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Abstract
Software-defined networking was recently introduced
and proposed to separate the control from the data plane.
This architecture introduces new challenges, particularly
with regard to security and safety. To address the safety
challenges, it is necessary to set up a multi controller ar-
chitecture to provide redundancy. In addition, the sec-
ond controller can have a security benefit because it
can be used to validate the decisions taken by the first
controller. However, communication between the con-
trollers is necessary in these architectures, which may be
exploited by an attacker to spread across the controllers,
resulting in a security issue. This study aims to develop a
multi controller architecture without communication be-
tween controllers. The control is executed by the nom-
inal controller, which performs the data plane computa-
tion, whereas the second controller is in charge of verify-
ing the consistency of the controller’s decisions, i.e., the
management traffic. We first formulated the activity of
the command and then provided conditions to determine
a consistent control. These conditions include a time
boundary, which corresponds to the tolerance for a de-
lay in the response time of the controller, and structural
properties to verify the consistency of the path setup.
Moreover, we proposed a detection algorithm that is di-
vided into two parts: first, a learning phase that aims
to learn the consistent path set up by the controller, and
second, a running phase which aims to verify that the

controller sets up paths that are similar to the learned
path. This algorithm was evaluated in terms of its re-
activity, precision, and recall. To evaluate this, we con-
sidered three use cases: a distributed denial of service
(DDOS) attack, an attack to send malicious packets on
the network, and a failure of the controller.

Keywords: Software-defined networking; security;
safety; denial of service; detection; observation.

Introduction

Software-defined networking (SDN) [1] was introduced
as a new paradigm in the networking field by moving
network functions from the hardware environment to the
software environment. This enables the management of
various application requirements and dynamic networks
[2]. SDN architecture is defined by two characteris-
tics: decoupling of the control and data planes and pro-
grammability of the control plane [3]. Hence, such an
architecture simplifies network management, facilitates
network recovery [4] and permits to improve the secu-
rity in the network as in [5] or [6] and summarized in
[7]. The classical SDN control architecture comprises a
single controller that controls the entire network. How-
ever, this architecture has two main drawbacks, scala-
bility and robustness [8]. As a solution to these limita-
tions, control architecture has been extended to consider
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distributed control [9] [10]. A multi-controller proposal
was introduced to improve the efficiency and availability
of high-size networks [9]. The multiplicity of controllers
provides the possibility of distributing the load between
them and also provides active redundancy. However,
multi-controller architectures face specific challenges in
terms of consistency, reliability, load balancing, and se-
curity [10] [11].

This study focuses on the security and safety chal-
lenges of the control plane. SDN specifications can be
used to protect against traditional attacks [7] [12]; how-
ever, these features also introduce new vulnerabilities.
SDN architecture has introduced its own security chal-
lenges and each plane of the architecture has its own
weaknesses [13] [14] [15]. In particular, as the controller
is the brain of the network, the control plane is one of the
most attractive targets in the case of an attack. An attack
to take the control of the controller leads to access of
the entire network. In addition, an attack to consume
the resources of the controller (by a DDoS) leads to net-
work collapse as presented in [16]. Similarly, in terms
of the safety threat, a failure of the controller causes
the network to be paralysed. Several mechanisms have
been proposed in the literature to address the security
and safety challenges of the control plane [17]. The first
line of development has been to enforce the controller
as in [18], with the aim of proposing a robust architec-
ture that will enable it to be more robust to the consid-
ered threat or in [19] which proposes to set up a security
module in the controller to analyze its received traffic
using the Support Vector Machine (SVM) classifier to
detect a DDoS attack. However, with such a proposition,
the control architecture does not provide a controller re-
dundancy and so there is still a single point of failure.
Hence, to consider safety aspect these solutions are not
applicable. The next idea is to enforce the control plane
architecture by proposing a multi-controller approach,
as in [20] or [21]: the aim is to combine several con-
trollers to create a more robust global architecture by
providing an, active or not, redundancy of the controller.
These other controllers may have several roles regard-
ing the security and safety of control. It can be to detect
anomalies in the behavior of the others, as in [20], or it
can be to validate the decisions of the other controllers,
as in a BlockChain [21]. However, as far as we know,
in all the current control plane architecture proposed an
interface of communication between them (east-west in-
terface) must be installed. Nevertheless, this interface

is also a security threat because an attack may spread
through it [22]. Besides, all the multi controller architec-
tures introduced rely on a communication between the
controllers. This interface is a threat as an attacker may
spread malicious information thought it [22]
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(a) Classical mutli controller
architecture

sw1 sw2
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(b) The proposed multi con-
troller architecture

Figure 1: Differences between a classical multi con-
troller architecture and our proposal

The objective of this study is to introduce a multi
controller approach without an east–west interface, as
shown in Fig. 1. The first controller c0 is responsible for
controlling the network and an observer, the second con-
troller, is responsible for detecting any anomaly (safety
or security) in control. We propose to estimate the inter-
nal variables of the nominal controller only by observing
the activity of the control and without information from
the controller itself or from traffic on the data plane (as
both might be corrupted). In this context, attention has
been paid to intrusion detection systems (IDS), partic-
ularly the specification-based approach. Furthermore,
this study focuses on the data plane computation case
using well-established deterministic algorithms (such as
routing using the Dijkstra algorithm). Hence, the main
contribution of this paper is first to propose a detection
algorithm of the anomalies (due to a safety or security
threats) of the control. Second, to implement it in order
to evaluate its performance through simulations.

Related works are introduced in Section Related
Works. A motivating example is presented in Section
System and Threat Model. The proposed architecture is
elaborated in Section Proposed architecture and the per-
formance of the proposed detection algorithm is evalu-
ated in Section Performance evaluation. Finally, future
works are presented in the conclusion.
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Related Works

This section presents related works and compares them
with our proposed method. We will present the solu-
tions described in the literature concerning threats on
the control plane [23]: failure of the controller, denial
of service, and a malicious controller (by controlling the
device using a Kali Linux exploit, which we will be in-
cluded in other sections of this paper). A comparison of
these approaches with our proposed method is presented
in Table 1.

Failure of the controller and Denial of Ser-
vice

The heart of an SDN network is the control plane. All
decisions are managed by the controller. Thus, the fail-
ure of the control plane impacts the entire network. To
avoid the challenge of a single point of failure, the use
of multiple controllers is suggested, as in [20] and [24].
The architecture is based on a primary backup mech-
anism. This is passive redundancy, which implies the
detection of a failure. This detection was set using the
communication between the controllers.

Similarly, it is possible to affect the performance
of the controller with a Denial of Service (DoS) or
Distributed-DoS (DDoS). The motivation for a DoS or
a DDoS is to flood the resources of an intended user to
hinder or stop the service [36]. Moreover, SDN switches
have no control over incoming packets, and do not spend
any time processing them. This means that the entity tar-
geted by such attacks is the controller, and the controller
resource saturation is an SDN DDoS threat [37]. Some
solutions have been proposed for detecting such attacks
[37] [16]. They can be divided into two categories:
the spreadest, which aims to develop a self-statistical-
policy-based defense controller, such as the reinforcing
anti-DDoS actions in real time (RADAR) proposed in
[38] or [39]. It introduced an extension module of SDN
named DosDefender. As previously mentioned, we fo-
cus on the second category, which is the multi controller
approach, to provide a solution in case of failure and/or
attacks.

