Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up

SUPPLEMENTARY MATERIAL

Supplementary Table S1. Biomarkers and molecular targets for precision medicines and corresponding ESCAT scores

Biomarker or	Frequency ^a	Method of detection	Drug match	ESCAT
genomic alteration				score ^{b,c}
IDH1 mutations ¹⁻⁶	1%-18% (8%-18% iCCA)	NGS	IDH1 inhibitors (e.g. ivosidenib)	I-A ³
IDH2 mutations ^{4,6-8}	<5% (<5% iCCA)	NGS	IDH2 inhibitors (e.g. enasidinib)	III-A ⁹
FGFR2 fusions ^{2,4,6,10,11}	<10% (5%-15% iCCA)	RNA sequencing	FGFR inhibitors (e.g. pemigatinib, infigratinib)	I-B ^{12,13}
FGFR2 mutations ^{2,6,11,14,15}	2% (2% iCCA)	NGS	FGFR inhibitors (e.g. derazantinib, erdafinib)	II-B ^{16,17}
HER2 amplifications ^{2,4,6,18-} 20	5%-10% (10%-20% dCCA, pCCA, GBC)	NGS, FISH, IHC	Anti-HER2 antibodies (e.g. pertuzumab, trastuzumab)	I-C ²⁰

HER2	3%-5%	NGS	Anti-HER2 antibodies (e.g.	II-B ²⁰
mutations ^{2,4,6,15,19,21}	(more frequent in		trastuzumab)	
	dCCA, pCCA, GBC)			
BRAF ^{V600E}	<5%	NGS	BRAF inhibitors (e.g. dabrafenib)	I-B ²²
mutations ^{2,4-6,15,19,22}	(50% V600E)		and MEK inhibitors (e.g. trametinib)	
BRCA1/2	3%-5%	NGS	PARP inhibitors (e.g. olaparib)	III-A ²⁸
mutations ^{4-6,19,23-27}				
PALB2	1%	NGS	PARP inhibitors (e.g. rucaparib)	III-A ²⁹
mutations ^{6,25-27}				
KRAS ^{G12C4,30}	<1%	NGS	KRAS ^{G12C} inhibitors (e.g.	I-C ³⁰
			adagrasib)	
NTRK fusions ^{6,31}	<1%	RNA sequencing	NTRK inhibitors (e.g. larotrectinib,	I-C ^{31,32 d}
			entrectinib)	
MSI ^{2,4-6}	<1%	IHC	ICIs (e.g. pembrolizumab)	I-C ^{33 e}

dCCA, distal cholangiocarcinoma; dMMR, mismatch repair deficiency; ESCAT, ESMO Scale for Clinical Actionability of Molecular Targets; FGFR2, fibroblast growth factor receptor 2; GBC, gallbladder carcinoma; HER2, human epidermal growth factor receptor 2; iCCA, intrahepatic cholangiocarcinoma; ICI, immune checkpoint inhibitor; IDH, isocitrate dehydrogenase 1; IHC, immunohistochemistry; MSI, microsatellite instability; MSI-H, microsatellite instability-high; NGS, next-generation sequencing; NTRK, neurotrophic tyrosine receptor kinase; PALB2, partner and localiser of BRCA2; PARP, poly (ADP-ribose) polymerase; pCCA, perihilar cholangiocarcinoma.

^a There is substantial heterogeneity across studies in terms of molecular testing methodology and patient population, which limit the precision of these estimates.

^b ESCAT scores apply to genomic alterations only. These scores have been defined by the guideline authors and validated by the ESMO Translational Research and Precision Medicine Working Group.

