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Abstract Minimizing energy consumption, as well as meeting real-time and
reliability constraints, are major goals during system deployment. When com-
plex platforms, such as multicore architectures with DVFS, and parallel ap-
plications are considered, these goals are significantly impacted by task map-
ping. To minimize energy consumption, while meeting real-time and reliabil-
ity constraints, this work proposes a task mapping approach to jointly solve
the problem of task allocation, task scheduling, frequency assignment, and
task duplication. A novel heuristic algorithm is proposed to cope with this
NP-hard problem, consisting of a pruning phase, which maintains only the
task configurations that satisfy reliability constraints, and a mapping phase,
which minimizes total energy consumption under real-time and precedence
constraints. The obtained results show that the proposed heuristic obtains
near-optimal results, with low computation time, compared to optimal solvers,
while it achieves better energy consumption and finds slightly more solutions
compared to other heuristic approaches.
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1 Introduction

1.1 Context

The execution of embedded real-time parallel applications on multicore plat-
forms require guarantees for real-time execution [1–3] and reliability [1,4]. Due
to technology size reduction, multicore platforms are susceptible to transient
faults [1]. Reliability is defined as the probability of executing a task with-
out faults. Typical techniques to increase reliability are the execution of tasks
with high frequency [5] and task replication [1, 4]. However, both techniques
can lead to large energy consumption. Dynamic Voltage and Frequency Scal-
ing (DVFS) is a well-known energy management technique, which optimizes
energy consumption by scaling down the processor supply voltage and fre-
quency [1, 4]. However, this has a negative impact on reliability, since more
transient faults occur at a low voltage and frequency level [1, 4]. Therefore,
during the task mapping not only task allocation and scheduling, but also
frequency assignment and task replication should be incorporated into the op-
timization process to achieve energy efficiency, while meeting real-time and
reliability constraints.

1.2 Related work and motivation

Table 1 summarises representative State-of-the-Art (SoA) task mapping ap-
proaches that minimize energy consumption considering DVFS, under Real-
Time (RT.) and Reliability (R.) constraints. Tasks are Independent (I.) or De-
pendent (D.). The platform consists of Homogeneous processors(HO.), Hetero-
geneous processors (HE.), or Single (S.) processor. The applied fault tolerance
policy can be task Recovery (Rec.) or task Replication (Rep.). A task is exe-
cuted successfully, if at least one replica is executed without faults [1]. Last,
the proposed solving method can be Optimal (O.) or Heuristic-based (H.).

Approaches exist without applying a fault tolerance policy, e.g., the task
mapping problem is decomposed into a sub-problem that satisfies the relia-
bility constraint and another that minimizes resources [5] and a whale opti-
mization algorithm is proposed [6]. In [7], the scheduling algorithm for depen-
dent multi-version tasks is studied based on Forward List Scheduling with the
goal of minimizing the total energy consumption under real-time constraint.
Approaches execute a recovery task, e.g., individual [8] or shared [2, 9], or
both [10], with maximum frequency, exploring available time slack to meet
the reliability constraint. Last, approaches apply task replication. Some works
decide the required number of replicas per task always to meet the reliabil-
ity constraint, e.g., for independent tasks on homogeneous platform [1] and
dependent tasks on heterogeneous platforms [4]. In [1], all replicas of a task
are executed at the same frequency, whereas in [4], no real-time constraints
are taken into account. In [11], the number of replicas per task is given. In
the first phase, half-plus-one copies per task are executed. If a fault occurs,
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Table 1: Comparison with representative SoA approaches

Ref.
Task model Fault tol. Platform Constraints Solution
I. D. Rec. Rep. HO. HE. S. RT. R. O. H.

[1]
√ √ √ √ √ √

[4]
√ √ √ √ √

[5]
√ √ √ √

[6]
√ √ √ √ √

[7]
√ √ √ √

[2, 8, 10]
√ √ √ √ √ √

[9]
√ √ √ √ √ √

[3]
√ √ √ √ √ √

[13, 15]
√ √ √ √ √ √

[12]
√ √ √

(
√
) (

√
)

√

[11]
√ √ √ √ √ √

[14]
√ √ √ √ √ √

Prop.
√ √ √ √ √ √

the second phase is applied to execute the remaining number of copies. Other
works decide among different reliability mechanisms for each task. In [12], a
heuristic explores three reliability mechanisms in sequence to decide single task
execution, task duplication, and task triplication, without the requirements of
always meeting the real-time and reliability constraints. In [3], a heuristic de-
termines which tasks to be duplicated, removing the need for a recovery task
for all tasks. An optimal approach that decides which tasks to duplicate, taking
into account reliability and real-time constraints is proposed in [13–15]. The
main difference between [13, 15] and [14] is the task model, i.e., independent
tasks are considered in [13, 15] while tasks with dependencies are considered
in [14].

Our work (Prop.) studies the same problem as in [14], i.e., partial duplica-
tion task mapping of tasks with dependencies and task-level DVFS. However,
an optimal algorithm is presented in [14], while a heuristic algorithm that
provides near-optimal, but less time-consuming solutions, is proposed in this
paper. The experimental section provides a comparison between the optimal
and the heuristic approaches.

Overall, optimal approaches are applicable only for small problem sizes and
existing heuristics, either do not fully guarantee real-time or reliability con-
straints, or use a high number of replicas, leading to large energy consumption
with a negative impact on execution time, and thus, potentially no feasible
solution.

1.3 Contributions

This work addresses the task mapping problem of parallel applications on
homogeneous multicore platforms with DVFS, with the goal of minimizing
total energy consumption, under real-time and reliability constraints. An ef-
fective heuristic is proposed, considering multiple non-functional properties
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of execution time, energy, and reliability, that combine task allocation, task
scheduling, frequency assignment, and selective task duplication. Unlike the
majority of SoA techniques, original and duplicated tasks can have different
operating frequencies, being more suitable for real-world systems [16]. A prun-
ing phase maintains only the task configurations that satisfy reliability con-
straints. A mapping phase minimizes total energy consumption under real-time
and precedence constraints. Last but not least, the proposed method is eval-
uated both with task graphs from real applications and randomly generated
graphs. The experiment results show that our approach provides near-optimal
energy savings, with low computation time compared to optimal solvers. At
the same time, it has better energy consumption and feasibility compared to
other heuristics.