Using a distributed control architecture, a safe-guard
scheme [25] was proposed for the protection of the con-
trol plane against DDoS attacks. They performed a two-
stage defence procedure: anomaly traffic detection at the
data plane and controller dynamic defence in the control

plane. This defence includes controller remapping and
access control to mitigate the DDoS attacks. Similarly,
[20] introduced a recovery mechanism called CPRevo-
ery which is a primary back-up mechanism that offers
resilience in the case of DDoS attacks against the con-
troller. PATMOS [26] introduced a set of procedures to
mitigate DDoS attack effects on SDN controllers. The
procedure is divided into three phases: identification
of the overloaded controllers by an attack, selection of
a master controller which will coordinate the cluster-
ing process, and finding a configuration. In addition,
a multi-controller architecture based on blockchain has
been proposed in the literature to guard against a sin-
gle point of failure and denial of service threats, as in
[27]. They proposed an analysis of traffic to recog-
nize patterns that correspond to DDoS or TCP flood-
ing. Blockchain has also been considered as a solution
against DDoS attacks which targets the control plane
as in [28]. They propose a blockchain-based SDN-
targeted DDoS defense framework (BSD-Guard) which
provides a cooperative detection and mitigation mecha-
nism to protect SDN controllers. BSD-Guard introduces
a blockchain-based secure middle plane at the interface
of the control and data plane. This middle plane cal-
culates the suspect rate of new flows based on the col-
lected packet information and reports suspect lists of
blockchain for immutably storing and sharing.

However, a DDoS attack may still spread through the
E/W interface between the controllers. These methods
are not concerned with the possibility of a malicious
controller in the architecture and are susceptible to this
threat.

Malicious controller in SDN

The network is sensitive to perturbations that affect the
controller, particularly in the case of an attack that can
lead to a malicious controller. Such an attack allows the
attacker to have access to the entire network and to re-
define, for example, the previously configured routing
policy [40]. A multiple-controller architecture was pro-
posed in [29] to prevent unsecured behaviour. Specif-
ically, a decision-making security architecture is pro-
posed. The aim is to prevent an attack by allowing all
the controllers to observe each other. In particular, it
consists of determining if the rules coming from a con-
troller are valid. In this objective, there is a vote be-
tween all the other controllers which limits the influence
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Table 1: Classification of the methods proposed to ensure a secure and safe control plane

Threats on the control plane

Related Works Safety DDOS
Malicious
controller

Role of the
Second Controller

East-West
Communication ?

[20]
√ √

Detection Yes
[24]

√
Detection Yes

[25]
√

Detection Yes
[26]

√ √
Detection Yes

[27]
√ √

Detection Yes
[28]

√
Validation Yes

[29]
√

Validation Yes
[30]

√
Validation Yes

[31]
√ √

Validation Yes
[21]

√ √
Validation Yes

[32]
√ √

Validation Yes
[33]

√
Validation Yes

[34]
√ √

Detection Yes
[35]

√ √
Detection Yes

Our proposal
√ √ √

Detection No

of a controller attack. Each controller participates in de-
termining which controller is infected by validating its
production. In addition, [30] proposed configuring a fil-
ter that validated the commands sent by the controller. A
second controller, which played the role of a filter, was
added for receiving the commands of the controller to
the switches to validate them. Recently, blockchain has
also been considered as an option to secure the control
layer, particularly, the communication interface between
the controllers, as in [31], [21] or [32]. The controllers’
decisions are the subject of a vote among all other con-
trollers to ensure the consistency of the decisions.

However, these observations were achieved through
communication between the controllers. This communi-
cation is typical for a multiple controller approach and
is established through an east-west interface. Such an
interface is a weakness because a malicious controller
can spread incorrect information through it. To address
this issue, [33] proposed the introduction of a private
key generator to the control plane to encrypt commu-
nications between controllers. The aim is to secure the
communication channel used for the east-west interface.
Similarly, [34] proposed a secure global architecture and
focused on developing a secure communication mech-
anism between the controllers. They used an indirect
method of communication by using "inter-domain agent

flow" which constituted a secure communication tunnel.
Additionally, a multigranularity approach to the security
and safety challenges of the controller was proposed in
[34].

Another solution proposed in the literature is the use
of moving target defence, such as in [35] with the in-
troduction of the notion of shadow controllers. Further-
more, in the case of detection of probing traffic, a part of
the shadow controllers are randomly selected to respond
to the traffic.

In summary, the multi-controller approach permits the
handling of safe and secure threats by adding backup,
which may have a specific role in the security and safety
treatments, as in the aforementioned method. However,
this implies a new security issue: the east-west inter-
face. Therefore, we propose the introduction of a multi-
controller architecture without an east-west interface.

In summary, the presented methods are classified as
shown in Fig. 1. It can be observed that a first dif-
ference with the other works is that we consider both
safety and security threats of control. But the main orig-
inality is that we propose a multi controller approach
without East-West interface, without interface of com-
munication between the controllers. This interface is a
security threat and is avoided in our work.
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Intrusion Detection System

We propose the development of the architecture shown
in Fig. 1. To develop the detection logic of the observer,
the IDS theory has been considered. According to [41],
IDS proposals can be divided into two categories: focus-
ing on the attack behaviour or the unfaulty behaviour of
the system. The attack behaviour implies some assump-
tions regarding the considered attacks which is not the
case here.

The second category was introduced to detect un-
known attacks by focusing on unfaulty system be-
haviours. The principle is to compare the normal be-
haviour of the system with that of the running system.
There are two techniques for formalizing unfaulty be-
haviour: anomaly detection techniques, which are based
on a model of the unfaulty behaviour of the system,
or specification-based techniques, which are based on a
specification directly from documentation.

In addition, these two techniques may be combined,
as in [42]. There are two steps: A specification is deter-
mined offline, and some statistical properties linked to
the specification model are learned online. Here, a sim-
ilar approach is proposed. The chosen specification for-
malism is a template, as proposed by [43], that expresses
the causality between the requests from the switches and
the commands of the controller. Moreover, this spec-
ification evolves online according to the estimation of
the internal variables of the controller by observing the
activity of the command. However, contrary to others’
works using the notion of Template, we do not have any
assumptions on the order of the events. Indeed, they are
considering multi instance process but the event has an
order which defines a precise sequence. In our case, we
do not have any assumptions about the transmission or-
der of the command (for instance, a controller may set up
the forwarding entries by contacting the switches on the
path in a random order). As a consequence, in response
to a request (like the installation of a route between two
nodes), we do not know exactly which command is ex-
pected (is it necessary to change the forwarding plane?
which path will be selected? which switch will be con-
tacted first?).

System and Threat Model

The objective of this section is to present the unwanted
behaviour monitored by the observer. First, the gener-

ally considered threats are presented, followed by spe-
cific scenarios.

Threat model

The aforementioned attack is an example; however,
SDN introduces several challenges. The points of at-
tack in SDN architecture were enumerated in [44] [22].
Each layer of a SDN architecture has its own weakness;
in this study, we consider only attacks which concern the
activity of control.