^c I-A, alteration–drug match is associated with improved outcome with evidence from randomised clinical trials showing the alteration–drug match in a specific tumour type results in a clinically meaningful improvement of a survival endpoint; I-B, alteration–drug match is associated with improved outcome with evidence from prospective, nonrandomised clinical trials showing that the alteration–drug match in a specific tumour type results in clinically meaningful benefit as defined by ESMO-MCBS v1.1; I-C, alteration–drug match is associated with improved outcome with evidence from clinical trials across tumour types or basket clinical trials showing clinical benefit associated with the alteration–drug match, with similar benefit observed across tumour types; II-B, alteration–drug match is associated with antitumour activity, with evidence from prospective clinical trials showing the alteration–drug match in a specific tumour type results in increased responsiveness when treated with a matched drug, however, no data are currently available on survival endpoints; III-A, alteration–drug match is suspected to improve outcome based on patients with the specific alteration but in a different tumour type, with limited/absence of clinical evidence available for the patient-specific cancer type or broadly across cancer types.⁵

^d Larotrectinib and entrectinib are approved for the treatment of solid tumours that display an *NTRK* gene fusion in patients with locally advanced/metastatic disease or where surgical resection is likely to result in severe morbidity, and who have no satisfactory treatment options.

^e Pembrolizumab is approved for the treatment of MSI-H or dMMR tumours in adults with unresectable or metastatic biliary cancer, who have disease progression on or following at least one prior therapy.

CCA						GBC		
iCCA		pCCA		dCCA				
Primar	y tumour (T)	Primary tumour (T)		Primary	tumour (T)	Primary tumour (T)		
ТХ	Primary tumour cannot be assessed	ТХ	Primary tumour cannot be assessed	ТХ	Primary tumour cannot be assessed	ТХ	Primary tumour cannot be assessed	
ТО	No evidence of primary tumour	Т0	No evidence of primary tumour	ТО	No evidence of primary tumour	Т0	No evidence of primary tumour	
Tis	Carcinoma <i>in situ</i> (intraductal tumour)	Tis	Carcinoma in situ	Tis	Carcinoma in situ	Tis	Carcinoma in situ	
T1a	Solitary tumour ≤5 cm in greatest dimension without vascular invasion	T1	Tumour confined to the bile duct, with extension up to the muscle layer or fibrous tissue	T1	Tumour invades bile duct wall to a depth <5 mm	T1	Tumour invades lamina propria or muscular layer	
T1b	Solitary tumour >5 cm in greatest dimension without vascular invasion	T2a	Tumour invades beyond the wall of the bile duct to surrounding adipose tissue	T2	Tumour invades bile duct wall to a depth of 5-12 mm	T1a	Tumour invades lamina propria	

Supplementary Table S2. TNM staging of CCA and GBC according to the UICC 8th Edition^{34-37 a}

T2	Solitary tumour with	T2b	Tumour invades	T3	Tumour invades bile	T1b	Tumour invades muscular
	intrahepatic vascular		adjacent hepatic		duct wall to a depth		layer
	invasion <i>or</i> multiple		parenchyma		of >12 mm		
	tumours, with or						
	without vascular						
	invasion						
T3	Tumour perforating	Т3	Tumour invades	T4	Tumour involves the	T2	Tumour invades
	the visceral		unilateral branches of		coeliac axis, the		perimuscular connective
	peritoneum		the portal vein or		superior mesenteric		tissue; no extension
			hepatic artery		artery and/or the		beyond serosa or into
					common hepatic		liver
					artery		
T4	Tumour involving	T4	Tumour invades the			T2a	Tumour invades
	local extrahepatic		main portal vein or its				perimuscular connective
	structures by direct		branches bilaterally;				tissue on the peritoneal
	hepatic invasion		or the common				side with no extension to
			hepatic artery; or				the serosa
			unilateral second				
			order biliary radicals				
			with contralateral				
1		1		i	1		

	portal vein or hepatic			
	artery involvement			
			T2b	Tumour invades
				perimuscular connective
				tissue on the hepatic side
				with no extension into the
				liver
			Т3	Tumour perforates the
				serosa (visceral
				peritoneum) and/or directly
				invades the liver and/or
				one other adjacent organ
				or structure, such as
				stomach, duodenum,
				colon, pancreas, omentum,
				extrahepatic bile ducts
			T4	Tumour invades main
				portal vein or hepatic
				artery or invades two or
				more extrahepatic organs
				or structures

