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Pólya-splitting distributions as stationary solutions of
multivariate birth-death processes under extended

neutral theory

Jean Peyhardi1 Fabien Laroche2

Frédéric Mortier3,4

1. IMAG, University of Montpellier, CNRS, Montpellier, France

2. MR DYNAFOR, INP de Toulouse, INRAE, Auzeville Tolosane, France
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Abstract

Multivariate count distributions are crucial for the inference of ecological processes
underpinning biodiversity. In particular, neutral theory provides useful null distribu-
tions allowing the evaluation of adaptation or natural selection. In this paper, we build
a broader family of multivariate distributions: the Polya-splitting distributions. We
show that they emerge naturally as stationary distributions of a multivariate birth-
death process. This family of distributions is a consistent extension of non-zero sum
neutral models based on a master equation approach. It allows considering both to-
tal abundance of the community and relative abundances of species. We emphasize
that this family is large enough to encompass various dependence structures among
species. We also introduce the strong closure under addition property that can be use-
ful to generate nested multi-level dependence structures. Although all Pólya splitting
distributions do not share this property, we provide numerous example verifying it.
They include the previously known example with independent species, and also new
ones with alternative dependence structures. Overall, we advocate that Polya-splitting
distribution should become a part of the classic toolbox for the analysis of multivari-
ate count data in ecology, providing alternative approaches to joint species distribution
framework. Comparatively, our approach allows to model dependencies between species
at the observation level, while the classical JSDM’s model dependencies at the latent
process strata.

keywords: Species diversity; Ecological communities; Joint Species Distribution
Model; Neutral theory; Multivariate birth-death jump processes; Stationary Distri-
butions.
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1 Introduction

Understanding the processes that shape the biodiversity of ecological communities is a ma-
jor question in the context of global changes. A large fraction of empirical research about
understanding metacommunities relies on pattern-to-process approaches, i.e. detecting the
signature of processes through a statistical analysis of the observed distribution of species in
space and time. The success of pattern-to-process approaches relies on building an appropri-
ate null hypothesis, where some target process is nullified, and testing whether observations
deviate from it.

For 20 years, a family of neutral models, inspired from population genetics, have been
proposed as a baseline generating null hypotheses to investigate the effect of species ecological
niches. The neutrality assumption consists in assuming that all individuals are ecologically
equivalent irrespective of their species, genotypes, etc. hence cancelling any effect associ-
ated to ecological niches. One of the most famous example of neutral model is the model
introduced by Hubbell (2001). It is a zero-sum game: the total number of individuals in a
community is assumed constant, and dead individuals are immediately replaced by offspring
of the remaining individuals with equal chance to reproduce for any of them. Neutral model
has challenged former pattern-to-process approaches of ecological niches, which were based
on permutational apporaches, by showing that neutrality itself could generate non-random
structure and thus should be filtered out of patterns using specific models (Bell, 2005; Canard
et al., 2012). More precisely, it has been shown that this model yields a local distribution
of species abundances within communities that follows a Dirichlet-multinomial distribution
(Donnelly et al., 2001; Etienne and Alonso, 2005; Harris et al., 2017). In these studies, the
Dirichlet-multinomial distribution has sometimes been called a ‘dispersal-limited’ multino-
mial distribution (Etienne and Alonso, 2005).

The Dirichlet-multinomial distribution has several practical interests for pattern-to-process
analyses of empirical communities. First, it satisfies useful property denoted weak closure
under addition implying in particular that (i) if two species are lumped together, the multi-
variate distribution of the resulting distribution is still a Dirichlet-multinomial distribution
with a natural adaptation of parameters (Laroche et al., 2020); (ii) considering a subgroup
of species, the distribution of species abundances conditionnally to the size of the subgroup
is also Dirichlet-multinomial, with a natural adaptation of parameters (Laroche et al., 2015).
These properties have been used to design several tests in empirical ecological studies. Sec-
ond, it is readily implemented as a hierarchical process (Harris et al., 2017), hence facilitating
the computational aspects or the use of a Bayesian framework for inference purposes.