Furthermore, [23] proposed classifying the threats
of the control plane into three different categories, as
shown in Fig. 2. First, we consider the threats from
the application layer. Because the lack of a mechanism
to ensure trust in communication between the controller
and the application layer, as SDN controllers translate
application information into configuration commands
for the underlying infrastructure, a malicious applica-
tion may be a source of damage. For example, unautho-
rized access to internal storage may offer the possibility
of an attacker introducing contradictory network poli-
cies [18] [45]. Similarly, a malicious application may
inject authorized but forged flows in the direction of the
OpenFlow switches to either overwrite or flush existing
rules in the flow tables of the switches [46] [47]. In
addition, malicious applications can manipulate control
packet handlers to execute service disruption by discard-
ing the packets [45] or poison controller information and
the topology view [48].

Second, regarding the threats because of scalability
and the risk of DoS attacks which attempt to render a
network unusable to the original users [49]. There are
several scenarios for setting up a DoS attack on the con-
troller. Here, we consider an outsider for a network at-
tacker. As the communication between the controller
and switches is established through a TCP connection,
an outsider only requires the IP address and the port
number of the controller to establish the communication.
From this perspective, the attacker may flood the con-
troller with a large number of requests, as demonstrated
in [46].

Finally, multiple controllers can be deployed to con-
trol an SDN network and manage a large number of
devices. However, this division of network control im-
plies an information aggregation challenge between con-
trollers, which is a threat. Furthermore, the communica-
tion interface between the controllers is a threat as soon
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as a malicious controller may spread malicious informa-
tion through it. Hence, a malicious controller can drive
the entire network.

Figure 2: SDN main threats of the activity of the control

Motivating example

A controller in charge of routing using the Dijkstra al-
gorithm is considered.

The controller chosen is ONOS, [50], which is sup-
ported by the Open Networking Foundation. It has been
developed for experimenting with SDN. Also, ONOS is
one of the most well-known SDN controller [51]. The
ONOS controller [50] loads using a deterministic rout-
ing application. The controller communicates with the
switches using OpenFlow v1.3 [52]. In addition, the
controller discovers the topology using two applications,
the host provider and LLDP to determine the topology
of the network. Finally, proxyARP was used by the con-
troller. Regarding the routing policy, we used the deter-
ministic application fwd which uses the Dijkstra algo-
rithm.

The topology in Fig. 3 is considered, and the follow-
ing section presents an attack scenario.

Attack Scenario

As described in [17] and [22], new threats are intro-
duced because of the nature of the centralized control of
SDN. This study is focused on the command, and only
attacks that impact the controller decisions are consid-
ered. For example, we consider internal storage abuse
as described in [46] [47]. This corresponds to manip-
ulating the flow table of a switch by using a malicious

application. This malicious application accesses the in-
ternal storage of the controller and can alter the internal
variables of the controller, such as the topology infor-
mation. Such modifications have an impact on all peer
applications which use topology information to derive
flows and install a path over the network. In addition,
modifying the internal variables of the controller may be
used to violate the security policy of other applications,
as described in [18].

An internal storage misuse attack on the ONOS con-
troller of the topology is considered. Here, Fig. 3 is
considered. The malicious application modifies the net-
work topology data by exchanging the position of host
10.0.1.4 and host 10.0.1.5 in the controller topology
storage. Consequently, if a host attempts to join host
10.0.1.4 then the data plane computed by the controller
reaches 10.0.1.5 and not 10.0.1.4.

DDoS Scenario

There are several ways of attacking the controller us-
ing a DDoS: saturation of the computation resource of
the controller, the storage resource, or the Southbound
or Northbound bandwidth resource. We consider the re-
source saturation of the controller because of an external
attacker. The attacker floods the controller with requests
to open a TCP connection. The aim of this attack is to
delay the response of the controller and render the con-
troller unreachable.

Failure Scenario

The failure of the controller is also considered. A failure
of the controller leads to the absence of control and deci-
sions, and this compromises the entire network because
all applications and services depend on it. In addition,
this failure might be because of a distributed denial of
service (DDOS) attack.

Problem statement

This section aims to introduce briefly the problem state-
ment of this paper. The aim of the proposal is to imple-
ment an observer in charge of the detection of security
and safety threats on the control. To set up such detec-
tion approach, we propose a novel architecture given at
the right of Fig. 1. As mentioned in the section. Related
Works, the main originality of our control plane is the
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Figure 3: Network topology considered

absence of East-West communication between the con-
troller and the observer. This choice is motivated by the
fact that this interface is a security threat according to
[22] and a consequence of it is that the observer does
not have access to the internal states of the controller.
The observer just has access to the activity of the con-
trol. The problem appears here: how to determine if the
actions emitted by the controller correspond to the em-
anation of a healthy execution of the network function,
without knowing the internal states of the controller. It
is therefore necessary to define a behavioral model of
the controller as well as structural rules concerning the
actions implemented. This model, fed by the only ob-
served packets at the Southbound interface, will have to
be able to detect any dysfunction of the controller. Our
work is based on the template formalism, which puts
into the light the causality link between the events. How-
ever, contrary to others’ works, we do not have any as-
sumptions on the order of the events. In such a case, it is
not possible to determine if an event is clearly expected
or not. Here, we assume that in response to an event (a
request for the infrastructure), a set of commands might
be required. As a consequence, the sequence of events
observed after a request has to be analyzed and structural
properties of this set of command need to be defined so
that the consistency is guaranteed. The architecture and
detection approach is developed here after.

Proposed architecture

To respond to these challenges and threats, we propose
the use of a multi-controller architecture without an east-
west interface, as introduced in [53] and [54] and pre-
sented in Fig. 1. There is one nominal controller in
charge of the network, whereas the second controller is

an observer that detects safety or security threats with-
out sending any flows on the network. It observes the
exchange of packets at the southbound interface.

Owing to the absence of the east-west interface, the
observer has no information from the nominal controller
and its internal states contrary to other propositions as
presented in section Related Works. Hence, the pro-
posed method is based on some a priori knowledge of
the control logic and the observation of its activity in the
network. We formalized the activity of control in the
next section.

Modelling of the set of exchanges

This section describes the communication between the
controller and the infrastructure. We consider the data-
plane computation in a graph topology T = {N,L} ∈
N ×N 2 with the following:

• N ∈ N : the set of nodes of the topology.

• L ∈ N × N : the set of links (between two nodes)
in the topology.

Set of exchanges

The packets exchanged for the data plane computation
were sent through the southbound interface, which is the
interface between the switches and the controller. This
interface was normalized using the OpenFlow protocol
[52].

According to the protocol, the messages are the re-
quests from the switches, commands for the switches,
notifications of a port status, and statistics from the
switches, Σ = ΣIn ∪ ΣOut ∪ ΣPs ∪ ΣMp.

The first set, ΣIn, corresponds to the "Packet_In"
messages, named pin, which are requests from the
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switches in the direction of the controller. ∀pin ∈
ΣIn ⊂ M1,5, pin = (p, S, b, src, dst) with the follow-
ing:

• p ∈ N: the in-port p.

• S ∈ N : the switch S.

• b ∈ N: an identifier named Buffer IDentifier which
is tagged to the original packet by the switch.

• src: the IP source address of the packet.

• dst: the IP destination address of the packet.