The rest of the paper is organized as follows. Section 2 introduces the
system model. Section 3 presents the formulation of the proposed approaches.
Section 4 presents the evaluation results. Finally, Section 5 concludes this
study.

2 System Model

Table 2 shows the main notations. For the sake of paper presentation, when
original and duplicated tasks must be distinguished in mathematical formu-
lations, the superscript k ∈ {o, d} indicates the original task (o) or the dupli-
cated task (d). If no superscript exists, the mathematical formulation is valid
for both.

2.1 Task Model

This work considers a real-time application modelled as a Directed Acyclic
Graph (DAG) G(V,E), where V denotes the set of N frame-based, non-
preemptive, dependent tasks N = {τo0 , . . . , τoN−1}, while E represents the
edges, corresponding to the tasks’ precedence constraints. Tasks are released
at time 0 and have a global deadline D, given by the application frame. The
release period of the task set is assumed to be longer than its global deadline.
We focus on a single frame, which implies only one job of the same task can
be active simultaneously. If a task has no predecessors (successors), it is an
entry task τentry (exit task τexit). If a graph has multiple entry or/and exit
tasks, then a dummy entry or/and exit task can be added into the graph to
meet our model. A task is ready for execution when all its predecessors have
been completed. Each task τi is described by a tuple {Wi, R

th
i }, where Wi is

the Worst Case Execution Cycles (WCEC) and Rth
i is its reliability threshold

which is given as input and depicts the reliability requirement of the task.
Each task has its own reliability constraint, since functions of an application
exhibit distinct vulnerabilities, due to variations in the spatial and temporal
vulnerabilities of different instructions [12].
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Notations Definitions

τoi /τ
d
i the original/duplicated copy of task τi

(vl, fl) the lth voltage/frequency level
Wi WCEC of task τi
D the global deadline
Rth

i reliability threshold of task τi
PL priority list of task set

SL schedule length of DAG G
ESTi earliest start time of task τi
LFTi latest finish time of task τi
sti actual start time of task τi
fti actual finish time of task τi
eti execution time of task τi
slacki time slack of task τi
Pred{τi} all immediate predecessors of task τi
Succ{τi} all immediate successors of task τi
Bf{τi} task set that is executed before task τi on the same processor
Af{τi} task set that is executed after task τi on the same processor
avail[m] earliest available time of processor θm when it is ready to execute a task
SCi Scheduled Configuration of task τi in current task mapping
NCi New (checked) Configuration of task τi to do relaxation

Table 2: Main Notations and their definitions

2.2 Platform Model

The target platform has a shared-memory multicore architecture with M ho-
mogeneous processors M = {θ0, . . . , θM−1}. Each processor supports DVFS
and has L pairs of frequency/voltage level {(f0, v0), . . . , (fL−1, vL−1)}. As the
relationship of voltage and frequency is almost linear [4,9,11], we use the term
frequency scaling to express the simultaneous change of voltage and frequency.
We consider intra-task DVFS. When task τi is executed at frequency fl, its
execution time is Wi

fl
. The power consumption is modeled as the sum of static

power P sta
l and dynamic power P dyn

l considering a voltage/frequency level
(vl, fl) [1, 4]. Specifically,

Pl = P sta
l + P dyn

l = P sta
l + Ceffv

2
l fl, (1)

where Ceff is the effective switching capacitance.

2.3 Fault Model and Reliability

This work addresses transient faults, having a higher occurrence than perma-
nent faults during the useful lifetime of the system [5]. During this period, the
fault model, where the fault occurrence is given by a Poisson distribution with
an average fault rate λ(fl) at frequency fl, is typically used [4,5,9,11,17]. The
failure rate per time unit of a processor at frequency fl is given by

λ(fl) = λ0 × 10
d0

fmax−fl
fmax−fmin , (2)
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where fmax = max∀l{fl}, fmin = min∀l{fl}, λ0 is the average failure rate of
the processor corresponding to fmax, and d0 is a positive constant, indicating
the sensitivity of failure rates to voltage scaling [4].

The reliability of task τi is defined as the probability of executing τi without
any fault. Based on the exponential model in [1, 9], the reliability of a task
executed at fl is calculated as

Ri(fl) = e−φi(fl), (3)

where φi(fl) = λ(fl) × eti,l, and eti,l is the execution time of task τi at fre-
quency fl. If the reliability of original task τoi is larger than its reliability
threshold Rth

i , the execution is considered as reliable [5] and the task reliabil-
ity is given by Ri = Ro

i . Otherwise, the task τoi is duplicated and executed
on a different processor, since it is unlikely that the execution of both original
and duplicated tasks on different processors fails [1, 3, 4]. The duplicated task
τdi has the same characteristics with the original task τoi . When the duplicated
task τdi is executed, its reliability is Rd

i and depends on the frequency it is
executed. Then, the task reliability, after duplication, is

Ri = 1− (1−Ro
i )(1−Rd

i ). (4)

As our approach finds an offline heuristic-based task mapping solution, with
the goal of minimizing energy consumption, we consider only task duplication,
i.e., a single replica per task, in order not to unnecessarily increase the number
of replicas, in case no faults occur. An online mechanism can be applied to
further improve the energy consumption of our solution (by not executing the
duplicated task, when the first execution is correct), and to deal with the
low probability cases, where both original and duplicated tasks are faulty. In
this work, cores are assumed to operate below a temperature threshold, where
temperature impact on reliability is low [18].

2.4 Problem under study

Given a DAG task graph G and M processors, the goal is to minimize the
total energy consumption by deciding the: 1) task duplication, 2) assignment
of frequencies to tasks, 3) allocation of tasks to processors, 4) start time of
tasks, subject to reliability, real-time and task precedence constraints.

3 Proposed Approach

To solve the problem under study, we propose a Heuristic for Reliability-aware
Fault-tolerant Task Mapping (H RAFTM), described in Algorithm 1. The al-
gorithm consists of two phases:

1. Phase A obtains, per task, the set of possible configurations that meet the
reliability constraint, ordered in decreasing energy consumption.
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2. Phase B obtains the application mapping, by allocating tasks to processors
using the least total energy consumption, under task precedence and real-
time constraints.

H RAFTM is based on the following definitions:

Definition 1 (Configuration). A configuration j of a task τi is denoted as
Cj

i = {fo
i , f

d
i , et

o
i , et

d
i , E

o
i , E

d
i , Ri}, where fo

i (fd
i ) is the assigned frequency,

etoi (etdi ) is the required execution time, Eo
i (Ed

i ) is the energy consumption of
the original (duplicated) task, and Ri is the reliability of the task (taking into
account task duplication). If the task is not duplicated, we have fd

i = etdi =
Ed

i = 0 which is considered as a dummy execution.