Importantly, the Dirichlet-multinomial distribution is robust to relaxing the unrealistic
zero-sum assumption, by modelling the stochastic dynamics of species abundances within a
community as a multivariate jump process. Community size then becomes a random variable
fluctuating in time. Using this approach, Haegeman and Etienne (2008) identified a class
of neutral models for which decomposing species abundances stationary distribution within
a community into a sum distribution (i.e. total number of individuals) and a conditional
split distribution (i.e. species labels of individuals) led to a split distribution that is still a
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Dirichlet multinomial.
Although those results about Dirichlet-multinomial split have triggered an important and

fruitful area of empirical research, they still represent a fraction of the possibilities offered
by the neutral theory. Most of the litterature about detecting deviation from neutrality in
species abundance data has focused on the split distribution conditionally to the total number
of individuals, but to our knowledge only few studies simultaneously discuss the sum and
the split (i.e. the full multivariate abundance distribution) as a tool to evaluate community
composition (Etienne et al., 2007).However this field has been mostly abandoned in favour
to other statistical frameworks based for instance on the multivariate Poisson - lognormal
distribution in the context of the joint species distribution model (JSDM) (Aı̈tchison and
Ho, 1989; Warton et al., 2015; Ovaskainen and Abrego, 2020). In addition, studies focusing
on the split distribution have mostly focused on formulations of the neutrality assumption
and ancillary hypotheses that necessarily lead to Dirichlet-multinomial distributions. If these
assumptions are relaxed or modified, we expect that new split distributions can be obtained
in models that still arguably remain neutral.

Our aim here is to show how relaxing some assumptions of neutral models can generalize
the sum-split decomposition with Dirichlet-multinomial split to the more general Polya-
splitting distributions family. We show that our framework covers classical distributions but
also lead to new ones. Hence our work promotes a unified neutral-based statistical frame-
work able to tackle the full multivariate abundance distribution of species, thus making an
interesting mechanistic alternative to current phenomenological JSDMs framework. We also
present a new general property denoted the strong closure under addition. This property
allows in particular proposing approaches based on recursive application of splitting distri-
butions to generate communities mixing dependent or independent species or group of species
simultaneously

Section 2 describes the family of multivariate Pólya splitting distributions. We specifically
focus on nine examples of such distributions sharing the property of strong closure under
addition. Section 3 shows that these distributions are stationary solutions of the master
equation under a specific parametric hypothesis on the ratio between birth and death rates.
Section 4 shows that this parametric assumption corresponds to a mildly extended version
of the neutral theory of biodiversity where the immigration rate of a species can depend on
its local abundance following a relationship identical across all species.

2 Polya splitting distributions

The first subsection recall the definition of multivariate Pólya distributions as urn models
with n random drawing. Then, assuming that n is a random number, the second subsection
presents the larger family of Pólya splitting distributions, introduced by Peyhardi and Fer-
nique (2017) and more generally studied by Peyhardi et al. (2021); Peyhardi (2023). Nine
examples of Pólya splitting distributions with remarkable properties are presented, which are
repeatedly referred to in the rest of the article.
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2.1 Multivariate Pólya distributions

The Pólya urn model is generally presented in terms of n random drawings of balls from
an urn, that initially contains θj ∈ N∗ balls of the jth color. One ball is drawn at random
and then replaced with c ∈ Z additional balls of the same color. A negative value for c
means that balls are removed from the urn. This procedure is repeated n times and focus
is made on the count N = (N1, . . . , NJ) of drawn balls for the J ≥ 2 different colors. Let
|N | =

∑J
j=1Nj denotes the sum of the vector N and ∆n =

{
n ∈ NJ : |n| = n

}
(resp.

Nn =
{
n ∈ NJ : |n| ≤ n

}
) the discrete simplex (resp. the discrete corner of the hypercube).

The multivariate count distribution for N is known as the multivariate Pólya distribution
and will be denoted by P [c]

∆n
(θ). Its probability mass function (pmf) is given by

P|N |=n (N = n) =

J∏
j=1

nj−1∏
k=0

r
[c]
θj

(kj)

n−1∏
k=0

r
[c]
|θ|(k)

,

where r
[c]
θ (k) = θ+ck

k+1
1θ+ck≥0, θ = (θ1, . . . , θJ) ∈ ΘJ

c . The indicator function ensures that

r
[c]
θ (k) ≥ 0 even if c < 0. Let us define R

[c]
θ (n) =

∏n−1
k=0 r

[c]
θ (k), then the pmf becomes

P|N |=n (N = n) =

J∏
j=1

R
[c]
θj

(nj)

R
[c]
|θ|(n)

.

