possess means to reason based on information 
coming from multiple sources.

In this work we study the aggregation of preferences ar-
ticulated in the language of generalized CP-nets (gCP-nets). 
Formulas in this language allow users to express preferences 
over the values of a variable depending on the satisfaction of 
a pre-condition, e.g., the formula a ∨ b : c ▷ c expresses the 
fact that an outcome satisfying a ∨ b and c is preferred to an 
outcome where c is flipped to c, but is otherwise the same. 
This allows users to express complex preferences over a 
large space of outcomes in a compact manner. The lan-
guage of gCP-nets extends the established framework of 
CP-nets (Boutilier et al. 2004) by requiring less precision in 
the specification of the pre-conditions: whereas a CP-net 
expects a preference statement over a variable to be speci-
fied for all possible assignments to the remaining variables, 
gCP-nets relax this condition. Though this weakening can

lead to fewer comparisons in the space of outcomes, it gives
users the freedom to be as precise as they wish in their dec-
larations of preference (with the understanding that having
to supply complete preference tables can often be burden-
some), and it allows them to further refine their preference
statements later on.

In the multi-agent scenario envisioned here, a profile of
gCP-nets, called an mgCP-net, corresponds to the stated
preferences of distinct agents. The main task we consider
is that of ordering the outcomes in a way that reflects the
wishes of the individual agents. To this end we propose four
semantics for mgCP-nets that work by aggregating the infor-
mation contained in the individual gCP-nets. Our semantics
are inspired by similar notions defined for mCP-nets (Rossi,
Venable, and Walsh 2004; Lukasiewicz and Malizia 2016),
though in our context they apply to a broader class of orders
and in certain cases need to be adapted.

Since the number of outcomes is typically exponential
in the number of variables, we do not consider generat-
ing an entire order on outcomes, but rather study the com-
putational complexity of certain key reasoning tasks such
as dominance, consistency and various notions of optimal-
ity. Allowing incomplete specifications of conditions under
which preferences hold (i.e., working with gCP-nets rather
than CP-nets) leads to finer-grained notions of optimality, of
a type that do not arise in other contexts (e.g., mCP-nets).
We identify nine reasoning tasks and study their complexity
with respect to the four semantics, using complexity results
for individual gCP-nets, some of which are known (Gold-
smith et al. 2008), while others are obtained here.

There is a long line of research that uses logic to model
preferences, originating with early contributions in philo-
sophical logic (Halldén 1957; von Wright 1963). It is in
this tradition that the ceteribus paribus interpretation of typ-
ical preferences statements is emphasized (Hansson 1996).
This interpretation is at the heart of CP-nets (Boutilier et al.
2004) and other formalisms in the same family, e.g., TCP-
nets (Brafman and Domshlak 2002; Brafman, Domshlak,
and Shimony 2006), conditional preference theories (Wil-
son 2004), and conditional importance networks (Bouveret,
Endriss, and Lang 2009). Other logical frameworks include
the general language PL (Bienvenu, Lang, and Wilson 2010)
and various modal logics (Boutilier 1994; van Benthem, Gi-
rard, and Roy 2009). Generalized CP-nets have been consid-



ered before, both under the standard ceteris paribus seman-
tics (Domshlak et al. 2009; Boutilier et al. 2004), as well as
other semantics (Ciaccia 2007). Significantly for our present
purposes, the complexity of most reasoning tasks with re-
spect to a single gCP-net has already been studied (Gold-
smith et al. 2008). With respect to the multi-agent case, there
is a wealth of research on aggregation of CP-nets (Rossi,
Venable, and Walsh 2004; Grandi et al. 2014; Li, Vo, and
Kowalczyk 2014; 2015; Lukasiewicz and Malizia 2016), in-
cluding work on probabilistic CP-nets for handling prefer-
ences coming from a group of agents (Cornelio et al. 2013;
2015). Despite the importance of incompleteness in the ag-
gregation of preferences (Rossi, Venable, and Walsh 2011),
to the best of our knowledge, aggregation tasks for gCP-nets
have not been considered.

The paper is structured as follows. We first introduce the
syntax and semantics of gCP-nets. Then we define the com-
putational problems of checking consistency of a gCP-net,
as well as several notions of optimality. Finally, we move to
the multi-agent setting, where we aggregate a profile of gCP-
nets representing preferences of multiple agents, according
to different semantics. We conclude by restating some open
problems and by pointing to a number of directions for fu-
ture research.

Preliminaries
Syntax Let V = {X,Y,Z, . . .} be a finite set of vari-
ables. Each variable X ∈ V has a finite domain D(X) =
{x1, . . . , xk} of possible values. Slightly abusing notation,
we write xi to indicate an assignment of value xi ∈ D(X)
to variable X .

In our preference language, presented below, the user can
express preferences over the values of one variable depend-
ing on what obtains with respect to other variables. First, if
X ∈ V is a variable and xi, xj ∈ D(X) are two possible
values for X , then xi ▷ xj is a preference over X , with the
intuitive meaning that value xi is preferred to xj for X . Pref-
erences are allowed only over values of a single variable at
a time. If W ⊆ V is a set of variables, then a propositional
formula ψ over W is defined over ⋃X∈W D(X) using the
familiar propositional connectives, and is interpreted in the
intuitive way. Observe that, since variables in V may have
non-binary domains, the formula ¬xi, for xi ∈ D(X), is
equivalent to ⋁xj∈D(X),xj≠xi

xj . Formulas such as xi ∧ xj ,
for xi and xj different values of variable X , are inconsistent.

Example 1. If D(X) = {x1, x2, x3}, the formula ¬x1

means that either x2 or x3 is assigned to X , and hence ¬x1

is equivalent to x2 ∨ x3. Moreover, x2 ∧ x3 is inconsistent.

If ψ is a propositional formula over variables in W , X
is a variable such that X ∉ W and π = xi ▷ xj is a
preference over X , then the formula ϕ = ψ :π is a con-
ditional preference statement, with the intuitive meaning
that if ψ is true, then preferences behave according to π.
We will typically call ψ the pre-condition of ϕ. A gCP-net
N = {ϕ1, . . . , ϕn} is a finite set of conditional preference
statements. We will sometimes write ψ :(xi ▷ xj ▷ xk) as
shorthand for ψ :(xi ▷ xj) and ψ :(xj ▷ xk). As with stan-
dard CP-nets, we can represent a gCP-net with a dependency

A

B

C

¬b1 ∧ c :a▷ a

⊺ : b3▷ b2▷ b1
c : b1▷ b3

Figure 1: Dependency graphs and conditional preference
statements for the gCP-nets N1 and N2 of Example 2. The
additional dependency brought about by statement ϕ3 is
shown with a dashed line.

graph, where nodes are variables and there is an edge from
X to Y if values of X occur in the pre-condition of a pref-
erence over values of Y . We say that a gCP-net N is acyclic
if its dependency graph is acyclic.