Definition 2 (Task Mapping). A mapping of a task τi, under the task con-

figuration Cj
i , is denoted as TM

Cj
i

i = {θoi , θdi , stoi , stdi }, where θoi (θdi ) is the
allocated processor, and stoi (stdi ) is the start time of the original (duplicated)
task. If a task is not duplicated, then fd

i = 0, and the duplicated task takes no
execution time, i.e., its start time is equal with its finish time, stdi = ftdi .

Definition 3 (Application Mapping). The mapping of the application (AM)
is given by the set of mappings of N original tasks and S ⊆ N duplicated tasks.
The mapping is valid if task precedence and real-time constraints are satisfied.

The following paragraphs describe in detail the two phases of the proposed
approach and illustrate them using the application DAG example of Fig. 1.

Part of RTE5* with W5 = 1.4728× 108 and Rth
5 = 0.9994

*Processor model based on Table 3

Cj
5 fo

5 fd
5 eto5 etd5 Eo

5 Ed
5 R5

(GHz) (GHz) (msec) (msec) (mJ) (mJ)
C0

5 0.801 - 18.387 - 0.77944 - 0.9908486
C1

5 0.8291 - 17.764 - 1.02746 - 0.9966568
C2

5 0.8553 - 17.220 - 1.36084 - 0.9986935
C3

5 0.8797 - 16.742 - 1.81375 - 0.9994552
C4

5 0.9027 - 16.315 - 2.43532 - 0.9997610
C5

5 1.0 - 14.728 - 3.29633 - 0.9999926
C6

5 0.801 0.801 18.387 18.387 0.77944 0.77944 0.9999163
...

...
...

...
...

...
...

...
C10

5 0.801 1.0 18.387 14.728 0.77944 3.29633 ∼ 1
...

...
...

...
...

...
...

...
C26

5 1.0 1.0 14.728 14.728 3.29633 3.29633 ∼ 1

Fig. 1: Illustration example: Application DAG (N = 6) and part of RTE5.

3.1 Phase A: Task configurations, under reliability constraint.

Phase A (Lines 1-9) is applied per task. For each task, a Reliability, execution
Time, and Energy consumption (RTE) table is created based on all possible
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Algorithm 1: Proposed H RAFTM algorithm.

Require: Task graph (G) and set of processors (M).
Ensure: Application mapping (AM).

// Phase A

1: for each task τi in N do
2: RTEi = {Cj

i : C
j
i is a configuration of τi} ;

3: FCi = RTEi - {Cj
i : Ri < Rth

i };
4: BCi = {FCi: f

d
i = 0};

5: for each configuration bc in BCi do
6: PCi = FCi - {FCi: f

d
i ̸= 0 ∧ min{etoi , etdi } ≥ etbc ∧∑

{Eo
i , E

d
i } > Ebc};

7: end for
8: rPCi = {PCi: PCi decreasing energy consumption};
9: end for

// Phase B

10: for each task τi in N do
11: Compute ranki (Eq. 9);
12: end for
13: PL = {N : ordered in decreasing ranki};
14: for each task τi in PL do
15: SCi = rPCi[0];
16: Select the processor and set sti = ESTi (Eq. 6 and 8), compute

TMSCi
i in Definition 2;

17: end for
18: AM0 = {TMSCi

i , i ∈ N};
19: Compute SLAM0

(Eq. 7);
20: if SLAM0 > D then
21: Infeasible problem, algorithm stops.
22: else
23: AM relaxation (Algorithm 2);
24: end if

configurations (Line 2). For instance, part of the RTE of task τ5 is depicted in
Fig 1. A pruning step removes the task configurations that do not satisfy the
reliability constraint (Line 3).
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Algorithm 2: Mapping Relaxation Algorithm.

1: AM = AM0, SL = SL0;
2: while |rPCi|> 1(∃τi) do
3: flag = 0
4: for each task τi in N do
5: NCA

i = rPCi[0];

6: NCB
i = rPCi[j] with max

{ ∑
k∈{o,d}

(ESj

τk
i

/TIj
τk
i

)

}
;

7: if ENCA
i ≤ ENCB

i then
8: NCi = NCA

i ;
9: else

10: NCi = NCB
i ;

11: end if
12: for each task τj in PL do
13: if τj ̸= τi then

14: Compute TM
SCj

j with configuration SCj ;
15: else
16: Compute TM

NCj

j with new checked configuration NCj ;
17: end if
18: end for
19: Compute AMi = {TMNCi(/SCi)

i , i ∈ N };
20: Compute SLAMi (Eq. 7) and SLIi = SLAMi − SL;
21: if SLIi ̸= 0 then

22: Compute Gaini =

∑
k∈{o,d}(ES

NCi

τk
i

/TI
NCi

τk
i

))

SLIi
;

23: else
24: Mark task τi as with ”highest” gain;
25: end if
26: Compute slacki (Eqs. 8, 10, 11);
27: if SLAMi

> D or TINCi
i > slacki then

28: flag+ = 1;
29: Discard current task/application mapping when τi is considered;
30: end if
31: end for
32: if flag = N then
33: break
34: else
35: if tasks with ”highest” gain exist then
36: Select the task with higher energy saving as τrel to do relaxation;
37: else
38: Select τrel = τi to do relaxation, with i corresponding to task τi

with max(Gaini), i ∈ N ;
39: end if
40: Update SCτrel = NCτrel ;
41: Update AM = AMτrel and SL = SLAMτrel

;
42: for each configuration pc in rPCτrel do
43: rPCτrel = rPCτrel - {rPCτrel : E

pc ≥ ESCτrel};
44: end for
45: end if
46: end while
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i) Reliability Constraint: A task must be executed meeting its reliability re-
quirement, i.e., Ri ≥ Rth

i .
For instance, assuming that the reliability of τ5 is Rth

5 = 0.9994, the con-
figurations C0

5 , C
1
5 and C2

5 are pruned in this step. The result is the Feasible
Configurations (FC) of the task. FCi considering only the original task τoi
(when fd

i = 0 no duplicated task exists) serve as Baseline Configurations
(BC) (Line 4). In our illustration example, the BC of τ5 are C3

5 , C
4
5 and C5

5 .
The next step prunes any feasible configuration with duplicated tasks, if both
the energy consumption and the execution time are larger than any defined
BCi (Lines 5-7), e.g., C

10
5 and C26

5 in our illustration example of Fig 1, because
they are less efficient than the BC. The result is the Possible Configurations
(PC). The PC are ranked based on decreasing energy consumption (rPCi)
(Line 8) where higher energy consumption generally implies that a higher fre-
quency is assigned, and thus, it takes a shorter execution time to execute the
task.