In response to these requests, a second type of event
occurs: commands sent by the controller. These were di-
vided into two categories. First, "Packet_Out", denoted
by pout, which is used only once. (The switches do not
retain the information and will have to ask again to the
controller for further actions.) Second, "Flow_Mod",
denoted by fmod, which is permanent: the switch
adds this command to its flow table. Thus, ΣOut =

ΣPO ∪ ΣFMOD with ∀pout ∈ ΣPO ⊂ M1,3 we de-
fine pout = (act, S, b):

• act ∈ N: the action ordered, here the port of trans-
mission.

• S ∈ N : the switch destination of the command.

• b ∈ N: the buffer ID of the packet.

∀fmod ∈ ΣFMOD ⊂ M1,7 then fmod =

(act, S, b, src, dst, idle, typefmod):

• act, S and b are similar to pout.

• src: the IP source address of the packet.

• dst: the IP destination address of the packet.

• idle ∈ R+: the storage time of the order by the
switch.

• typefmod ∈ Add,Delete,Modify: the type of
the instruction.

Because we consider only the computation of the data
plane, the actions are limited to the port of transmission
of the packets by the switches for the associated flow.

"Port_Status", denoted by ps, is a notification from
the switches about the state of their ports. This con-
cerns the evolution of the network topology (at the in-
frastructure level). Then, ∀ps ∈ ΣPs ⊂ M1,3 and thus
ps = (reason, p, S).

• reason ∈ Add,Delete,Modify: the reason of
the message: Add to notify that the port was added,
Delete if the port was removed, and Modify for a
modification of the port state.

• p ∈ N: the considered port.

• S ∈ N : the switch source of the packet.

Finally, "MultiPart,” denoted by mp, is the statis-
tics of the switches sent to the controller. These statis-
tics are sent in response to a request of the controller
though "MultiPartRequest", denoted by mq. According
to [52] there are several kinds of statistics provided by
the switch; in this study, we consider only the statistics
related to the flow because they are used by the con-
troller ONOS to remove the path by hand (and thus the
controller does not use the idle time parameter of the
fmod packet). Then ∀mp ∈ ΣMP ⊂ M1,4, mp =

(byte, S, src, dst):

• byte ∈ R+: the number of bytes transmitted for the
flow.

• S ∈ N : the switch source the packet.

• src: the source of the flow.

• dst: the destination of the flow.

A description of the set of exchanges is presented in
Table 2.

Path Properties

The consistency of the path set up by the controller was
evaluated by the observer according to the three criteria
defined below. This corresponds to the structural prop-
erties of the controller behaviour defined in [54]. Such
properties permit to unify the set of command. As a con-
sequence, in response to a request we do not expect a
set of ordered commands but a set of unordered com-
mands which satisfy the structural properties defined
just below. A path r installed by a set of n commands
r = (pouti,j)i∈[1,n],j∈[1,7] ∈ Mn,7 is considered con-
sistent if:

1. There is no loop. ∀i ∈ [1, n]@j in[1, n], i 6=
j|pouti,3 = poutj,3

2. There is no dead node. ∀i ∈ [1, n]∃j in[1, n], i 6=
j|T (pouti,3, pouti,1) = poutj,3
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Table 2: Summary of the set of exchanges at the Southbound Interface.
Sender OpenFlow Notation Description

Packet_In pin Request from a switch
Switch Port_Status ps Notification to the controller that the port status of the switch is changed

MultipartReply mp Statistics sent to the controller
Packet_Out pout A command sent to the switch

Controller Flow_Mod fmod A command which modifies the flow table of the switch
MultipartRequest mq Request for the statistics of a switch by the controller

3. The destination is reached. ∃i ∈
[1, n]T (pouti,3, pouti,1) = pin1,4&

@j ∈ [1, n], i 6= j|pouti,3 = poutj,3

Impacts of the threats

In case of an attack or failure, the control algorithm re-
turns a biased command. The threat may have several
origins in the SDN architecture, as explained in [44] or
[23]; however, in this study, we do not consider the iso-
lation of the fault. Thus, we propose to synthesize these
different threats into one bias, named bias, which leads
to an affine-biased Packet_Out biaspout ∈ ΣOut de-
fined as:

biaspout = pout+ bias (1)

With:

• biaspout ∈ ΣOut: the biased packet.

• pout ∈ ΣOut: the original packet.

• bias ∈ ΣOut: the bias.

• + is the operator defined as:
∀i ∈ [1, lengh(pout)] biaspout1,i = pout1,i +

bias1,i

Temporal notion

The disappearance of command packets is a particular
case of bias. This means that no command is sent by the
controller. This corresponds mainly to the case of fail-
ure. Thus, we propose to introduce a tolerance for the
response time of the controller; therefore, we define a
time boundary. However, in contrast to [53] and [54] we
do not determine a fixed boundary. Here, the boundary
evolves in real time to follow the evolution of the traffic,
and thus the evolution of the response time of the con-
troller (owing to an increase in the number of requests
from the data plane, for example).

In addition, the response times of the controller are
recorded in a list LtResponse which is updated at each
observation of a path setup. The length of this list is
fixed to consider the observed values, which is suit-
able for the situation and not being polluted by an-
other context (such as an acceleration of the requests of
the switches or, an absence of a request, for example).
Moreover, the response times of the controller which are
longer than the fixed tolerance are ambiguous for the ob-
server because it does not know if they correspond to an
attack or the evolution of the traffic. Consequently, such
values are not added to LtResponse (and thus, the out-
liers).

Therefore, to determine the value of the boundary, we
propose to analyse the set of previous values and define
a tolerance over the worst observed case. We introduce
tWC , as follows:

tWC ∈ LtResponse|∀t ∈ LtResponse : t ≤ tWC (2)

Based on this, a boundary is fixed with a tolerance on
the worst case observed, and we introduce the tolerance
factor β ∈ R+ as the following:

tboundary = β × tWC (3)

This parameter determines the tolerance to the poten-
tial delay of the controller. This delay might be owing
to a DDoS attack; however, if this attack has a limited
impact which permits the controller to achieve its task
within the tolerance, then no fault is declared by the ob-
server because the activity of the command is satisfied
as it respects the tolerance. Consequently, because of the
attack, the boundary might increase owing to the evolu-
tion of the worst case, and tends toward infinity. There-
fore, we propose introducing a constraint formalized as
an arbitrarily fixed limit tlimit, which corresponds to the
physical limit of the evolution of the boundary.

timeout = min(tlimit, tboundary) (4)

9
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Consequently, we assume that for route r that was in-
stalled at time tr,

r is consistent ⇒ tr < timeout (5)

Observation Logic

The observer’s task was to detect the aforementioned
bias. Indeed, as a reminder, as we do not consider com-
munication between the observer and the controller we
do not evaluate the internal states of the controller but
its activity which corresponds to the packets exchanged
at its Southbound interface. Hence, the observer is ex-
pected to declare that the decisions of the controller are
faulty if they do not fulfil the constraints defined in Sec-
tions Path Properties and Temporal notion or if they are
subjected to an unexpected change (as we consider a de-
terministic algorithm). Therefore, the observer reacts to
the packets sent by the switches and verifies that the
responses of the controller are consistent (which cor-
responds to the packets described in Table 2). Thus,
an attack on the controller without a request from the
switches will not be detected, as there is no reconsidera-
tion of the traffic.