Regior	nal lymph nodes (N)	Regional	lymph nodes (N)	Regiona	al lymph nodes (N)	Regiona	al lymph nodes (N)
NX	Regional lymph	NX	Regional lymph	NX	Regional lymph	NX	Regional lymph nodes
	nodes cannot be		nodes cannot be		nodes cannot be		cannot be assessed
	assessed		assessed		assessed		
N0	No regional lymph	N0	No regional lymph	N0	No regional lymph	N0	No regional lymph node
	node metastasis		node metastasis		node metastasis		metastasis
N1	Regional lymph node	N1	Metastases to 1-3	N1	Metastases to 1-3	N1	Metastases to 1-3 regional
	metastasis		regional lymph nodes		regional lymph		lymph nodes
					nodes		
		N2	Metastasis to ≥4	N2	Metastasis to ≥4	N2	Metastasis to ≥4 regional
			regional lymph nodes		regional lymph		lymph nodes
					nodes		
Distan	t metastasis (M)	Distant m	etastasis (M)	Distant	metastasis (M)	Distant	metastasis (M)
M0	No distant metastasis	M0	No distant metastasis	M0	No distant	M0	No distant metastasis
					metastasis		
M1	Distant metastasis	M1	Distant metastasis	M1	Distant metastasis	M1	Distant metastasis

CCA, cholangiocarcinoma; dCCA, distal cholangiocarcinoma; GBC, gallbladder carcinoma; iCCA, intrahepatic cholangiocarcinoma;

pCCA, perihilar cholangiocarcinoma; TNM, tumour-node-metastasis; UICC, Union for International Cancer Control.

^a Reproduced from Brierley et al.³⁴⁻³⁷ with permission.

CCA												GBC			
iCCA				рССА				dCCA							
Stage I	T1	N0	M0	Stage 0	Tis	N0	M0	Stage 0	Tis	N0	M0	Stage 0	Tis	N0	MO
Stage IA	T1a	N0	M0	Stage I	T1	N0	M0	Stage I	T1	N0	M0	Stage IA	T1a	N0	M0
Stage IB	T1b	N0	M0	Stage II	T2a	N0	M0	Stage IIA	T1	N1	M0	Stage IB	T1b	N0	M0
					T2b	NO	MO		T2	NO	MO				
Stage II	T2	N0	M0	Stage IIIA	T3	N0	M0	Stage IIB	T2	N1	M0	Stage IIA	T2a	N0	MO
									Т3	NO	MO				
									Т3	N1	MO				
Stage IIIA	Т3	N0	M0	Stage IIIB	T4	N0	M0	Stage IIIA	T1	N2	MO	Stage IIB	T2b	N0	MO
									T2	N2	MO				
									Т3	N2	MO				
Stage IIIB	T4	N0	M0	Stage IIIC	Any T	N1	M0	Stage IIIB	T4	Any N	MO	Stage IIIA	Т3	N0	MO
	Any T	N1													
Stage IV	Any T	Any N	M1	Stage IVA	Any T	N2	M0	Stage IV	Any T	Any N	M1	Stage IIIB	T1	N1	M0
													T2	N1	MO
													Т3	N1	MO
				Stage IVB	Any T	Any N	M1					Stage IVA	T4	N0	M0
													T4	N1	MO
												Stage IVB	Any T	N2	M0

Supplementary Table S3. Anatomic stage/prognostic groups for CCA and GBC according to the UICC 8th Edition^{34-37 a}

Any T Any	M1
-----------	----

CCA, cholangiocarcinoma; dCCA, distal cholangiocarcinoma; GBC, gallbladder carcinoma; iCCA, intrahepatic cholangiocarcinoma;

pCCA, perihilar cholangiocarcinoma; UICC, Union for International Cancer Control.