3.2 Phase B: Application mapping, under precedence and real-time
constraints.

Phase B uses Phase A task configurations and performs the application map-
ping, subject to the following constraints:
ii) Precedence constraints: Based on the dependencies defined by the task
graph, a task τi can start execution only when all its predecessors are com-
pleted. Task predecessors also include the duplicated tasks, since our approach
is applied offline, and thus, strict scheduling is considered where a task can be
executed after all its predecessors are finished. Then, the Earliest Start Time
(EST) of τi on a processor is given by

ESTi =

{
0, if τi = τentry

max
τj∈Pred{τi}

{EFTj}, else (5)

where Pred{τi} is the set of τi’s predecessors, and EFTj = ESTj + etj is the
Earliest Finish Time (EFT) of task τj .
iii) Deadline constraint: Due to precedence constraints, the actual start time
of a task is sti ≥ ESTi. Our goal is to exploit the available time slack to
save energy, thus, we initially consider that tasks start execution as soon as
possible,

sti = ESTi,∀τi (6)

Therefore, the actual finish time of task τi is fti = sti + eti. The application
must be finished before the deadline D. The Schedule Length of task graph G,
under a given application mapping AM , denoted as SLAM , is determined by
the actual finish time of exit task τexit. The deadline constraint is as follows:

SLAM = ftτexit
≤ D. (7)
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iv) Non-overlapping constraint: Only a single task should be executed on a
processor at a given time instance. Taking into account the task dependency
and non-overlapping constraints, the ESTi on each processor in Equation 5 is
modified as follows:

ESTi =


0, if τi = τentry

max


max

τj∈Pred{τi}
{EFTj},

max
τp∈Bf{τi}

{EFTp},

 , else
(8)

where Bf{τi} is the set of tasks that is executed before task τi on the same
processor as task τi.Bf{τi} is subject to the task priority assignment explained
in detail later in this section.

The method to choose a processor to execute a task is the following. From
Eq. 8, except for the entry task, the earliest start time is the maximum of two
components. For convenience, we define ESTA

i = maxτj∈Pred{τi}{EFTj}, due
to the task dependency constraint, and ESTB

i = maxτp∈Bf{τi}{EFTp} which
corresponds to the earliest available time of each processor when it is ready to
execute a task, due to non-overlapping constraint. For the currently scheduled
task τi, ESTA

i has only one value, while ESTB
i may have different values on

different processors. Because we target real-time applications, the processor
that has the smallest ESTi for task τi is chosen to execute this task, i.e.,
{θm : arg minm∈M{ESTi}} for task τi. If there are more than one processors
that have the same smallest ESTi for task τi, the first processor in the list
of available processors (the one with smallest index) is chosen to execute this
task.

Fig. 2 illustrates this selection process through an example, where the hor-
izontal axis is related to time. We assume that the currently scheduled task is
τi (and thus, not the entry task) and the mapping of tasks before τi in the Pri-
ority List (PL) is done. There are two possible cases: 1) in Fig. 2a, processors
θ1, θ2 and θ3 are available later than ESTA

i . The value for ESTB
i can be ob-

tained as ESTB
i = avail[1], if τi is executed on processor θ1, ESTB

i = avail[2],
if τi is executed on processor θ2, and ESTB

i = avail[3], if τi is executed on
processor θ3. According to Eq. 8, the earliest start times ESTi for task τi on
the three processors are avail[1] (on θ1), avail[2] (on θ2) and avail[3] (on θ3),
respectively. The smallest Earliest Start Time is ESTi = avail[3]. Therefore,
processor θ3 is finally chosen to execute task τi and sets sti = ESTi = avail[3];
and 2) in Fig. 2b processors θ1 and θ2 are available before ESTA

i , and processor
θ3 is available later than ESTA

i . According to Eq. 8, the Earliest Start Time
for task τi on three processors are ESTi = ESTA

i (on θ1), ESTi = ESTA
i

(on θ2) and ESTi = avail[3] (on θ3). Both processors θ1 and θ2 achieve the
smallest ESTi for task τi, which is ESTA

i . In this case, the first processor in
the list of available processors, i.e., θ1, is finally chosen to execute task τi and
sets sti = ESTi = ESTA

i .

The text paragraphs describe the three steps of Phase B (Lines 10-26):
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(a) case A (b) case B

Fig. 2: Illustration example of how to select the processor to execute a task.

Step 1 (Lines 10-13): Priorities are given to tasks for task allocation based
on the upward rank value [4], ranki, which is common for original and dupli-
cated tasks (Lines 10-12):

ranki =

{
eti, if τi = τexit
eti + max

τj∈Succ{τi}
{rankj}, else (9)

where eti = (
∑L

l=1 Wi/fl)/L is the average computation time of τi and Succ{τi}
the immediate successors of τi. Then, the Priority List (PL) is ordered in de-
creasing rank value (Line 13).
Step 2 (Lines 14-21): The initial application mapping AM0 is generated to
check if the problem is feasible and whether time slack exists. For all tasks,
AM0 uses the first configuration in rPC as the Scheduled Configuration SCi