Here, we introduce the following notations: r is a
path, R is the set of paths learned by the observer, and
RSet is the set of paths currently up.

The detection logic is shown in Algorithm 1. The
input of the logic is the OpenFlow packets described
in Section Set of exchanges. At the observation of a
Packet_In, the learning phase starts from line 3: the up-
dates of the data plane are stored until the end of the
timeout, as defined in Section Temporal notion, or the
path is assumed to be consistent, according to Section
Path Properties. The three constraints are resumed in
one Boolean variable cons(r) which means that if r sat-
isfies the three constraints, then cons(r) = true; oth-
erwise, it is false. This learning phase is mandatory as
the observer does not have access to the internal states
of the controller. It is used for the next phase to verify
the consistency of the control and so infer over the states
of the control. Indeed, if the route asked at the request
is part of R then the observer verifies that the controller
sets a similar route (line 15). In any case, when an ob-
served path is assumed consistent, it is added to the set
of paths currently upRSet.

However, as soon as a link evolution (i.e. a link fail-
ure) between switches is notified by Port_Status, the pre-

viously set up path might be impacted and the global
view of the controller permits to install new rules (and
a recovery solution) from a central position [4]. There
are two possibilities: if the path is up to the observation
of Port_Status, part of RSet, then the controller must
update the path as soon as possible by uninstalling the
previous rules to install a new one. This implies that the
observer must restart a learning phase, line 26, and let
the controller install a new path from the previous one.
The commands might be the deletion of previous rules,
line 29, or the installation of a new one, line 31, or the
modification of a previous one, line 33. At the end of
the timeout, the consistency of the route set up through
the observed commands is checked (Line 34). The other
possibility concerns the paths learned but are not up any-
more. The controller does not react to this packet but to
the observation of a request which should lead to the in-
stallation of the path by setting up a new one. Hence,
the observer restarts the learning phase, which means
that for this step, it updates its estimation of the routing
table of the controller (line 40).

Moreover, the path installed by the controller expires.
In this study, the controller deletes the paths by hand
(and does not fix idle_time) when the requested traffic is
finished. In addition, the controller requires statistics pe-
riodically, through MultiPart packets, to the switches
to determine the number of bytes transmitted for each
flow. If there is no evolution, the controller removes the
path by sending a Flow_Mod packet to delete previously
installed rules. Hence, the observer checks the evolution
of the number of transmitted bytes (line 37); if there is
no evolution, the observer waits for the deletion from the
controller and removes these commands fromRSet.

In addition, the observer verifies that the duty of the
controller is performed in time by controlling the con-
troller with respect to the tolerance time, timeout. This
tolerance is not the same for each task; therefore, we in-
troduce timeoutpin, timeoutps and timeoutmp which
correspond to the reaction time tolerated in the case of a
packet in, port status, or multipart.
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Algorithm 1: Observer Logic
Input: An OpenFlow packet p.
Data: R: the set of routes.

1 p = wait(packet) ;
2 if p ∈ ΣIn then
3 if p /∈ R then
4 r = ∅ ;
5 while cons(r)&timeoutpin do
6 f = wait(fmod)&r = r∪(p, fmod)

;

7 if cons(r) then
8 R = R∪ r &RSet = RSet ∪ r ;
9 else

10 return Fault ;

11 else
12 rlearn = r|r ∈ R & pin(r) = p &

r = rlearn ;
13 while path(rlearn) 6= ∅ & timeoutpin do
14 f = wait(fmod) ;
15 if f /∈ path(rlearn) then
16 return Fault ;
17 else
18 path(rlearn) =

path(rlearn) \ fmod ;

19 if path(rlearn) 6= ∅ then
20 return Fault ;

21 else
22 RSet = RSet ∪ r

23 else if p ∈ ΣPs then
24 for rlearn ∈ R | ∃fmod ∈ cmd(rlearn) |

port(fmod) = port(p) do
25 r′learn = rlearn ;
26 if rlearn ∈ RSet then
27 while timeoutps do
28 f = wait(fmod) ;
29 if type(f) = delete then
30 r′learn = r′learn \ f ′ ;
31 else if type(f) = add then
32 r′learn = r′learn ∪ f ;

33 else if type(f) = modify then
34 r′learn = r′learn \f ′&r′learn =

r′learn ∪ f ;

35 if cons(r′learn)||r′learn = rlearn then
36 return Fault ;
37 else
38 R = R\ rlearn&R = R∪ r′learn

;

39 else
40 R = R \ rlearn

41 else if p ∈ ΣMP then
42 if bytet−2(p) = bytet−1(p) = byte(p) then
43 while timeoutmp do
44 f = wait(fmod) ;
45 if fmod ∈ RSet then
46 RSet = RSet \ fmod

47 else
48 return Fault

Recover of the attack

The proposed algorithm determines whether the con-
troller is attacked. Following the alarm, the observer
must take the lead over from the main controller. Several
techniques can be used as the recovery phase presented
in [20]: stop the communication between the switches
and the faulty controller, and then the switches search to
contact the observer as a controller.

However, the techniques which use communication
between the controllers, such as in [35], cannot be ap-
plied because we consider that the controller is faulty
after the alarm. In addition, some methods cannot be ap-
plied as the methods proposed in [25] use non-Openflow
packets named "Remap" or "Remap-Begin" to lead over
the faulty controller.

Performance evaluation

This section evaluates the aforementioned algorithm.
First, the metrics used are introduced, the experimen-
tal setup is described, and finally, case studies are pre-
sented.

Metrics

First, to evaluate the relevance of our detection method,
we propose using the number of true positives TP , false
positives FP , true negatives TN , and false negatives
FN . These values are used to determine some proper-
ties of the systems: the precision P and recall R. Preci-
sion corresponds to the number of correct alarms (TP )
compared to the total number of alarms (TP + FP ),
whereas recall is defined by the number of correct alarms
(TP ) with respect to the number of alarms that have to
be considered (TP + FN ). Moreover, we also con-
sider the harmonic means of these two metrics, named
"F-Measure" and note Fm.

Mathematically, these are computed as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

Fm =
2 ∗ P ∗R
P +R

(8)

Second, the reactivity of the detection algorithm is
evaluated. We introduced the reactivity of the algorithm
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as the time of reaction of the observer to a request from
the switches. The objective of our algorithm is not to
determine the state of the controller but to verify that
the controller responds correctly to the request. In other
words, an attack on the controller without traffic in the
data plane will not be detected because the service of
the controller will not be called. Therefore, we are not
attempting to be reactive to an attack, but to a lack of
response to a request from a switch.

Experimental set up

The physical topology is illustrated in Fig. 4. The net-
work was simulated using Mininet [55] and the consid-
ered topology is presented in Fig. 3. The ONOS con-
troller [50] is on the first machine, whereas the attacker
is on another machine that uses the Kali Linux tool.
The observer was implemented on the same machine as
Mininet and the communication between the controller
and switches was captured using the Scapy tool. No-
tably, the observer did not send packets to the network.

Figure 4: Physical topology

Nominal behaviour of the controller

The observer’s reaction when the controller was unfaulty
is shown in Fig. 5. In the figure, the decisions of the
observer are represented by the following points: zero if
there is no alarm and one otherwise. In addition, during
the experiment, two failures occurred in the link between
the switches. The times of these failures are represented
by vertical lines in Fig. 5.