^a Reproduced from Brierley et al.³⁴⁻³⁷ with permission.

Supplementary Table S4. Bismuth–Corlette classification of pCCA^{38 a}

Tumour involves the common hepatic duct
Tumour involves the bifurcation of the common hepatic duct
Tumour involves the right hepatic duct
Tumour involves the left hepatic duct
Tumour involves both the right and left hepatic ducts

pCCA, perihilar cholangiocarcinoma.

^a Reproduced from Bismuth and Corlette³⁸ with permission.

Therapy	Disease setting	Trial	Control	Absolute	HR (95% CI)	QoL/toxicity	ESMO-
				survival gain			MCBS
							score ^a
Dabrafenib-	Adult and	ROAR ²²	Single arm	ORR: 51%			3
trametinib ^b	pediatric						(Form 3)
	patients ≥6	Dhasall					· · · ·
	years of age	Phase II		Median DoR:			
	with			9 months			
	unresectable or	NCT02034110					
	metastatic solid			Median PFS:			
	tumors with			9 months			
	BRAF V600E						
	mutation who						
	have			Median OS:			
	progressed			14 months			
	following prior						
	treatment and						
	have no						
	satisfactory						
	alternative						
			1	1			

Supplementary Table S5. ESMO-MCBS table for therapies/indications in biliary tract cancer

	treatment options Biliary tract cancer cohort						
Durvalumab– gemcitabine– cisplatin ^b	Adult patients with locally advanced or metastatic biliary tract cancer	TOPAZ-1 ³⁹ Phase III NCT03875235	Gemcitabine– cisplatin Median PFS: 5.7 months	PFS gain: 1.5 months	PFS: 0.75 (0.63-0.89)		4 (Form 2a)
			Median OS: 11.5 months	OS gain: 1.3 months 2-year OS gain: 14.5% ^c	OS: 0.80 (0.66-0.97)		
FOLFOXd	Second-line treatment of advanced biliary tract cancer	ABC-06 ⁴⁰ Phase III	Symptomatic care			·	1 (Form 2a)

		NCT01926236	Median OS:	OS gain: 0.9	OS: 0.69		
			5.3 months	months	(0.50-0.97)		
Infigratinib ^b	Previously	CBGJ398X2204 ^{13,41}	Single arm	ORR: 23.1%			3
	treated,						(Form 3)
	unresectable	Dhasa II					
	locally	Phase II		Median DoR:			
	advanced or			5.0 months			
	metastatic CCA	NCT02150967					
	with an <i>FGFR</i> 2			Median PFS:			
	fusion or other			7.3 months			
	rearrangement						
Ivosidenib ^b	Locally	ClarIDHy ^{3,42}	Placebo			No global	2
	advanced or					QoL benefit	(Form 2b)
	metastatic CCA						(***********
	with a	Phase III	Median PFS:	PFS gain: 1.3	PFS: 0.37		
	susceptible		1.4 months	months	(0.25-0.54)		
	IDH1 mutation	NCT02989857		>10% plateau			
	that has been			in the tail of			
	previously			the PFS			
	treated			curve			
						1	

Pembrolizumab	Treatment of	KEYNOTE-158 ³³	Single arm	ORR: 40.90%		2
	MSI-H or dMMR					(Form 3)
	tumours in					、
	adults with	Phase II		Median PFS:		
	unresectable or			4.2 months		
	metastatic	NCT02628067				
	biliary cancer,			Median DoR:		
	who have			Not reached		
	disease			(range: 4.1-		
	progression on			24.9)		
	or following at					
	least one prior					
	therapy					
Pemigatinib	Locally	FIGHT-202 ¹²	Single arm	ORR: 35.5%	 	3
	advanced or					(Form 3)
	metastatic CCA	Phase II				(1 0111 0)
	with an <i>FGFR</i> 2			Median DoR:		
	fusion or			7.5 months		
	rearrangement	NCT02924376				
	that has					
	progressed after					