(Line 15). When allocating a task, a processor is chosen as explained previ-
ously and sets sti = ESTi according to Eq. 6 and 8 to execute the current
task. We remind that Bf in equation 8 is constructed according to the alloca-
tion performed in Line 16 of Algorithm 2. We thus obtain the task mapping
(TMSCi

i ) per task (Line 16). The set of all task mappings provides the AM0

(Line 18). Then, its schedule length SLAM0
is obtained (Line 19). If it is higher

than the deadline, the problem is infeasible (Lines 20-21), and the algorithm
stops.
Step 3: (Lines 22-24) If the initial schedule length is equal or less than the
deadline (Line 22), time slack exists. Overall, different task configurations and
different tasks can be relaxed to obtain energy savings (Line 23). Algorithm 2
decides the task to be relaxed and its configuration. Initially, the current map-
ping (schedule length) is initialized with the initial mapping (schedule length).
Algorithm 2 is applied iteratively due to the while loop (Lines 2-46), until all
tasks reach their last configuration |rPCi|= 1(∀τi) (Line 2) with the least en-
ergy consumption, or the flag, which depicts whether no valid relaxation exists,
is met. As explained later, when none of the tasks can be selected for relax-
ation, flag = N and algorithm 2 stops. Firstly, the flag is initialised to zero
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(Line 3). In each round of relaxation of the while loop, the algorithm initially
enters into a for loop (Lines 4-31), which traverses all tasks for potential re-
laxation. In each iteration, one task is selected to do a “virtual” relaxation
with a New Configuration NC, while the remaining tasks keep the Scheduled
Configuration SC (Lines 12-18). Note that, this is not the final decision for
relaxation. To decide which New Configuration should be selected for a task
(NCi), we combine two criteria. Let assume the currently selected task to do
such a “virtual” relaxation is task τi. First, a local search decides a New Con-
figuration NCA

i (Line 5) by exploring rPCi sequentially, i.e., selecting always
the first configuration. Second, NCB

i (Line 6) selects the j configuration in

rPCi with the highest value (ESj
τo
i
/TIjτo

i
)+(ESj

τd
i

/TIj
τd
i

), where ESj
τo
i
(ESj

τd
i

)

is the energy savings and TIjτo
i
(TIj

τd
i

) is the time increase of task τi in configu-

ration j, compared to the current Scheduled Configuration SCi. The final new
configuration NCi for τi is the one with the minimum energy consumption
(Lines 7-11). After selecting this new configuration, the relaxation informa-
tion is updated accordingly, which includes the new application mapping AMi

(Line 19) and its schedule length SLAMi (Line 20) are obtained. The difference
of SLAMi with the schedule length of the current mapping SL provides the
Schedule Length Increase (SLIi), when task τi changes its current configura-
tion SCi to NCi (Line 20). With this, the overall gain (Gaini), considering
both energy and time, that this configuration modification will bring to the
overall mapping, is computed (Lines 21-25). It is possible that in some relax-
ations the new application schedule length is equal to the schedule length of
the current mapping, i.e., SLAMi = SL. In this case SLIi = 0, i.e. relaxation
does not increase schedule length. The task is thus marked as with ”highest”
gain since the Gaini should be infinite according to equation Line 22 (in this
case Gaini is denoted as Inf in Fig 4.) and this task is selected for relax-
ation. The time slack slacki is computed (Line 26). In Line 27 when task τi
is selected to do relaxation, it is required to compare whether the new SLAMi

exceeds the global deadline. As all the EST values of task τi’s successors will
be accordingly changed due to the additional execution time consumed by task
τi selecting a new configuration, we then also check whether the time increase
TIi exceeds the available time slack slacki in order to generate a valid relax-
ation. In case the new SLAMi

exceeds the global deadline or the TIi exceeds
the available time slack, the flag is incremented (Line 28), and this “virtual”
relaxation is considered as invalid, thus, it is discarded (Line 29). This task
will not be selected for relaxation in this relaxation round. After we obtain the
relaxation information for all tasks iteratively, we check if flag = N , which
means no valid relaxation exists and none of the tasks can be selected for
relaxation, then the algorithm 2 stops (Lines 32-33). This typically happens
when the time slack is not enough to enable a relaxation for any task.

The time slack of each task in the current mapping (slacki) is based on
task mobility through Eqs. 8, 10, 11 :

slacki = LFTi − ESTi − eti. (10)
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The Latest Finish Time (LFT) of τi is:

LFTi =


D, if τi = τexit

min


min

τp∈Af{τi}
{LSTp},

min
τj∈Succ{τi}

{LSTj},

 , else
(11)

where LSTi = LFTi− eti is the Latest Start Time (LST) of task τi. Af{τi} is
the set of tasks executed after task τi on the same processor as task τi. Af{τi}
is subject to the task priority in PL. If flag = N does not hold, there exists a
valid relaxation, and thus, the global decision takes place (Lines 35-44). First
if there exist ”highest” tasks, the task with higher energy saving is selected to
do relaxation, since it does not increase the schedule length while saves energy
consumption (Line 36). Otherwise, the task (and its corresponding configura-
tion) to be relaxed (τrel) is the task with the maximum overall gain (Line 38),
whose time increase in this New Configuration is not larger than its available
slack in the current mapping checked in Line 27. Last, the Scheduled Config-
uration (SC) for the relaxed task, the application mapping and its schedule
length are updated (Lines 40-41), and all the configurations that have a higher
energy consumption than the selected one are removed from rPCτrel (Lines
42-44).

Fig. 3, Fig. 4 and Fig. 5 illustrate the application mapping process for the
DAG in Fig 1, when M = 3 processors and D = 1.4 sec. After obtaining the
priority list of the tasks in step 1 (Lines 10-13) in Algorithm 1, Fig 3 shows
on the left the initial application mapping AM0 (according to Lines 14-19 in
Algorithm 1) and on the right the initial Scheduled Configuration for each
task. The total energy consumption of AM0 is EAM0 = 48.12 mJ and schedule
length is SLAM0 = 1.3515 sec (Line 19 in Algorithm 1). Since the schedule
length is lower than the deadline (Line 22 in Algorithm 1), there exists some
time slack, so the relaxation algorithm is applied to save energy consumption
(Line 23 in Algorithm 1). During relaxation, task τ1 is firstly selected, along
with the New Configuration where both original and duplication copies are
executed with frequency f1 (Lines 35-40 in Algorithm 2), since this task and
its New Configuration provide valid relaxation with the highest gain (Lines
5-30 in Algorithm 2). The energy consumption is reduced without increasing
the schedule length (Inf means positive infinity in Fig. 4 and the one with
most energy saving is selected if there are multiple Inf cases). The updated
application mapping is depicted in Fig. 4. The algorithm continues to apply
the relaxation, by selecting the next valid task and the corresponding New
Configuration with the highest gain, until the end conditions are met. The
final application mapping is depicted in Fig 5, with an energy consumption
equal to E = 41.67 mJ and a schedule length of SL = 1.3971 sec.
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*Scheduled configuration

Cj
i fo

i fd
i SLIi Gaini

(GHz) (GHz) (sec)

C0
0 1.0 - - -

C0
1 1.0 - - -

C0
2 1.0 1.0 - -

C0
3 1.0 - - -

C0
4 1.0 - - -

C0
5 1.0 - - -

Fig. 3: Illustration example (Fig. 1): Initial application mapping AM0.