Learning Phase

During the learning phase, the observer observes how
the controller reacts and verifies the consistency. In Fig.
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Figure 5: Alarms in case of an unfaulty behaviour.

5, the learning phase corresponds to the first 10 points,
until t = 105 s. We develop the learning of the path
between 10.0.1.1 and 10.0.1.2. The exchange of pack-
ets related to this traffic, captured using Wireshark, is
represented on the left of Fig. 6.

The flow request, packet 2241, for the route from the
host 10.0.1.1 (denoted as pin2241) is observed. Based
on this observation, the observer expected a path from
the controller. The evolution of the state of the observer
is shown on the right side of Fig. 6.

Packet number 2243 is observed and corresponds to
fmod, denoted by fmod2243. These commands are re-
lated to the path requested by pin2241 and are added to
the current observed route rpin,2241 through line 6 of the
algorithm. Then, the consistency of the new path is ver-
ified by line 5. Because the current observed path is not
consistent, no decision is finalized, and the observer is
still waiting for other commands. This process is the
same for frames 2247 and 2251.

Concerning the frame number 2255, denoted as
fmod2255, the same process is expected to satisfy the
three conditions introduced in section Path Properties
which means that the condition cons(rpin,2241) is sat-
isfied. This corresponds to the final command for set-
ting up the path using the controller. Hence, there was
no alarm, as shown in Fig. 5 (point at 0) and the path
observed is stored inR and added toRSet.

Then, at the reception of request 2257, there will be a
similar process for the route from the host 10.0.1.2.

In this example, we assumed that the controller was
not attacked during the learning phase. Alternatively, the
observer learns the wrong, but consistent path. The ob-
server does not determine whether the paths correspond
to the results of the control algorithm. However, there
is a guarantee that even if the path is not optimal, it will
forward traffic, as expected.
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Figure 6: Exchanges of packets during traffic between 10.0.1.1 and 10.0.1.2. The packets received and sent by the
controller (captured with Wireshark) are shown on the left side of the figure and the vision (understanding) of the
observer is shown on the right side.

Running Phase

During this phase, the paths set by the controller are
compared to those learned through lines 11–19 of the
algorithm.

Moreover, the path set by the controller may evolve in
the case of modification of the switch topology. As an
example, we sent traffic from 10.0.1.1 in the direction of
10.0.1.2 and during the transmission, we set a link be-
tween switches 1 and 2. As observed during the learning
phase, this link is part of the path that has been set up by
the controller. Therefore, the controller must update it
accordingly. The frames exchanged in this situation, as
captured using Wireshark, are shown on the left of Fig.
7.

The first task of the observer is to check what learned
paths are impacted by this evolution (line 22). The set
of impacted paths is denoted by RImp. Only one is
up at the notification of this evolution: the one from
10.0.1.2 in the direction of 10.0.1.1 (the reverse route
passes through switches 1, 3, 5, and 6). Therefore, a
new route is expected. On the right side of Fig. 7 there
is the evolution of the state of the observer.

At the end of the timeout, the consistency of the final
route rPs = {fmod2259, fmod2266, fmod6329, fmod6334}
was checked. Here, rPS is consistent, and thus we re-
place r2257 in R and RSet, line 38. Thus, there is no
alarm, as shown in Fig. 5.

The observer deletes the other paths impacted by this
evolution from its estimation of the routing table of the
controller, line 39, as shown on the right side of Fig.
7: the estimation of the routes R has evolved into R \
RImp. Hence, the observer restarted the learning path.

In summary, it can be observed from Fig. 5 that there
is no error from the observer. As we considered a de-

terministic algorithm, the observer did not make a mis-
take. The risk of error occurs during the learning phase
to learn a consistent path, which does not correspond
to the requirements of the request (for example, a non-
optimized path which leads to the exceeding of the cri-
teria of the waiting times).

Case of Attack

In this section, we launch different attacks on the con-
troller and examine the reactions of the observer.

Case of Distributed-DOS

First, we consider a DDoS attack on the controller by
saturation of the computational resources. To set up
the attack, we used the tool "hping3" for an external at-
tacker.

The consequence of the attack is a delay in the reac-
tion of the controller. Therefore, the detection of such
an attack is related to the tolerance of the controller re-
sponse time and, more precisely, the parameter β defined
in Section Temporal notion.

The aim of this study is to compare and analyse the
precision and recall for seven different values of β: 1.2,
1.3, 1.5, 2, 3, 4, and 5.

Illustration: A first design of the experiments is
shown in Fig. 8. There are three different DDOS with
different duration: 10 s, 100 s, and 1000 s. The aim is
to analyse the reaction of the observer faced with differ-
ent types of DDoS. The impact of DDoS is related to its
duration. First, the impact of a DDoS that lasted 10 s
(respectively 100 s) was to multiply the response time of
the controller by up to 100 (respectively 1000). Finally,
for 1000 s, the controller became unreachable. The fac-
tor of proportionality introduced was indicative based on
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Figure 7: Exchanges of packet after a link failure between the switches 1 and 2. The packet received and sent by
the controller (captured with Wireshark) are shown at the left side of the figure and the vision (understanding) of
the observer is shown on the right side.

the experiments; however, we also observed a lower ef-
fect, and it should be mentioned that this delay appeared
gradually.

(a) Mininet parameter

(b) DDoS parameter

Figure 8: Design of experiment

The evolution of the alarm signal compared to the at-
tack signal for one experiment is represented by β = 1.2

in Fig. 9, for β = 2 in Fig. 10, and for β = 5 in Fig. 11.
In the figures, the decisions of the observer are repre-
sented by the following points: zero if there is no alarm
and one alternatively, whereas the times of the attack are
represented by the curve: zero if there is no attack and
alternatively, one.

Precision and recall: A second design of experi-
ments has been designed to analyse the performance of
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Figure 9: Alarm in case of the parameter is β = 1.2

0 200 400 600 800
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 o

f a
tta

ck
 a

nd
 a

la
rm

s d
ec

isi
on

s Attack
Alarm

Figure 10: Alarm in case of the parameter is β = 2
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Figure 11: Alarm in case of the parameter is β = 5

our proposal according to the defined metrics. The ex-
perimental design is shown in Fig. 12. First, regard-
ing the data plane requests (left side of Fig. 12) we
randomized the inter-arrival of the requests: a value is
determined between 3 and 15 s through a uniform law.
In addition, the length of the traffic is determined by

14



Running head

the number of bytes to transmit, and is also random.
We divided the case into three possibilities: short traf-
fic (126000 bytes to transmit, 0.1 s is necessary for the
transmission), medium traffic (1260000 bytes to trans-
mit, 10 s is necessary for transmission), and longer traf-
fic (12600000 bytes to transmit, 100 s is necessary for
transmission). The aim was to determine the impact of
an attack on different types of traffic.

With respect to the attack (on the right side of Fig. 12)
there are different parameters. The first is the frequency
of packet transmission. It was observed that attacks that
do not have a "flood" flow rate have no impact on our
controller. Therefore, we fixed the flow rate at "flood".
However, the time of the attack has an impact, as men-
tioned previously. We propose to choose uniformly be-
tween a short and medium attack (between 20 and 200

s). Similarly, the inter-arrival is random, uniformly be-
tween 50 and 150 s.