Example 2. On an online booking service for the city of
New York, homes are characterized by three features: the
type of accommodation one can book (A), which can be ei-
ther an entire apartment (a) or a room in a shared apartment
(a); the borough where the home is located (B), which can
be either Manhattan (b1), Brooklyn (b2) or Queens (b3);1 the
cost (C), which can be high (c) or normal (c). Thus, the set of
variables is V = {A,B,C} and the domains of the variables
are D(A) = {a, a}, D(B) = {b1, b2, b3} and D(C) = {c, c}.

Alice wishes to use this service to find a place to stay in
New York, and submits the gCP net N1 = {ϕ1, ϕ2}, where
the statements are as follows:

(ϕ1) ⊺ : b3▷ b2▷ b1,
(ϕ2) ¬b1 ∧ c : a▷ a.

Later on, Alice updates her gCP-net by adding statement ϕ3:

(ϕ3) c : b1▷ b3.

Statement ϕ1 says that Alice has an unconditional prefer-
ence of living in Queens over Brooklyn over Manhattan.
Statement ϕ2 says that if the apartment is not in Manhat-
tan (i.e., it is either in Brooklyn or Queens) and is reason-
ably priced, then a shared place is better. Statement ϕ3 says
that if the apartment is costly, then presumably one is go-
ing for the royal treatment and so Manhattan is now better
than Queens. The dependency graphs for Alice’s gCP-nets
N1 and N2 = N1 ∪ {ϕ3} are depicted in Figure 1.

Semantics An outcome assigns to each variable X ∈ V
a value in their domain D(X). Outcomes (think a particu-
lar house, or movie) encode full specifications of objects in
terms of their features. We write x1y2z3 . . . for the outcome
where X is assigned x1, Y is assigned y2, Z is assigned z3,
and so on. We denote by O = D(X) ×D(Y ) ×D(Z) × . . .
the set of all outcomes. If X ∈ V is a variable, we denote
by o[X] the value of outcome o on X; ifW ⊆ V is a set of
variables, we write o[W] for the values of outcome o onW .
We write o ⊧ ψ to say that outcome o satisfies propositional
formula ψ in the familiar propositional sense.

Preferences over outcomes are represented using a binary
relation > over O. If o1 > o2 we say that o1 dominates o2

1For simplicity, The Bronx and Staten Island are omitted.



with respect to >, the intuitive meaning of which is that o1
is preferred to o2 in >. If o1 > o2 and o2 /> o1, we say that
o1 strictly dominates o2 with respect to >. If two outcomes
o1 and o2 are incomparable with respect to >, i.e., o1 /> o2
and o2 /> o1, we write o1 � o2. The semantics of conditional
preference statements is defined over binary relations on O
using the notion of worsening flips. as follows.

Definition 1. If xi, xj ∈ D(X), ϕ = ψ :xi ▷ xj is a condi-
tional preference statement with respect to X , and o1 and o2
are two outcomes, then there is a worsening flip from o1 to
o2 sanctioned by ϕ if o1 ⊧ ψ, o2 ⊧ ψ, o1[Y ] = o2[Y ], for
any Y ∈ V ∖ {X} and o1[X] = xi, o2[X] = xj .

Intuitively, there is a worsening flip from o1 to o2 sanctioned
by ϕ = ψ :(xi▷ xj) if outcomes o1 and o2 both satisfy con-
dition ψ, and they are identical except for the fact that o1
assigns xi to X and o2 assigns xj to X . In other words, the
preference statement ϕ is interpreted as saying that if con-
dition ψ is true, then, all else being equal, making xi true
is better than making xj true. Note that the ceteris paribus
clause holds for models of ψ as well.

We say that there is an improving flip from o2 to o1 sanc-
tioned by ϕ if there is a worsening flip from o1 to o2 sanc-
tioned by ϕ. If N is a gCP-net, a worsening (respectively,
improving) flip from o2 to o1 sanctioned by N is a worsen-
ing (respectively, improving) flip from o2 to o1 sanctioned
by some ϕ ∈ N .

Definition 2. If N is a gCP-net and o, o′ are two outcomes,
then o dominates o′ with respect to N , written o >N o′, if
there exists a sequence of outcomes o1, . . . , ok such that o1 =
o, ok = o′ and, for every i ∈ {1, . . . , k − 1}, there exists a
worsening flip from oi to oi+1 sanctioned by N .

We call >N the induced model of N and often write >i in-
stead of >Ni when clear from context. There may be a chain
of worsening flips starting with an outcome o and ending
back on o: a gCP-net is consistent if there is no such a chain.
In particular, since >N is transitive, this is equivalent to say-
ing that there is no outcome o such that o >N o.

Example 3. For the scenario described in Example 2 there
are 12 possible outcomes. The outcome o = ab2c refers to
a reasonably priced and private apartment in Brooklyn. For
the variables A and B, o[{A,B}] = ab2 refers to the val-
ues of outcome o on variables A and B. For the gCP-net
N1 = {ϕ1, ϕ2} provided by Alice, the induced model >1, as
well as the worsening flips induced by adding ϕ3, is depicted
in Figure 2. Adding statement ϕ3 to N1 results in an incon-
sistent gCP-net, as the induced model >2 of N2 = N1 ∪{ϕ3}
contains the sequence of worsening flips ab3c, ab2c, ab1c,
ab3c, which implies that ab3c >2 ab3c.

As mentioned, in statements of the form ψ :π the ceteris
paribus assumption holds even for the models of ψ. In Ex-
ample 2, this means in particular that when interpreting a
statement such as ϕ2 = ¬b1 ∧ c :a▷ a, we induce the rank-
ings ab2c > ab2c and ab3c > ab3c, but not the ranking
ab2c > ab3c, though both ab2c and ab3c satisfy condition
¬b1∧c. While it has been argued that this ceteris paribus in-
terpretation of preference statements induces insufficiently
many comparisons on outcomes (Ciaccia 2007), we believe

ab1c

ab2c

ab3c

ab1c

ab2c

ab3c

ab1c

ab2c

ab3c

ab1c

ab2c

ab3c

ϕ1

ϕ1

ϕ1

ϕ1

ϕ1

ϕ1

ϕ1

ϕ1

ϕ2

ϕ2

ϕ3 ϕ3

Figure 2: The induced model from Example 3. An arrow
from o1 to o2 indicates a worsening flip sanctioned by N1,
and arrows are labeled with the preference statement induc-
ing them. Arrows induced by transitivity are omitted.

it to be justified here, since (i) it does not infer more than
what is strictly warranted by the agent’s statements, and (ii)
it gives the agents more freedom to refine their orders with-
out thereby creating inconsistencies, as the following exam-
ple illustrates.

