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come    

Analysis of a one dimensional energy dissipating free boundary model with nonlinear boundary conditions.

Existence of global weak solutions

Introduction c.intro

This work is motivated by the study of the so-called Diffusion Poisson Coupled Model (DPCM) introduced in [START_REF] Bataillon | Corrosion modelling of iron based alloy in nuclear waste repository[END_REF] by Bataillon et al. This system was developed to model the corrosion of a steel plate in contact with a solution. In particular, it is relevant for describing the corrosion of steel canisters containing nuclear wastes (confined in a glass matrix) and stored at a depth of several hundred meters in a claystone layer. Since this storage method is considered by various countries, its reliability requires investigations. In particular, wastes stay radioactive for several hundred of years and it is important to understand the long term behaviour of the system. Our main concern is about corrosion and the quantity of hydrogen molecules released during the process which can lead to safety issues. As it is not possible to perform physical experiments at these time scales, the use of reliable models (such as DPCM mentioned above) allowing in silico experiments are required. However, to design accurate numerical methods capable of predicting the values of the relevant physical quantities over a long time, it is necessary to understand the mathematical properties of the model.

Let us briefly explain the main features of the DPCM. This is a one dimensional free boundary system. The space is decomposed in three regions: the oxide layer is in contact on one side with the claystone, viewed as a aqueous solution and on the other side with the metal. The DPCM is a system of drift-diffusion equations describing the evolution inside the oxide layer of charge carriers (electrons, Fe 3+ cations and oxygen vacancies) and coupled with a Poisson equation governing the dynamics of the electrical potential. The positions of the solution/oxide layer and oxide layer/metal interfaces evolve along time according to some given ordinary differential equations. Besides, the electrochemical reactions only occur at these interfaces (i.e. there is no reaction terms in the driftdiffusion equations in the bulk of the three regions). These reversible electrochemical reactions are modeled by some nonlinear Fourier boundary conditions at the interfaces.

Due to the numerous coupling of the equations of the model and its definition on a moving domain the mathemical study of the DPCM is a challenging task. So far only few results are available in the literature. In [START_REF] Chainais-Hillairet | The existence of solutions to a corrosion model[END_REF][START_REF] Chainais-Hillairet | On the existence of solutions for a drift-diffusion system arising in corrosion modeling[END_REF] the well-posedness of the system has been established for a simplified version of the DPCM where the positions of the interfaces are fixed. A finitevolume scheme approximating the solutions to the DPCM has been proposed in [START_REF] Bataillon | Numerical methods for the simulation of a corrosion model with moving oxide layer[END_REF]. The numerical experiments with relevant physical data presented in [START_REF] Bataillon | Corrosion modelling of iron based alloy in nuclear waste repository[END_REF][START_REF] Bataillon | Numerical methods for the simulation of a corrosion model with moving oxide layer[END_REF] suggest the existence of a global solution to the system. In particular, the existence of traveling wave solutions is established: after a transient time both interfaces move at the same speed, the width of the oxide domain remains constant and the charge carriers and the electrical potential admit a stationary profile. The existence of such traveling wave solutions for a reduced model, where the electroneutrality in the oxide layer is assumed, has been proved in [START_REF] Chainais-Hillairet | Study of a pseudo-stationary state for a corrosion model: Existence and numerical approximation[END_REF]. Thanks to a computer-assisted proof, the existence of traveling wave solutions for the "full" DPCM has been obtained in [START_REF] Breden | Existence of traveling waves solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof[END_REF]. Recently, in [START_REF] Cancès | Mathematical analysis of a thermodynamically consistent reduced model for iron corrosion[END_REF] another simplified model (only two species are considered) is proposed with some changes in the nonlinear boundary conditions that correct a thermodynamical inconsistency of the initial model. This modification makes the mathematical study more tractable in the case of a fixed domain but the well-posedness of the complete free boundary problem is still open.

Up to now, no existence result has been proved for the evolutionary DPCM with free boundaries. One of the main difficulty for establishing the existence of a global solution is to justify that the length of the oxide layer, where the equations of the systems are defined, stays positive along time (as numerically suggested in [START_REF] Bataillon | Corrosion modelling of iron based alloy in nuclear waste repository[END_REF][START_REF] Bataillon | Numerical methods for the simulation of a corrosion model with moving oxide layer[END_REF]). The structure of the system and in particular its lack of obvious gradient structure prevents the derivation of classical a priori estimates which would lead (even formally) to a positive lower bound for the width of the oxide layer along time. 1 To bypass this difficulty we adapt the approach of Portegies and Peletier in [START_REF] Portegies | Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows[END_REF] which makes use of tools from optimal transport to study a moving boundary problem.

Indeed, in [START_REF] Portegies | Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows[END_REF], the authors introduce a one dimensional parabolic free boundary model with two moving interfaces describing the variation of the length of a piece of crystal by dissolution/precipitation. The thermodynamical consistency of the model is deeply connected with its gradient-flow structure with respect to some Wasserstein metric. This structure is very used in [START_REF] Portegies | Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows[END_REF] for establishing the existence of solutions by using a Jordan, Kinderlehrer and Otto (JKO) minimizing scheme [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. The relevance of this approach in the context of parabolic equations in a fixed domain is well known, see for instance [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF][START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF][START_REF] Kinderlehrer | A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations[END_REF][START_REF] Otto | Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory[END_REF][START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] and the idea to recast some free boundary problems in the Wasserstein gradient-flow setting seems promising.

The main goal of this work is to show that this idea is effective for the DPCM model. For this we consider a free boundary model which compared to the DPCM is very simple in the bulk of the oxide layer but retains all the difficulties related to the nonlinear boundary conditions and to the equation of motion of the oxide-metal interface.

1.1. Presentation of the reduced model. Let us first explain the phenomena that our reduced model has to describe. We only consider the evolution of the concentration of oxygen vacancies, denoted by ρ, inside the oxide layer. We neglect the other charged species as well as the existence of an electrical potential in this domain so that ρ satisfies a heat equation defined on a moving domain. We fix the position of the interface solution/oxide layer at x = 0, while the interface oxide layer/metal is moving according to a nonlinear ordinary differential equation. Finally, in order to take into account the chemical reactions at the interfaces we impose boundary conditions which model the exchange of matters at the interfaces of each regions, i.e., at the interfaces solution/oxide layer and oxide layer/metal.

More precisely, we denote by ρ the concentration of oxygen vacancies and by X(t) > 0 the position of the moving interface at time t. The respective domains of the solution, of the oxide layer and of the metal at time t are (-∞, 0], [0, X(t)) and [X(t), +∞). The metal domain is viewed as a constant and homogeneous reserve of oxygen vacancies. This constant represents a maximum for ρ. Assuming after normalization that this constant is 1 we extend ρ by ρ(x, t) = 1 for x > X(t). With this convention the density of oxygen is then 1 -ρ. Denoting by M (t) the opposite of the quantity of oxygen in the oxide domain, we have

M (t) = ¢ X(t) 0 (ρ(x, t) -1) dx = ¢ R + (ρ(x, t) -1) dx.
We propose to consider for T > 0 the following free boundary model

P ∂ t ρ(x, t) -∂ 2
x ρ(x, t) = 0 for x ∈ [0, X(t)], t ∈ [0, T ],

P.a P.a (1a) ρ(x, t) = 1 for x ≥ X(t), t ∈ [0, T ], P.b P.b (1b)

∂ x ρ(X(t) -, t) + Ẋ(t) ρ(X(t) -, t) = Ẋ(t) for t ∈ [0, T ], P.c P.c (1c) Ṁ (t) = -∂ x ρ(0 + , t) for t ∈ [0, T ], P.d P.d (1d) λ Ẋ(t) = α -1 -ρ(X(t) -, t) -ln ρ(X(t) -, t) for t ∈ [0, T ],
P.e P.e (1e) ρ(x, 0) = ρ 0 (x) for x ≥ 0, P.f1 P.f1 (1f)

M (0) = ¢ R + ρ 0 (x) -1 dx, X(0) = X 0 . P.f2 P.f2 (1g)
where λ, α are positive constants and the given initial data is composed of X 0 > 0 and ρ 0 : R + → R + with ρ 0 (x) = 1 for x > X 0 . Let us check that the evolution of M by (1d) is consistent with its first definiton. We compute

Ṁ (t) = ¢ X(t) 0 ∂ t ρ(x, t) dx + Ẋ(t)(ρ(X(t) -, t) -1) (1a) = -∂ x ρ(0 + , t) + ∂ x + Ẋ(t) ρ(X(t) -, t) -Ẋ(t) (1c) = -∂ x ρ(0 + , t),
which is indeed (1d). We observe that the condition (1c) only expresses the conservation of oxygen vacancies as the position of the oxide/metal interface varies. The rate at which the interface moves is given by the nonlinear equation (1e). This does not correspond to a motion of matter but to a change of state, more precisely, a change in the arrangement of iron atoms at the interface (from metal to oxide if Ẋ > 0) and (1e) is the rate of a chemical reaction.

It remains to impose a boundary condition on ρ at the solution/oxide layer interface at x = 0. In order to be consistent with the previous simplifications we should take a non-homogeneous linear Fourier condition but we would lose an important difficulty in the problem. According to (1d), ∂ x ρ(0, t) represents the flux of oxygen vacancies at time t from the oxide layer into the solution, this quantity should be a nondecreasing function of ρ(0, t) and more generally, we should have

∂ x ρ(0, t) ∈ ∂F (ρ(0, t)),
where F is some (lower semicontinuous) convex function and ∂F denotes its subderivative. We pick a worst case scenario and choose F as the indicatrix of [ρ -, ρ + ] for some 0 < ρ -< ρ + < 1, that is F (ρ) = 0 if ρ -≤ ρ ≤ ρ + and F (ρ) = +∞ in the other cases. This leads to the following nonlinear conditions for t ∈ [0, T ].

P.bord ρ -≤ ρ(0, t) ≤ ρ + , P.bord1 P.bord1 (2a) for t ∈ [0, T ]      ∂ x ρ(0, t) ≥ 0 if ρ(0, t) = ρ + , ∂ x ρ(0, t) ≤ 0 if ρ(0, t) = ρ -, ∂ x ρ(0, t) = 0 if ρ -< ρ(0, t) < ρ + . P.bord2 P.bord2 (2b)
The conditons in (2) can be seen as a generalization of a Signorini problem. These problems contain a one sided-constraint on the solution and model usually some irreversible phenomena at the boundary of the domain. They are used for instance in some unilateral contact problems in elasticity [START_REF] Hild | Residual a posteriori error estimators for contact problems in elasticity[END_REF][START_REF] Kikuchi | Contact Problems in Elasticity: A study of variational inequalities and finite element methods[END_REF], in some continuum mechanics models to describe a semipermeable membrane [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF] or in chemistry to model electrochemical reacting interface [START_REF] Gerbi | Existence of a solution to a coupled elliptic system with a Signorini condition[END_REF]. On the contrary the conditions in (2) allow the exchange of matters, in both "directions", at the interface solution/oxide layer with two distinct thresholds ρ -and ρ + . From a physical point of view, the choice of (2) is disputable as the transport of oxygen vacancies is a reversible phenomenon. However, there is another phenomenon, neglected in the simplified model considered here, which is irreversible, namely the dissolution of the oxide layer. Indeed, the iron in the aqueous solution, rather than possibly reconstituting the oxide layer, will form oxide complexes, less organized and with a porous structure (rust). For this reason, considering nonlinear monotonic and non-smooth boundary conditions like [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] anticipates future studies on a full model.

1.2.

Preliminary considerations on the model. Following [START_REF] Portegies | Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows[END_REF] we use a JKO minimizing movements scheme to prove the existence of weak solutions to (1)-( 2). This approach consists in a semi-discrete in time scheme where at each time step the approximated solutions to (1)-( 2) are obtained as minimizers of a functional which writes as the sum of a a squared distance (a Wasserstein energy divided by twice the time step) and an energy functional. Let us first identify a Lyapunov functional associated to the system (1)- [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. We first define β, θ ∈ R by

atheta1 atheta1 (3) exp (β + θ -1) = ρ + and exp (β -θ -1) = ρ -.
The conditions 0 < ρ -< ρ + < 1 are equivalent to atheta2 atheta2 (4) θ > 0 and β + θ < 1.

Now, let us assume that (ρ, X, M ) is a regular solution to (1)-( 2) on R + × [0, T ). We assume moreover that ρ ≥ ρ min on D T for some ρ min > 0 where

D T := {(x, t) : 0 ≤ t < T, 0 ≤ x < X}.
Then we claim that, at least formally, the following functional

F(t) = ¢ R + ρ(x, t)(ln ρ(x, t) -β) + β dx -αX(t),
is a Lyapunov functional for the system (1)-( 2). Let us check this fact.

In the computation below we use the shorthands ρ X -for ρ(X -(t), t) and ∂ x ρ X -for ∂ x ρ(X -(t), t) and similarly ρ 0 + for ρ(0 + , t) and ∂ x ρ 0 + for ∂ x ρ(0 + , t). Differentiating F at time t we get

Ḟ(t) = ¢ X(t) 0 ∂ t ρ(x, t) [ln ρ(x, t) + 1 -β] dx + [ρ X -(ln ρ X --β) + β] Ẋ(t) -α Ẋ(t) =: A(t) + B(t) + C(t).
We use (1a) and an integration by parts to rewrite the first term as

A(t) = - ¢ X(t) 0 (∂ x ρ(x, t)) 2 ρ(x, t) dx -∂ x ρ 0 + [ln ρ 0 + + 1 -β] + ∂ x ρ X -[ln ρ X -+ 1 -β] =: A 0 (t) + A 1 (t) + A 2 (t).
The bulk term A 0 (t) rewrites as

A 0 (t) = -4 ¢ X(t) 0 ∂ x ρ(x, t) 2 dx ≤ 0.
Next, we regroup the boundary terms at X(t), namely A 2 (t), B(t), C(t). We compute

A 2 (t) + B(t) + C(t) = ∂ x ρ X -[ln ρ X -+ 1 -β] + [ρ X -(ln ρ X --β) + β] Ẋ(t) -α Ẋ(t) (1c) = Ẋ(t) ((1 -ρ X -) [ln ρ X -+ 1 -β] + [ρ X -(ln ρ X --β) + β] -α) = Ẋ(t) (-ρ X -+ ln ρ X -+ 1 -α) (1e) = -λ Ẋ(t) 2 ≤ 0.
For the remaining term A 1 (t) we write

A 1 (t) = -∂ x ρ 0 + [ln ρ 0 + + 1 -β] + θ| Ṁ (t)| -θ| Ṁ (t)|.
We have to distinguish different cases. Indeed, thanks to (1d) and (2b), if Ṁ (t) = 0 then ∂ x ρ 0 + = 0 and

A 1 (t) = 0. If Ṁ (t) > 0 then A 1 (t) = -∂ x ρ 0 + (ln ρ 0 + + 1 -β + θ) -θ Ṁ (t) (3) 
= -θ Ṁ (t) ≤ 0.

Finally, if Ṁ (t) < 0 then

A 1 (t) = -∂ x ρ 0 + (ln ρ 0 + + 1 -β -θ) + θ Ṁ (t) (3) 
= θ Ṁ (t) ≤ 0.