*Scheduled configuration

Cj
i fo

i fd
i SLIi Gaini

(GHz) (GHz) (sec)

C0
0 1.0 - 0.031 2,246.9

C0
1 0.8291 0.8291 0 Inf

C0
2 1.0 1.0 0.066 2,309.2

C0
3 1.0 - 0.08 858.9

C0
4 1.0 - 0 Inf

C0
5 1.0 - 0.07 1,054.3

Fig. 4: Illustration example (Fig. 1): AM1 with task τ1 relaxed.

*Scheduled configuration

Cj
i fo

i fd
i SLIi Gaini

(GHz) (GHz) (sec)

C0
0 0.801 0.8291 0.008 13013.0

C0
1 0.801 0.801 - -

C0
2 1.0 1.0 0.066 2309.2

C0
3 1.0 - 0.41 168.2

C0
4 0.8797 - 0.12 472.7

C0
5 1.0 - 0.066 1054.3

Fig. 5: Illustration example (Fig. 1): Final application mapping.

3.3 Time complexity

In this section, we compute on the dominating time complexity. In the pro-
posed heuristic approach, the maximum number of possible configurations for
each task is L+

(
2
L

)
(denoted as K). Phase A takes O(NK) time to obtain the

possible configuration space for all tasks. Phase B firstly requires O(NlogN)
time to create the priority list (PL). Then, it takes O(N) time to calculate the
EST of all tasks in the worst case. For each single task mapping, considering
the worst case when selecting a processor to execute the task, all processors
needs to be traversed. Therefore, it requires O(MN) time to proceed the task.
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Table 3: Processor characteristics

vl (V) 0.85 0.90 0.95 1.00 1.05 1.1
fl (GHz) 0.801 0.8291 0.8553 0.8797 0.9027 1.0
Ceff 7.3249 8.6126 10.238 12.315 14.998 18.497

The application mapping, including N task mappings, takes O(MN2) time.
In relaxation algorithm 2, we consider the worst case when the deadline is
very relaxed and each configuration (K configurations per task) is searched,
for all N tasks. The for loop (Lines 4-23) in Algorithm 2 traverses all N tasks
and selects one to do a “virtual” relaxation for the application. It thus takes
O(MN3) time. The step to remove configurations for the selected task in
Lines 29-31 in Algorithm 2 takes O(K) time considering the worst case, which
is not the dominated part of the algorithm. Hence, the total complexity of
the relaxation algorithm is O(MKN3). Finally, overall, the dominating time
complexity of the proposed heuristic is O(MKN3).

4 Experimental Results

This section evaluates the proposed heuristic (H RAFTM) with i) the optimal
solver using Gurobi 9.0.2 (O RAFTM) as in [14], and ii) two SoA heuristics a)
the Reliability-Aware Mapping (H RAM), that meets the reliability constraint
without task duplication, similar to [5] and ESRG algorithm in [4], and b) the
Task Duplication Mapping (H TDM), applying task duplication for all tasks,
similar to [1,4], when the number of replicas is two, or to [19], with 100% task
duplication. To evaluate the approaches, the following metrics are used:

1. Feasibility, i.e., the number of experiments where a solution is found out of
the total number of experiments (NE).

2. Energy Consumption (EC) of proposed heuristic approach, compared to
the energy consumption of the optimal approach O RAFTM and two SoA
heuristic approaches H RAM and H TDM.

3. Reliability Improvement (RI) (RI = Ri − Rth
i ), i.e., the task reliability

above the task reliability threshold.
4. Computation time (CT), i.e., the time required for each approach to find a

solution.

Note that an approach may fail to find a solution, especially under strict
deadlines. To fairly compare the energy consumption, reliability improvement,
and computation time, we present the average values of the experiments where
both compared approaches (i.e., O RAFTM vs H RAFTM, H RAFTM vs
H RAM, or H RAFTM vs H TDM) were able to find a solution.

The model of the processor is based on a 32-bit RISC-V Instruction Set
Architecture (ISA) with a 5-stage pipeline [20]. Regarding DVFS, L = 6 volt-
age/frequency levels are used [21] (Table 3), considering 64 nm technology. The
number of processors in the experiments is M = 2, 4, 6. The task graphs are



Near-optimal Energy-Efficient Partial-Duplication Task Mapping 17

(a) Fast Fourier Transform (FFT) (b) Gaussian Elimination (GE)

Fig. 6: Real-world application DAG.

obtained both from real-world applications and randomly generated tasks. Re-
garding real-word applications, two commonly used parallel applications with
different shapes of parallelism have been considered, i.e., Fast Fourier Transfor-
mation (FFT) (N = 15) and Gaussian Elimination (GE) (N = 14) [4,5]. Fig 6
depicts the shape of parallelism obtained by FFT and GE DAGs. Random
generation is used to compare the optimal approach (N = 10) and evaluate
the scalability of the heuristics (N = 100). To obtain realistic values for the Wi

of a task, common benchmarks from the MiBench suite were executed on the
processor. The execution cycles and memory accesses are counted and WCEC
is computed, assuming that all cores may conflict during memory access. The
obtained range is [1 × 108, 4 × 108], and it is used to randomly select the Wi

of a task. The reliability threshold Rth
i of a task is selected within the range

[0.9990, 0.9995], considering a typical magnitude 10−3 for reliability target [1].
For each application task graph, several experiments (denoted as NE) are per-
formed, each time with different task characteristics (Wi and Rth

i ). For each
experiment, D is tuned from strict to relaxed deadlines, starting from SLAM0

of the initial application mapping and increased with a step of 0.1 seconds
for small randomly generated DAGs and real-world DAGs and 0.5 seconds for
large randomly generated DAG.

4.1 Comparison with optimal approach

Fig. 7 and 8 compare the quality of solutions obtained by O RAFTM and
H RAFTM approaches. We present the results of NE = 10 considering ran-
dom graphs with N = 10 tasks, M = 2, M = 4 and M = 6 processors.