The multivariate Pólya distribution turns out to be the multivariate hyergeometric distribu-
tion when c = −1, the multinomial distribution when c = 0 and the multivariate negative
hyergeometric distribution when c = 1. Reasoning by equivalence on the pmf, it can be
shown that these three distributions are the representative elements of their equivalence
classes: {P [c]

∆n
(θ) : c < 0}, {P [c]

∆n
(θ) : c = 0} and {P [c]

∆n
(θ) : c > 0}. Therefore, in the

following, a focus will be made only on the three cases c ∈ {−1, 0, 1}. Let us note that the
pmf for the last two cases can be extended for continuous values of θj ∈ R∗+ for j = 1, . . . , J .
The multivariate negative hyergeometric distribution is thereby extended to the Dirichlet
multinomial distribution. In summary, the three cases c ∈ {−1, 0, 1} respectively correspond
to the

• multivariate hypergeometric distribution, denoted by H∆n(θ) with Θ−1 = N∗ and

R
[−1]
θ (n) =

(
θ
n

)
,

• multinomial distribution, denoted byM∆n(π) where π = θ/|θ|, Θ0 = R∗+ and R
[0]
θ (n) =

θn,

• Dirichlet-multinomial distribution, denoted by DM∆n(θ) where Θ1 = R∗+ and R
[1]
θ (n) =(

n+θ−1
n

)
,

4



The pmf of these three distributions are presented in Table A.2 of Appendix A. The support
is ∆n when c = 0 or c = 1 and is ∆n ∩ �θ when c = −1, i.e., the intersection between the
simplex ∆n and the hyper-rectangle �θ = {n ∈ NJ : n1 ≤ θ1, . . . , nJ ≤ θJ}. It should be
noted that some authors refers to the Dirichlet multinomial distribution as the multivariate
Pólya distribution. All along the paper, the multivariate Pólya distribution will refer to the
general case that encompasses the three cases c ∈ {−1, 0, 1}.

2.2 Specific Pólya splitting distributions with remarkable proper-
ties

Pólya distributions cannot be considered as a sensu stricto multivariate distribution. Indeed,
the sum of the random vector N is fixed and only J − 1 elements over J are free. This kind
of distribution, supported on ∆n, is said to be singular. It is possible to define a non-
singular version, supported on Nn. The vector N is said to follow a non-singular Pólya
distribution, denoted by P [c]

Nn
(θ, γ) with additional parameter γ ∈ Θc, if the completed vector

(N ,m− |N |) follows the singular version P [c]
∆n

(θ, γ). However, the support of this extension
remains bounded (see Table A.2 of Appendix A for details about the non-singular version of
Pólya distributions).

Another way to relax the fixed sum assumption, is considering the sum |N | as a random
variable. The sum |N | then follows an univariate count distribution L(ψ) and the vectorN =

(N1, . . . , NJ) given the sum |N | = n follows a multivariate Pólya distribution P [c]
∆n

(θ1, . . . , θJ).
We thus obtain a Polya splitting distribution, that can be viewed as a compound distribution
denoted as follows:

N ∼ P [c]
∆n

(θ) ∧
n
L(ψ),

where ψ is an univariate or multivariate set of unknown parameters (e.g. univariate for the
Poisson distribution and bivariate for the negative binomial distribution). To be more explicit
the pmf of the Pólya splitting distribution is given by P (N = n) = P|N |=|n|(N = n)P (|N | =
|n|). According to L(ψ), several multivariate distributions can be defined sharing interesting
properties.

The weak closure under addition The weak closure under addition is the stability
under convolution of R

[c]
θ : for all θ, θ′ ∈ Θc

R
[c]
θ ∗R

[c]
θ′ = R

[c]
θ+θ′ , (1)

where ∗ denotes the discrete convolution. This identity plays a central role among the family
of Polya splitting distributions and corresponds to the Vandermonde’s identity, the Newton’s
binomial theorem and the Hagen-Rothe’s identity when c = −1, 0 and 1 respectively. It
could be shown that equation (1) implies the stability of the multivariate distribution under
marginalization; see Theorem 1 of Peyhardi et al. (2021) for details. Let focus on two such
stability properties.

(i) if two species are lumped together, the multivariate distribution of the resulting dis-
tribution is still a Pólya splitting distribution with a natural adaptation of parameters
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(Laroche et al., 2020), i.e., we have

(N1 +N2, N3, . . . , NJ) ∼ P [c]
∆n

(θ1 + θ2, θ3, . . . , θJ) ∧
n
L(ψ),

(ii) considering a subgroup of species, the distribution of species abundances conditionally
to the size of the subgroup is also Pólya distribution with a natural adaptation of
parameters (Laroche et al., 2015), i.e., we have

(N1, N2, N3)|N1 +N2 +N3 = n ∼ P [c]
∆n

(θ1, θ2, θ3).

It should be noted that all Pólya splitting distributions share this property, i.e., it holds for
any sum distribution L(ψ).

The strong closure under addition A Pólya splitting distribution is said to be strongly
closed under addition if the sum distribution and all the marginal distributions belong to the
same family of parametric distributions, i.e., if we have

∀j ∈ {1, . . . , J} ∃ψj : Nj ∼ L(ψj).