at least on	e	Median PFS:		
prior line c	f	6.9 months		
systemic				
therapy				

CCA, cholangiocarcinoma; CI, confidence interval; dMMR, mismatch repair deficiency; DoR, duration of response; EMA, European Medicines Agency; ESMO-MCBS, ESMO-Magnitude of Clinical Benefit Scale; FDA, Food and Drug Administration; FGFR2, fibroblast growth factor receptor 2; FOLFOX, folinic acid–fluorouracil–oxaliplatin; HR, hazard ratio; IDH1, isocitrate dehydrogenase-1; MSI-H, microsatellite instability-high; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; QoL, quality of life.

^a ESMO-MCBS v1.1⁴³ was used to calculate scores for new therapies/indications approved by the EMA or FDA. The scores have been calculated by the ESMO-MCBS Working Group and validated by the ESMO Guidelines Committee

(https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbs-evaluation-forms).

^b FDA approved but not EMA approved in this setting.

^c The 2-year OS gain reported was based on 9 patients (2.6% of the experimental group) who were still alive at that time.

^d Regimen without a specific licensed indication in biliary cancer.

Supplementary Table S6. Levels of evidence and grades of recommendation (adapted from the Infectious Diseases Society of America-United States Public Health Service Grading System^a)

Levels of evidence

I	Evidence from at least one large randomised, controlled trial of good
	methodological quality (low potential for bias) or meta-analyses of well-
	conducted randomised trials without heterogeneity
П	Small randomised trials or large randomised trials with a suspicion of bias
	(lower methodological quality) or meta-analyses of such trials or of trials
	demonstrated heterogeneity
	Prospective cohort studies
IV	Retrospective cohort studies or case-control studies
V	Studies without control group, case reports, expert opinions

Grades of recommendation

А	Strong evidence for efficacy with a substantial clinical benefit,
	strongly recommended
В	Strong or moderate evidence for efficacy but with a limited clinical benefit,
	generally recommended
С	Insufficient evidence for efficacy or benefit does not outweigh the risk or
	the disadvantages (adverse events, costs, etc.), optional
D	Moderate evidence against efficacy or for adverse outcome, generally not
	recommended
E	Strong evidence against efficacy or for adverse outcome, never
	recommended
a Donrint	ad by permission of Oxford University Press on behalf of the Infectious

^a Reprinted by permission of Oxford University Press on behalf of the Infectious Diseases Society of America.^{44,45}

REFERENCES

- Boscoe AN, Rolland C, Kelley RK. Frequency and prognostic significance of isocitrate dehydrogenase 1 mutations in cholangiocarcinoma: a systematic literature review. *J Gastrointest Oncol.* 2019;10(4):751-765.
- Javle MM, Murugesan K, Shroff RT, et al. Profiling of 3,634 cholangiocarcinomas (CCA) to identify genomic alterations (GA), tumor mutational burden (TMB), and genomic loss of heterozygosity (gLOH). J Clin Oncol. 2019;37(suppl 15):4087.
- Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. *Lancet Oncol.* 2020;21(6):796-807.
- Israel MA, Danziger N, McGregor KA, et al. Comparative Genomic Analysis of Intrahepatic Cholangiocarcinoma: Biopsy Type, Ancestry, and Testing Patterns. *Oncologist.* 2021;26(9):787-796.
- Wardell CP, Fujita M, Yamada T, et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. *J Hepatol.* 2018;68(5):959-969.
- Valle JW, Vogel A, Denlinger CS, et al. Addition of ramucirumab or merestinib to standard first-line chemotherapy for locally advanced or metastatic biliary tract cancer: a randomised, double-blind, multicentre, phase 2 study. *Lancet Oncol.* 2021;22(10):1468-1482.
- Shen D, Zhang J, Yuan K, et al. Landscape of IDH1/2 mutations in Chinese patients with solid tumors: A pan-cancer analysis. *Mol Genet Genomic Med.* 2021;9(8):e1697.
- Lee K, Song YS, Shin Y, et al. Intrahepatic cholangiocarcinomas with IDH1/2 mutation-associated hypermethylation at selective genes and their clinicopathological features. *Sci Rep.* 2020;10(1):15820.
- 9. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. *Blood.* 2017;130(6):722-731.
- 10. Silverman IM, Hollebecque A, Friboulet L, et al. Clinicogenomic Analysis of FGFR2-Rearranged Cholangiocarcinoma Identifies Correlates of Response

