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Abstract
Thomas Streicher asked on the category theory mailing list whether every essential, hyper-
connected, local geometric morphism is automatically locally connected. We show that this
is not the case, by providing a counterexample.
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We show that an essential, hyperconnected, local geometric morphism is not necessarily
locally connected, by constructing a counterexample. This answers a question asked by
Thomas Streicher on the category theory mailing list. Our counterexample arises from
our earlier work [1] and work-in-progress regarding properties of geometric morphisms
PSh(M) → PSh(N ) for monoids M and N .
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The counterexample

Let M be the monoid with presentation 〈e, x : e2 = e, xe = x〉. Note that each element of M
can bewritten as either xn or exn for some n ∈ {0, 1, 2, . . . }. Further, let N be the freemonoid
on one variable a, so N = {1, a, a2, . . . }. Consider themonoidmorphismφ : M → N which
on generators is given by φ(e) = 1 and φ(x) = a. If we interpret M and N as categories,
then φ is a functor. There is an induced essential geometric morphism

PSh(M) PSh(N )
f

given by functors

PSh(M) PSh(N )

f∗

f!

f ∗

with the following description, for X in PSh(M) and Y in PSh(N ):

• f!(X) � X ⊗M N where N has left M-action defined by m · n = φ(m)n for m ∈ M and
n ∈ N , and right N -action defined by multiplication;

• f ∗(Y ) � Y with right M-action defined as y · m = y · φ(m) for y ∈ Y and m ∈ M ;
• f∗(X) � HomM (N , X), where N has right M-action given by n ·m = nφ(m) for n ∈ N

and m ∈ M , and HomM (N , X) is the set of morphisms of right M-sets g : N → Y ; the
right N -action onHomM (N , X) is defined as (g · n)(n′) = g(nn′) for g ∈ HomM (N , X)

and n, n′ ∈ N .

For definitions and background regarding tensor products and Hom-sets, in the context of
sets with a monoid action, we refer to [1, Subsection 1.2].

Proposition 1 The geometric morphism f is hyperconnected and local.

Proof Because φ is surjective, it follows that f is hyperconnected, see [2, Example A.4.6.9].
We now show that f is local. Because f is connected (even hyperconnected), it follows
from [3, Corollary 3.3] that f is local if and only if f∗ has a further right adjoint f !. Note
that there is an isomorphism of right M-sets N ∼= eM , so f∗(X) � HomM (eM, X). A
map of right M-sets eM → X is completely determined by the image of e, and this image
can be any element of Xe. So we see that f∗(X) � Xe, with the right N -action defined as
b ·a = b ·x for b ∈ Xe. In other words, f∗(X) � X⊗M Me, whereMe has a leftM-action by
multiplication and a right N -action given bym ·a = m · x form ∈ Me. From the tensor–hom
adjunction (see e.g. [1, Proposition 1.5]), we now know that f∗ has a right adjoint given by
f !(Y ) � HomN (Me, Y ) for Y in PSh(N ). It follows that f is local. ��
Remark 2 As suggested by the reviewer, we can give an explicit description of the functor
f ! as follows. We define f !(Y ) � Y × Y , with the right M-action defined as

(s, t) · x = (t, t · a), (s, t) · e = (s, s · a).

for (s, t) ∈ Y × Y . To see that this agrees with the description f !(Y ) � HomN (Me, Y ) as
above, note that Me ∼= N � N as right N -set. The right M-action on

f !(Y ) � HomN (Me, Y )

is the one induced by the left M-action on Me (by multiplication).
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If f were locally connected, then in particular f ∗ would preserve exponential objects. We
will show that this is not the case, and as a result f is not locally connected.

Proposition 3 The functor f ∗ does not preserve exponential objects.

Proof Let 2 = 1 � 1. We claim that the comparison map

f ∗(2N ) −→ f ∗(2) f ∗(N )

is not an isomorphism. In our case, the comparison map is the map

HomN (N × N , 2) −→ HomM (M × N , 2)

γ 
→ γ ◦ g

where g(m, n) = (φ(m), n).We can identifyHomN (N×N , 2)with the set of complemented
sub-N -sets of N × N , and similarly we can identify HomM (M × N , 2) with the set of
complemented sub-M-sets of M × N . The comparison map then sends S ⊆ N × N to
g−1(S) ⊆ M × N . Now consider the (right) sub-M-set

T = {
(exn+1, an) : n ≥ 0

} ⊆ M × N .

To verify that this is a complemented subset, note that there is a degree function

deg : M × N → Z

deg(xi , a j ) = deg(exi , a j ) = i − j

such that deg(y · m) = deg(y) for all y ∈ M × N , m ∈ M . Further, if y ∈ M × N is of the
form y = (xn+1, an), then both y · x = (xn+2, an+1) and y · e = y are again of this form. So
T is complemented, but it is not of the form g−1(S) for some S ⊆ N ×N , because it contains
the element (ex, 1) but not the element (x, 1). So the comparison map is not surjective, and
as a result f ∗ does not preserve exponential objects. ��
Corollary 4 The geometric morphism f is not locally connected.
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