While weak property is share by all Pólya splitting distributions, strong property holds for
only specific sum distribution see Peyhardi (2023) for details about this closure property.
In the following, we propose nine sum distributions verifying strong closure property. The
first three distributions naturally extend singular Pólya distributions to their non-singular
version. The three others leads to independence splitting distributions. Finally, the three
last distributions allows the generalization of classical univariate count processes to their
multivariate version.

Canonical cases

In the canonical case, the sum distribution is defined as the univariate version of the non-
singular Pólya distribution P [c]

Nm
(θ, γ) . The sum distribution is then denoted by P [c]

m (θ, γ);
see Table A.1 for details about its pmf and support. Theorem 4 of Peyhardi et al. (2021)
showed that we have the following distribution identity

P [c]
∆n

(θ) ∧
n
P [c]
m (|θ|, γ) = P [c]

Nm
(θ, γ).

See Table 1 to write this identity in the three cases c ∈ {−1, 0, 1}. It could be shown that

marginals belongs to the same family of distribution, more precisely Nj ∼ P [c]
m (θj, |θ−j|+ γ)

(the strong closure under addition holds). The non-singular version has the advantage that
its support Nn has a dimension equal to J (whereas the support of the singular version ∆n

has a dimension equal to J − 1). Therefore the J variables N1, . . . , NJ are free (not related
by linear function) even if they are not independent. The graphical model of independence
of such a distribution is complete (Peyhardi, 2023). In summary for the canonical case, the
variables are free and not independent but the support is bounded.
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Independence cases

There exists a sum distribution L∗ such that all the variables N1, . . . , NJ are mutually in-
dependent. Moreover, all the margins belong to the same family L∗, i.e. the strong closure
under addition holds. It could be shown that the pmf of this distribution is

P (|N | = n) =
R

[c]
|θ|(n)αn∑∞

m=0R
[c]
|θ|(m)αm

, (2)

for some α > 0 and the marginals are given by

P (Nj = n) =
R

[c]
θj

(n)αn∑∞
m=0R

[c]
θj

(m)αm
. (3)

The distribution L∗ belongs to the family of power series distributions. It turns out to be the
binomial distribution (c = −1), the Poisson distribution (c = 0) and the negative binomial
distribution (c = 1) respectively; see Table 1 for details.

Dependent non-canonical cases

The last line of Table 1 presents three Pólya splitting distributions that share the strong
closure under addition without independence assumption and different of the canonical case
(demonstrations are given in Appendix B). Those distributions are obtained from the in-
dependent case assuming the parameter α (see eq. (2)) is a random variable. For instance
when c = −1, the sum distribution is a binomial distribution compound by a beta distribu-
tion, i.e., a beta binomial distribution. According to (3), it is easily seen that marginals also
follow beta binomial distributions. This particular distribution can be viewed as a new mul-
tivariate extension of the beta binomial distribution different from the more usual Dirichlet
multinomial (non singular version). It is supported on the hyper-rectangle �θ. For c = 0,
the Poisson distribution is coumpound by a gamma distribution to obtain a negative bino-
mial distribution. The corresponding Pólya splitting distribution turns out to be the natural
multivariate extension, i.e., the negative multinomial distribution. Finally, for c = 1, the
negative binomial is compound by a beta distribution to obtain a negative beta binomial dis-
tribution, also known as the univariate generalized Waring distribution (Irwin, 1968). The
corresponding Pólya splitting distribution turns out to be its natural multivariate extension,
known as the multivariate generalized Waring distribution (MGWD) (Xekalaki, 1986). This
dependent and non-canonical case has been recently formalized by Peyhardi (2023) as the
inverse Pólya distribution.

3 Stationary distributions of multivariate birth-death

processes

We show that the class of Pólya splitting distributions introduced in former section exactly
corresponds to the stationary distributions of multivariate birth-death processes under spe-
cific parametric assumptions on jumping rates. We further provide more precise conditions
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Hypergeometric Multinomial Dirichlet multinomial
splitting distributions splitting distributions splitting distributions

c = −1 c = 0 c = 1

Canonical H∆n(θ) ∧
n
Hm(|θ|, γ) M∆n(π) ∧

n
Bm(p) DM∆n(θ) ∧

n
βBm(|θ|, γ)

cases = = =
HNm(θ, γ) MNm(p · π) DMNm(θ, γ)

θ ∈ N∗J , γ ∈ N∗, m ∈ N∗, m ≤ |θ|+ γ π ∈ ∆, m ∈ N∗ θ ∈ R∗J+ , γ ∈ R∗+, m ∈ N∗

(support = (Nm \ Nm−γ) ∩�θ) (support = Nm) (support = Nm)