Regarding feasibility, when M = 2, the H RAFTM feasibility is very close
to the optimal feasibility, as shown in Fig. 7a, except for a few cases when the
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(a) M = 2 (b) M = 2

(c) M = 4 (d) M = 4

(e) M = 6 (f) M = 6

Fig. 7: Feasibility and Energy Consumption (EC in mJ) of optimal and heuris-
tic approached for M = 2, M = 4 and M = 6 (N = 10)

deadline is strict. The average difference before achieving 100% feasibility is
3.3%. With the number of processors increasing to M = 4 (Fig. 7c) and M = 6
(Fig. 7e), H RAFTM and O RAFTM achieve the same feasibility, since more
resources are available to execute the original and potentially duplicated tasks.

Regarding energy consumption in Fig. 7b, Fig 7d, and Fig 7f, H RAFTM
generally consumes slightly more energy than O RAFTM. When the deadline
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(a) M = 2 (b) M = 4

(c) M = 6

Fig. 8: Reliability Improvement (RI) of optimal and heuristic approached for
M = 2, M = 4 and M = 6 (N = 10)

is relaxed, H RAFTM and O RAFTM obtain solutions with the same energy
consumption. H RAFTM consumes on average 7.3% (M = 2), 4.4% (M =
4) and 3.38% (M = 6) more energy than the optimal solutions. With the
processor number increasing, the energy consumption of both the proposed
heuristic and optimal solution flattens at earlier deadlines, since there are
more processors resource available to perform the task mapping, and thus,
more options to start the tasks earlier.

Regarding reliability improvement, H RAFTM provides more reliability
improvement than optimal solutions at the price of consuming slightly more
energy under the same deadlines, as depicted in Fig. 8a, Fig 8b, and Fig 8c.

The average computation time of O RAFTM and H RAFTM is computed
over the number of experiments to find a feasible solution. Table 4, Table 5 and
Table 6 show the results in seconds per deadline D. It can be observed that
although few tasks and processors are used, the time to obtain the optimal
solution is very long, on average 104 more than the proposed H RAFTM.

Overall, the obtained results show that i) H RAFTM provides near-optimal
solutions, and the solutions tend to converge to the optimal ones with the



20 Minyu Cui, Angeliki Kritikakou, Lei Mo, Emmanuel Casseau

number of processors increasing, ii) as expected, H RAFTM takes significantly
less time to obtain the results compared to the optimal approaches.

4.2 Comparison with other heuristics

This section evaluates the behavior of the proposed H RAFTM heuristic to
H RAM and H TDM heuristics, considering real-world application DAGs and
large random generated DAGs.

4.2.1 Real-word DAG

The quality of solutions obtained by H RAFTM, H RAM and H TDM heuris-
tics for the FFT (N = 15) are compared in Fig. 9 and Fig. 11, and for the
GE (N = 14) in Fig. 10 and Fig. 12, considering M = 2, M = 4 and M = 6
processors, and NE = 20 experiments.

The feasibility of the three heuristics for FFT and GE benchmarks is de-
picted in the left column of Fig. 9 and Fig. 10. Compared to H TDM, the
proposed H RAFTM can find solutions in significantly more experiments than
H TDM, especially when the deadline is not fully relaxed or the number of
cores is reduced. When tasks meet their reliability constraint, H RAFTM does
not need to duplicate these tasks. However, H TDM duplicates all the tasks,
and thus, it can find solutions only when the deadline is relatively relaxed,
or several processors exist to run the tasks in parallel. Before obtaining 100%
feasibility for both approaches, on average, H RAFTM finds a solution in more
experiments than H TDM, i.e., 70.2% for FFT and 59.4% for GE (M = 2),
47.5% for FFT and 14.5% for GE (M = 4) and 47.5% for FFT and 2.2% for
GE (M = 6). Note that, H RAFTM and H RAM have the same feasibility.
This behavior is explained as follows: when H RAM finds a solution, the reli-
ability constraint of all tasks can be met by executing only the original task
with a high frequency. In this case, H RAFTM is also able to find this solution.

The energy consumption obtained by the solutions of the three heuristics
for FFT and GE is depicted in the right column of Fig. 9 and Fig. 10. Com-
paring H RAFTM and H RAM, we observe that they consume similar energy

Table 4: Computation time (seconds) for N = 10, M = 2

D 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
O RAFTM 424.8 523.4 537.1 275.5 432.2 739.7 832.7 1,645.6 2,349.0
H RAFTM 0.15 0.13 0.14 0.17 0.17 0.20 0.22 0.23 0.29

D 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
O RAFTM 3,358.1 5,368.3 4,543.9 9,335.6 11,974.2 13,038.4 19,364.5 27,312.9 19,378.6
H RAFTM 0.32 0.31 0.36 0.33 0.36 0.35 0.41 0.42 0.42

D 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8-4
O RAFTM 13,155.9 21,493.1 24,228.4 77,477.5 5,472.0 4,868.6 4,096.3 2.5
H RAFTM 0.49 0.52 0.47 0.52 0.56 0.58 0.59 0.63
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Table 5: Computation time (seconds) for N = 10, M = 4

D 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
O RAFTM 14.9 61.0 74.9 138.2 202.1 256.9 327.3 219.0 1039.3 1054.7 126.8
H RAFTM 0.19 0.26 0.27 0.30 0.35 0.27 0.33 0.43 0.47 0.50 0.57

D 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 -
O RAFTM 58.7 123.1 4.9 1.9 1.4 0.6 1.8 1.0 1.8 2.3 -
H RAFTM 0.59 0.66 0.64 0.70 0.68 0.67 0.68 0.69 0.66 0.78 -

Table 6: Computation time (seconds) for N = 10, M = 6

D 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
O RAFTM 0.83 58.10 26.95 89.89 81.87 109.82 58.60 62.77 59.77 14.69 2.49
H RAFTM 0.32 0.27 0.33 0.48 0.54 0.50 0.58 0.68 0.69 0.70 0.67

D 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 -
O RAFTM 0.74 0.65 0.63 0.66 0.66 0.64 0.64 0.63 0.60 0.60 -
H RAFTM 0.76 0.74 0.76 0.80 0.84 0.77 0.76 0.76 0.71 0.72 -

at very strict deadlines, when the number of processors is small. In this case,
H RAFTM behaves similarly to H RAM, i.e., mainly executing the original
tasks with the frequency required to achieve the reliability constraint. With
the deadline relaxing, H RAFTM starts to consume less energy than H RAM.
H RAFTM achieves this gain by exploring the available time slack to duplicate
tasks to save energy, e.g., up to∼50.9% for FFT at relaxed deadlines. Similarly,
when more processors are available, H RAFTM can take advantage of these
resources and execute duplicated tasks in parallel. Comparing H RAFTM and
H TDM, as H TDM applies task duplication for every task, it cannot find
solutions under very strict deadlines. H RAFTM consumes significantly less
energy than H TDM. H RAFTM selects the task configuration, if it exists,
with only the original task, meeting the reliability constraint and consuming
less energy than configurations with duplicated tasks. Since H TDM dupli-
cates all the tasks, its energy consumption can be significant, when it finds
a solution. In relaxed deadlines, H RAFTM behaves similar to H TDM, i.e.,
duplicates the tasks when less energy is consumed.