and Mechanisms of Resistance to Pemigatinib. *Cancer Discov.* 2021;11(2):326-339.

- 11. Silverman IM, Murugesan K, Lihou CF, et al. Comprehensive genomic profiling in FIGHT-202 reveals the landscape of actionable alterations in advanced cholangiocarcinoma. *J Clin Oncol.* 2019;37(suppl 15):4080.
- 12. Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. *Lancet Oncol.* 2020;21(5):671-684.
- Javle M, Lowery M, Shroff RT, et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. *J Clin Oncol.* 2018;36(3):276-282.
- Meric-Bernstam F, Bahleda R, Hierro C, et al. Futibatinib, an Irreversible FGFR1-4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study. *Cancer Discov.* 2022;12(2):402-415.
- Goeppert B, Folseraas T, Roessler S, et al. Genomic Characterization of Cholangiocarcinoma in Primary Sclerosing Cholangitis Reveals Therapeutic Opportunities. *Hepatology.* 2020;72(4):1253-1266.
- Javle MM, Abou-Alfa GK, Macarulla T, et al. Efficacy of derazantinib in intrahepatic cholangiocarcinoma patients with FGFR2 mutations or amplifications: Interim results from the phase 2 study FIDES-01. *J Clin Oncol.* 2022;40(suppl 4):427.
- 17. Feng YH, Su WC, Oh DY, et al. Updated analysis with longer follow up of a phase 2a study evaluating erdafitinib in Asian patients (pts) with advanced cholangiocarcinoma (CCA) and fibroblast growth factor receptor (FGFR) alterations. *J Clin Oncol.* 2022;40(suppl 4):430.
- Galdy S, Lamarca A, McNamara MG, et al. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: a potential therapeutic target? *Cancer Metastasis Rev.* 2017;36(1):141-157.
- Chae H, Kim D, Yoo C, et al. Therapeutic relevance of targeted sequencing in management of patients with advanced biliary tract cancer: DNA damage repair gene mutations as a predictive biomarker. *Eur J Cancer.* 2019;120:31-39.