Independent H∆n(θ) ∧
n
B|θ|(p) M∆n(π) ∧

n
P(λ) DM∆n(θ) ∧

n
NB(|θ|, p)

cases = = =
J⊗
j=1

Bθj(p)
J⊗
j=1

P(πjλ)
J⊗
j=1

NB(θj, p)

θ ∈ N∗J , p ∈ (0, 1) π ∈ ∆, λ ∈ R∗+ θ ∈ R∗J+ , p ∈ (0, 1)
(support = �θ) (support = NJ) (support = NJ)

Dependent H∆n(θ) ∧
n
βB|θ|(a, b) M∆n(π) ∧

n
NB(a, p) DM∆n(θ) ∧

n
βNB(|θ|, a, b)

non-canonical = = =
cases Mβ�θ(a, b) NM(a, p · π) MGWD(b,θ, a)

θ ∈ N∗J , a ∈ R∗+, b ∈ R∗+ π ∈ ∆, a ∈ R∗+, b ∈ R∗+ θ ∈ R∗J+ , a ∈ R∗+, b ∈ R∗+
(support = �θ) (support = NJ) (support = NJ)

Table 1: Nine Pólya splitting distributions that share the strong closure under addition. The
notation N ∼

⊗J
j=1 Lj means that each Nj follows the distribution Lj independently of all

other j′ 6= j.

on rates that lead to the nine Pólya splitting distributions previously described (see Table
1). Let us start with the univariate case (J = 1) to recall classical results that will be useful
to explicitly describe the stationary distribution of the sum in the multivariate case (J ≥ 2).

3.1 The univariate case

Let N(t) denote an univariate birth/death process with q+(n) (resp. q−(n)) denoting the
birth rate (resp. death rate) for a population of size n. Let pn = P (N = n) denote the pmf of
the stationary distribution. It can be shown, by induction on n, that solutions of the master
equation at stationary state are solutions of the detailed balance equation:

q−(n+ 1)pn+1 = q+(n)pn

Remark that for every count distribution (pn)n∈N, it is possible to find two sequences of birth
and death rates such that the detailed balance holds. Moreover, assuming that the death
rate is positive, i.e., q−(n) > 0 for all n ≥ 1, then the detailed balance becomes

pn+1 = pnq(n),
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where q(n) = q+(n)/q−(n + 1). The support of such a distribution is necessary of the
connected form {0, . . . ,m} with m ∈ N ∪ {∞} and we have:

pn =
Qn∑
k≥0Qk

,

where Qn =
∏n−1

k=0 q(k) for n ≥ 1 and Q0 = 1. Specific stationary distribution are obtain
according to specific parametric assumption on q(n). For instance if q(n) = 1

n+1
α for some

α ∈ R∗+ then the stationary distribution is a Poisson distribution with parameter α. See Ap-
pendix C for several examples of parametric assumption on q(n) that lead to usual univariate
distributions (e.g. binomial, negative binomial).

3.2 The multivariate case

Here we now describe the multivariate jump process N (t) = {N1(t), . . . , NJ(t)} depicting
species abundances within a community. We then focus on sufficient conditions on jumping
rates to ensure the existence of a stationary distribution with detailed balance. In this
specific case, it is straightforward to derive a closed form of the stationary distribution. In
the following let pn(t) = P{N (t) = n} denote the pmf at time t and pn = P (N = n) denote
the pmf at stationary state.

The master equation

∂pn(t)

∂t
=

J∑
j=1

pn−ej(t)q
−
j (n− ej) + pn+ej(t)q

+
j (n+ ej)− pn+ej(t){q−j (n) + q+

j (n)} (4)

where q−j (n) (resp. q+
j (n)) denotes the jumping rate from n to n − ej (resp. to n + ej)

and ei is a vector of size J where the elements are all equal to zero except the ith equal
to one. It is usual to assume that q−j (n) > 0 for all n ∈ NJ such that nj > 0 (i.e., any
individual is mortal). Moreover it is assumed that q+

j (0) > 0 for all j = 1, . . . , J (where
0 = (0, . . . , 0) denotes the null vector) in order to avoid the case of non observed species (i.e.,
P (Nj = 0) = 1).