In summary, we have for t ∈ [0, T ),

Ḟ(t) = -4 ¢ X(t) 0 ∂ x ρ(x, t) 2 dx -λ Ẋ(t) 2 -θ Ṁ (t) , dissip dissip (5) 
and the three terms on the right hand side are nonpositive so they can be interpreted as the contributions of different dissipation phenomena in the bulk of the domain, at the left boundary and at the right boundary respectively. Let us emphasize that in this work we are using techniques similar to those employed to analyze (Wasserstein) gradient flow systems. However, we cannot claim that (1)-( 2) admits a gradient flow structure even in the generalized sense introduced by Mielke in [START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF]. Indeed, in this theory, one has to specify an energy functional (or driving functional) and a dissipation potential with a quadratic form allowing to write it thanks to a scalar product. In our case, using (5), the energy functional and the dissipation potential are clearly identified. But, due to the linear dissipation term -θ| Ṁ | in (5), we cannot recast the dynamics of ( 1)-( 2) in an Hilbertian setting and interpret this system as a generalized gradient flow. Nevertheless the methods developed in [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF][START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] can be applied in our case in order to prove the existence of weak solutions to (1)-( 2). weaksol 1.3. Notion of weak solution and main result. In this subsection we define a notion of weak solution for system (1)-(2a), ignoring the boundary condition (2b) at x = 0. Then following the classical approach to deal with Signorini problem [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF][START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF] this later is expressed separately in a weak form as a variational inequality. Before this we recall some definitions and notation about the spaces of functions with bounded variations.

Due to the constraint (1b), the function x → ρ(x, t) may admit a jump at the free interface x = X(t). It is then convenient to work in some BV -space, see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Evans | Measure theory and fine properties of functions[END_REF]. Given an open interval I ⊆ R, we denote BV (I) the space of functions with bounded variations in I, i.e., functions u ∈ L 1 (I) such that the distributional derivative Du is a finite Radon measure on I. For every function u ∈ BV (I) we have the following unique decomposition

Du = u ′ (x) dx + D j u + D c u,
where Du = u ′ (x) dx + (Du -u ′ (x)dx) is the Radon-Nicodym decomposition of Du with respect to the Lebesgue measure and u ′ ∈ L 1 (I) is the corresponding Radon-Nicodym derivative and the remaining term (Du -u ′ (x)dx) decomposes into an atomic part

D j u := x i ∈Ju (u(x + i ) -u(x - i )) δ x i ,
called the jump part and the so called Cantor part D c u which concentrates on a Lebesgue null set but has no atomic part. The space of special functions with bounded variations SBV (I) is the subspace of BV (I) formed by the elements u such that D c u vanishes. For a finite exponent p > 1, SBV p (I) ⊆ SBV (I) is defined as

SBV p (I) := {u ∈ SBV (I) : u ′ ∈ L p (I)}.
Similarly, we will look for t → M (t) in BV ([0, T ]).

Let us now derive a variational identity satisfied by any (sufficiently smooth) solution (ρ, M, X) to (1)-(2a). Let φ ∈ C ∞ 0 (R + × [0, T )). Mutiplying (1a) by φ, integrating over

D T := {(x, t) : 0 ≤ t ≤ T, 0 ≤ x < X(t)},
integrating by parts the first term with respect to time and the second term with respect to space and using the conservative boundary condition (1c), we get

¢ T 0 ¢ R + [-ρ(x, t)∂ t φ(x, t) + ∂ x ρ(x, )∂ x φ(x, t)] dxdt - ¢ X(0) 0 ρ(x, 0)φ(0, t) dx + ¢ T 0 ∂ x ρ(0, t)φ(0, t) dt = 0.
Subtituting the initial conditions (1f)(1g) and the boundary condition (1d) we obtain wf_0 wf_0 (6)

¢ T 0 ¢ R + [-ρ(x, t)∂ t φ(x, t) + ∂ x ρ(x, )∂ x φ(x, t)] dxdt - ¢ X 0 0 ρ 0 (x)φ(0, t) dx - ¢ T 0 Ṁ (t)φ(0, t) dt = 0.
As we will consider weak solutions such that M has BV -regularity, we rewrite the last term in the left hand side as

¢ T 0 φ(0, t) dDM (t).
The above weak formulation has to be complemented with the initial condition on M and the law of motion (1e) of X(t). These conditions and the weak formulation (6) are equivalent to (1)-(2a) as soon as X is Lipschitz continuous, M is BV and ρ has regularity

L 2 t H 2 x ∩ H 1 t L 2 x in the domain D T .
Let us now derive a weak formulation of the boundary conditions [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. Let us assume formally that (ρ, M, X) is a smooth solution to (1)-(2) with t → X(t) a nondecreasing function. Let χ ∈ C ∞ 0 (R + , R + ) such that χ ≡ 1 on [0, X 0 /2) and supp(χ) ⊆ [0, 3X 0 /4) and let us set u(x, t) := χ(x)ρ(x, t). We have:

∂ t u(x, t) -∂ 2 x u(x, t) = g(x, t) for (x, t) ∈ [0, X 0 ] × [0, T ],
eg.var1 eg.var1 [START_REF] Caffarelli | Some regularity properties of solutions of Monge-Ampère equation[END_REF] where the source term g is given by

g(x, t) := -χ ′′ (x) ρ(x, t) -2χ ′ (x) ∂ x ρ(x, t) for (x, t) ∈ [0, X 0 ] × [0, T ]. Now let η ∈ C ∞ 0 (R + × [0, T )) with η(0, t) ∈ [ρ -, ρ + ] for all t ∈ [0, T ] and let ϕ ∈ C ∞ 0 ([0, T ), R + ).
Thanks to the boundary conditions (2) we have

P.bordw P.bordw (8) ∂ x ρ(0, t) (ρ(0, t) -η(0, t)) ≥ 0, ∀t ∈ [0, T ].
In fact it is easily seen that (2) holds true if and only if [START_REF] Cancès | Mathematical analysis of a thermodynamically consistent reduced model for iron corrosion[END_REF] holds true for every η such that η(0, t)

∈ [ρ -, ρ + ].
Next, since ϕ ≥ 0 and u ≡ ρ in the neighborhood of x = 0 we have

ϕ(t)∂ x u(0, t) (u(0, t) -η(0, t)) ≥ 0, ∀t ∈ [0, T ].
eg.var2 eg.var2 [START_REF] Chainais-Hillairet | Study of a pseudo-stationary state for a corrosion model: Existence and numerical approximation[END_REF] Multiplying [START_REF] Caffarelli | Some regularity properties of solutions of Monge-Ampère equation[END_REF] by ϕ(u -η), integrating in space and time, integrating by parts and using inequality [START_REF] Chainais-Hillairet | Study of a pseudo-stationary state for a corrosion model: Existence and numerical approximation[END_REF], we obtain neg.var neg.var (10) -

¢ T 0 φ ¢ X 0 0 u 2 2 -η u dxdt + ¢ T 0 ¢ X 0 0 ϕ u ∂ t η dxdt + ¢ T 0 ¢ X 0 0 ϕ∂ x u∂ x (u -η) dxdt ≤ ϕ(0) ¢ X 0 0 u 2 2 -uη (x, 0) dx + ¢ T 0 ¢ X 0 0 ϕg(u -η) dxdt.
On the one hand this computation is valid for ρ such that u = χρ ∈ H 1 (0, T ; H 2 (R + )) and in this case (10) implies [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. On the other hand [START_REF] Chainais-Hillairet | The existence of solutions to a corrosion model[END_REF] has a meaning as soon as ρ ∈ L 2 (0, T ; H 1 (0, 3X 0 /4)).

In this sense, ( 10) is a weak formulation of the boundary conditions (2).

.faible Definition 1.1. Let T > 0 be finite, X 0 > 0 and ρ 0 ∈ L 2 loc (R + ). We say that (ρ, M, X) is a weak solution to (1)-(2a) if the following conditions are satisfied:

(a) X is a nondecreasing function in H 1 (0, T ). (b) M ∈ BV (0, T ). (c) ρ ∈ L 2 loc (R + × (0, T )) ∩ L ∞ (R + × (0, T )) and ∂ x ρ ∈ L 2 (D T ) with ρ(0, t) ∈ [ρ -, ρ + ]
for a.e. t ∈ (0, T ) and ρ(x, t) = 1 for a.e. x ≥ X(t) and t ∈ (0, T ).

(d) For all φ ∈ C ∞ 0 (R + × [0, T )) mit_rho mit_rho (11) - ¢ T 0 ¢ R + ρ(x, t) ∂ t φ(x, t)dx dt - ¢ R + ρ 0 (x) φ(x, 0) dx - ¢ T 0 φ(0, t) dDM (t) + ¢ T 0 ¢ R + ∂ x ρ(x, t) ∂ x φ(x, t) dx dt = 0.
(e) For all ξ ∈ C(0, T )

limit_X limit_X (12) λ ¢ T 0 Ẋ(t) ξ(t) dt = α ¢ T 0 ξ(t) dt - ¢ T 0 1 -ρ(X(t) -, t) ξ(t) dt - ¢ T 0 ln ρ(X(t) -, t) ξ(t) dt.
The triplet (ρ, M, X) is a weak solution to (1)-( 2) if these conditions are satisfied as well as the variational inequality [START_REF] Chainais-Hillairet | The existence of solutions to a corrosion model[END_REF] 

for all ϕ ∈ C ∞ 0 ([0, T ), R + ) and every η ∈ C ∞ 0 (R + × [0, T )) such that η(0, t) ∈ [ρ -, ρ + ] for t ∈ [0, T ].
Eventually, we say that (ρ, M, X) is a global in time weak solution to (1)-(2) if the functions ρ, M and X satisfy the above conditions for all T > 0.

We are now in position to state the main result of this paper: th.main Theorem 1.1. Let the following assumptions hold (H1) Given data: Let α, λ, β, θ and T some positive constants with β + θ < 1.

(H2) Initial data: Let X 0 > 0 and ρ 0 ∈ L ∞ (R + ) be a positive function with

ρ 0 |[0,X 0 ] ∈ C 1,1 ([0, X 0 ]), ρ 0 (x) = 1 for every x > X 0 , ρ 0 (0) ∈ [ρ -, ρ + ] and 0 < ρ min ≤ ρ 0 (x) ≤ ρ max ≤ 1, ∀x ∈ (0, X 0 ],
with ρ min and ρ max some positive constants.

Then, there exists (at least) one weak solution (ρ, M, X) to the system (1)-( 2) in the sense of Definition 1.1.

In order to prove Theorem 1.1, we study a JKO minimizing scheme: the problem is semidiscretized in time and the solution at time-step k + 1 is defined as a minimizer of some functional depending on the time step and on the solution at step k. This scheme is defined in Section 2 and its properties as welll as the properties of the minimizers are studied in Section 3. Section 4 is concerned with the proof of Theorem 1.1. The proof is based on some uniform (w.r.t. the time step) estimates satisfied by the sequences (ρ k ) k , (M k ) k and (X k ) k solving the JKO-like scheme. These estimates provide sufficient compactness properties on (ρ k , M k , X k ) k to pass to the limit (up to extraction) and obtain a triple (ρ, M, X) solution to (1)-( 2) in the sense of Definition 1.1.

Introduction of the JKO minimizing scheme .intJKO

In this section we define the minimizing-movements scheme. We first recall the definition of the Wasserstein metric and define the energy functional, then we introduce the JKO scheme and prove the existence of (at least) one solution to this scheme. In Subsection 2.3, we introduce some notations used in the sequel.

ec.dist 2.1. Wasserstein metric and energy functional. Let M + (I) be the set of positive measures defined on I, a bounded interval of R. For two given measures µ and μ ∈ M + (I) with µ(I) = μ(I) = m, for some m > 0, we define the squared Wasserstein distance for the quadratic cost W 2 as

W 2 2 (µ, μ) := inf γ∈Γ(µ,μ) ¢ I×I (x -y) 2 dγ(x, y),
ef.wass ef.wass [START_REF] Dreher | Compact families of piecewise constant functions in L p (0, T ; B)[END_REF] where Γ(µ, μ) denotes the set of transport plans between µ and μ defined as

Γ(µ, μ) := γ ∈ M + (I × I) : γ(I × I) = m, π 1# γ = µ, π 2# γ = μ ,
with π 1 and π 2 the projections into the first and second component respectively. For the sake of completeness let us recall a classical result in optimal transport theory:

Theorem 2.1. [31, Theorem 1.17] Let µ and μ be two positive measures on a bounded interval I of .rappel R with µ(I) = μ(I) = m. Then there exists a unique optimal transport plan γ ∈ Γ(µ, μ) associated to the minization problem in the definition of [START_REF] Dreher | Compact families of piecewise constant functions in L p (0, T ; B)[END_REF]. Moreover, if µ is atomless then this optimal transport plan γ is induced by a map T such that γ = (id, T ). In this case there exists an unique (up to an additive constant) Lipschitz function Ψ, called Kantorovich potential, such that it holds

Ψ ′ (x) = x -T (x) for a.e. x ∈ I.

Let us define the set A given by

A := ρ ∈ L 1 loc (R + ; R + ) : ρ ln ρ ∈ L 1 loc (R + ; R)
and ∃x > 0 s.t. ρ ≡ 1 a.e. on (x, +∞) . We denote [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF] where (x) + = max(x, 0), δ 0 denotes the Dirac measure at point x = 0 and the functional M : A → R is defined by

x ρ := inf {x > 0 : ρ ≡ 1 a.e. on (x, +∞)} . Given ρ, ρ ∈ A, we define the measure µ(ρ, ρ) := ρL R + + (M(ρ) -M(ρ)) + δ 0 , 2.mu 2.mu
M(ρ) := - ¢ R + (1 -ρ) < ∞.
2.mapM 2.mapM [START_REF] Evans | Measure theory and fine properties of functions[END_REF] In the sequel, for two measures of the type ( 14), we will write

W 2 2 (ρ, ρ) := W 2 2 µ(ρ, ρ), µ(ρ, ρ) .
Let us now determine this distance. We first notice that these measures do not enter directly in the framework of Theorem 2.1. Indeed, the measure µ(ρ, ρ) admits an "infinite" mass. In order to bypass this difficulty, defining Λ as Λ := max(x ρ , x ρ) we rewrite these measures as

µ(ρ, ρ) = ν(ρ, ρ) + L (Λ, ∞) with ν(ρ, ρ) = ρL (0, Λ) + (M(ρ) -M(ρ)) + δ 0 .
Hence, since ν(ρ, ρ)([0, Λ]) = ν(ρ, ρ)([0, Λ]) and thanks to Theorem 2.1, we define the unique optimal transport plan [START_REF] Ferrari | Lipschitz estimates on the JKO scheme for the Fokker-Planck equation on bounded convex domains[END_REF] where γ ∈ Γ(ν(ρ, ρ), ν(ρ, ρ)). Thus

γ = γ + (Id, Id) # L (Λ, ∞) ∈ Γ(µ(ρ, ρ), µ(ρ, ρ)), 2.OT 2.OT
W 2 2 (ρ, ρ) = ¢ (0,Λ)×(0,Λ) (x -y) 2 dγ(x, y).
Let us now introduce the energy functional considered in this paper. First of all, we define the set

A := {(X, ρ) : ρ ∈ A, X ≥ x ρ }.
as well as the function f :

R + → R + with f (r) = r (ln(r) -β) + β. 2.def.f 2.def.f (17)
For a given θ > 0 and a given (X 0 , ρ 0 ) ∈ A, we define the functional E (X 0 ,ρ 0 ) : A → R by [START_REF] Figalli | A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions[END_REF] Let us notice that the functional E (X 0 ,ρ 0 ) is well-defined since we can write for any (X, ρ) ∈ A

E (X 0 ,ρ 0 ) (X, ρ) := ¢ R + f (ρ(x)) dx + θ M(ρ) -M ρ 0 -αX. def.NRJ def.NRJ
E (X 0 ,ρ 0 ) (X, ρ) = ¢ X 0 f (ρ(x)) dx + θ M(ρ) -M ρ 0 -αX.
In the following we will use the notation [START_REF] Gerbi | Existence of a solution to a coupled elliptic system with a Signorini condition[END_REF] sec.JKO 2.2. The JKO minimizing scheme. Let τ > 0 be a time step of (0, T ), we define p τ : R → R + , the function given by

M ρ, ρ 0 := M(ρ) -M ρ 0 = ¢ R + ρ -ρ 0 dx. 2.notM 2.notM
p τ (m) := K τ 2 (-m -m τ ) 2 + , penalty penalty (20) 
with K τ and m τ some positive parameters depending on τ and defined in Section 3.3. Then, starting from the initial configuration (X 0 , ρ 0 ) ∈ A we want to determine the existence of at least one (X, ρ) ∈ A such that

(X, ρ) ∈ argmin (Y,ρ)∈A 1 2τ d 2 (Y, ρ), (X 0 , ρ 0 ) + E (X 0 ,ρ 0 ) (Y, ρ) + p τ M ρ, ρ 0 , 2.JKO 2.JKO (21)
where d denotes the tensorized metric given by

d 2 (Y, ρ), (X 0 , ρ 0 ) := W 2 2 ρ, ρ 0 + λ Y -X 0 2 .
The function p τ is a technical penalization term which will allow us to derive an upper bound on the derivative of the function ρ solution to [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] (see Proposition 3.5).