Example 4. Consider V as in Example 2. Anna submits
the gCP-net N = {a ∨ c : b3▷ b2}. If the semantics was not
limited to the ceteris paribus comparisons, we could derive
that ab3c >N ab2c, meaning that Anna prefers an expen-
sive shared apartment in Queens to a cheap shared apartment
in Brooklyn. Suppose Anna wants to be more precise about
her preferences and adds some statements to N , leading to
N ′ = {a∨ c : b3▷ b2, b2 ∧ c :a▷ a, b3 ∧ c :a▷ a, a∧ c : b2▷
b3, a ∧ b2 : c▷ c}. From N ′ we now derive ab2c >N ′ ab3c,
i.e., N ′ is now inconsistent, which would not have happened
under the ceteris paribus assumption.

Reasoning with a single gCP-net Generating the entire
order on outcomes induced by a gCP-net might be too costly
and, in most cases, pointless. For the particular applications
we have in mind we do better to focus on some reasoning
tasks of interest: these usually concern consistency, domi-
nance relations between specific outcomes, and various no-
tions of optimality. To formally define them, we must first
introduce some preliminary notation.

If > is a binary relation on O and o is an outcome, then
o is weakly non-dominated if, for any outcome o′, it holds
that o′ > o implies o > o′. If there is no outcome o′ such that
o′ > o, including o′ = o, then we say that o is simply non-
dominated. If o > o′ for all outcomes o′, then o is a dominat-
ing outcome. If o is dominating as well as non-dominated,
then it is strongly dominating. Two quick observations are in
order: if o is weakly non-dominated, then it is possible that
o is part of a cycle in >, as long as the cycle is not dominated
by an outcome outside it. Likewise, if o is dominating, then
it can be involved in a cycle in >.

Given a gCP-net N and outcomes o, o1 and o2,
the reasoning tasks of interest are summarized in Ta-
ble 1. The complexity of these reasoning tasks with
respect to a single gCP-net has been established in
previous work (Goldsmith et al. 2008), with the re-
sults presented in Table 2. DOMINANCE, CONSISTENCY,
WNON-DOM’ED, DOM’ING, STR-DOM’ING, ∃DOM’ING



DOMINANCE: o1 >N o2.
CONSISTENCY: N is consistent.

WNON-DOM’ED: o is weakly non-dominated in >N .
NON-DOM’ED: o is non-dominated in >N .

DOM’ING: o is dominating in >N .
STR-DOM’ING: o is strongly dominating in >N .
∃NON-DOM’ED: there is a non-dominated outcome in >N .

∃DOM’ING: there is a dominating outcome in >N .
∃STR-DOM’ING: there is a strongly dominating outcome

in >N .

Table 1: Reasoning tasks with respect to a single gCP-net

and ∃STR-DOM’ING have been shown to be PSPACE-
complete in the general case, with the result for
DOMINANCE holding even when the gCP-net N is
consistent. The NON-DOM’ED problem is in P, while
∃NON-DOM’ED is NP-complete. If N is consistent, then
the DOM’ING and ∃DOM’ING problems are in coNP. We
also mention here, as it will prove useful later on, that the
SELF-DOMINANCE problem, i.e., the problem of determin-
ing for a given gCP-net N and outcome o whether o >N o,
is also PSPACE-complete.

Recall that for regular CP-nets acyclicity of the depen-
dency graph is enough to guarantee consistency (Boutilier
et al. 2004). This is not true of gCP-nets.

Example 5. Take a gCP-net N over V = {A,B,C,D},
where N = {a :d1▷ d2, b :d2▷ d3, c :d3▷ d1}. The de-
pendency graph of N is easily seen to be acyclic. Nonethe-
less, N sanctions the sequence of worsening flips abcd1,
abcd2, abcd3, abcd1, hence abcd1 >N abcd1.2

The problem revealed by Example 5 is that a gCP-net can
be acyclic, yet still contain a set of preference statements
which are triggered by the same partial assignment and for
which a cycle is derived. Thus, it is relevant to ask about the
complexity of checking consistency for acyclic gCP-nets,
i.e., given an acyclic gCP-net N for which we can assume,
without loss of generality, that all preferences π in the state-
ments are over the same variable, to determine whether:

aCONSISTENCY: N is consistent.

Intuitively, checking aCONSISTENCY revolves around the
question of whether there exists N ′ ⊆ N , for which the con-
junction of all pre-conditions is satisfiable and the prefer-
ence statements lead to a cycle over the outcomes. Observe
that checking consistency for a single conditional preference
statement ϕ = ψ :π amounts to checking whether there are
cycles in the preferences occurring in π, which can be done
in polynomial time, as the problem is essentially that of find-
ing the connected components in a directed graph.

Proposition 1. aCONSISTENCY is coNP-complete.

Proof. For membership, we show that the complement of
aCONSISTENCY, i.e., deciding whether an acyclic gCP-net
N = {ψ1 :π1, . . . , ψn :πn} is inconsistent, is in NP. We
guess an assignment for the ψi’s: then, we check in poly-
nomial time whether the πi’s induce a cycle.

2An analogous example appears in (Wilson 2004).

For hardness we reduce from UNSAT. Consider an in-
stance of UNSAT, i.e., a propositional formula ϕ whose
unsatisfiability we want to check. Construct now a gCP-
net N = {ϕ :a▷ a} for A a fresh variable whose values
D(A) = {a, a} do not occur in ϕ. If ϕ is unsatisfiable, then
ϕ :a▷ a is discarded when constructing >N , and thus N is
consistent, since it has no cycles. On the other hand, suppose
ϕ is satisfiable. Then ϕ :a▷ a leads to a cycle in >N .

An issue related to the one just mentioned is checking
whether a gCP-net is a CP-net, which has been also shown
to be coNP-complete (Goldsmith et al. 2008). The two prob-
lems are distinct, since an acyclic gCP-net is not necessarily
an (acyclic) CP-net—though the converse statement holds,
since gCP-nets are more general than CP-nets.

mgCP-nets
For the multi-agent case we define mgCP-nets, introduce
four semantics, nine reasoning tasks related to dominance
and optimality, and analyze the computational complexity of
these reasoning task with respect to the defined semantics.