The Detailed balance equation is given, for all j ∈ {1, . . . , J} and all n ∈ NJ , by

pn+ejq
−
j (n+ ej) = pn q

+
j (n). (5)

Since it is assumed that q−j (n) > 0 for all n ∈ NJ such that nj > 0 then the detailed balance
becomes

pn+ej = pn qj(n) (6)

where qj(n) = q+
j (n)/q−j (n+ej). The idea is then to recursively use the equality (6) in order

to express pn according to p0 and thus derive a closed analytical formula for the stationary
distribution pmf of the multivariate jump process.
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Necessary and sufficient conditions for detailed balance Note that the detailed
balance holds if and only if the product of the quantitites qj along every increasing path
between 0 and n is the same. This is equivalent to assume that this product is constant
along every path between n and n + ei + ej with i 6= j. There are only two such path:
n→ n+ ei → n+ ei + ej and n 99K n+ ej 99K n+ ej + ei. For the first path the detailed
balance equation gives pn+ei+ej = pn qi(n) qj(n + ei). For the second path the detailed
balance equation gives pn+ei+ej = pn qj(n) qi(n + ej). Therefore a necessary and sufficient
condition to the existence of a solution is the equality

qi(n) qj(n+ ei) = qj(n) qi(n+ ej), (7)

for all i 6= j ∈ {1, . . . , J} and all n ∈ NJ such that pn 6= 0. Equation (7) corresponds to the
Kolmogorov’s criterion in the case of a multivariate birth-death process with positive death
rates. This criterion is a necessary and sufficient condition for the reversibility of the process.

Parametric assumption on birth and death rates Assume that there exists some
parameters c ∈ {−1, 0, 1} and θ = (θ1, . . . , θJ) ∈ ΘJ

c and two non-negative functions s+ and
s− such that the birth and death rates have the following form

q+
j (n) = s+(|n|)(θj + cnj)1θj+cnj≥0,
q−j (n) = s−(|n|)nj.

(8)

The birth-deah rate thus becomes

qj(n) = s(|n|) r[c]
θj

(nj). (9)

where s(n) = s+(n)
s−(n+1)

for all n ∈ N and r
[c]
θ (n) = θ+cn

n+1
1θ+cn≥0. It is easily seen that this

parametric assumption (9) respects the Kolmogorov’s criterion (7) and thus the detailed
balance equation (5). In order to obtain a well defined stationary distribution we add the
following assumption on s(n):

∑
n≥0

R
[c]
|θ|(n)

n−1∏
k=0

s(k) <∞. (10)

Theorem 1 Assume that the hypothesis (9) and (10) hold then

• the stationary distribution for N = (N1, . . . , NJ) is the Polya splitting distribution

P [c]
∆n

(θ) ∧
n
L

• L is the stationary distribution of a univariate process with birth/death ratio equal to

q(n) = s(n)r
[c]
|θ|(n) (its support is necessary of the form {0, . . . ,m} where m ∈ N∪{∞}).

Proof: Under assumption (9), using recursively (6), we obtain the pmf of the stationary
distribution as follows:

pn = p0

|n|−1∏
m=0

s(m)
J∏
j=1

nj−1∏
k=0

r
[c]
θj

(k).
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Using notations of Section 2 we obtain

pn = p0

|n|−1∏
m=0

s(m)
J∏
j=1

R
[c]
θj

(nj).

Since the pmf is written as a recurrent product, it can be remarked that the support of the
stationary distribution is exactly the connexe Nm when c = 0 or c = 1 and the connexe
Nm ∩ �θ when c = −1, where m is the smaller integer such that s(m) = 0. Note that if
m = +∞ then the support becomes NJ when c = 0 or c = 1 and �θ when c = −1. Otherwise,
We know that the probability of n can be conditioned by the sum as follows:

pn = P (|N | = |n|) P|N |=|n|(N = n).

By identifiability between the two previous equalities (on the support) we obtain the sum
distribution and the split distribution (repartition into components given the sum). More
precisely we have

P|N |=n(N = n) =

∏J
j=1R

[c]
θj

(nj)

C(n)
,

for all n ∈ N, where C(n) is the normalizing constant

C(n) =
∑
n∈∆n

J∏
j=1

R
[c]
θj

(nj),

and

P (|N | = n) =
C(n)

∏n−1
k=0 s(k)∑

m≥0C(m)
∏m−1

k=0 s(k)
.

Note that C(n) is positive since the identification is made on the support. Now remark

that C(n) turns out to be the convolution C = R
[c]
θ1
∗ · · · ∗ R[c]

θJ
. According to the Newton’s

binomial theorem, for c = 0, (respectively the Vandermonde’s identity for c = −1 and the
Hagen-Rothe identity for c = 1) we have

R
[c]
θ1
∗ · · · ∗R[c]

θJ
= R

[c]
|θ|,

and thus the pmf of N given the sum |N | = n is

P|N |=n(N = n) =

∏J
j=1R

[c]
θj

(nj)

R
[c]
|θ|(n)

,

i.e., given |N | = n we have N ∼ P [c]
∆n

(θ) (multivariate Polya distribution). The sum
distribution is now given by

P (|N | = n) =
R

[c]
|θ|(n)

∏n−1
k=0 s(k)∑

m≥0R
[c]
|θ|(m)