(a) Mininet parameter

(b) DDoS parameter

Figure 12: Design of experiment

The values of the metrics defined in Section Metrics
are shown in Fig. 13.

Figure 13: Value of the metrics for the different values
of β.

First, we focus on precision. It can be observed that
the precision increases with β as it can be observed by
comparing Fig. 9 and Fig. 10. This means that the tol-
erance is extremely strict, with β = 1.2 compared with
β = 2. Hence, compared to β = 2, β = 1.2 is sen-
sitive to the evolution of traffic, and thus, the evolution
of the response time of the controller. In general, if β
increases, then the rate of false positives decreases ow-
ing to the increase in the tolerance. Also, increasing the
value of β implies that attacks are not detected until the
effect is higher than the tolerance. Furthermore, we con-
sider an attack of 10 s; with β = 5 the attack is not
detected, as can be observed in Fig. 11. This implies
that an increase in β leads to a decrease in the rate of
true positives.

Second, we focus on recall. Notably, this corresponds
to the number of attacks detected compared to the num-
ber of attacks that should have been detected. As pre-
viously mentioned, the rate of false negatives decreases
linearly as β increases. Then, the recall is inversely pro-
portional to β as observed in Fig. 13. Consequently,
it can be concluded that tolerance has an impact, and a
larger value of β implies a decrease in the number of
detected attacks.

The harmonic mean of these two metrics is deter-
mined and corresponds to the "F-Measure" part. It can
be observed that the parameter β has no impact on the
mean which means that the effect on precision is com-
pensated by the effect on recall. Therefore, the choice
of β has several consequences. As we have shown, for
β < 2 there is a high rate of false positives. However,
β > 2 implies the risk of not detecting shorter attacks.
Moreover, tolerance has an impact on the reactivity of
the method, as we will describe in the next sections.

Reactivity: The design of experiments proposed in
Fig. 12 has been used. The aim of this section is to de-
scribe the influence of β on the reactivity of the observer.

Reactivity is defined as the reaction time of an ob-
server to a request from a switch. This reaction involves
observing a path from the controller or timeout. Thus,
we considered all the aforementioned points of the ex-
periments (1933) and determined the density of the reac-
tivity of the controller. To determine the density, we split
the interval [0, 0.052] (into 52 intervals). The bound-
ary of this interval, 0.052, was chosen because 99% of
the value of the timeout was under 0.052 for β = 1.2,
β = 1.3, and β = 1.5 and 90% of the value for β = 2.
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The reactivity results are shown in Fig. 14. As ex-
pected, the reactivity increased with β. First, the re-
activity with a tolerance factor of β = 1.2 is concen-
trated at 0.005 s owing to the lack of tolerance to any
evolution of the traffic. Then, the reactivity expanded
with tolerance (and thus β), even if there is the same
rise until t = 0.005. This is because the packets are
consistent with the tolerance defined with β = 1.5,
thus, they are for the higher value of β. Subsequently,
the curves evolve differently, and Poisson impact on the
curve, depending on the parameter β, is observed. Fur-
thermore, the amplitude of the curve decreases exponen-
tially (e−x), whereas the extent of the curve increases
linearly. This is probably because the requests of the
switches are sufficiently spaced, therefore the response
time of the controller is independent of the time since
the last event. Thus, the response time of the controller
follows a Poisson distribution.

Moreover, the offset of the curves may be related to
the false-negative rate. According to Fig. 3, the curve
related to β = 3, β = 4 and β = 5 expands after 0.052

which means that the timeout increases to tolerate time
which is higher than 0.052 and this time corresponds to
80% of the case without the attack. Thus, the tolerance
permits tolerance of the case under attack and leads to
false negatives.

However, it can also be seen that too much flexibility
can lead to undesirable situations and the non-detection
of low-intensity DDoS despite a non-negligible delay of
the controller. For example, for β = 5, we can see that
the observer is so tolerant that shorter DDoS are not de-
tected. This tolerance is problematic as our worst case
observation evolves and the delayed response time. This
implies shifting the tolerance bound according to this de-
layed time. This will allow a larger delay to be covered.

This phenomenon can have undesirable consequences
for future detections. Indeed, a delay due to an attack,
but which is not detected, has the effect of increasing
the uncertainty on the controller’s response time. By the
proposed approach, this uncertainty will have the effect
of increasing the time limit left by the observer (i.e. in-
creasing the value of the bound). Moreover, this increase
implies the acceptance of greater delays and by a process
of recurrence, this bound can tend towards +∞ and thus
prevent the detection of an attack that has an increas-
ingly significant impact.

We will develop this phenomenon mathematically.
Let us consider an unfaulty controller. We recall that

the bound is calculated from a set of measurements
of the controller’s response times deemed valid LtRep.
Among this set, the bound is fixed as a proportion of
the worst observed case tNominal = max(LtRep) such
that tborne = β × tNominal where β is the protec-
tion factor. We will assume β > 1 for the follow-
ing. This being said, let’s consider a DDoS on the con-
troller. The first delayed response time of the controller
is tAttack,1 = β × tNominal. It is within the limit and
is thus judged as valid by the observer which implies
the setting of a new bound tborne = β × tAttack,1 =

β2 × tNominal. The second controller delay is again at
the limit tAttack,2 = β2 × tNominal which leads to the
fixation tborne = β× tAttack,2 = β3× tNominal. By re-
currence, following the n-th delay the bound will be set
to tborne = βn × tNominal and as β > 1, the geometric
sequence βn tends to +∞. The case which has just been
formalized corresponds to the worst case and as an illus-
tration, Fig. 15 shows the evolution of the protection
factor as a function of n for different values of β. Very
clearly, the worst case described is true for any β, but the
larger this factor is, the faster the uncertainty increases.

In summary, the parameter β has an impact on the pre-
cision, recall, and reactivity of the controller. However,
a compromise must be found which depends on the con-
straints of the system because there is no value which
maximizes each parameter. In the case of a precision of
at least 0.8, a recall of 0.7, and a reactivity tolerance un-
der 0.052, β = 3 is appropriate. However, not all criteria
are completely fulfilled, and thus, some constraints must
be prioritized.

Modification of the intern variables

The attack considered in this section is described in sec-
tion System and Threat Model. The objective of the at-
tack is to hijack the controller and then redirect the flows
in the direction of a particular host. To hijack the con-
troller, we used a Kali Linux tools named “Metasploit”
and the vulnerabilities used is the vsftp v2.3.4 backdoor.
The results of the attack detection are shown in Fig. 16.
In the figure, the decisions of the observer are repre-
sented by the following points: zero if there is no alarm
and one, alternatively, whereas the time of the attack is
represented by the curve: zero if there is no attack and
one, alternatively.
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Figure 14: Density of the reactivity of the controller in case of a DDoS attack depending on β.

1 2 3 4 5 6
n

0

5

10

15

20

25

30

β
n

β = 1.2
β = 1.3
β = 1.5
β = 2
β = 3
β = 5

Figure 15: Evolution of β in the worst case.
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Figure 16: Alarm in case of an attack which is a mod-
ification of the intern variables of the controller as de-
scribed.

Subsequently, we developed the detection of an at-
tack. The exchange of packets captured using Wireshark
is shown in Fig. 17.