Definitions and Semantics
An mgCP-net M is a multi-set M = ⟨N1, . . . ,Nm⟩ of gCP-
nets over the set V of variables. The m in ‘mgCP’ does dou-
ble duty: once as a reminder that we are dealing with many
gCP-nets, and then as a variable for the number of gCP-nets
in a profile. We think of the semantics for mgCP-nets, essen-
tially, as a binary relation over outcomes, reflecting the dom-
ination relationships induced by the individual gCP-nets in
M . More concretely, for every mgCP-net M we define a bi-
nary relation >M on outcomes, called the induced collective
model of M , which is obtained by aggregating the induced
models of the gCP-nets in M , with notions such as domi-
nance and consistency analogous to the ones for single gCP-
nets (taking into account that transitivity is not guaranteed).

Before presenting the semantics, we need some prelimi-
nary notions. Given an mgCP-net M = ⟨N1, . . . ,Nm⟩ and
two outcomes o1, o2, we define the following sets:

so1>o2M = {Ni ∈M ∣ o1 >i o2},
so1�o2M = {Ni ∈M ∣ o1 />i o2 and o2 />i o1}.

A ranking function r with respect to a gCP-net N (mgCP-
net M , respectively) assigns to every outcome o a non-
negative number rN (o) (rM (o), respectively). If there is no
danger of ambiguity, we write ri(o) instead of rNi(o).

Given a gCP-net N , the dominance equivalence relation
>dN is defined by saying that o1 >dN o2 if o1 >N o2 and

o2 />N o1, and o1 ≈dN o2 if o1 = o2, or o1 >N o2 and
o2 >N o1 (Goldsmith et al. 2008). The dominance equiv-
alence relation is, indeed, an equivalence relation, and it
therefore partitions the set of outcomes into equivalence
classes. If o is an outcome, its equivalence class with re-
spect to >dN (i.e., the set of outcomes that includes o and, if
they exist, all outcomes with which o forms a cycle in >N )
is called the dominance class of o with respect to N and
is denoted by [o]N , with the subscript duly omitted when
clear from context. The dominance classes themselves form
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Figure 3: Dominance classes and longest path ranks.

a strict partial order, which we denote, overloading notation,
by >dN . We say that [o1] dominates [o2] with respect to >dN ,

written [o1] >dN [o2], if o1 >dN o2. A dominance class [o] is

non-dominated with respect to >dN if there is no dominance

class which dominates it with respect to >dN .
Finally, we can now define the rank of an outcome in >N .

The longest path rank function rlpN assigns to an outcome o
the length of the longest path from [o] to a non-dominated

dominance class in >dN .3

Example 6. Consider V = {A,B} with domains as in Ex-
ample 2, and a gCP-net N = {⊺ : b1 ▷ b2 ▷ b3, b3 :a ▷ a,
a : b2 ▷ b1}. Figure 3 shows the induced model >N , the

dominance classes, the strict partial order >dN on dominance
classes, and the longest path ranks assigned by rlp.

We can now move on to defining the semantics of mgCP-
nets, using the semantics defined for mCP-nets (Rossi, Ven-
able, and Walsh 2004; Lukasiewicz and Malizia 2016) as a
starting point.

Definition 3. If M = ⟨N1, . . . ,Nm⟩ is an mgCP-net, the

Pareto relation >PM , majority relation >maj
M , maximality re-

lation >max
M and rank relation >rM with respect to M are

defined, for any o1 and o2, as follows:

o1 >PM o2 if o1 >i o2, for every Ni ∈M ;

o1 >maj
M o2 if o1 >i o2, for ⌈m+1

2
⌉ Ni ∈M ;

o1 >max
M o2 if ∣so1>o2M ∣ > max{∣so2>o1M ∣, ∣so1�o2M ∣};

o1 >rM o2 if rM (o1) ≤ rM (o2).

If S is a semantics, we call >SM the S-induced collective
model of M , or, more briefly, the S-induced model of M .
Given an mgCP-net M and a semantics S, if o1 >SM o2, we
say that o1 S-dominates o2 with respect to M . We say that
M is S-consistent (or simply consistent), if there is no set
of outcomes o0,. . . ,ok such that o0 >M . . . >M ok >M o0.
S-non-dominated, S-weakly non-dominated, S-dominating
and S-strongly dominating outcomes for an mgCP-net M
are defined analogously as for individual gCP-nets.

For the rank relation rM , we focus here on a particular
function, reminiscent of Borda’s rule for aggregating total
linear orders (Wilson 2004), obtained by summing up the

3The rank semantics has been used before to aggregate acyclic
CP-nets (Rossi, Venable, and Walsh 2004; Lukasiewicz and Mal-
izia 2016). However, since acyclic CP-nets feature no cycles be-
tween outcomes, the rank function is defined more easily than here.
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Figure 4: Individual and collective semantics for the mgCP-
net M of Example 7. Edges in the induced models >1−3 in-
dicate worsening flips sanctioned by the gCP-nets N1−3, re-
spectively, whereas edges in the induced collective models
indicate domination relations obtained through aggregation.
Arrows inferred through transitivity in >PM and >rM are omit-

ted; since >maj
M and >max

M are not guaranteed to be transitive,
every domination relation in them is made explicit. Longest

path ranks assigned by rlpi are shown as a superscript.

rlp score for all agents in M . Thus, for an mgCP-net M =
⟨N1, . . . ,Nm⟩, we will take the rank of o with respect to M
to be rM (o) = ∑Ni∈M rlpi (o).
Example 7. Alice, Bob and Carol want to go on holi-
day to New York together, and are looking for a shared
apartment. Luckily, the booking service of Example 2 can
handle preferences submitted by different agents. The vari-
ables are V = {A,B} as in Example 2, though for simplic-
ity we now assume each variable is binary. Alice submits

N1 = {⊺ :a▷ a,⊺ : b▷ b, a : b▷ b}, while Bob and Carol

submit N2 = N3 = {⊺ :a▷ a,⊺ : b▷ b, b :a▷ a}, with the
corresponding 3gCP-net being M = ⟨N1,N2,N3⟩. The in-
duced models >1, >2 and >3 together with the induced col-

lective models >PM , >maj
M , >max

M and >rM , are shown in Fig-
ure 4. None of the induced individual models has a strongly
dominating outcome, though ab is weakly non-dominated,
as well as dominating, in each, and thus a prime candidate
for being at the top of the list of suggested outcomes. Since
ab self-dominates in each of the individual induced models,
this domination relation carries over to the induced collec-
tive models. The rank of an outcome in >rM is computed
by summing up its ranks in the individual induced models.