∏m−1
k=0 s(k)

. (11)

This is a proper distribution according to assumption (10). Moreover, by definition we have

R
[c]
|θ|(n) =

∏n−1
k=0 r

[c]
|θ|(k) (with convention R

[c]
|θ|(0) = 1) and so the sum distribution can be

viewed as the stationary distribution of an univariate process whose the ratio of birth/death
is q(n) = s(n)r|θ|(n).
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Parametric hypothesis on s(n)

For any univariate count distribution L with a support of the form {0, . . . ,m} where m ∈
N ∪ {∞}, there exists a birth/death rate q(n) (and thus a function s(n)) such that the
corresponding birth-death process converges toward the stationary distribution L. Therefore,
for any Pólya splitting distribution P [c]

∆n
(θ) ∧

n
L (with a sum support of the form {0, . . . ,m}

where m ∈ N ∪ {∞}) we are able to write the birth and death rates (through rθ(n) and
s(n)) such that the multivariate jump process converges toward the stationary distribution

P [c]
∆n

(θ) ∧
n
L. Let us illustrate this fact with nine parametric assumptions on s(n) that lead

to the nine Pólya splitting distributions of Table 1. According to Theorem 1 the sum is a
univariate birth-death process driven by the birth/death rate q(n) = s(n)r

[c]
|θ|(n). Appendix C

details the parametric form for q(n) that leads to specific univariate distributions (binomial,
Poisson, etc . . . ). By identification it is possible to find the parametric form of s(n) in each
case c ∈ {−1, 0, 1} and deduce the sum distribution as compiled in table 2. It is also possible
to find the parametric form of s(n) in a general way, i.e., for any c ∈ {−1, 0, 1}; see Appendix
D for details about the canonical cases.

Setting apart the canonical case with c = 1 and γ < 1, which will be discussed later, we
observe clear qualitative differences among the nine examples. Each case corresponds to a
particular variation profile of s(n). The function s decreases in the canonical case, is constant
in the independent case and increases in the dependent non-canonical case (see Appendix F
for details). Moreover, as c increases in {−1, 0, 1}, the convexity of s(n) shows consistent
changes which do not depend on the considered case. When c = −1, s(n) is convex, when
c = 0, s(n) is linear and, when c = 1, s(n) is concave.

The exception to above pattern is the canonical case with c = 1 when γ < 1. In this
case, s(n) is increasing and convex, thus resembling the dependent non-canonical case with
c = −1. This exception is obtained when the sum follows the beta binomial distribution
βBm(|θ|, γ) with γ < 1 inducing a peak at n = m, hence promoting saturation of community
size at m.

c = −1 c = 0 c = 1

Canonical s(n) =
m− n

γ −m+ n+ 1
1m−γ≤n<m s(n) =

m− n
γ

1n<m s(n) =
m− n

γ +m− n− 1
1n<m

cases γ ∈ N∗, m ∈ N∗, m ≤ |θ|+ γ γ ∈ R∗+, m ∈ N∗ γ ∈ R∗+, m ∈ N∗

Independent s(n) = α s(n) = α s(n) = α

cases α ∈ R∗+ α ∈ R∗+ α ∈ (0, 1)

Dependent s(n) =
a+ n

|θ|+ b− n− 1
1n<|θ| s(n) =

a+ n

|θ|+ b
s(n) =

b+ n

|θ|+ a+ b+ n
non-canonical

cases a ∈ R∗+ and b ∈ R∗+ a ∈ R∗+ and b ∈ R∗+ a ∈ R∗+ and b ∈ R∗+

Table 2: Parametric hypothesis on s(n) that lead to the nine Pólya splitting distributions of
Table 1
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4 Biological interpretations of the Pólya splitting dis-

tributions

From a biological perspective, the birth and death rates of the multivariate jump process
defined by the master equation (see eq. (4)) are generally assumed to have the following
form:

q+
j (n) = mj(n) + njbj(n)
q−j (n) = njdj(n)

where mj(n) is the immigration rate of species j, bj(n) is the per-capita local reproduction
rate of species j and dj(n) is the per-capita local death-or-emigration rate of species j.
Classical neutral models make two additional assumptions. The first corresponds to the
strong neutrality:

q+
j (n) = m(|n|)πj + njb(|n|)
q−j (n) = njd(|n|) (12)

The second assumption is detailed balance. Given the strong neutrality assumption and
discarding degenerated cases m(0) = 0 or m(1) = 0, detailed balance occurs if and only if
there exists a constant Ĩ ≥ 0 such that

b(n) = Ĩm(n) (13)

for all n ∈ N∗ (see Appendix E). The parameter I = 1/Ĩ his known as the effective number
of migrants (Etienne and Olff, 2004). Here we focus on a generalization of equations (12),
considering new expressions of birth and death rates as follows:

q+
j (n) =

[
m(|n|)