Finally, for all (X 0 , ρ 0 ) ∈ A we introduce the functional J (X 0 ,ρ 0 ) : A → R defined as

J (X 0 , ρ 0 ) (X, ρ) := 1 2τ d 2 (X, ρ), (X 0 , ρ 0 ) + E (X 0 ,ρ 0 ) (X, ρ) + p τ M (ρ, ρ 0 ) ,
and we rewrite the minimization problem [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] as follows: starting from (X 0 , ρ 0 ) ∈ A find (X, ρ) ∈ argmin (Y,ρ)∈A J (X 0 , ρ 0 ) (Y, ρ).

2.JKO1

2.JKO1 [START_REF] Kikuchi | Contact Problems in Elasticity: A study of variational inequalities and finite element methods[END_REF] enceJKO Theorem 2.2 (Existence of a minimizer). Assume that the assumptions (H1)-(H2) hold, then for 0 < τ < 1 the minimizing problem (22) admits at least one solution (X, ρ) ∈ A where X satisfies X ≥ X 0 .

Proof. Bearing in mind definition (17) of f we notice that it holds f (x) ≥ -exp(β -1) + β for all x ≥ 0. Then, thanks to the definition of the functional J (X 0 ,ρ 0 ) we have for all (X, ρ) ∈ A

J (X 0 ,ρ 0 ) (X, ρ) ≥ λ 2τ X -X 0 2 -(α + exp(β -1) -β) X.
Thus, a meticulous but rather straightforward analysis of the function in the right hand side leads to

J (X 0 ,ρ 0 ) (X, ρ) ≥ - τ 2λ (α + exp(β -1) -β) 2 -X 0 (α + exp(β -1) -β) ≥ - 1 2λ (α + exp(β -1) -β) 2 -X 0 (α + exp(β -1) -β) .
In particular we deduce the existence of a constant c ∈ R such that J (X 0 ,ρ 0 ) (X, ρ) ≥ c. Now, let (X k , ρ k ) k∈N be a minimizing sequence in A of J (X 0 ,ρ 0 ) , i.e.,

J (X 0 ,ρ 0 ) (X k , ρ k ) → inf (Y,ρ)∈A J (X 0 ,ρ 0 ) (Y, ρ), as k ↑ ∞.
Hence we deduce that there exists a constant C ∈ R and k 0 ∈ N such that for every k ≥ k 0 we have

c ≤ J (X 0 ,ρ 0 ) (X k , ρ k ) ≤ C.
nes.exi nes.exi [START_REF] Kinderlehrer | A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations[END_REF] We conclude from this inequality that the sequence (X k ) k∈N is bounded and converges, up to a subsequence, towards X ≥ 0 as k ↑ ∞. Furthermore, using the definition of the functional J (X 0 ,ρ 0 ) we have

θ|M (ρ k , ρ 0 )| ≤ C + αX k - ¢ X k 0 f (ρ k (x)) dx, ∀k ≥ k 0 .
Using the bound f (x) ≥ -exp(β -1) + β for all x ≥ 0, we obtain

θ|M (ρ k , ρ 0 )| ≤ C + X k (α + exp(β -1) -β).
Hence, since the sequence (X k ) k∈N is bounded we conclude that there exists M ∈ R such that, up to a subsequence, (M (ρ k , ρ 0 )) k∈N converges towards M as k ↑ ∞.

Let us now prove that the sequence (ρ k ) k≥0 is weakly compact in

L 1 loc (R + ). First, let Λ ≥ 1 + sup k X k , thanks to (23), we have ¢ Λ 0 f (ρ k (x)) dx ≤ C + α X k , ∀k ≥ k 0 ,
Thus, since the sequence (X k ) k∈N is bounded we apply the Dunford-Pettis theorem and we conclude that there exists a nonnegative function ρ ∈ L 1 (0, Λ) such that, up to a subsequence,

ρ k ⇀ ρ weakly in L 1 (0, Λ).
Setting ρ ≡ 1 a.e. on (Λ, ∞), we get the weak convergence (up to a subsequence) in L 1 loc (R + ) of (ρ k ) k∈N . Now we have to prove that ρ(x) = 1 for a.e. x ∈ (X, Λ). In this purpose, let φ ∈ C ∞ 0 (0, Λ), then applying the weak convergence in L 1 loc (R + ) of (ρ k ) k∈N and the convergence of the sequence (X k ) k∈N we deduce that, as k ↑ ∞,

¢ Λ 0 φ(ρ k -1) dx → ¢ Λ 0 φ(ρ -1) dx, and 
¢ Λ 0 φ(ρ k -1) dx = ¢ X k 0 φ(ρ k -1) dx → ¢ X 0 φ(ρ -1) dx.
Subtracting there holds

¢ Λ X φ(ρ -1) dx = 0, ∀φ ∈ C ∞ 0 (0, Λ),
which implies that ρ(x) = 1 for a.e. x ∈ (X, Λ) and we readily deduce that

¡ X 0 ρ ln(ρ) dx < ∞ which implies that (X, ρ) ∈ A.
Moreover, the weak convergence in L 1 loc (R + ) of (ρ k ) k∈N and the convergence (up to a subsequence) of (X k ) k∈N lead to

M (ρ k , ρ 0 ) = ¢ X k 0 ρ k dx - ¢ X 0 0 ρ 0 dx + (X 0 -X k ) → ¢ R + (ρ -ρ 0 ) dx, as k ↑ ∞,
and, using the convergence M (ρ k , ρ 0 ) → M , we obtain

M = ¢ R + (ρ -ρ 0 ) dx = M (ρ, ρ 0 ).
Furthermore, thanks to the lower semicontinuity for the weak convergence in L 1 of the metric W 2 [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Proposition 7.4] and the functional ρ → [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Proposition 7.7] and the continuity of the other terms, we conclude that (X, ρ) ∈ A is a minimizer of the functional J (X 0 ,ρ 0 ) .

¡ ∞ 0 [ρ(ln(ρ) -β) + β] dx
It remains to establish that X ≥ X 0 . Assuming by contradiction that X 0 > X, (X 0 , ρ) is an admissible competitor. Since (X, ρ) is a minimizer of J (X 0 ,ρ 0 ) we have

J (X 0 ,ρ 0 ) (X, ρ) ≤ J (X 0 ,ρ 0 ) (X 0 , ρ), which yields λ 2τ (X -X 0 ) 2 + E (X 0 ,ρ 0 ) (X, ρ) ≤ E (X 0 ,ρ 0 ) (X 0 , ρ). Using E (X 0 ,ρ 0 ) (X, ρ) = E (X 0 ,ρ 0 ) (X 0 , ρ) + α(X 0 -X), we deduce that α (X 0 -X) ≤ 0.
which contradicts the hypothesis α > 0. This concludes the proof of Theorem 2.2. □ sec.not 2.3. Notations for the optimal transport plan. Theorem 2.2 implies the existence of (at least) one solution, denoted (X, ρ) ∈ A, to the JKO scheme [START_REF] Kikuchi | Contact Problems in Elasticity: A study of variational inequalities and finite element methods[END_REF]. Since X ≥ X 0 , we can specified, in terms of optimal tranport map, the construction of the transport plan γ given by ( 16) between the measures

µ(ρ, ρ 0 ) = ρ L R + + -M (ρ, ρ 0 ) + δ 0 , and µ(ρ 0 , ρ) = ρ 0 L R + + M (ρ, ρ 0 ) + δ 0 ,
recalling definition [START_REF] Gerbi | Existence of a solution to a coupled elliptic system with a Signorini condition[END_REF] of M (ρ, ρ 0 ). The construction of this map depends on the sign of the quantity M (ρ, ρ 0 ). From now on in order to simplify the notation and if no confusion can occur we simply write µ and µ 0 instead of µ(ρ, ρ 0 ) and µ(ρ 0 , ρ) respectively and M instead of M (ρ, ρ 0 ).

Case M ≥ 0. In this case there exists an increasing map T + : [0, X] → [0, X] and a constant ℓ + ≥ 0 such that

T + (x) = 0 for 0 ≤ x ≤ ℓ + , T + (X) = X, T +# ρL (ℓ + , X) = ρ 0 L (0, X).
Then, since M = ¡ ℓ + 0 ρ dx, we define the unique optimal transport plan γ + ∈ Γ(µ, µ 0 ) by [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF] Case M < 0. In this case there exists an increasing map T -, a constant ℓ -> 0 and a constant map

γ + := (Id, T + ) # ρ L (0, X) + (Id, Id) # L (X, +∞), which implies W 2 2 (ρ, ρ 0 ) = ¢ ℓ + 0 x 2 ρ(x) dx + ¢ X ℓ + (x -T + (x)) 2 ρ(x) dx = ¢ X 0 (x -T + (x)) 2 ρ(x) dx. ass.R.1 ass.R.1
S -≡ 0 on [0, ℓ -] such that T -: [0, X] → [ℓ -, X] with T -(0) = ℓ -, T -(X) = X, T -# ρL (0, X) = ρ 0 L (ℓ -, X).
Then, since -M = ¡ ℓ - 0 ρ 0 dx we define the unique optimal transport plan γ -∈ Γ(µ, µ 0 ) by

γ -:= (Id, T -) # ρ L (0, X) + (S -, Id) # ρ 0 L (0, ℓ -) + (Id, Id) # L (X, +∞), which yields W 2 2 (ρ, ρ 0 ) = ¢ X 0 (x -T -(x)) 2 ρ(x) dx + ¢ ℓ - 0 y 2 ρ 0 (y) dy. ass.R.2 ass.R.2 (25)

Study of the minimizers rop_min

In this section we investigate the properties satisfied by a minimizer (X, ρ) ∈ A of ( 22) obtained in Theorem 2.2. In particular, we establish the Euler-Lagrange equations fulfilled by ρ and X, the behavior at the fixed interface x = 0 of ρ and the positivity of ρ. In this purpose, following a classical approach, we will construct some admissible perturbations (X ε , ρ ε ) ∈ A of (X, ρ) in order to study the variations of the functional J (X 0 ,ρ 0 ) . 

¢ X 0 ξ(x) (x -T (x)) τ ρ(x) dx - ¢ X 0 ρ(x) ξ ′ (x) dx = 0, ∀ξ ∈ C ∞ 0 (0, X), 3.Oxyde 3.Oxyde (26)
where T denotes the optimal transport map, i.e. either T + or T -, between µ and µ 0 defined in Section 2.3.

Proof. We follow the proof of [21, Theorem 5.1]. Let γ ∈ Γ(µ, µ 0 ), ξ ∈ C ∞ 0 (0, X) and ε > 0 small enough such that (Id + ε ξ)(R + ) ⊆ R + , we define the following transport plan

γ ε := ((Id + ε ξ) • π 1 , π 2 ) # γ.
We denote by µ ε the measure given by µ

ε := π 1# γ ε = (Id + ε ξ) # µ and since π 2# γ ε = µ 0 we have γ ε ∈ Γ(µ ε , µ 0 ). Using the optimality of (X, ρ) for J (X 0 ,ρ 0 ) we have Oxyde_1 Oxyde_1 (27) 0 ≤ J (X 0 ,ρ 0 ) (X, ρ ε ) -J (X 0 ,ρ 0 ) (X, ρ) ε = W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2ετ + 1 ε ¢ R + (f (ρ ε ) -f (ρ)) dx,
where we recall that f is given by f (x) = x(ln(x) -β) + β for all x ≥ 0. Applying the definition of γ ε we obtain

W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2ετ ≤ 1 2ετ ¢ R 2 (x + ε ξ(x) -y) 2 dγ(x, y) - 1 2ετ ¢ R 2 (x -y) 2 dγ(x, y) ≤ 1 τ ¢ R 2 ξ(x)(x -y) dγ(x, y) + ε 2τ ¢ R 2 ξ(x) 2 dγ(x, y).
Then, using either [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF] or [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF], depending on the sign of M , we obtain

W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2ετ ≤ ¢ X 0 ξ(x) (x -T (x)) τ ρ(x) dx + ε||ξ 2 || ∞ ||ρ|| L 1 (0,X) 2τ . Thus lim sup ε↓0 W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2ετ ≤ ¢ X 0 ξ(x) (x -T (x)) τ ρ(x) dx.
Furthermore, following the proof of [21, Theorem 5.1], passing to the limit ε ↓ 0 in the last term of the right hand side of ( 27) leads to

lim ε↓0 1 ε ¢ R + (f (ρ ε ) -f (ρ)) dx = - ¢ X 0 ρ(x) ξ ′ (x) dx.
Now we pass to the limit ε ↓ 0 in [START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF] and thanks to the above inequalities we conclude that

¢ X 0 ξ(x) (x -T (x)) τ ρ(x) dx - ¢ X 0 ρ(x) ξ ′ (x) ≥ 0.
Finally, replacing ξ by -ξ we deduce [START_REF] Mccann | A convexity principle for interacting gases[END_REF] which concludes the proof of Proposition 3.1. □ ini_W11 Corollary 3.1. Let the assumptions of Theorem 2.2 hold. Then, the function ρ satisfying (26) belongs to SBV 2 loc (R + ) and fulfills the following estimates

¢ X 0 |ρ ′ (x)| 2 dx ≤ ||ρ|| L ∞ (0,X) W 2 2 (ρ, ρ 0 ) τ 2 , grad_L2 grad_L2 (28) 
and

¢ X 0 |ρ ′ (x)| dx ≤ X 1/2 ||ρ|| 1/2 L ∞ (0,X) W 2 (ρ, ρ 0 ) τ . grad_L1 grad_L1 (29) 
Moreover ρ |(0,X) ∈ H 1 (0, X) which implies that ρ is continuous on [0, X].
Proof. Let us first notice that thanks to the proof of Theorem 2.2 we have (ρ, X) ∈ A which implies that ρ is a nonnegative function in L 1 loc (R + ). Then, we deduce from [START_REF] Mccann | A convexity principle for interacting gases[END_REF] and the Cauchy-Schwarz inequality the following estimate

¢ X 0 ρ(x) ξ ′ (x) dx ≤ ||ξ|| L ∞ (0,X) τ ||ρ|| 1/2 L 1 (0,X) W 2 (ρ, ρ 0 ), ∀ξ ∈ C ∞ 0 (0, X).
As a consequence, since ρ(x) = 1 for a.e. x ≥ X, we have ρ ∈ BV loc (R + ). Hence, thanks to the continuity of the embedding BV loc (R + ) → L ∞ (R + ), we deduce that ρ ∈ L ∞ (R + ). Besides, applying [START_REF] Mccann | A convexity principle for interacting gases[END_REF] and the Cauchy-Schwarz inequality we obtain

¢ X 0 ρ(x) ξ ′ (x) dx ≤ ||ξ|| L 2 (0,X) τ ||ρ|| 1/2 L ∞ (0,X) W 2 (ρ, ρ 0 ), ∀ξ ∈ C ∞ 0 (0, X).
We conclude that

¢ X 0 |ρ ′ (x)| 2 dx ≤ ||ρ|| L ∞ (0,X) W 2 2 (ρ, ρ 0 ) τ 2 .
Moreover, applying again the Cauchy-Schwarz inequality we have

¢ X 0 |ρ ′ (x)| dx ≤ X 1/2 ||ρ|| 1/2 L ∞ (0,X) W 2 (ρ, ρ 0 ) τ .
This completes the proof of Corollary 3.1. □ _Euler1 Proposition 3.2. Let the assumptions of Theorem 2.2 hold. Then, for all ψ ∈ C ∞ 0 (R + ) we have

¢ R + ρ(x) -ρ 0 (x) τ ψ(x) dx - M τ ψ(0) + ¢ X 0 ρ ′ (x) ψ ′ (x) dx = Q τ (ψ), 3.EL0 3.EL0 (30) 
where the right hand side is linear in ψ and satisfies [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] with convention ℓ -= 0 if M ≥ 0.

|Q τ (ψ)| ≤ ||ψ ′′ || L ∞ (R + ) τ W 2 2 (ρ, ρ 0 ) + ||ψ ′ || L ∞ (R + ) τ ¢ ℓ - 0 y ρ 0 (y) dy , L_reste L_reste
Proof. Thanks to Corollary 3.1 we use an integration by parts in [START_REF] Mccann | A convexity principle for interacting gases[END_REF] and we obtain

¢ X 0 ξ(x) (x -T (x)) τ ρ(x) dx + ¢ X 0 ρ ′ (x) ξ(x) dx = 0, ∀ξ ∈ C ∞ 0 (0, X).
Then we extend by density this equality to all functions ξ in C ∞ 0 (R + ) and we set ξ = ψ ′ such that:

¢ X 0 ψ ′ (x) (x -T (x)) τ ρ(x) dx + ¢ X 0 ρ ′ (x) ψ ′ (x) dx = 0, ∀ψ ∈ C ∞ 0 (R + ).
Now our main objective is to show that

¢ X 0 ψ ′ (x) (x -T (x)) τ ρ(x) dx = ¢ R + ρ(x) -ρ 0 (x) τ ψ(x) dx - M τ ψ(0) + Q τ (ψ).
3.EL3

3.EL3 [START_REF] Simon | Comapct sets in the space L p (0, T ; B)[END_REF] In this purpose we split the proof in two different cases depending on M .