Thus, rM (ab) = ∑
3
i=1 r

lp
i (ab) = 6.

A few observations with respect to the semantics and their
motivation are in order at this point. First, for different out-

comes o1 and o2, if o1 >PM o2, then o1 >maj
M o2, and if

o1 >maj
M o2, then o1 >max

M o2. Second, the maj - and max -

induced models >maj
M and >max

M , respectively, are not guar-
anteed to be transitive. However, the Pareto-induced model
>PM is transitive, since if o1 >PM o2 and o2 >PM o3, then

o1 >Pi o3, for every Ni ∈ M , and thus o1 >PM o3. Hence, if

there is a set of outcomes such that o0 >PM . . . >PM ok >PM o0,

then we can contract this chain to o0 >PM o0. It follows
that the condition for Pareto-consistency of mgCP-nets co-
incides with consistency for individual gCP-nets, i.e., M is



Pareto-consistent if and only if there is no outcome o for
which o >PM o. Observe that by definition we cannot have
o >max

M o, though other forms of inconsistency are possible.
Third, the longest-path induced >rM turns out to be a total
pre-order on outcomes, since every outcome gets a rank in
>rM and two outcomes can get the same rank. Therefore, >rM
is transitive by design.

Why focus on these semantics in particular? The main
reason is that they represent clear and intuitive aggregation
principles, combining strands from both Social Choice and
Knowledge Representation. Pareto semantics, for instance,
recalls the notion of unanimity (a mainstay of Social Choice
functions), as well as skeptical acceptance (used in many
Knowledge Representation formalisms). Of course, in most
cases it will be too stringent and more relaxed procedures
will have to be invoked, e.g., majoritarian or rank-based. The
fact that the semantics are not mutually exclusive suggests
that they can be used alongside each other, e.g., to deliver
results when the Pareto semantics is undecided.

Reasoning tasks for mgCP-nets
Given an mgCP-net M and a semantics S, the reasoning
tasks we look at are the same as the ones for individual gCP-
nets (see Table 1), the only difference being that the reason-
ing tasks for mgCP-nets are parameterized by the semantics
S. A general overview of the results, alongside existing re-
sults for single gCP-nets, is given in Table 2. This is also a
good place to recall that PSPACE = coPSPACE and that,
by Savitch’s Theorem, NPSPACE = PSPACE (Arora and
Barak 2009). We will make use of both facts in our proofs.

Pareto Semantics The Pareto semantics is one of consen-
sus, i.e., all agents have to agree that o1 dominates o2 in
order for this to be reflected in the aggregated result. This
makes it possible to use existing complexity results for indi-
vidual gCP-nets (Goldsmith et al. 2008), but it does not also
mean that easy tasks stay easy. In particular, we cannot lever-
age the P result for checking whether an outcome o1 is non-
dominated in individual gCP-nets: if o1 is found to be dom-
inated by o2 in some gCP-net Ni from M , this is of no help
in deciding whether o1 is dominated in >PM . The outcome
o2 would have to dominate o1 in every >i for this to hold.
The task actually turns out to be PSPACE-complete, and a
similar thing holds for checking existence of a Pareto non-
dominated outcome. In fact, all the tasks considered turn out
to be PSPACE-complete.

Theorem 1. The P−NON-DOM’ED problem for mgCP-
nets is PSPACE-complete.

Proof. We show that the complement, i.e., checking whether
o is dominated in >PM , is PSPACE-complete. For member-

ship, guess an outcome o′ and check whether o′ >PM o,
which amounts to at most m PSPACE tasks. For hardness,
we do a reduction from the SELF-DOMINANCE problem for
single gCP-nets. Thus, given a gCP-net N and an outcome
o = xyz⋯, take the 2gCP-net M = ⟨N1,N2⟩, where N1 = N
and N2 = {(y ∧ z ∧ . . . ) :x▷ x}: in other words, N2 is such
that the only induced comparison in >2 is one in which o
self-dominates. The claim, then, is that o is self-dominating

in >N iff o is dominated in >PM . To see this, assume first that
o >N o, hence o >1 o. Since o >2 o by design, it follows that
o >PM o. Conversely, if o is dominated in >PM , then, since o
is not dominated by any other outcome in >2, this can only
be because it is dominated by itself in >PM , and hence it self-
dominates in >N .

Theorem 2. The P−∃NON-DOM’ED problem for mgCP-
nets is PSPACE-complete.

Proof. For membership, it suffices to guess an outcome o
and ask the PSPACE−complete problem P−NON-DOM’ED

for M and o, where M is the given mgCP-net. This
is in NPSPACE, and thus in PSPACE (recall that
NPSPACE = PSPACE). For hardness, we reduce from
P−NON-DOM’ED. Consider an instance of this problem,
i.e., an mgCP-net M = ⟨N1, . . . ,Nm⟩ and some outcome
o = v1 . . . vk for V = {V1, . . . , Vk} and vi ∈ D(Vi)
for i ∈ {1, . . . , k}. We now construct a slightly differ-
ent mgCP-net M ′ = ⟨N ′1, . . . ,N ′m⟩, where N ′i = Ni ∪
{⊺ : v′i▷ v′i ∣ v

′
i ∈D(Vi), v′i ≠ vi}. The intuitive idea is that

any outcome o′ ≠ o is now self-dominating in >N ′i , and hence

self-dominating in >PM ′ . Thus, if there is a non-dominated

outcome at all in >PM ′ , then it must be o: and this only hap-
pens if o is non-dominated in M . In other words, o is non-
dominated in M if and only if there is a non-dominated out-
come in M ′, which concludes the proof.

Proposition 2. The P−DOMINANCE, P−CONSISTENCY,
P−WNON-DOM’ED, P−DOM’ING, P−STR-DOM’ING,
P−∃DOM’ING, P−∃STR-DOM’ING problems for mgCP-
nets are PSPACE-complete.