- 20. Javle M, Borad MJ, Azad NS, et al. Pertuzumab and trastuzumab for HER2positive, metastatic biliary tract cancer (MyPathway): a multicentre, openlabel, phase 2a, multiple basket study. *Lancet Oncol.* 2021;22(9):1290-1300.
- Yoon JG, Kim MH, Jang M, et al. Molecular Characterization of Biliary Tract Cancer Predicts Chemotherapy and Programmed Death 1/Programmed Death-Ligand 1 Blockade Responses. *Hepatology*. 2021;74(4):1914-1931.
- 22. Subbiah V, Lassen U, Élez E, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. *Lancet Oncol.* 2020;21(9):1234-1243.
- 23. Spizzo G, Puccini A, Xiu J, et al. Frequency of BRCA mutation in biliary tract cancer and its correlation with tumor mutational burden (TMB) and microsatellite instability (MSI). *J Clin Oncol.* 2019;37(suppl 15):4085.
- 24. Spizzo G, Puccini A, Xiu J, et al. Molecular profile of BRCA-mutated biliary tract cancers. *ESMO Open.* 2020;5(3):e000682.
- Abdel-Wahab R, Yap TA, Madison R, et al. Genomic profiling reveals high frequency of DNA repair genetic aberrations in gallbladder cancer. *Sci Rep.* 2020;10(1):22087.
- 26. Maynard H, Stadler ZK, Berger MF, et al. Germline alterations in patients with biliary tract cancers: A spectrum of significant and previously underappreciated findings. *Cancer.* 2020;126(9):1995-2002.
- Heeke AL, Pishvaian MJ, Lynce F, et al. Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol. 2018;2018.
- 28. Golan T, Hammel P, Reni M, et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. *N Engl J Med.* 2019;381(4):317-327.
- Reiss KA, Mick R, O'Hara MH, et al. Phase II Study of Maintenance Rucaparib in Patients With Platinum-Sensitive Advanced Pancreatic Cancer and a Pathogenic Germline or Somatic Variant in BRCA1, BRCA2, or PALB2. *J Clin Oncol.* 2021;39(22):2497-2505.
- Bekaii-Saab TS, Spira AI, Yaeger R, et al. KRYSTAL-1: Updated activity and safety of adagrasib (MRTX849) in patients (Pts) with unresectable or metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI) tumors harboring a KRASG12C mutation. *J Clin Oncol.* 2022;40(suppl 4):519.

- 31. Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. *Lancet Oncol.* 2020;21(2):271-282.
- Hong DS, Shen L, van Tilburg CM, et al. Long-term efficacy and safety of larotrectinib in an integrated dataset of patients with TRK fusion cancer. *J Clin Oncol.* 2021;39(suppl 15):3108.
- Marabelle A, Le DT, Ascierto PA, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol. 2020;38(1):1-10.
- Intrahepatic bile ducts. In: Brierley JD, Gospodarowicz MK, Wittekind C, eds. UICC TNM Classification of Malignant Tumours. 8th ed. Oxford, UK: Wiley-Blackwell; 2017.
- Perihilar bile ducts. In: Brierley JD, Gospodarowicz MK, Wittekind C, eds. UICC TNM Classification of Malignant Tumours. 8th ed. Oxford, UK: Wiley-Blackwell; 2017.
- Distal extrahepatic bile duct. In: Brierley JD, Gospodarowicz MK, Wittekind C, eds. UICC TNM Classification of Malignant Tumours. 8th ed. Oxford, UK: Wiley-Blackwell; 2017.
- Gallbladder. In: Brierley JD, Gospodarowicz MK, Wittekind C, eds. UICC TNM Classification of Malignant Tumours. 8th ed. Oxford, UK: Wiley-Blackwell; 2017.
- Bismuth H, Corlette MB. Intrahepatic cholangioenteric anastomosis in carcinoma of the hilus of the liver. *Surg Gynecol Obstet.* 1975;140(2):170-178.
- Oh D-Y, He AR, Qin S, et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. *NEJM Evid*. 2022;1(8):DOI:<u>https://doi.org/10.1056/EVIDoa2200015</u>.
- Lamarca A, Palmer DH, Wasan HS, et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. *Lancet Oncol.* 2021;22(5):690-701.
- 41. Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2

fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. *Lancet Gastroenterol Hepatol.* 2021;6(10):803-815.

- Zhu AX, Macarulla T, Javle MM, et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. *JAMA Oncol.* 2021;7(11):1669-1677.
- 43. Cherny NI, Dafni U, Bogaerts J, et al. ESMO-Magnitude of Clinical Benefit Scale version 1.1. *Ann Oncol.* 2017;28(10):2340-2366.
- 44. Dykewicz CA. Summary of the guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. *Clin Infect Dis.* 2001;33(2):139-144.
- 45. Gross PA, Barrett TL, Dellinger EP, et al. Purpose of quality standards for infectious diseases. Infectious Diseases Society of America. *Clin Infect Dis.* 1994;18(3):421.