Case M ≥ 0. First, using the relation

ψ ′ (x)(x -T + (x)) = ψ(x) -ψ(T + (x)) + O(∥ψ ′′ ∥ L ∞ (R + ) |x -T + (x)| 2 ),
we obtain

¢ X 0 ψ ′ (x) (x -T + (x)) τ ρ(x) dx = 1 τ ¢ X 0 ρ(x) ψ(x) dx - 1 τ ¢ X 0 ρ(x) ψ(T + (x)) dx + Q 1,τ (ψ),
where Q 1,τ is a remaining term satisfying

|Q 1,τ (ψ)| ≤ ||ψ ′′ || L ∞ (R + ) τ W 2 2 (ρ, ρ 0 ).
We notice that

¢ X 0 ρ(x) ψ(T + (x)) dx = ¢ ℓ + 0 ψ(0) ρ(x) dx + ¢ X ℓ + ψ(T + (x)) ρ(x) dx = M ψ(0) + ¢ X 0 ρ 0 (y) ψ(y) dy.
Hence, we obtain

¢ X 0 ψ ′ (x) (x -T + (x)) τ ρ(x) dx = 1 τ ¢ X 0 (ρ(x) -ρ 0 (x)) ψ(x) dx - M τ ψ(0) + Q 1,τ (ψ).
Thus, we conclude that (32) holds.

Case M < 0. Applying one more time the relation

ψ ′ (x)(x -T -(x)) = ψ(x) -ψ(T -(x)) + O ∥ψ ′′ ∥ L ∞ (R + ) |x -T -(x)| 2 ,
we obtain that 

¢ X 0 ψ ′ (x) (x -T -(x)) τ ρ(x) dx = 1 τ ¢ X 0 ρ(x) ψ(x) dx - 1 τ ¢ X 0 ρ(x) ψ(T -(x)) dx + Q 2,τ (ψ), with |Q 2,τ (ψ)| ≤ ||ψ ′′ || L ∞ (R + ) τ W 2 2 (ρ, ρ 0 ). Thus ¢ X 0 ψ ′ (x) (x -T -(x)) τ ρ(x) dx = ¢ R + ψ(x) ρ(x) -ρ 0 (x) τ dx - M τ ψ(0) + 1 τ ¢ ℓ - 0 ρ 0 (x) (ψ(x) -ψ(0))dx + Q 2,τ (ψ) 
ρ(0) = ρ + exp(-p ′ τ (M )), if M < 0, rop_0_1 rop_0_1 (33) ρ(0) = ρ -, if M > 0, rop_0_2 rop_0_2 (34) or ρ -≤ ρ(0) ≤ ρ + , if M = 0. rop_0_3 rop_0_3 (35)
Proof. Depending on the sign of M , we construct (X, ρ ε ) some admissible perturbations of (X, µ). Roughly speaking, the first one corresponds to the case where some oxygen vacancies are transfered from the "solution", i.e. from x = 0, towards the oxide layer (0, X) (Case 1) and the second one corresponds to the transfer of oxygen vacancies from the oxide layer towards the solution (Case 2). Then, for each case, we study lim inf ε↓0

J (X 0 ,ρ 0 ) (X, ρ ε ) -J (X 0 ,ρ 0 ) (X, ρ) ε ,
and we deduce the relations ( 33)- [START_REF] Zurek | Problèmes à interfaces mobiles pour la dégradation de matériaux et la croissance de biofilms : analyse numérique et modélisation[END_REF].

The arguments used to study rigorously this limit are similar when M < 0, M > 0 or M = 0. For this reason in the sequel we only give the full details of our computations when M < 0. We refer to [START_REF] Zurek | Problèmes à interfaces mobiles pour la dégradation de matériaux et la croissance de biofilms : analyse numérique et modélisation[END_REF]Part 3] for the other cases.

Proof of [START_REF] Villani | Topics in Optimal Transportation[END_REF]. Let us first consider the case when some oxygen vacancies are transfered from the solution towards the oxide layer.

Case 1. Consider ρ > 0 and 0 < ε < 1 such that ρ ≤ ρ 0 (x) for x ∈ (0, ε) and ε < ℓ -. Then we introduce the transport plan γ ε as

γ ε := (Id, T -) # ρ L R + + (Id, Id) # ρ L (0, ε) + (S -, Id) # (ρ 0 -ρ) L (0, ε) + (S -, Id) # ρ 0 L (ε, ℓ -),
where we set T -= Id on (X, +∞). We define the measure µ ε := π 1# γ ε and by construction of γ ε we notice that π 2# γ ε = µ 0 such that γ ε ∈ Γ(µ ε , µ 0 ). We rewrite µ ε as

µ ε = ρ ε L R + + ¢ ℓ - 0 ρ 0 dx -ρε δ 0 , where ρ ε (x) := ρ(x) + ρ for x ∈ [0, ε), ρ(x) for x ∈ [ε, ∞).

Now we consider

J (X 0 ,ρ 0 ) (X, ρ ε ) -J (X 0 ,ρ 0 ) (X, ρ) ε = W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2 ε τ + 1 ε ¢ R + (f (ρ ε ) -f (ρ)) dx + θ ε |M (ρ ε , ρ 0 )| -|M (ρ, ρ 0 )| + 1 ε p τ (M (ρ ε , ρ 0 )) -p τ (M (ρ, ρ 0 )) ,
where f is defined by [START_REF] Figalli | The Monge-Ampère Equation and Its Applications[END_REF]. Using the definition of γ ε ∈ Γ(µ ε , µ 0 ) we obtain

W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2 ε τ ≤ - 1 2ετ ¢ ε 0 x 2 ρ dx → 0 as ε ↓ 0. .cas1.1 .cas1.1 (36)
Now, using the definition of ρ ε we notice that the following relations hold

1 ε ¢ R + f (ρ ε ) -f (ρ) dx = 1 ε ¢ ε 0 f (ρ + ρ) -f (ρ) dx → f (ρ(0) + ρ) -f (ρ(0)) as ε ↓ 0, .cas1.2 .cas1.2 (37) and θ ε |M (ρ ε , ρ 0 )| -|M (ρ, ρ 0 )| = -θ ρ. .cas1.3 .cas1.3 (38)
Finally, we have

1 ε p τ M (ρ ε , ρ 0 ) -p τ M (ρ, ρ 0 ) → ρp ′ τ M (ρ, ρ 0 ) as ε ↓ 0. .cas1.4 .cas1.4 (39) 
Thus, gathering (36)-(39), we conclude that

0 ≤ lim inf ε↓0 J (X 0 ,ρ 0 ) (X, ρ ε ) -J (X 0 ,ρ 0 ) (X, ρ) ε ≤ f (ρ(0) + ρ) -f (ρ(0)) -θ ρ + ρp ′ τ (M (ρ, ρ 0 )), which implies f ′ (ρ(0)) -θ + p ′ τ (M (ρ, ρ 0 )) ≥ 0. In other words we obtain ln(ρ(0)) ≥ ln(ρ + ) -p ′ τ (M (ρ, ρ 0 )). lusion1 lusion1 (40) 
Case 2. For ρ > 0 we consider 0 < ε < 1 with ρ ≤ ρ(x) for x ∈ [0, ε] and ε < ℓ -. Let us notice that such ρ and ε exist since thanks to the previous case we know that ρ(0) ≥ ρ + exp(-p ′ τ (M (ρ, ρ 0 ))) > 0 and according to Corollary 3.1 ρ is continuous near x = 0. We introduce the transport plan γ ε as

γ ε := (Id, T -) # (ρ -ρ) L (0, ε) + (S -, T -) # ρ L (0, ε) + (Id, T -) # ρ L (ε, ∞) + (S -, Id) # ρ 0 L (0, ℓ -),
with convention T -= Id on (X, +∞). We set µ ε := π 1# γ ε and we notice that π 2# γ ε = µ 0 such that γ ε ∈ Γ(µ ε , µ 0 ). We rewrite µ ε as

µ ε = ρ ε L R + + ¢ ℓ - 0 ρ 0 dx + ερ δ 0 , where ρ ε (x) := ρ(x) -ρ for x ∈ [0, ε), ρ(x) for x ∈ (ε, ∞).
Similarly to the previous case we obtain

W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2 ε τ ≤ - 1 2 ε τ ¢ ε 0 (x -T -(x)) 2 ρ dx + 1 2 ε τ ¢ ε 0 T -(x) 2 ρ dx → 0 as ε ↓ 0. .cas2.1 .cas2.1 (41)
Applying the definition of ρ ε we have

1 ε ¢ R + (f (ρ ε ) -f (ρ)) dx = 1 ε ¢ ε 0 (f (ρ -ρ) -f (ρ)) dx → f (ρ(0) -ρ) -f (ρ(0)) as ε ↓ 0, .cas2.2 .cas2.2 (42) and θ ε |M (ρ ε , ρ 0 )| -|M (ρ, ρ 0 )| = θ ρ, .cas2.3 .cas2.3 (43)
and eventually

1 ε p τ (M (ρ ε , ρ 0 )) -p τ (M (ρ, ρ 0 )) → -ρ p ′ τ (M (ρ, ρ 0 )) as ε ↓ 0. .cas2.4 .cas2.4 (44)
Now, gathering (41)-(44) yields

0 ≤ lim inf ε↓0 J (X 0 ,ρ 0 ) (X, ρ ε ) -J (X 0 ,ρ 0 ) (X, ρ) ε ≤ f (ρ(0) -ρ) -f (ρ(0)) + θ ρ -ρp ′ τ (M (ρ, ρ 0 )), such that -f ′ (ρ(0)) + θ -p ′ τ (M (ρ, ρ 0 
)) ≥ 0 and then ln(ρ(0)) ≤ ln(ρ + ) -p ′ τ (M (ρ, ρ 0 )). Hence, bearing in mind (40), we conclude that (33) holds. □

nif.Lip

3.3.

Positivity and Lipschitz estimates. In (H2) we assume that ρ min ≤ ρ 0 (x) ≤ 1 for x ∈ (0, X 0 ). In this section we prove that these bounds are preserved for the solution (X, ρ) ∈ A to the JKO scheme ( 22) and we deduce that ρ is a Lipschitz continuous function. We first need to establish the following result:

itivity Proposition 3.4. Let the assumptions of Theorem 2.2 hold. Then, the density ρ ∈ SBV 2 loc (R + ) satisfies ρ > 0 for all x ∈ R + and ln ρ ∈ L 1 (R + ).

Proof. In this purpose we follow the proof of Lemma 8.6 in [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]. The key argument of this proof is to build an admissible perturbation ρ ε of ρ in order to deduce the existence of a constant C such that

¢ X 0 f (ρ) -f (ρ ε ) dx ≤ Cε. perturb perturb (45)
In our case we will make explicit the construction of these admissible perturbations such that (45) holds (if M ≥ 0 or M < 0). Then, when (45) will be established, we will refer to the remaining of the proof of [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Lemma 8.6] to conclude that ρ > 0 for all x ∈ R + and ln ρ ∈ L 1 (R + ). case M ≥ 0. In this case we introduce the following piecewise constant function

ρ(x) :=      1 ℓ + ¡ ℓ + 0 ρ(x) dx if 0 ≤ x ≤ ℓ + , 1 X-ℓ + ¡ X ℓ + ρ(x) dx if ℓ + < x ≤ X, 1 if X < x.
We also introduce ρ ε (x) = (1 -ε)ρ(x) + ερ(x) for all x ∈ R + and we notice that (X, ρ ε ) ∈ A.

Then, denoting by μ := ρ L R + , we consider the measure

µ ε := ρ ε L R + = (1 -ε)µ + εμ.
Let us now notice, by construction of ρ, that it holds M (ρ, ρ 0 ) = M (ρ, ρ 0 ). Besides, by linearity of the integral it also holds M (ρ ε , ρ 0 ) = M (ρ, ρ 0 ). In particular, we have

µ 0 = ρ 0 L R + + M (ρ, ρ 0 ) δ 0 = ρ 0 L R + + M (ρ, ρ 0 ) δ 0 .
Thus, following Section 2.3, there exists an optimal transport map T+ such that

W 2 2 (ρ, ρ 0 ) = ¢ X 0 (x -T+ (x)) 2 ρ(x) dx.
We now define the transport plan γ ε by

γ ε := (Id, T + ) # (1 -ε)ρL (0, X) + (Id, T+ ) # ερL (0, X) + (Id, Id) # L (X, +∞),
and we have γ ε ∈ Γ(µ ε , µ 0 ). Therefore, we get

W 2 2 (ρ ε , ρ 0 ) ≤ (1 -ε) W 2 2 (ρ, ρ 0 ) + εW 2 2 (ρ, ρ 0 ). 3.pos1 3.pos1 (46) It remains to notice that 0 ≥ J (X 0 ,ρ 0 ) (X, ρ) -J (X 0 ,ρ 0 ) (X, ρ ε ) = 1 2τ W 2 2 (ρ, ρ 0 ) - 1 2τ W 2 2 (ρ ε , ρ 0 ) 3.pos2 3.pos2 (47) + ¢ X 0 f (ρ) -f (ρ ε )) dx.
Hence, combining ( 46) and (47), we conclude that there exists a constant C such that (45) holds.