The average reliability improvement obtained by the solutions of the three
heuristics is depicted in the left column of Fig. 11 and Fig. 12. H RAFTM
achieves higher reliability than H RAM, except for very strict deadlines. As
explained above, when there is no available time slack to perform duplication,
H RAFTM behaves similarly to H RAM as most of the tasks are executed
with only their original copy. Compared to H TDM, H RAFTM provides lower
reliability for tight deadlines, as it duplicates only a part of the task set. The
same reliability improvement can be achieved in relaxed deadlines, since both
H RAFTM and H TDM duplicate tasks similarly.

The computation time of H RAFTM, H RAM and H TDM heuristics is
depicted in the right column of Fig. 11 and Fig. 12. Overall, when the deadline
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(a) M = 2 (b) M = 2

(c) M = 4 (d) M = 4

(e) M = 6 (f) M = 6

Fig. 9: Feasibility and energy consumption (EC in mJ) of FFT (N = 15) for
M = 2, M = 4 and M = 6.

increases, the trend of computation time for H RAM is to remain stable, for
H RAFTM to slightly increase and for H TDM to increase with a higher factor.
The computation time to obtain a feasible solution increases with deadline
relaxation because the proposed heuristic explores the PC space for each task,
based on the deadline constraints. Therefore, the more relaxed the deadline is,
the larger the PC space to be explored per task, and thus, more time is needed.
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(a) M = 2 (b) M = 2

(c) M = 4 (d) M = 4

(e) M = 6 (f) M = 6

Fig. 10: Feasibility and Energy Consumption (EC in mJ) of GE (N = 14) for
M = 2, M = 4 and M = 6.

Note that, H TDM is the most expensive approach in terms of computation
time. This behavior is because all tasks are duplicated, which increases the
total number of tasks to be scheduled and the number of PCs in each task
PC space, and thus, the time to find a solution. For H RAM, it only executes
original tasks. Therefore, it has a reduced number of PCs in the PC space,
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taking the least time to obtain a solution. However, it provides less energy
savings as explained above, especially at relaxed deadlines.

(a) M = 2 (b) M = 2

(c) M = 4 (d) M = 4

(e) M = 6 (f) M = 6

Fig. 11: Reliability improvement (RI) and Computation Time (CT in seconds)
of FFT (N = 15) for M = 2, M = 4 and M = 6.
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(a) M = 2 (b) M = 2

(c) M = 4 (d) M = 4

(e) M = 6 (f) M = 6

Fig. 12: Reliability improvement (RI) and Computation Time (CT in seconds)
of GE (N = 14) for M = 2, M = 4 and M = 6.

4.2.2 Large random generated DAGs

Fig. 13 and Fig. 14 compare the quality of solutions obtained by H RAFTM,
H RAM and H TDM heuristics for a large randomly generated task graph with
N = 100, M = 2, M = 4 and M = 6 processors, and NE = 10 experiments.
Previous observations regarding feasibility, energy consumption, reliability im-
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provement, and computation time for the three heuristics are also verified by
the experiments with the large randomly generated DAG. For instance, as the
deadline is not fully relaxed or the number of cores is reduced, H RAFTM has
increased feasibility compared to H TDM, i.e., 84.8% for M = 2, 85.7% for
M = 4 and 83.8% for M = 6. Moreover, as the number of processors increases,
energy consumption is reduced as lower frequencies can be selected, and par-
tial task duplication can be applied by H RAFTM, as long as the reliability
constraint is met.

Regarding computation time, it is increased when the number of tasks in-
creases as expected, but still remains low compared to the prohibited computa-
tion time required for the optimal approach. For a small randomly generated
task with N = 10 (Table 5 when M = 4 and Table 6 when M = 6), the
proposed heuristic takes less than 1 sec to find a solution for all experiments
whereas for a large randomly generated task with N = 100, the average com-
putation time (considering all experiments and deadlines) is 144 sec (M = 2),
159 sec (M = 4) and 212 sec (M = 6). Comparing the computation time of the
three heuristics for large DAGs N = 100, the average computation time for
H RAM is 52 sec (M = 2), 66 sec (M = 4) and 75 sec (M = 6). For H TDM,
the average computation time is 488 (M = 2), 501 sec (M = 4) and 718 sec
(M = 6). Overall, we observe that H TDM is the more time-consuming ap-
proach, and H RAM is the least time-consuming approach. However, H TDM
cannot always find solutions, whereas H RAFTM finds solutions with the same
or less energy consumption than H RAM and H TDM.

5 Conclusion

A heuristic algorithm is proposed to obtain the task mapping of parallel appli-
cations, under real-time, reliability, and task dependency constraints. The goal
is to minimize total energy consumption by deciding frequency assignment,
task allocation, task scheduling, and task duplication. Based on the experimen-
tal results from real-world applications and randomly generated task graphs,
the proposed heuristic achieves near-optimal solutions, with low computation
time. Compared to similar heuristics, it achieves better energy consumption
and is able to find solutions even when the other approaches fail. In future
work, we will propose similar heuristics for other DVFS schemes provided by
platforms, such as assigning a common frequency at cluster, processor, and
platform levels.
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(a) M = 2 (b) M = 2

(c) M = 4 (d) M = 4

(e) M = 6 (f) M = 6

Fig. 13: Feasibility and Energy Consumption (EC in mJ) of large randomly
generated DAG (N = 100) for M = 2, M = 4 and M = 6.
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(a) M = 2 (b) M = 2

(c) M = 4 (d) M = 4

(e) M = 6 (f) M = 6

Fig. 14: Reliability Improvement (RI) and Computation Time (CT in seconds)
of large randomly generated DAG (N = 100) for M = 2, M = 4 and M = 6.
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