Packet_In observed at frame number 38419 is denoted
as pin38419. We are in the running phase which implies
that a similar data plane is learned during the learning

phase. To ease the reading, the commands expected are
synthesized through the field port and switch, as shown
in Fig. 17. As fmod38421, fmod38430 and fmod38431
are part of the expected data plane, the commands are as-
sumed to be consistent through line 18 of the algorithm.
Moreover, as there is no more command expected, the
path is complete, and no fault is declared through line
22.

Regarding request pin38434 the same process runs as
for pin38419. The first packets observed are fmod38439
and fmod38443, which are parts of the expected data
plane. Consequently, these decisions are assumed to be
consistent and deleted from the set of commands ex-
pected through line 18 of the algorithm. Concerning
fmod38441, the command is part of the expected no-data
plane, thus, it is assumed to be inconsistent and a fault is
declared on line 16 of the Algorithm. 1 means that the
bias has been detected. Therefore, each command bias,
which can be formalized as in Section Proposed archi-
tecture, is detected.

The detection precision is 1 because we consider a de-
terministic command algorithm. In addition, the attacker
was detected because after the attack, we considered the
only path that implied the host 10.0.1.4 and 10.0.1.5.
However, this is not the state of the controller, which is
evaluated by our algorithm, but the command activity.
Therefore, for all the paths requested which do not im-
ply these hosts, the controller sets up a consistent path
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Figure 17: Exchanges of packets during an attack as described. The packets received and sent by the controller are
shown at the left side (captured with Wireshark) and the vision (understanding) of the observer shown at the right
side.

which would then be evaluated as unfaulty by the ob-
server.

Failure of the controller

This section illustrates how the observer reacts to con-
troller failure. The injected traffic was the same as that
presented in Fig. 12. Then, the controller was set down
at a random moment. The operation was repeated 35

times. The detection results are shown in Fig. 18. In
the figure, the decisions of the observer are represented
by the following points: zero if there is no alarm and
alternatively, one, whereas the time of the failure is rep-
resented by the curve: zero if there is no attack and al-
ternatively, one.
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Figure 18: Alarm in case of a failure of the controller.

The failure was correctly detected. This is the case
for any failure (because the delay tends to +∞). Thus,
the precision and recall of the experiment shown in Fig.
19, depends on the phase without attack, contrary to the
DDoS case. Here, as the delay in the case of failure
tends to +∞, all the failures are detected, which means
that the recall is equal to 1. Nevertheless, the precision
increases with β owing to the increase in tolerance, as
described in Section Case of Distributed-DOS.

Figure 19: Value of the metrics for the different values
of β in case of a failure.

However, the failure is more abrupt than the DDoS
attack, which means that the reactivity of the controller
evolves. These curves are similar to those shown in Fig.
14: a Poisson effect related to the parameter β can be
observed. The difference lies in the standard deviation,
which corresponds to the expansion of the curves. A
comparison of the expansion, defined as the difference
between the two abscissas t1 and t2 such that the inte-
gral between t1 and t2 is 0.90 in the case of failure or
a DDoS can be observed in Fig. 3. Before the failure,
there is no particular reason, which leads to a delay in
the controller (contrary to DDoS which delays the con-
troller), and thus, the timeout is not shifted. In addition,
after the failure, the delay tends to +∞; thus, the time-
out is not shifted. Therefore, the evolution of the timeout
is related to the evolution of the flow’s traffic.

Additionally, for β < 1.5, as shown in Fig. 3, the ex-
pansion is similar to the failure and the DDoS. As men-
tioned in the section Case of Distributed-DOS, the ex-
pansion is because of the delay caused by attacks which
are inside the boundary. However, for these values of β
such delays are not tolerated, implying that the timeout
does not expand. In addition, the expansion for β > 3

is more important in the case of a DDoS than failure,
owing to the delays caused by the DDoS which are tol-
erated. However, the expansion of β = 2 is smaller for
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a DDoS than for a failure because the slope of evolu-
tion of the delays of the controller owing to a DDoS is
larger than in the case of an increase in the flow’s traf-
fic. Consequently, in the case of a DDoS, the delays are
not tolerated for β = 2 whereas they are in the case of
an increase in the flow’s traffic, which implies that the
timeout does not expand in the case of a DDoS. This is
also related to the evolution of precision shown in Fig.
13 and Fig. 19. In the case of the DDoS, Fig. 13, the pre-
cision does not evolve significantly until β = 3 (because
there is no expansion of the timeout) because of the non-
tolerance over the packets delay under DDoS for β < 3.
In the case of failure, as shown in the Fig. 19, there
is an evolution between β = 1.5 and β = 2 because of
the tolerance of flow’s traffic evolution, which increases,
and thus, the expansion of the timeout also increases.

Table 3: Comparison of the expansion in a case of a
failure or a DdoS depending on the parameter β.

Expansion
β Failure DDoS
1 0.001 0.001

1.2 0.003 0.003
1.3 0.007 0.007
1.5 0.014 0.011
2 0.135 0.168
3 0.148 0.287
4 0.149 0.699
5 0.15 1.218

In addition, if the controller fails but is not requested,
then there is no problem for the observer, as the evalua-
tion is on the activity of the control and not on the state
of the controller.

Conclusion and Perspectives

In summary, this study aims to introduce an SDN multi
controller architecture without an east-west interface.
This choice is motivated by the fact that this interface
of communication is a security threat according to [22].
Hence, a controller cannot have access to the interns
variable of the others. Hence, we proposed to study the
observe the activity of the control in order to infer over
the state of the control. An observer was added to the
controller layer to analyse the activity of deterministic
control. Our observer verified that the controller reacts

correctly to a request from the switches and to a notifi-
cation of topology evolution between the switches. In
this objective, we specify the activity of the command:
the protocol OpenFlow. To specify it we used a well-
known formalism : a template defined in [43]. Such
formalism puts into the light the causality link between
the events. However, contrary to others’ works using the
notion of Template we do not have any assumptions on
the order of the events. Here, we assume that in response
to an event (a request for the infrastructure) a set of com-
mands is expected and we do not have any assumptions
about the order of transmission of the command. As a
consequence, in response to a request we do not know
exactly which command is expected. However, we de-
fined structural properties on this set of command which
has to be satisfied, by the set of commands, in order to
be considered as consistent. It permits to verify that the
set of commands observed corresponds to a consistent
path. The performance of this method was evaluated in
terms of precision, recall, and reactivity. To test our al-
gorithm, we considered three scenarios: a DDoS, mod-
ification of the interns variables of the controller, and
failure of the controller. Because we considered a deter-
ministic control algorithm, we have observed that there
is no error in the detection algorithm. However, the fix-
ation of the time boundary has an impact on the perfor-
mance: a compromise between the reactivity and the F-
measure must be found depending on the time constraint
of the considered system. This detection algorithm must
be extended to a non-deterministic control algorithm.

Moreover, the future work will consist of completing
the method to lead over the malicious controller by an-
other controller. This is compatible with the methods
proposed in the literature, such as the recovery phase
presented in [20]: stop the communication between the
switches and the faulty controller, and then the switches
search to contact the observer as a controller. In this
case, the observer becomes a second controller and pro-
vides instructions to the switches.
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Figure 20: Reactivity of the controller in case of a failure.
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