Case M < 0. Similarly to the previous case we introduce the following piecewise constant function

ρ(x) := 1 X ¡ X 0 ρ(x) dx if 0 ≤ x ≤ X, 1 if X < x.
We also introduce ρ ε (x) = (1 -ε)ρ(x) + ερ(x) for all x ∈ R + and we have (X, ρ ε ) ∈ A. Then, we consider the measure

µ ε := ρ ε L R + -M (ρ ε , ρ 0 ) δ 0 = (1 -ε)µ + εμ, with μ = ρ L R + -M (ρ, ρ 0 ).
Since M (ρ, ρ 0 ) = M (ρ, ρ 0 ), there exists an optimal transport map Tsuch that

W 2 2 (ρ, ρ 0 ) = ¢ X 0 (x -T-(x)) 2 ρ(x) dx + ¢ ℓ - 0 y 2 ρ 0 (y) dy,
and a transport plan γ ε defined by

γ ε : = (Id, T -) # (1 -ε)ρL (0, X) + (Id, T-) # ερL (0, X) + (S -, Id) # ρ 0 L (0, ℓ -) + (Id, Id) # L (X, +∞).
We notice that γ ε satisfies γ ε ∈ Γ(µ ε , µ 0 ) and we also get in this case

W 2 2 (ρ ε , ρ 0 ) ≤ (1 -ε) ¢ X 0 (x -T -(x)) 2 ρ(x) dx + ε ¢ X 0 (x -T-(x)) 2 ρ(x) dx + ¢ ℓ - 0 y 2 ρ 0 (y) dy ≤ (1 -ε) W 2 2 (ρ, ρ 0 ) + ε W 2 2 (ρ, ρ 0
). Thus, we deduce the existence of a constant C such that (45) holds. This ends the proof of Proposition 3. where we recall that Ψ denotes the unique Kantorovich potential associated to the optimal transport map T (with T either given by T + or T -depending on the sign of M ). In particular, we conclude that there exists a constant C such that ρ satisfies the optimality condition:

Ψ(x) τ + ln ρ(x) = C, for every x ∈ [0, X].
Hence, ρ is a Lipschitz continuous function since

ρ(x) = exp C - Ψ(x) τ , for every x ∈ [0, X].
We gather these remarks in the following result.

oro.lip Corollary 3.2. Let the assumptions of Theorem 2.2 hold. Then, there exists a constant C such that ρ satisfies

Ψ(x) τ + ln ρ(x) = C, for every x ∈ [0, X], pt.cond pt.cond (48)
where Ψ denotes the (unique) Kantorovich potential associated to the optimal transport map T constructed in Section 2.3. Moreover, ρ is Lipschitz continuous and fulfills

ρ(x) = exp C - Ψ(x) τ , for every x ∈ [0, X].
Corollary 3.2 implies that (ln ρ) ′ (x) ≲ τ -1 for all x ∈ [0, X]. However, for later use, see the proof of Lemma 4.2 and Proposition 4.8, this upper bound is too coarse and we need to derive a finer upper bound of the type τ -ϑ for some ϑ ∈ (0, 1). In this purpose, the penalty function p τ will play a crucial role. In particular, by defining properly the parameters m τ and K τ introduced in the definition of p τ we prove the desired estimate. But first, let us introduce the following notations

a := min x∈[0,X 0 ] ln ρ 0 (x), b := max x∈[0,X 0 ] ln ρ 0 (x),
and

A := -min 0, inf x∈[0,X 0 ] ln ρ 0 ′ (x) , B 0 := sup x∈[0,X 0 ] ln ρ 0 ′ (x).
Then, for ϑ ∈ (0, 1) and δ 0 > 0, we define B τ := max(B 0 , δ 0 ) τ -ϑ such that B τ ≥ max(B 0 , δ 0 ) and

a ≤ ln ρ 0 (x) ≤ b, -A ≤ ln ρ 0 ′ (x) ≤ B τ for x ∈ [0, X 0 ].
In the following statement we claim that these bounds are preserved for ln ρ.

nif.Lip Proposition 3.5. Let the assumptions of Theorem 2.2 hold. For δ 0 > 0 and ϑ ∈ (0, 1) fixed, we set

B ′ 0 = max(B 0 , δ 0 ), B τ = B ′ 0 τ -ϑ and m τ := B ′ 0 exp(a) 2 τ 1-ϑ , K τ := 2(b -ln ρ + ) B ′ 0 exp(a) τ ϑ-1 , nstants nstants (49)
where m τ and K τ denote the parameters involved in the definition (20) of the penalty function p τ . Then, the Lipschitz continuous function ρ satisfies

a ≤ ln ρ(x) ≤ b for x ∈ [0, X], .logrho .logrho (50) -A ≤ (ln ρ) ′ (x) ≤ B τ for x ∈ [0, X]. .logrho .logrho (51)
Proof. We split the proof in two cases, the first one corresponds to M ≥ 0 and the second one to M < 0. Case M ≥ 0, bounds (50)-(51). In this case, thanks to Theorem 2.1 and Corollary 3.2, we notice that the following relations hold

T + (x) = x -Ψ ′ + (x) for x ∈ [0, X], 3.Lip1 3.Lip1 (52) (ln ρ) ′ (x) = - Ψ ′ + (x) τ for x ∈ [0, X],
3.Lip2

3.Lip2 (53)

T ′ + (x) = ρ(x) ρ 0 (T + (x))
for x ∈ (ℓ + , X],

3.Lip3

3.Lip3 (54)

where Ψ + denotes the (unique) Kantorovich potential associated to the optimal transport map T + . Besides, the regularity theory for the solutions to the Monge-Ampère equation done by Caffarelli, see [START_REF] Caffarelli | Some regularity properties of solutions of Monge-Ampère equation[END_REF][START_REF] Philippis | The Monge-Ampère equation and its link to optimal transportation[END_REF][START_REF] Ferrari | Lipschitz estimates on the JKO scheme for the Fokker-Planck equation on bounded convex domains[END_REF][START_REF] Figalli | The Monge-Ampère Equation and Its Applications[END_REF], implies that the function Ψ + is at least C 3,β on (ℓ + , X] for some β ∈ (0, 1). Moreover, since T + (x) = 0 for all x ∈ [0, ℓ + ] then using (52) we deduce that Ψ + is regular on [0, ℓ + ].

Proof of (50). Subcase M > 0. Thanks to Proposition 3.3 and ( 52)-( 53) we first notice that ln ρ(0) = ln ρ -and (ln ρ) ′ (x) = -x/τ ≤ 0 for all x ∈ [0, ℓ + ]. These relations imply that

ln ρ(x) ≤ b ∀x ∈ [0, ℓ + ],
and, since ln ρ is strictly decreasing and C 1 on [0, ℓ + ], the minimum value of ln ρ is reached on (ℓ + , X] and its maximum value is less than b or is reached on (ℓ + , X]. Let x * ∈ (ℓ + , X] be a point where ln ρ achieves either its minimum or maximum value on (ℓ + , X]. We notice that x * = T + (x * ). Indeed, if x * < X (the case x * = X being clear) we have with (53) Ψ ′ + (x * ) = 0 and then T + (x * ) = x * is a consequence of (52). Now, using (54) we obtain

ρ(x * ) ρ 0 (x * ) = 1 -Ψ ′′ + (x * ). Applying (53) either Ψ ′′ + (x * ) ≤ 0 if x * is a minimum point of ln ρ or Ψ ′′ + (x * ) ≥ 0 if x * is a maximum point of ln ρ.
If x * is a minimum point of ln ρ then x * < X 0 . Indeed let us assume that x * ≥ X 0 thus ρ(x) ≥ ρ(x * ) ≥ ρ 0 (x * ) = 1 for all x ∈ [x * , X]. However, as x * and X are fixed-points of T + , we have

¢ X x * ρ(x) dx = ¢ X x * ρ 0 (x) dx = X -x * .
Thus by conservation of mass and since ρ(x) ≥ 1 on [x * , X] we conclude that the set {x ∈ [x * , X] : ρ(x) > 1} is negligible. Therefore, for every x ∈ [x * , X] it holds ρ(x) = 1 and a direct computation leads to J (X 0 ,ρ 0 ) (x * , ρ) < J (X 0 ,ρ 0 ) (X, ρ), which contradicts the optimality of (X, ρ). Thus x * < X 0 and consequently for every x ∈ (ℓ + , X) we get ρ(x) ≥ ρ(x * ) ≥ ρ 0 (x * ) ≥ e a . If x * is a maximum point of ln(ρ), then x * < X 0 . Indeed let us assume by contradiction that x * ≥ X 0 then for every x ∈ (x * , X), ρ(x) ≤ ρ(x * ) ≤ ρ 0 (x * ) = 1. Arguing as previously we show that ρ(x) = 1 for all x ∈ [x * , X]. However, this fact contradicts the optimality of (X, ρ). Thus we conclude that x * < X 0 , and for every x ∈ (ℓ + , X) we deduce that ρ(x) ≤ ρ(x * ) ≤ ρ 0 (x * ) ≤ e b .

Subcase M = 0. Here ℓ + = 0 then ρ -≤ ρ(0) ≤ ρ + (see Proposition 3.3) and (ln ρ) ′ (0) = 0. Thus arguing as before we show that ln ρ satisfies the bounds (50).

Proof of (51). Subcase M > 0. Since (ln ρ) ′ (x) = -x/τ for all x ∈ [0, ℓ + ] we have

- ℓ + τ ≤ (ln ρ) ′ (x) ≤ 0 ≤ B τ ∀x ∈ [0, ℓ + ].
Moreover, as (ln ρ) ′ is strictly decreasing and C 1 on [0, ℓ + ], then the function (ln ρ) ′ achieves its minimum value at a point in (ℓ + , X] and its maximum value is either less than zero or reached at a point in (ℓ + , X].

If the function (ln ρ) ′ achieves its minimum or maximum value at x * ∈ (ℓ + , X] then x * < X. Indeed, if x * = X we have, using ( 52)-( 53), (ln ρ) ′ (X) = -Ψ ′ + (X)/τ = 0 and (51) still holds true. Thus, if x * < X, we have thanks to (53

), Ψ ′′ + (x * ) = 0 such that T ′ + (x * ) = 1. Besides, equality (53) also implies that Ψ ′′′ + (x * ) ≤ 0 if x * is a minimum point of (ln ρ) ′ or Ψ ′′′ + (x * ) ≥ 0 if
x * is a maximum point of the function (ln ρ) ′ . Moreover (52) yields

(ln T ′ + ) ′ (x * ) = T ′′ + (x * ) T ′ + (x * ) = -Ψ ′′′ + (x * ) ∀x ∈ (ℓ + , X].
Therefore we deduce from (54) that

(ln ρ) ′ (x * ) = (ln T ′ + ) ′ (x * ) + (ln ρ 0 ) ′ (T + (x * )) = -Ψ ′′′ + (x * ) + (ln ρ 0 ) ′ (T + (x * )) ∀x ∈ (ℓ + , X].
Hence, we conclude that either

(ln ρ) ′ (x * ) ≥ (ln ρ 0 ) ′ (T + (x * )) ≥ -A if x * is a minimum point, or (ln ρ) ′ (x * ) ≤ (ln ρ 0 ) ′ (T + (x * )) ≤ B τ if x * is a maximum point. Subcase M = 0. Eventually, if ℓ + = 0, then (ln ρ) ′ (0) = - Ψ ′ + (0) τ = 0.
Hence, in any case the relation ( 51) is fulfilled.

Case M < 0, bounds (50)-(51). In this case the following relations hold

T -(x) = x -Ψ ′ -(x) for x ∈ [0, X], 3.Lip4 3.Lip4 (55) (ln ρ) ′ (x) = - Ψ ′ -(x) τ for x ∈ [0, X],
3.Lip5

3.Lip5 (56)

T ′ -(x) = ρ(x) ρ 0 (T -(x)) for x ∈ [0, X], 3.Lip6 3.Lip6 (57)
where Ψ -denotes the Kantorovich potential associated to the optimal map T -. Furthermore, similarly to the previous case, the function Ψ -is at least C 3,β , for some β ∈ (0, 1), on [0, X].

Arguing as before one can prove that

a ≤ ln ρ(x) ≤ b for x ∈ (0, X],
and

-A ≤ (ln ρ) ′ (x) ≤ B τ for x ∈ (0, X].
It remains to study what happens at x = 0. In this purpose, using ( 55) and ( 56) we notice that

(ln ρ) ′ (0) = - Ψ ′ -(0) τ = T -(0) τ = ℓ - τ > 0,
such that the maximum of ln ρ is reached on (0, X] and then ln ρ(x) ≤ b for all x ∈ [0, X]. Besides (ln ρ) ′ (0) is positive and we conclude that (ln ρ) ′ (x) ≥ -A for all x ∈ [0, X]. Now thanks to Proposition 3.3 and the assumption ρ + ≥ ρ 0 (0) we have ln ρ(0) ≥ ln ρ + ≥ a which implies that ln ρ(x) ≥ a for every x ∈ [0, X]. Besides, as ln ρ(0) = ln ρ + -p ′ τ (M ) (see ( 33)), we have -p ′ τ (M ) ≤ b -ln ρ + which yields

-M ≤ m τ + b -ln ρ + K τ .
Moreover, since

ℓ -= ¢ ℓ - 0 ρ 0 ρ 0 dx ≤ exp(-a) ¢ ℓ - 0 ρ 0 dx = -M exp(-a),
we conclude, applying the definition (49) of the parameters m τ and K τ , that it holds

(ln ρ) ′ (0) = ℓ - τ ≤ m τ exp(-a) τ + b -ln ρ + τ K τ exp(-a) = B ′ 0 τ -ϑ = B τ . llmoins llmoins (58)
In particular (ln ρ) ′ (x) ≤ B τ for every x ∈ [0, X] which concludes the proof of Proposition 3.5. □ o_inter 3.4. The Euler-Lagrange equation satisfies by the free interface. In this section, our main objective is to determine the Euler-Lagrange equation satisfies by X the free interface.

terface Proposition 3.6. Let the assumptions of Theorem 2.2 hold. Then X satisfies the following equation

λ X -X 0 τ = α -(1 -ρ(X -)) -ln(ρ(X -)).
O_inter O_inter (59)

It is worth mentioning that the right hand side of (59) represents the variation of the "Boltzmann" energy to pass from (X 0 , ρ 0 ) to (X, ρ) and the left hand side the variation in term of the metric d 2 or more precisely in term of the squared euclidean distance between X 0 and X. In particular, W 2 2 does not play any role in (59). Formally, the idea is that the optimal transport plan γ ∈ Γ(µ, µ 0 ) only acts on the mass ρ and ρ 0 but not on X or X 0 .