Proof. Hardness here is inherited from the single gCP-
case, so we focus on membership. We assume an mgCP-
net M = ⟨N1, . . . ,Nm⟩. For P−DOMINANCE, we have to
check whether o1 >i o2, for every Ni ∈ M . This amounts
to solving m PSPACE tasks, which is also in PSPACE. For
P−CONSISTENCY, recall that M being Pareto-consistent is

equivalent to o />PM o, for any outcome o, i.e., o />i o, for
some Ni ∈ M . To verify this we ask of every outcome
whether o >i o, for every Ni ∈ M , which amounts to a (po-
tentially exponential) number of PSPACE tasks. A similar
algorithm works for P−WNON-DOM’ED, where we need
to take every outcome o′ and check whether we have that
o′ >i o and o />i o′, for every Ni ∈ M . Existence of such
an outcome o′ implies that o is not weakly non-dominated
in >M , while lack of existence implies the contrary. For
S−DOM’ING, we have that o is a dominating outcome iff
o >PM o′, for any outcome o′. This is equivalent to o be-
ing dominating in every induced model >i, for Ni ∈ M .
Determining this involves solving m PSPACE tasks. For
P−STR-DOM’ING we have to check that o is dominating
in every >i, for Ni ∈ M and, in addition, that o is strongly
dominating in at least one >i. To see why this is sufficient to
settle the question, suppose o were dominating in every >i,
but strongly dominating in neither of them: then we have that
o >i o for every Ni ∈M , and thus o >PM o, which means that

o is not strongly dominating in >PM . Checking whether o is
strongly-dominating in some >i is in PSPACE, thus our task



single gCP-nets mgCP-nets

Pareto maj max r

S−DOMINANCE PSPACE-c PSPACE-c PSPACE-c PSPACE-c PSPACE-h
S−CONSISTENCY PSPACE-c PSPACE-c PSPACE-h PSPACE-h —
S−WNON-DOM’ED PSPACE-c PSPACE-c PSPACE-h PSPACE-h PSPACE-h
S−NON-DOM’ED in P PSPACE-c PSPACE-c in PSPACE —
S−DOM’ING PSPACE-c PSPACE-c PSPACE-c PSPACE-c PSPACE-h
S−STR-DOM’ING PSPACE-c PSPACE-c PSPACE-c PSPACE-c —
S−∃NON-DOM’ED NP-c PSPACE-c NP-h NP-h —
S−∃DOM’ING PSPACE-c PSPACE-c PSPACE-c PSPACE-c —
S−∃STR-DOM’ING PSPACE-c PSPACE-c PSPACE-c PSPACE-c —

Table 2: Complexity results for single gCP-nets and mgCP-nets; entries for single gCP-nets are the result of previous
work (Goldsmith et al. 2008), and are presented here for comparison—they are to be interpreted under the standard gCP-
net semantics (i.e., S plays no role here); ‘-c’ and ‘-h’ are short for -complete and -hard, respectively, for a given class; the line
‘—’ means that the answer is trivial (consult the corresponding sections for more details).

is in PSPACE. For P−∃DOM’ING and P−∃STR-DOM’ING,
respectively, we can go through every outcome and ask
whether it is dominating and strongly dominating, respec-
tively, in >PM . This consists entirely of PSPACE tasks.

Majority Semantics We now turn to the majority seman-
tics maj , inspired by the well known majority rule in prefer-
ence aggregation. By definition, when the number of agents
is even we get a strict version of majority. The results can be
however easily adapted to a weak version of majority.

Theorem 3. The problems maj−DOMINANCE,
maj−DOM’ING, maj−STR-DOM’ING, maj−∃DOM’ING

and maj−∃STR-DOM’ING are PSPACE-complete.

Proof. For all problems, PSPACE-hardness is inherited
from the corresponding single agent problems, by consider-
ing a mgCP-net with m = 1. We now establish membership.

For maj−DOMINANCE, consider an algorithm counting
whether there are more than ⌈m+1

2
⌉ agents in M such that

for each i it holds that o1 >i o2. If this is the case answer
‘yes’, otherwise answer ‘no’. This algorithm need to keep
track of the yes/no answer of at most m PSPACE problems,
and hence it is in PSPACE.

For maj−DOM’ING, consider an algorithm checking for
each o′ ∈ O whether there is a set S of agents, such that
∣S∣ ≥ ⌈m+1

2
⌉, where each agent i ∈ S has o >i o′. Hence, if for

some o′ such a set S is found, the algorithm answers ‘yes’,
otherwise it answers ‘no’. Thus we need to repeat at most
∣ΠX∈VD(X)∣ times (for all possible outcomes), at most m
(for all agents) dominance PSPACE tasks.

For maj−STR-DOM’ING, consider an algorithm
which solves the problems maj−DOM’ING and
maj−NON-DOM’ED, which are both in PSPACE, and
answers ‘yes’ if and only if for both problems it gets a
positive answer.

For maj−∃DOM’ING and maj−∃STR-DOM’ING, con-
sider an algorithm solving the problems maj−DOM’ING and
maj−STR-DOM’ING, respectively, for all outcomes o ∈ O,
and which says ‘yes’ if at least for one instance the answer
is positive. This amounts to solving a (possibly exponential)
number of PSPACE tasks.

Proposition 3. The maj−CONSISTENCY and
maj−WNON-DOM’ED problems are PSPACE-hard,
while maj−∃NON-DOM’ED is NP-hard.

Proof. In all cases, reduce from the corresponding single-
agent complete problems where m = 1.

Proposition 4. The maj−NON-DOM’ED problem for
mgCP-nets is PSPACE−complete.

Proof. Let maj−NON-DOM’ED be the complement of
maj−NON-DOM’ED, namely the problem asking whether

there is some outcome o′ such that o′ >maj
M o, for given o

and M . This amounts to checking whether for at least ⌈m+1
2
⌉

agents i in M it is the case that o′ >i o.

We now show that maj−NON-DOM’ED is in NPSPACE.
Consider an algorithm guessing an outcome o′ and then
checking if there are more than ⌈m+1

2
⌉ agents i such that

o′ >i o and in this case it outputs ‘yes’. This algorithm solves

at most m PSPACE problems. Since maj−NON-DOM’ED

is in NPSPACE, we have that maj−NON-DOM’ED is in
PSPACE by Savitch’s Theorem, and thus its complement
maj−NON-DOM’ED is in coPSPACE, which means that
maj−NON-DOM’ED is in PSPACE.

Proof of hardness is identical to that of Theorem 1, since
maj semantics for m = 2 the majority corresponds to the
total number of agents.