Proof. We consider two perturbations of X, the first one corresponds to X ε = X -ε and the second one to X ε = X + ε for ε > 0. Case X ε = X -ε. In this case, in order to construct an admissible perturbation (X ε , µ ε ) ∈ A of (X, µ), we have to ensure that the density ρ ε of µ ε is equal to 1 in (X ε , X). In this aim, for 0

< ε < 1 such that ρ(x) -m(ε) √ ε ≥ 0 for x ∈ [X ε - √ ε, X ε ],
where

m(ε) := 1 - 2 X Xε ρ(x) dx,
we consider the map

D 1 : (X ε - √ ε, X ε ) → (X ε , X) given by D 1 (x) := X ε + √ ε(x -X ε + √ ε)
. This map is defined in such way that

3.X1 3.X1 (60) W 2 2 (m(ε) √ ε L (X ε - √ ε, X ε ), m(ε) L (X ε , X)) ≤ ¢ Xε Xε- √ ε (x -D 1 (x)) 2 m(ε) √ εdx = o(ε).
Then, we consider the transport plan γ ε defined by

γ ε : = γ R 2 \ (X ε - √ ε, X ε ) × (T (X ε - √ ε), T (X ε )) + (Id, T ) # ρ -m(ε) √ ε L (X ε - √ ε, X ε ) + (D 1 , T ) # m(ε) √ ε L (X ε - √ ε, X ε ),
where T is the optimal transport map introduced in Section 2.3 (we implicitly assume in the case M ≥ 0 that ε is small enough in order to have X ε -√ ε > ℓ + ). Finally, we set µ ε := π 1# γ ε and since π 2# γ ε = µ 0 we have γ ε ∈ Γ(µ ε , µ 0 ). Now, let us rewrite µ ε as

µ ε = ρ ε L R + + (-M ) + δ 0 , with ρ ε (x) :=    ρ(x) for x ∈ R + \ [X ε - √ ε, X), ρ(x) -m(ε) √ ε for x ∈ [X ε - √ ε, X ε ], 1 for x ∈ (X ε , X).
Using the definition of γ ε yields

W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2 ε τ ≤ - m(ε) 2τ 2 Xε Xε- √ ε (x -T (x)) 2 dx + m(ε) 2τ 2 Xε Xε- √ ε (D 1 (x) -T (x)) 2 dx ≤ m(ε) 2τ 
2 Xε Xε- √ ε (D 1 (x) -x) 2 dx - m(ε) τ 2 Xε Xε- √ ε (D 1 (x) -x)(x -T (x)) dx.
The two terms in the right hand side converge to zero as ε ↓ 0 thanks to (60). Thus

lim sup ε↓0 W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2 ε τ ≤ 0. Now, we notice that lim ε↓0 1 ε ¢ R + (f (ρ ε ) -f (ρ)) dx = lim ε↓0 1 ε ¢ Xε Xε- √ ε f (ρ -m(ε) √ ε) -f (ρ) dx - 2 X Xε f (ρ) dx ,
where we recall that f (x) = x(ln(x) -β) + β. Applying the definition of m(ε) we get

lim ε↓0 1 ε ¢ R + (f (ρ ε ) -f (ρ)) dx = -(1 -ρ(X -)) f ′ (ρ(X -)) -f (ρ(X -)),
and we conclude that

rface_3 rface_3 (61) 0 ≤ lim inf ε↓0 J (X 0 ,ρ 0 ) (X ε , ρ ε ) -J (X 0 ,ρ 0 ) (X, ρ) ε ≤ -λ X -X 0 τ + α -(1 -ρ(X -)) -ln ρ(X -). Case X ε = X + ε.
Here to build a perturbation, the idea is to pick up a small amount of mass ρ > 0 in (X, X + ε) with ε > 0 and to transfer this mass towards (X -√ ε, X) in order to mimic the "collapse" of the mass when the carbon steel canister is consumed by the oxide layer. More precisely, for 0 < ε < 1 and 0 ≤ ρ ≤ 1, we consider the map

D 2 : (X - √ ε, X) → (X, X ε ) given by D 2 (x) := X + √ ε(x -X + √ ε)
and we define the transport plan γ ε as

γ ε := γ R 2 \ (X, X ε ) 2 + (Id, D 2 ) # √ ερ L (X - √ ε, X) + (Id, Id) # (1 -ρ)L (X, X ε ).
Then, we set µ ε := π 1# γ ε and we notice that π 2# γ ε = µ 0 such that γ ε ∈ Γ(µ ε , µ 0 ). Let us rewrite µ ε as

µ ε = ρ ε L R + + (-M ) + δ 0 , with ρ ε (x) :=    ρ(x) for x ∈ R + \ [X - √ ε, X ε ], ρ(x) + √ ε ρ for x ∈ [X - √ ε, X), 1 -ρ for x ∈ (X, X ε ].
Thanks to the definition of γ ε we have

W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2 ε τ ≤ 1 2ετ ¢ X X- √ ε (x -D 2 (x)) 2 √ ερ dx = ρ 2τ 2 X X- √ ε (x -D 2 (x)) 2 dx. Since (x -D 2 (x)) 2 ≤ ε for x ∈ (X - √ ε, X) we conclude that lim sup ε↓0 W 2 2 (ρ ε , ρ 0 ) -W 2 2 (ρ, ρ 0 ) 2 ε τ ≤ 0.
Arguing as in the previous case we obtain

lim ε↓0 1 ε ¢ R + (f (ρ ε ) -f (ρ)) dx = ρ f ′ (ρ(X -)) + f (1 -ρ). Hence 0 ≤ lim inf ε↓0 J (X 0 ,ρ 0 ) (X ε , ρ ε ) -J (X 0 ,ρ 0 ) (X, ρ) ε ≤ λ X -X 0 τ -α + ρf ′ (ρ(X -)) + f (1 -ρ)
Basic computations show that the minimum of the above inequality is reached for ρ = 1 -ρ(X -) and we obtain

λ X -X 0 τ -α + (1 -ρ(X -)) + ln(ρ(X -)) ≥ 0. rface_1 rface_1 (62) 
Finally, collecting (61) and ( 62) yields (59), which finishes the proof of Proposition 3.6. □

Existence of weak solutions

Sec.Th2

In order to prove Theorem 1.1, we first recall the definition of the JKO-iterated scheme [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. Let τ > 0 be a time step of (0, T ). Starting from the initial data (X 0 , ρ 0 ) ∈ A, satisfying assumption (H2), find for all 0 ≤ n ≤ N T -1 (with N T an integer such that N T τ = T ) a solution (X n+1 , ρ n+1 ) ∈ A to the following minimization problem

(X n+1 , ρ n+1 ) ∈ argmin (Y,ρ)∈A 1 2τ d 2 ((Y, ρ), (X n , ρ n )) + E (X n n ) (Y, ρ) + p τ (M (ρ, ρ n )) ,
where the metric d and the functional E are defined in Section 2.3. The existence of a solution (X n , ρ n ) 1≤n≤N T ∈ A to this minimization problem is now a consequence of the recursive use of Theorem 2.2. apriori 4.1. Uniform estimates. We first quantify the movement of the free interface.

estim_X Lemma 4.1. Let the assumptions of Theorem 2.2 hold. Then it holds

X N T ≤ X 0 + T λ (α -a),
where we recall that a = min x∈[0,X 0 ] ln ρ 0 (x) ≤ 0.

Proof. This result follows directly from Proposition 3.5 and Proposition 3.6. □

Let us now establish some estimates that are uniform with respect to τ .

nt_metr Proposition 4.1. Let the assumptions of Theorem 2.2 hold. Then there exists a constant C > 0 depending only on X 0 , ρ 0 , α, β and T such that Proof. We use (X n , ρ n ) ∈ A as an admissible competitor in the functional J (X n ,ρ n ) and we obtain for 0

N T -1 n=0 d 2 ((X n+1 , ρ n+1 ), (X n , ρ n )) 2τ + θ N T -1 n=0 |M (ρ n+1 , ρ n )| + N T -1 n=0 p τ (M (ρ n+1 , ρ n )) ≤ C.
≤ n ≤ N T -1 d 2 ((X n+1 , ρ n+1 ), (X n , ρ n )) 2τ + θ|M (ρ n+1 , ρ n )| + p τ (M (ρ n+1 , ρ n )) ≤ ¢ X n 0 f (ρ n ) dx - ¢ X n+1 0 f (ρ n+1 ) dx + α(X n+1 -X n ).
We sum this inequality over n and we get

N T -1 n=0 d 2 ((X n+1 , ρ n+1 ), (X n , ρ n )) 2τ + θ|M (ρ n+1 , ρ n )| + p τ (M (ρ n+1 , ρ n )) ≤ ¢ X 0 0 f (ρ 0 ) dx + α -inf x∈[0,1] f (x) X N T .
It remains to notice that f (x) ≥ β -exp(β -1), for x ≥ 0, and to apply Lemma 4.1 in order to deduce the existence of a constant C > 0 independent of τ such that (63) holds. This finishes the proof of Proposition 4.1. □ Now for 0 ≤ n ≤ N T -1, we define the functions ρ τ , X τ , Xτ and M τ as follows:

ρ τ (t) = ρ n+1 , X τ (t) = X n+1 , for t ∈ (nτ, (n + 1)τ ], with ρ τ (0) = ρ 0 , X τ (0) = X 0 and Xτ (t) = t -nτ τ X n+1 + (n + 1)τ -t τ X n , for t ∈ (nτ, (n + 1)τ ], M τ (t) = t -nτ τ M(ρ n+1 ) + (n + 1)τ -t τ M(ρ n ), for t ∈ (nτ, (n + 1)τ ],
where we recall definition (15) of M and with Xτ (0) = X 0 and M τ (0) = ¡ X 0 0 (ρ 0 -1) dx. Finally, we introduce the shift operator σ τ given by

σ τ ρ τ (x, t) = ρ τ (x, t + τ ) a.e. (x, t) ∈ R + × (0, T -τ ).
In the following statement our main objective is to establish some uniform (w.r.t. τ ) estimates satisfied by the sequences ( Xτ ) τ >0 , (M τ ) τ >0 and (ρ τ ) τ >0 .

apriori Proposition 4.2. Let the assumptions of Theorem 1.1 hold. Then, the sequences ( Xτ ) τ >0 and (M τ ) τ >0 are uniformly bounded in H 1 (0, T ) and W 1,1 (0, T ) respectively. Moreover, the sequence

(ρ τ ) τ >0 is uniformly bounded in L 2 loc (R + × (0, T )) ∩ L ∞ (R + × (0, T ))
and there exists a constant C > 0 depending only on X 0 , ρ 0 , α, β, a, b, θ, λ and T such that the following estimates hold

¢ T 0 ||∂ x ρ τ (t)|| 2 L 2 (R + ) dt ≤ C, rho_H1 rho_H1 (64) 
and

¢ T τ ||ρ τ (t) -σ -τ ρ τ (t)|| 2 H * dt ≤ Cτ, anslate anslate (65)
where H * denotes the dual space of H 1 (R + ).

Proof. Let τ > 0 be fixed. Thanks to Lemma 4.1 and Proposition 4.1 we notice that Xτ is uniformly bounded in H 1 (0, T ). Besides, for the function M τ we have

¢ T 0 |M τ (t)| dt = N T -1 n=0 ¢ (n+1)τ nτ |M τ (t)| dt = N T -1 n=0 ¢ (n+1)τ nτ 1 τ (t -nτ ) M(ρ n+1 ) -M(ρ n ) + τ M(ρ n ) dt ≤ N T -1 n=0 ¢ (n+1)τ nτ 1 τ (t -nτ ) M ρ n+1 , ρ n dt + N T -1 n=0 τ |M(ρ n )| . Since |M(ρ n )| ≤ X n (exp(b) + 1) ≤ X N T (exp(b) + 1
) for all n = 0, . . . , N T -1, we deduce from Lemma 4.1

¢ T 0 |M τ (t)| dt ≤ N T -1 n=0 τ M (ρ n+1 , ρ n ) + 1 λ (X 0 λ + T (α -a))(exp(b) + 1)T ≤ T N T -1 n=0 M (ρ n+1 , ρ n ) + 1 λ (X 0 λ + T (α -a))(exp(b) + 1)T
It remains to apply Proposition 4.1 to obtain the existence of a constant C > 0 such that

¢ T 0 |M τ (t)| dt ≤ C,
which implies M τ ∈ L 1 (0, T ). Moreover, we have thanks to (63),

¢ T 0 Ṁ τ (t) dt = N T -1 n=0 ¢ (n+1)τ nτ |M (ρ n+1 , ρ n )| τ dt = N T -1 n=0 |M (ρ n+1 , ρ n )| ≤ C.
Therefore, we deduce that (M τ ) τ >0 is uniformly bounded in W 1,1 (0, T ). Now, applying Proposition 3.5, the function ρ τ is uniformly bounded in L ∞ (R + × (0, T )) and then bounded in L 2 loc (R + × (0, T )). Let us show that ∂ x ρ τ is uniformly bounded in L 2 (R + × (0, T )). In this purpose, applying recursively Corollary 3.1, we deduce that

¢ T 0 ||∂ x ρ τ (t)|| 2 L 2 (R + ) dt ≤ N T -1 n=0 W 2 2 (ρ n+1 , ρ n ) τ ,
which implies that the function ∂ x ρ τ is uniformly bounded in L 2 (R + × (0, T )) thanks to (63). Now we establish (65). Let 0 ≤ n ≤ N T -1 be fixed, ϕ ∈ H 1 (R + ) with ||ϕ|| H 1 (R + ) ≤ 1. We consider the quantity

I n := ¢ R + (ρ n+1 (x) -ρ n (x)) ϕ(x) dx.
In the sequel we will assume that M (ρ n+1 , ρ n ) ≥ 0 (the case M (ρ n+1 , ρ n ) < 0 being similar), then we have

I n = ¢ ℓ n+1 + 0 ρ n+1 (x)ϕ(x) dx + ¢ +∞ ℓ n+1 + (ϕ(x) -ϕ(T n+1 + (x)))ρ n+1 (x) dx,
where the distance ℓ n+1 + and the optimal transport map T n+1 + are defined as in Section 2.3. For the second term of the right hand side we apply (50), the bound ||ρ n+1 || L ∞ (R + ) ≤ 1 and the Cauchy-Schwarz inequality and we obtain

¢ +∞ ℓ n+1 + (ϕ(x) -ϕ(T n+1 + (x)))ρ n+1 (x) dx ≤ ¢ X n+1 ℓ n+1 + ρ n+1 (x) ¢ x T n+1 + (x) ϕ ′ (s) ds dx ≤ ¢ X n+1 0 ¢ (T n+1 + ) -1 (s) s ρ n+1 (x)ϕ ′ (s) dx ds ≤ exp(b) ¢ X n+1 0 s -T n+1 + -1 (s) ϕ ′ (s) ds ≤ exp(b) exp(a) ¢ X n+1 0 ρ n (s) s -T n+1 + -1 (s) ϕ ′ (s) ds ≤ exp(3b/2) ||ϕ ′ || L 2 (R + ) exp(a) W 2 (ρ n+1 , ρ n )
Hence we get

I n ≤ ||ϕ|| L ∞ (R + ) ¢ ℓ n+1 + 0 ρ n+1 (x) dx + exp(3b/2) ||ϕ ′ || L 2 (R + ) exp(a) W 2 (ρ n+1 , ρ n ),
and the Sobolev embedding H 1 (R + ) → L ∞ (R + ) implies the existence of a constant C S such that

I n ≤ C S M (ρ n+1 , ρ n ) + exp(3b/2) exp(a) W 2 (ρ n+1 , ρ n ).
Therefore we have

||ρ n+1 -ρ n || 2 H * ≤ 2 C 2 S |M (ρ n+1 , ρ n )| 2 + 2 exp(3b) exp(2a) W 2 2 (ρ n+1 , ρ n ), ∀0 ≤ n ≤ N T -1,
and since

|M (ρ n+1 , ρ n )| = ¢ ℓ n+1 + 0 ρ n+1 (x) dx ≤ exp(b) X N T , ∀0 ≤ n ≤ N T -1,
we conclude that it holds

||ρ n+1 -ρ n || 2 H * ≤ 2 exp(b) C 2 S X N T |M (ρ n+1 , ρ n )| + 2 exp(3b) exp(2a) W 2 2 (ρ n+1 , ρ n ), ∀0 ≤ n ≤ N T -1.
Hence, using (63), we end up with

¢ T τ ||ρ τ (t) -σ -τ ρ τ (t)|| 2 H * ≤ 2 C 2 S exp(b) X N T θ τ + 2 exp(3b) exp(2a) τ 2 C.
Finally, as τ < T and thanks to Lemma 4.1, we deduce the existence of a constant, still denoted C, such that (65) holds. This concludes the proof of Proposition 4.2. □ mpacite 4.2. Compactness properties. In this section we establish the existence of some functions X ∈ H 1 (0, T ), M ∈ BV (0, T ) and

ρ ∈ L 2 loc (R + × (0, T )) ∩ L ∞ (R + × (0, T )) ∩ H 1 (0, T ; H * ) with ∂ x ρ ∈ L 2 (
R + × (0, T )) obtained as limits, when τ ↓ 0, of the sequences ( Xτ ) τ >0 , (M τ ) τ >0 and (ρ τ ) τ >0 .

pacite1 Proposition 4.3. Let the assumptions of Theorem 2.2 hold. Then, there exists X ∈ H 1 (0, T ) such that, up to a subsequence, Xτ → X strongly in L 2 (0, T ), as τ ↓ 0,

• Xτ ⇀ Ẋ weakly in L 2 (0, T ), as τ ↓ 0.

It also exists M ∈ BV (0, T ) such that, up to a subsequence,

M τ → M strongly in L 1 (0, T ), as τ ↓ 0, Ṁ τ ⇀ DM weakly in M(0, T ), as τ ↓ 0. Moreover, there exists ρ ∈ L 2 loc (R + × (0, T )) ∩ L ∞ (R + × (0, T )) ∩ H 1 (0, T ; H * ) with ∂ x ρ ∈ L 2 (R + × (0, T ))
where ρ(x, t) = 1 for a.e. (x, t) ∈ (X(t), +∞) × (0, T ) such that, up to a subsequence, as τ ↓ 0 ρ τ → ρ strongly in L p (0, T ; L q loc (R + )), ∀1 ≤ p, q < ∞,

∂ x ρ τ ⇀ ∂ x ρ weakly in L 2 (R + × (0, T )), τ -1 (ρ τ -σ -τ ρ τ ) ⇀ ∂ t ρ weakly in L 2 (0, T ; H * ).
Proof. All the convergence properties stated below occur up to the extraction of a subsequence when τ ↓ 0. The existence of X ∈ H 1 (0, T ) such that the following convergences Xτ → X strongly in L 2 (0, T ),

• Xτ ⇀ Ẋ weakly in L 2 (0, T ), hold are direct consequences of Proposition 4.2. Moreover, applying again Proposition 4.2 we know that the sequence (M τ ) τ >0 is uniformly bounded in W 1,1 (0, T ). Then using the compactness criterion [START_REF] Evans | Measure theory and fine properties of functions[END_REF]Theorem 5.5] for BV functions, we conclude that there exists M ∈ BV (0, T ) such that

M τ → M strongly in L 1 (0, T ).
Furthermore, since (M τ ) is uniformly bounded in W 1,1 (0, T ) ⊆ BV (0, T ) we deduce that there exists P ∈ M(0, T ), such that Ṁ τ ⇀ P weakly in M(0, T ), and, in the sense of distribution, it holds P = DM . Now, thanks to Proposition 4.2 we apply the compactness argument obtained in [13, Theorem 1] and we deduce the existence of ρ ∈ L 2 (0, T ; L 2 loc (R + )) such that ρ τ → ρ strongly in L 2 (0, T ; L 2 loc (R + )).

orte_Lp orte_Lp (66)

Hence, the L ∞ estimates obtained in Proposition 3.5 yields the strong convergence in every L p (0, T ; L q loc (R + )) for all 1 ≤ p, q < ∞. Let us now prove that ρ(x, t) = 1 for a.e. (x, t) ∈ (X(t), +∞) × (0, T ). In this purpose, for t ∈ (0, T ) fixed, we notice that the convergence result (66) implies the convergence almost everywhere of ρ τ towards ρ and we obtain that ρ(x, t) = 1 for a.e. x > max(X(t), Xτ (t)). Besides, using the strong convergence of ( Xτ ) τ in L 2 (0, T ) towards X and the embedding H 1 (0, T ) → C([0, T ]) we conclude that for every t ∈ (0, T ) and up to a subsequence (X τ (t)) τ >0 converges towards X(t). This allow us to obtain the equality ρ(x, t) = 1 for a.e. x ∈ (X(t), +∞). We deduce from estimate (64) that ∂ x ρ τ is uniformly bounded in L 2 (R + × (0, T )). Thus, after identification in the sense of distribution, we obtain that

∂ x ρ τ ⇀ ∂ x ρ weakly in L 2 (R + × (0, T )).
Moreover, since τ -1 (ρ τ -σ -τ ρ τ ) is uniformly bounded in L 2 (0, T ; H * ) we also deduce that

τ -1 (ρ τ -σ -τ ρ τ ) ⇀ ∂ t ρ weakly in L 2 (0, T ; H * ),
holds. This concludes the proof of Proposition 4.3. □

In the following two statements we establish some results concerning the convergence of the traces of the sequence (ρ τ ) τ >0 and the limit function ρ obtained in Proposition 4.3.

_traces Proposition 4.4. Let the assumptions of Theorem 2.2 hold. Then, the limit functions X ∈ H 1 (0, T ) and ρ ∈ L 2 loc (R

+ × (0, T )) ∩ L ∞ (R + × (0, T )) ∩ H 1 (0, T ; H * ) with ∂ x ρ ∈ L 2 (R + × (0, T )) obtained in Proposition 4.3 satisfy for all 1 ≤ p, q < ∞ ¢ T 0 ρ τ (X τ (t) -, t) -ρ(X(t) -, t)
q dt 1/p → 0, as τ ↓ 0, e_inter e_inter (67)

¢ T 0 |ρ τ (0, t) -ρ(0, t)| q dt 1/p → 0, as τ ↓ 0. ce_zero ce_zero (68)
Proof. Bearing in mind the L ∞ estimates established in Proposition 3.5 it is sufficient to prove (67) and (68) in the case p = q = 1. Moreover, since the proofs of (67) and ( 68) are similar we only establish the convergence result (67).

In this purpose we define for t ∈ [0, T ] and s ∈ R + the function Xτ by Xτ (t, s) = min(X τ (t), X(t)) -s.

Then, for ε > 0 we consider the following splitting

¢ T 0 ρ τ (X τ (t) -, t) -ρ(X(t) -, t) dt ≤ Q 3 (ε) + Q 4 (ε) + Q 5 (ε),
where

Q 3 (ε) := ¢ T 0 2 ε 0 ρ τ ( Xτ (t, s), t) -ρ( Xτ (t, s), t) ds dt, Q 4 (ε) := ¢ T 0 2 ε 0 ρ( Xτ (t, s), t) -ρ(X(t) -, t) ds dt, Q 5 (ε) := ¢ T 0 2 ε 0 ρ τ (X τ (t) -, t) -ρ τ ( Xτ (t, s), t) ds dt.
For Q 3 (ε), we use the definition of the function Xτ , the Cauchy-Schwarz inequality and the fact that ρ τ (x, t) = ρ(x, t) = 1 for a.e. (x, t) ∈ (max(X N T , X(T )), +∞) × (0, T ) to deduce that

Q 3 (ε) ≤ 1 √ ε ¢ T 0 ||ρ τ (t) -ρ(t)|| L 2 (R + ) dt, which implies Q 3 (ε) ≤ √ T √ ε ||ρ τ -ρ|| L 2 (R + ×(0,T )) .
E_eps E_eps (69)

For Q 4 (ε) thanks to the regularity of ρ ∈ L 2 (0, T ; H 1 (D T )) where

D T = {(x, t) : 0 ≤ t ≤ T, 0 ≤ x ≤ X(t)},
and the Cauchy-Schwarz inequality we obtain

Q 4 (ε) ≤ ¢ T 0 2 ε 0 ¢ X(t) Xτ (t,s) |∂ x ρ(y, t)| dy ds dt ≤ ¢ T 0 2 ε 0 | Xτ (t, s) -X(t)| 1/2 ||∂ x ρ(t)|| L 2 (R + ) ds dt ≤ ¢ T 0 ||∂ x ρ(t)|| L 2 (R + ) 2 ε 0 |X τ (t) -X(t) -s| 1/2 ds dt.
Applying again the Cauchy-Schwarz inequality we deduce that

Q 4 (ε) ≤ 1 √ ε ¢ T 0 ||∂ x ρ(t)|| L 2 (R + ) ¢ ε 0 |X τ (t) -X(t) -s| ds 1/2 dt ≤ 1 √ ε ¢ T 0 ||∂ x ρ(t)|| L 2 (R + ) ||X τ -X|| L 1 (0,T ) ε + ε 2 2 1/2 dt. Hence Q 4 (ε) ≤ √ T ||∂ x ρ|| L 2 (R + ×(0,T )) ||X τ -X|| L 1 (0,T ) + ε 2 1/2 . F_eps F_eps (70) 
We obtain a similar estimate for the term Q 5 (ε). Now, let ε := ||ρ τ -ρ|| 2/3 L 2 (R + ×(0,T )) , then we conclude from (69) and (70) that ¢ T 0 ρ τ (X τ (t) -, t) -ρ(X(t) -, t) dt → 0, as τ ↓ 0, which concludes the proof of Proposition 4.4. □

As a direct consequence of Proposition 4.4, Proposition 3.5 and the dominated convergence theorem we deduce the following result: ace_log Corollary 4.1. Let the assumptions of Theorem 2.2 hold. Then, the limit functions obtained in Proposition 4.3 satisfy for all 1 ≤ p, q < ∞,

¢ T 0 ln ρ τ (X τ (t) -, t) -ln ρ(X(t) -, t) q dt 1/p → 0, as τ ↓ 0.
It remains to show that the trace at x = 0 of the limit function ρ ∈ L 2 (0, T ; H 1 (D T )) satisfies the inequality ρ -≤ ρ(0, t) ≤ ρ + for a.e. t ∈ (0, T ). p_0_rho Proposition 4.5. Let the assumptions of Theorem 2.2 hold. Then the limit function ρ satisfies ρ -≤ ρ(0, t) ≤ ρ + a.e. t ∈ (0, T ). 

¢ T 0 (ln ρ τ (0, t) -ln ρ + ) 2 + dt → 0, as τ ↓ 0.
In this purpose, bearing in mind the result established in Proposition 3.3, we have

ln ρ n+1 (0) -ln ρ + 2 + = p ′ τ (M (ρ n+1 , ρ n )) 2 = 2 K τ p τ (M (ρ n+1 , ρ n )).
Thus, thanks to (63), we deduce that

¢ T 0 (ln ρ τ (0, t) -ln ρ + ) 2 + dt = 2 τ K τ N T -1 n=0 p τ (M (ρ n+1 , ρ n )) ≤ 2 τ K τ C.
Finally, using the definition (49) of K τ yields

¢ T 0 (ln ρ τ (0, t) -ln ρ + ) 2 + dt ≤ 4C(b -ln ρ + ) B ′ 0 exp(a) τ ϑ → 0, as τ ↓ 0.
This finishes the proof of Proposition 4.5. □ 4.3. Existence proof of weak solutions for the system (1)- [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. In this section we prove Theorem 1.1. In this purpose we show that the limit functions ρ, M and X obtained in Proposition 4.3 are weak solutions to (1) in the sense of Definition 1.1. Then, we establish that these functions satisfy the variational inequality [START_REF] Chainais-Hillairet | The existence of solutions to a corrosion model[END_REF]. 

¢ T -τ 0 ¢ R + ρ τ (x, t) σ τ φ(x, t) -φ(x, t) τ dx dt - 1 τ ¢ τ 0 ¢ R + ρ 0 (x) φ(x, t) dx dt + 1 τ ¢ T T -τ ¢ R + ρ τ (x, t) φ(x, t) dx dt - ¢ T 0 Ṁ τ (t) φ(0, t) dt + ¢ T 0 ¢ R + ∂ x ρ τ (x, t) ∂ x φ(x, t) dx dt ≤ N T -1 n=0 τ |Q n+1 τ (φ)|, with N T -1 n=0 τ |Q n+1 τ (φ)| ≤ C ||∂ 2 x φ|| L ∞ (R + ×(0,T )) + ||∂ x φ|| L ∞ (R + ×(0,T )) τ 1-2ϑ , _reste2 _reste2 (73) 
where C > 0 is a constant independent of τ . Eventually for all ξ ∈ C(0, T ) we have O_inter O_inter (74) λ

¢ T 0 • Xτ (t) ξ(t) dt = α ¢ T 0 ξ(t) dt - ¢ T 0 1 -ρ τ (X τ (t) -, t) ξ(t) dt - ¢ T 0 ln ρ τ (X τ (t) -, t) ξ(t) dt.
Proof. It is sufficient to establish (73). Indeed, we notice that (72) is a direct consequence of (30) and a rearrangement of the discrete time derivative terms, while (74) is a consequence of (59). Then, in order to establish (73) we notice thanks to Proposition 3.2 that for all φ ∈ C ∞ 0 (R + ×(0, T )) we can write

N T -1 n=0 τ |Q n+1 τ (φ)| ≤ 2 τ ||∂ 2 x φ|| L ∞ (R + ×(0,T )) N T -1 n=0 d 2 ((X n+1 , ρ n+1 ), (X n , ρ n )) 2τ + ||∂ x φ|| L ∞ (R + ×(0,T )) N T -1 n=0 ¢ ℓ n+1 - 0 y ρ n (y) dy,
where ℓ n+1 -is defined as in Section 2.3. In particular, if M (ρ n+1 , ρ n ) < 0, then applying (58) we have

ℓ n+1 - ≤ B ′ 0 τ 1-ϑ ,
and if M (ρ n+1 , ρ n ) ≥ 0 we set ℓ n+1 -= 0. Therefore, we obtain

N T -1 n=0 τ |Q n+1 τ (φ)| ≤ 2 τ ||∂ 2 x φ|| L ∞ (R + ×(0,T )) N T -1 n=0 d 2 ((X n+1 , ρ n+1 ), (X n , ρ n )) 2τ + (B ′ 0 ) 2 exp(b) T 2 ||∂ x φ|| L ∞ (R + ×(0,T )) τ 1-2ϑ .
Hence, thanks to Proposition 4.1, we conclude that there exists a constant C independent of τ such that

N T -1 n=0 τ |Q n+1 τ (φ)| ≤ C ||∂ 2 x φ|| L ∞ (R + ×(0,T )) + ||∂ x φ|| L ∞ (R + ×(0,T )) τ 1-2ϑ .
This finishes the proof of Proposition 4.6. □

Thus passing to the limit τ ↓ 0 in (72) and (74) yields the existence of a weak solution to (1) in the sense of Definition 1.1. [START_REF] Chainais-Hillairet | The existence of solutions to a corrosion model[END_REF]. In order to prove that the weak solution (ρ, M, X) to (1) satifies the variational inequality [START_REF] Chainais-Hillairet | The existence of solutions to a corrosion model[END_REF], the main idea is to prove a semi-discrete (in time) counterpart of (10) (see (82) below). More precisely, our objective is to made rigorous the computations done in Section 1.3. In particular, defining u = χρ with χ ∈ C ∞ 0 (R + ) a nonnegative function with χ(x) = 1 for all x ∈ [0, X 0 /2) and supp(χ) ⊆ [0, 3X 0 /4], we have to be able to define properly the inequality -Ṁ (t) (u(0, t) -η(0, t)) ≥ 0, for a.e. t ∈ [0, T ],

Obtention of the variational inequality

where η ∈ C ∞ 0 (R + × [0, T )) with η(0, t) ∈ [ρ -, ρ + ] for every t ∈ (0, T ). However, we only know that M ∈ BV (0, T ). Then, to bypass this regularity issue we establish a semi-discrete variational inequality achieved by the minimizers of our JKO-iterated scheme [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] and then to pass to the limit τ ↓ 0 in this inequality.