Max Semantics Max semantics refines maj semantics by
taking into account also incomparabilities. This semantics
does not admit cycles of length at most 2. In fact, for >max

M to
be inconsistent there would need to be two outcomes o1 and
o2 such that o1 >max

M o2 and o2 >max
M o1, implying a contra-

diction between ∣so1>o2M ∣ > ∣so2>o1M ∣ and ∣so2>o1M ∣ > ∣so1>o2M ∣.
Theorem 4. The max−DOMINANCE, max−DOM’ING,
max−STR-DOM’ING, max−∃DOM’ING and
max−∃STR-DOM’ING problems for mgCP-nets are
PSPACE-complete.

Proof. PSPACE-hardness is inherited from the correspond-
ing single agent problems, by considering a mgCP-net with
m = 1. Thus, we focus here on PSPACE-membership.



For max−DOMINANCE, consider an algorithm that stores
∣so1>o2M ∣ as supp, i.e., the number of agents i in M for whom
o1 >i o2. Observe that supp ≤m. Then, the algorithm stores
∣so2>o1M ∣ as opp, i.e., the number of agents in M such that
o2 >i o1. Again, opp ≤m. Then, it stores m − supp − opp
as inc; i.e., the number of agents in M for whom o1 and o2
are incomparable. Finally, if inc ≥ opp and supp ≥ inc,
or if inc ≤ opp and supp ≥ opp, the algorithm answers
‘yes’, and ‘no’ otherwise.

For max−DOM’ING, consider an algorithm that does the
following procedure for any o′ ∈ O: similarly to the previ-
ous argument for max−DOMINANCE, the algorithm stores
as supp the number of agents i in M such that o′ >i o,
then the number of agents k in M such that o >k o′ as opp,
and the number of agents considering o and o′ as incompa-
rable in inc = m − supp − opp. Analogously to the case
for max−DOMINANCE, the algorithm checks if inc ≥ opp
and supp ≥ inc, or if inc ≤ opp and supp ≥ opp, in
which cases it answers ‘yes’, and ‘no’ otherwise. The algo-
rithm solves a (potentially exponential) number of PSPACE
tasks, which is itself in PSPACE.

For max−STR-DOM’ING, it suffices to design an algo-
rithm which runs the algorithms for max−DOM’ING and
max−NON-DOM’ED (both in PSPACE), and which an-
swers ‘yes’ if and only if both tasks return a ‘yes’.

For max−∃DOM’ING and max−∃STR-DOM’ING, con-
sider an algorithm asking the problems max−DOM’ING and
max−STR-DOM’ING for all outcomes o ∈ O, and answer-
ing ‘yes’ if for at least one of the outcomes the answer is
positive. This amounts to solving a (possibly exponential)
number of PSPACE tasks.

Proposition 5. The max−CONSISTENCY and
max−WNON-DOM’ED problems for mgCP-nets are
PSPACE-hard, while max−∃NON-DOM’ED is NP-hard.

Proof. In all cases, reduce from the corresponding single-
agent complete problems where m = 1.

Proposition 6. The max−NON-DOM’ED problem for
mgCP-nets is in PSPACE.

Proof. Consider an algorithm that checks for all o′ ∈ O
whether o′ >max

M o, which is a PSPACE problem accord-
ing to Theorem 4, and it answers ‘yes’ if every one of these
tasks gives a negative answer.

Observe that the hardness result of Theorem 1 cannot be
adapted to max−NON-DOM’ED since >max

M has no self-
dominating outcomes by definition.

Rank semantics Since the r -induced model of an mgCP-
net M is a total preorder, the notions of strongly domi-
nating outcome and non-dominated outcome are vacuous,
since o >rM o for every outcome o. Furthermore, weakly
non-dominated outcomes always exist, and they coincide
with dominating outcomes. Thus, the r−CONSISTENCY,
r−NON-DOM’ED, r−STR-DOM’ING, r−∃NON-DOM’ED,
r−∃DOM’ING, and r−∃STR-DOM’ING problems have
trivial answers. We will focus, in the following, on

r−DOMINANCE and r−WNON-DOM’ED, with the under-
standing that a solution to the latter problem doubles as a
solution to the r−DOM’ING problem. We first show, using
results on single gCP-nets (Goldsmith et al. 2008) and some
intermediary results that finding the rank of an outcome
and comparing two outcomes with respect to their rank is
PSPACE-hard even in the single gCP-case (Proposition 7).
This then carries over to the multi-agent case (Theorem 5).

Lemma 1. If o and o′ are two outcomes and the Hamming
distance between them is dH(o, o′) = p,4 then there exists a
gCP-net N (o, o′) such that ∣N ∣ = p and a sequence, of length
p, of worsening flips from o to o′ sanctioned by N .

Proof. Since worsening flips exist only between outcomes
oi and oj which differ by only one variable, we can create
a chain of outcomes o1, . . . , op of length p, where o = o1,
o′ = op and oi and oi+1 differ by only one variable, and a
conditional preference statement can be defined for every
worsening flip form oi to oi+1, as shown in Example 8.

Example 8. If o = abc and o′ = abc, then we can reach

abc from abc in three steps through the chain abc, abc, abc,
abc. A worsening flip from abc to abc is sanctioned by the

statement a∧b : c▷c. The statement a∧c : b▷b then sanctions
the worsening flip from abc to abc, and so on. The gCP-net
N (o, o′) is simply the set of all these preference statements.

If o is an outcome over a set of variables V and X ∉ V is
a variable such that D(X) = {x, x}, we write ox∗ for the
outcome o′ over V ∪ {X} such that o′[Y ] = o[Y ], for any
Y ∈ V , and o′[X] = x∗, for x∗ ∈ D(X). We can think of
o′ as o concatenated with x∗. We now show that given an
outcome o of rank 0 in N , we can construct a new gCP-net
N ′ where (a suitable copy of) o has rank k, for any k ≥ 0.

Lemma 2. If N1 is a gCP-net and o is an outcome, over
variables in V , and k ≥ 0, then there exists a gCP-net N2

over variables V ∪ {X1, . . . ,Xk}, where all the variables in
{X1, . . . ,Xk} are binary and none of them occurs in V , such

that rlp1 (o) = 0 iff rlp2 (ox1 . . . xk) = k.

Proof. Let N2 = N1 ∪ {⋀X∈V o[X] ∧ ⋀k−1
i=1 xi :xk ▷

xk,⋀X∈V o[X] ∧⋀k−2
i=1 xi ∧ xk :xk−1▷ xk−1,⋀X∈V o[X] ∧

⋀k−3
i=1 xi ∧ ⋀k−1

j=k xj :xk−2 ▷ xk−2, . . . ,⋀X∈V o[X] ∧
⋀k

i=2 xi :x1 ▷ x1}. It holds that rlp1 (o) = 0 iff

rlp2 (ox1 . . . xk) = k. See Example 9 for an illustration
of the construction.