In this purpose, we set

u n (x) := χ(x) ρ n (x), ∀x ∈ R + , 0 ≤ n ≤ N T .
Besides, as in Section 4.1, we consider the following piecewise in time function

u τ (t) = u n+1 , for t ∈ (nτ, (n + 1)τ ], ∀0 ≤ n ≤ N T -1,
with u τ (0) = u 0 = χ ρ 0 . Let us now prove the equation satisfies in the weak sense by the sequence (u n ) 0≤n≤N T :

negvard Proposition 4.7. Let the assumptions of Theorem 1.1 hold. Then, for all φ ∈ C ∞ 0 ([0, X 0 ]) and every 0

≤ n ≤ N T -1, it holds negvard negvard (75) ¢ X 0 0 u n+1 (x) -u n (x) τ φ(x) dx - M (ρ n+1 , ρ n ) τ φ(0) + ¢ X 0 0 u n+1 ′ (x) φ ′ (x) dx = ¢ X 0 0 g n+1 (x) φ(x) dx + Q n+1 τ (χ, φ), with g n+1 (x) = -2 ρ n+1 ′ (x) χ ′ (x) -ρ n+1 (x) χ ′′ (x), ∀0 ≤ n ≤ N T -1,
and where the remaining term

Q n+1 τ satisfies negvard negvard (76) |Q n+1 τ (χ, φ)| ≤ (χ φ) ′′ L ∞ ([0,X 0 ]) τ d 2 (X n+1 , ρ n+1 ), (X n , ρ n ) + (χ φ) ′ L ∞ ([0,X 0 ]) τ ¢ ℓ n+1 - 0 y ρ n (y) dy .
Proof. For a given function φ ∈ C ∞ 0 (R + ) we consider as a test function ψ = χφ in [START_REF] Portegies | Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows[END_REF]. Then, as χ(0) = 1 and by definition of the sequence (u n ) 0≤n≤N T , we obtain

¢ X 0 0 u n+1 (x) -u n (x) τ φ(x) dx- M (ρ n+1 , ρ n ) τ φ(0)+ ¢ X 0 0 ρ n+1 ′ (x) (χφ) ′ (x) dx = Q n+1 τ (χ, φ),
where the bound (76) on Q n+1 τ is directly deduce from [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]. Therefore, since

¢ X 0 0 ρ n+1 ′ (x) χ(x) φ ′ (x) dx = ¢ X 0 0 u n+1 ′ (x) φ ′ (x) dx - ¢ X 0 0 ρ n+1 (x) χ ′ (x) φ ′ (x) dx,
we notice that it holds

¢ X 0 0 ρ n+1 ′ (x) (χφ) ′ (x) dx = ¢ X 0 0 ρ n+1 ′ (x) χ ′ (x) φ(x) dx + ¢ X 0 0 u n+1 ′ (x) φ ′ (x) dx - ¢ X 0 0 ρ n+1 (x) χ ′ (x) φ ′ (x) dx.
Now, applying an integration by parts on the last term of the right hand side yields

¢ X 0 0 ρ n+1 ′ (x) (χφ) ′ (x) dx = ¢ X 0 0 u n+1 ′ (x) φ ′ (x) dx - ¢ X 0 0 g n+1 (x)φ(x) dx.
This completes the proof of Proposition 4.7. □

Now we intend to use, roughly speaking, (u n+1 -η) for some regular function η with η(0) ∈ [ρ -, ρ + ], as a test function in (75). If we do this, thanks to Proposition 3.3, we notice that it holds -M (ρ n+1 , ρ n ) u n+1 (0) -η(0) ≥ 0, ∀0 ≤ n ≤ N T -1, such that, at least formally, we deduce from (75) the following inequality

¢ X 0 0 u n+1 (x) -u n (x) τ (u n+1 -η)(x) dx + ¢ X 0 0 u n+1 ′ (x) u n+1 -η ′ (x) dx ≤ ¢ X 0 0 g n+1 (x) u n+1 -η (x) dx + Q n+1 τ (χ, u n+1 -η).
This inequality is closed to the semi-discrete variational inequality that we are looking for. But, we notice that in the right hand side, and more precisely in the term Q n+1 τ , we have to be able to define the second derivative in space of u n+1 . However, we only know that u n+1 belongs to Proof. For the point (i), the estimates (77) and (78) are direct consequences of the definition of the function u τ and Proposition 3.5. For the estimate (79), we notice that Now, we directly obtain

∂ x u τ 2
∂ x u τ 2 L 2 (R×(0,T )) ≤ 3 + 2 ||χ ′ || 2 L ∞ (0,X 0 ) ||ρ τ || 2
L 2 (0,T ;H 1 (0,X 0 )) , and applying Proposition 4.2 yields the existence of the constant C 2 such that (79) holds. Now for the point (ii), using similar arguments and standard properties achieved by the convolution product we deduce that the function u τ δ satisfies the estimates (77)-(79). Furthermore, since ζ is an even function, we directly deduce the equality u τ δ (0, t) = u τ (0, t) for a.e. t ∈ (0, T ). In order to establish estimate (80), we first notice that Then, since the function u τ and its extension u τ are Lipchitz continuous we have

¢ T 0 ¢ X 0 0 (u τ δ -u τ ) 2 τ = N T -1 n=0 ¢ X 0 0 u n+1 δ -u n+1 2 (x) dx = N T -1 n=0 ¢ X 0 0 ¢ δ -δ u n+1 (x -y) -u n+1
¢ T 0 ¢ X 0 0 (u τ δ -u τ ) 2 τ ≤ ||ζ|| 2 L ∞ (-1,1) δ N T -1 n=0 ||∂ x u τ || 2 L ∞ (R×(0,T )) ¢ X 0 0 ¢ δ -δ y 2 dy dx ≤ 2 X 0 ||ζ|| 2 L ∞ (-1,1) 3 N T -1 n=0 ||∂ x u τ || 2 L ∞ (R×(0,T )) δ 2 .
Hence, applying (78), we deduce that

¢ T 0 ¢ X 0 0 (u τ δ -u τ ) 2 τ ≤ 2 C 1 X 0 T ||ζ|| 2 L ∞ (-1,1) 3 τ 2ϑ ′ -2ϑ-1 ,
and we conclude the existence of the constant C 3 such that (80) holds. Finally, the estimate (81) is consequence of (78) and the fact that Therefore, it holds the following semi-discrete variational inequality:

creteVI creteVI (82) ¢ T τ ¢ X 0 0 ϕ(t) u τ (x, t) -σ -τ u τ (x, t) τ (u τ δ -η) (x, t) dxdt + ¢ T 0 ¢ X 0 0 ϕ(t) ∂ x u τ (x, t) ∂ x (u τ δ -η) (x, t) dxdt ≤ ¢ T 0 ¢ X 0 0 ϕ(t) g τ (x, t) (u τ δ -η) (x, t) dxdt + N T -1 n=0 ¢ (n+1)τ nτ ϕ(t) Q n+1 τ (χ, u n+1 δ ) -Q n+1 τ (χ, η(t)) dt.
We rewrite this inequality as In order to establish the variational inequality [START_REF] Chainais-Hillairet | The existence of solutions to a corrosion model[END_REF] it remains to pass to the limit τ ↓ 0 in the above terms. This is the main objective of the next result.

A τ 1 -A τ 2 + A τ 3 -A τ 4 ≤ A τ 5 + A τ 6 -A τ 7 ,
inegvar Proposition 4.8. Let the assumptions of Theorem 1.1 hold and assume that 0 < τ < 1 is small enough such that δ < X 0 /2. Moreover, we impose the following conditions on ϑ and ϑ ′ 3ϑ + ϑ ′ < 1, ϑ ′ -ϑ > 1/2, ϑ ′ > 2ϑ, ϑ < 1/2. 

:couche 3 . 1 .

 31 The Euler-Lagrange equation in the oxide layer. Let us now establish the equation satisfied by ρ in the oxide layer. t_oxyde Proposition 3.1. Let the assumptions of Theorem 2.2 hold. Then ρ satisfies the following equation

3 . 2 .prop_0 Proposition 3 . 3 .

 3233 , and thanks to the regularity of ψ we deduce that[START_REF] Simon | Comapct sets in the space L p (0, T ; B)[END_REF] holds which completes the proof of Proposition 3.2. □ er_fixe Behavior of the minimizers at the fixed interface. Thanks to Corollary 3.1 the function ρ admits a trace at the fixed interface x = 0 and in this section we study its behavior. Let us first recall the definition of ρ -and ρ + ρ -= exp (β -θ -1) and ρ + = exp (β + θ -1) . Let the assumptions of Theorem 2.2 hold. Then, ρ satisfies either

  4. □Thanks to Corollary 3.1 and classical Sobolev embedding the function ρ restricted to (0, X) is continuous. Moreover, Corollary 3.1 and Proposition 3.4 imply that the function ln(ρ) is in SBV 2 loc (R + ). Then, we deduce from Proposition 3.1 that it holds Ψ ′ (x) τ + (ln ρ) ′ (x) = 0, for a.e. x ∈ (0, X),

  sttrace sttrace (71) Proof. First let us notice that the lower bound of (71) holds thanks of Proposition 3.3 and Proposition 4.4. Now our main objective is to prove that

wealsol 4 . 3 . 1 .

 431 Obtention of[START_REF] Chainais-Hillairet | On the existence of solutions for a drift-diffusion system arising in corrosion modeling[END_REF] and[START_REF] Philippis | The Monge-Ampère equation and its link to optimal transportation[END_REF]. Let us first prove the following statement: nega_EL Proposition 4.6. Let the assumptions of Theorem 1.1 hold and assume that the parameter ϑ appearing in the definition (49) of m τ and K τ satisfies 0 < ϑ < 1/2. Then, for all φ ∈ C ∞ 0 (R + × [0, T )) the following inequality holds ega_EL1 ega_EL1 (72) -

0 ¢ X 0 0

 00 |∂ x u τ (-x, t)| 2 dxdt + |∂ x ρ τ (-x, t)| 2 dxdt + ¢ T |∂ x ρ τ (x, t) χ(x) + ρ τ (x, t) χ ′ (x)| 2 dxdt.

uuu

  n+1 (x -y) -u n+1 (x) ζ δ (y) dy 2 dx.Then, thanks to the Cauchy-Schwarz inequality and the regularity of the function ζ, we get n+1 (x -y) -u n+1 (x) n+1 (x -y) -u n+1 (x) 2 dy dx.

N T - 1 n=0¢N T - 1 n=0¢

 11 dy is bounded by C/δ for some constant C independent of δ which yields the existence of a constant C 4 , depending only on ρ 0 and ζ, such that∂ 2 x u τ δ L ∞ (R×(0,T )) ≤ C 4 τ -ϑ δ = C 4 τ -ϑ-ϑ ′ .This completes the proof of Lemma 4.2. □Let us now establish the semi-discrete variational inequality. In this purpose, we consider a nonnegative functionϕ ∈ C ∞ 0 ([0, T )) and η ∈ C ∞ 0 (R + × [0, T )) with η(0, t) ∈ [ρ -, ρ + ] for all t ∈ [0, T ).Then, taking u τ δ -η as a test function in (75), multiplying this equation by ϕ and integrating in time we obtain¢ T τ ¢ X 0 0 ϕ(t) u τ (x, t) -σ -τ u τ (x, t) τ (u τ δ -η) (x, t) dxdt -¢ T 0 ϕ(t) Ṁ τ (t) (u τ δ -η) (0, t) dt )∂ x u τ (x, t) ∂ x (u τ δ -η) (x, t) dxdt = ) g τ (x, t) (u τ δ -η) (x, t) dxdt + η(t)) dt,where we have used the linearity of the remaining term Q n+1 τ (recall Proposition 3.2). Bearing in mind point (ii) of Lemma 4.2 we have u τ δ (0, t) = u τ (0, t) = ρ τ (0, t) for a.e. t ∈ [0, T ]. Hence, thanks to Proposition 3.3, we notice that -¢ T 0 ϕ(t) Ṁ τ (t) (u τ δ -η) (0, t) dt = -(n+1)τ nτ ϕ(t) M (ρ n+1 , ρ n ) τ ρ n+1 (0) -η(0, t) dt ≥ 0.

  u τ (x, t) -σ -τ u τ (x, u τ (x, t) -σ -τ u τ (x, ) ∂ x u τ (x, t) ∂ x u τ δ (x, t) dxdt, ) ∂ x u τ (x, t) ∂ x η(x, t) dxdt, ) g τ (x, t) (u τ δ -η) (x, t) dxdt, η(t)) dt.

artheta artheta ( 83 )

 83 Then, for any nonnegative functionϕ ∈ C ∞ 0 ([0, T )) and η ∈ C ∞ 0 (R + × [0, T )) with η(0, t) ∈ [ρ -, ρ + ] for all t ∈ [0, T ), it holds im.A6A7 (89)

This general idea might possibly work but we have not found the right way to implement it.

H 1 (R + ). In order to make rigorous our approach we need to regularize in space the function u τ thanks to some mollifiers. In this purpose, for ϑ ′ ∈ (0, 1) (to be defined later), we set δ := τ ϑ ′ and we first extend the function u τ on R × (0, T ) by

Let ξ be an even nonnegative function in C ∞ 0 (-1/2, 1/2) with 

Finally, for latter use, we also introduce the function

with ξ δ (y) = ξ(y/δ)/δ for all y ∈ R. Let us establish in the following result some usefull properties achieved by the function u τ and u τ δ .

inegvar Lemma 4.2. Let the assumptions of Theorem 1.1 hold and, without loss of generality, assume that 0 < τ < 1 is small enough such that δ < X 0 /2. Then, the functions u τ and u τ δ satisfy the properties:

(i) There exists constants C 1 , only depending on ρ 0 , and C 2 , only depending on χ, such that

(ii) Moreover, the function u τ δ (as well as ǔτ δ ) satisfies the estimates (77)-(79), the equality u τ δ (0, t) = u τ (0, t) for a.e. t ∈ (0, T ) and there exists a constant C 3 > 0, only depending on ρ 0 , X 0 , T and ζ, such that

and a constant C 4 > 0, only depending on ρ 0 and ζ, such that

where we recall that the parameter ϑ ∈ (0, 1/2) appears in the definition (49) of m τ and K τ .

Proof. Let us first notice that ϑ = 1/15 and ϑ ′ = 3/4 satisfy the conditions (83). Let us also notice that the limits (85), ( 87), (88) and lim τ ↓0 A τ 7 = 0 are directly deduced thanks to Proposition 4.3 and the techniques used in Section 4.3.1. Now, we rewrite the term A τ 1 as

Then, we split the term A τ 11 as

Rearranging the terms in A τ 111 we obtain

Thus, as ϕ ∈ C ∞ 0 ([0, T )) and since, as τ ↓ 0, we have (up to a subsequence)

Now, as ϕ is a nonnegative function and thanks to (80), we have

where we have used the conditions (83) which imply that ϑ ′ -ϑ > 1/2. Therefore, the limits (90)-(91) yield (84). For A τ 3 we write

We first notice, thanks to Lemma 4.2, that ∂ x u τ δ ⇀ ∂ x u = ∂ x (χρ) weakly in L 2 (R×(0, T )) (where ρ is the function obtained in Proposition 4.3 which we extend continuously outside of [0, X 0 ]). Then, using the lower semicontinuity of the functional v ∈ L 2 ((0, X 0 )×(0, T )) →

Then, we also rewrite the term A τ 32 as

For A τ 321 we will use the following equality

which can be proved by Fourier transform. Thus, recalling the definition of the function ǔτ δ (x, t) = ( u τ * ξ δ ) (x, t) we obtain

Thanks to the nonnegativity of the function ϕ, Jensen's inequality, the fact that δξ 2 δ (y) ≤ ξ δ (y) for all y ∈ R we obtain

In particular it holds lim τ ↓0

A τ 321 ≥ 0.

im.A321 im.A321 (93)

For A τ 322 we first observe that ∂ x u τ δ (x, t) = 0 for a.e. (x, t) ∈ R \ (-2δ, X 0 + δ). Therefore, applying the L ∞ bounds established on ∂ x u τ and ∂ x u τ δ in Lemma 4.2, we get 

)) (2 exp(b) -exp(a)) + C 1 τ -ϑ . Hence, we deduce that there exists a constant, still denoted C and independent of τ , such that |A τ 6 | ≤ C τ 1-3ϑ-ϑ ′ . Since we assume that 1 -3ϑ -ϑ ′ > 0, see (83), we conclude that (95) holds. This completes the proof of Proposition 4.8. □ Now, passing to the limit τ ↓ 0 in (82) we conclude, thanks to Proposition 4.8, that the weak solution (ρ, M, X) of (1) satisfies the variational inequality [START_REF] Chainais-Hillairet | The existence of solutions to a corrosion model[END_REF]. Therefore, the triplet (ρ, M, X) is a weak solution to (1)-( 2).