Example 9. Take a gCP-net N1 over a single binary vari-
able A, with N1 = {⊺ :a▷ a}. Suppose we want to construct
N2 such that (a suitable constructed avatar of) outcome a
has rank 2. To do this add two new binary variables, X and
Y , and define N2 over variables A, X and Y . As for proof
of Lemma 2, we first import all the conditional preference
statements from N1: by the ceteris paribus semantics, this
creates four copies of the dominance relation from >1, one

4The Hamming distance between two outcomes is the number
of variables on which they differ.
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Figure 5: The induced models >1 and >2 from Example 9;
the outcome we are interested in relegating from rank 0 to
rank 2 is circled.

for each assignment to variables X and Y . Add, then, state-
ments a ∧ x : y ▷ y and a ∧ y :x▷ x, which create a chain
improving flips from axy to axy (see Figure 5) of length 2.

It is easy to see now that rlp1 (a) = 0 iff rlp2 (axy) = 2.

The following lemma, along with Example 10, shows
that, given a gCP-net N1, we can always create a gCP-net
N2, where a dominance relation in >1 is reflected by a dif-
ference between the ranks of two (avatars of the) outcomes
in >2.

Lemma 3. If N1 is a gCP-net and o1, o2 are outcomes, over
variables in V , then there exists a gCP-net N2 over variables
V ∪ {X}, where X ∉ V is binary, such that o1 >1 o2 iff

rlp2 (o1x) < r
lp
2 (o2x).

Proof. Note that dH(o1, o2) = p implies dH(o1x, o2x) = p.
By Lemma 1 we construct the gCP-net N (o2x, o1x) of size
p which sanctions a chain of worsening flips from o2x to
o1x. We now take N2 = N1 ∪ N (o2x, o1x). If o1 >1 o2,

then it is straightforward to see that rlp2 (o1x) < rlp2 (o2x).
Conversely, if o1 />1 o2, then rlp2 (o1x) ≥ r

lp
2 (o2x), since o1

inherits all of o2’s ancestors, and thus its rank is at least as
great. See Example 10 for an illustration.

Example 10. Take N1 = {b :a▷ a} and we are interested

in outcome ab and ab (circled in Figure 6), i.e., we want to

construct N2 such that ab >1 ab iff rlp2 (abx) < rlp2 (abx).
Taking N2 as described in the proof of Lemma 3 we get, via
the ceteris paribus semantics, an extra copy of every domi-
nance relation in >1, one for x and one for x. What the added
preference statements do, now, is take the dominance block

abx >2 abx and place it on top of abx: since this block is

a copy of the block abx >2 abx, we get that abx inherits

all of abx’s ancestors. Thus, the rank of abx in >2 can be
smaller than the rank of abx if and only if the path of ances-

tors of abx goes through abx, i.e., only if abx >2 abx. But
this means that this edge must have been in >1 originally
(which is not the case here).

We can now gather these lemmas into one result.

Proposition 7. For N a gCP-net, o1 and o2 two outcomes,
and k ≥ 0, then it is PSPACE-hard to check:

(a) whether rlpN (o1) = k;

(b) whether rlpN (o1) = r
lp
N (o2);
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↝
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Figure 6: The induced models from Example 10.

(c) whether rlpN (o1) < r
lp
N (o2).

Proof. For (a), observe that o1 is weakly non-dominated in

>N if and only if it has rlp1 (o1) = 0. Then, Lemma 2 gives us
a reduction from WNON-DOM’ED for individual gCP-nets
under >N . For (b) we do a reduction from DOMINANCE.
Let N1 be a gCP-net, we define N2 = N1 ∪ N (o2, o1),
where N (o2, o1) is a gCP-net constructed as in Lemma 1,
which induces a dominance relation from o2 to o1. Note
that if o1 >N o2, for some gCP-net N , then o1 must be
on a path from [o2] to a non-dominated class in >dN , and

thus rlpN (o1) ≤ rlpN (o2). It follows now that o1 >1 o2 iff

rlp2 (o1) = r
lp
2 (o2). For (c), Lemma 3 describes a reduction

from DOMINANCE.

It follows from Proposition 7 that for a single gCP-net weak
non-dominance (point (a), with k = 0) and domination (ei-
ther (b) or (c)) for rank semantics are both PSPACE-hard.

Theorem 5. The r−DOMINANCE and r−WNON-DOM’ED

problems for mgCP-nets are PSPACE-hard.

Proof. Inherited from the single gCP-net case.

Conclusions
Starting from the example of an online booking service that
ranks holiday houses according to the preferences of mul-
tiple users, we were led to the study of mgCP-nets, i.e.,
profiles of generalized CP-nets (gCP-nets) (Goldsmith et al.
2008), aggregated under various semantics adapted from the
literature of mCP-nets (Rossi, Venable, and Walsh 2004;
Lukasiewicz and Malizia 2016). Thus, our work bridges two
lines of research: that on gCP-nets, on the one hand, which
provide a framework for expressing very general types of
preferences under the ceteris paribus semantics: users are
free to provide incomplete, or even cyclic preference state-
ments; and, on the other hand, that on the aggregation of
CP-nets coming from different agents. As the main barriers
to implementing such frameworks are computational, our fo-
cus has been that of studying a variety of complexity prob-
lems for mgCP-nets. In particular, we analyzed the conse-
quences of moving from a single- to a multi-agent setting
with respect to the complexity of some known problems,
such as consistency and optimality. Our findings show that
these problems fall uniformly in the PSPACE area of the
complexity landscape. On the positive side, for most cases



the complexity does not increase when moving to the multi-
agent case (PSPACE stays PSPACE), one exception being
the problems that deal with non-dominated outcomes.

Though prohibitive, the complexity results obtained point
toward possible avenues for future work. It is worth noting
that the agents in our setting are not assumed to be con-
sistent: it would be, therefore, interesting to check whether
such an assumption lowers the complexity of some of the
problems studied here. More generally, the complexity re-
sults provide a clear incentive to look for restrictions on
gCP-nets that make the reasoning tasks tractable. Empirical
studies on the types of preferences people typically express
could suggest constraints that, if added to the current frame-
work, might prove useful for modelling real world scenarios.
We also wish to close the remaining complexity questions in
Table 2 for which upper or lower bounds have not been es-
tablished yet. Finally, alternative ways to aggregate agents’
individual bases could be explored, such as voting directly
on formulas in a way similar to judgment aggregation (En-
driss 2016).
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