(
πj − K̃nj

)
+ njb(|n|)

]
1πj−K̃nj≥0

q−j (n) = njd(|n|)
(14)

with K̃ ∈ R+. The master equation with assumption (14) can be called a neutral model
with density-dependent immigration, because the rate of immigration of species j is now
m(|n|)(πj − K̃nj), which depends on species j and on the local population size nj. Assum-
ing K̃ = 0 leads to the usual equations (12). We still assume (13), which is a necessary
and sufficient condition to obtain detailed balance (see Appendix E.2 for details about the
necessity). As corollary of Theorem 1, we obtain the link between the neutral model with
density-dependent immigration (14) and assumption (8) that leads to Pólya splitting distri-
butions.

Corollary 1 Any Polya splitting distribution (with sum distribution support of the form
{0, . . . ,m} where m ∈ N ∪ {∞}) can be obtained as a stationnary distribution of a jumping
process with rates (14) verifying detailed balance condition (13). Reciprocally, let a jumping
process with rates (14) with detail balance condition (13). If at least K̃ or Ĩ is null then the
stationary distribution is a Polya splitting distribution.
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Proof: Let P [c]
∆n

(θ) ∧
n
L be a Pólya splitting distribution with sum distribution support of

the form {0, . . . ,m} where m ∈ N ∪ {∞}. According to Theorem 1 this is the stationary
distribution of a jumping process satisfying assumption (9) on qj(n). Let πj = θj/|θ| and
m(n), d(n) such that

m(n)

d(n+ 1)
= |θ|s(n). (15)

Moreover, let assume that

K̃ =

{
|θ|−1 if c = −1,
0 if c = 0 or c = 1,

and Ĩ =

{
0 if c = −1 or c = 0,
|θ|−1 if c = 1.

Then

qj(n) =
m(|n|)

d(|n|+ 1)

πj + (Ĩ − K̃)nj
nj + 1

1θj+cnj≥0,

qj(n) =
m(|n|)

(
πj − K̃nj

)
+ b(|n|)nj

d(|n|+ 1)(nj + 1)
1θj+cnj≥0,

where b(n) = Ĩm(n) and 1θj+cnj≥0 = 1πj−K̃nj≥0 and thus the desired result. Reciprocally, let

a jumping process with rates (14) with detail balance condition (13). If at least K̃ or Ĩ is
null then the parametrization is reversible.

In the previous section, we derived results about the variation of s(n) among the nine
Pólya splitting distributions presented in table 1. Migration m(n) and death d(n) rates

directly relate to s(n) through s(n) = |θ|−1 m(n)
d(n+1)

. Therefore, when assuming that one of
these rates is constant with community size n, one obtains biologically interpretable results
about the density-dependence effect on the other rate. For instance, if one assumes that
d(n) = 1 (i.e., constant per-capita local death or emigration rate), m(n) = |θ|s(n). Here
again discarding the canonical case with c = 1 and γ < 1, we obtain that m(n) always
decreases in canonical cases, is constant in independent cases and increases in dependent non-
canonical cases. From a biological perspective, this suggests that, as community size increases
and before hitting a potential regulation threshold m <∞, immigration and reproduction of
within the community become harder in the canonical case (negative density dependence),
remain unaffected in the independent case and become easier in the other case (positive
density dependence). We also obtain that m(n) is convex when c = −1, which suggest
that the marginal variation in reproduction and immigration increases as community density
increases. Migration m(n) is linear when c = 0 and is concave when c = 1, which means
that the marginal variation in reproduction and immigration increases as community density
decreases (see Table 3).

5 Discussion and perspectives

We presented the Polya-splitting distributions, a set of multivariate distributions with two
key properties : the sum is a positive random variable on N and the split conditionally to the
sum is a Polya distribution. We recalled that Polya-distribution (the split) can be classified
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c = −1 c = 0 c = 1

All K̃ = |θ|−1 K̃ = 0 K̃ = 0

cases Ĩ = 0 Ĩ = 0 Ĩ = |θ|−1

d(|n|) = 1 d(|n|) = 1 d(|n|) = 1

Canonical m(|n|) = |θ| (m−|n|)
γ+1−(m−|n|)1|n|≤m m(|n|) = |θ|

γ
(m− |n|)1|n|≤m m(|n|) = |θ| m−|n|

γ−1+m−|n|1|n|≤m
cases b(|n|) = 0 b(|n|) = 0 b(|n|) = m−|n|

γ−1+m−|n|1|n|≤m
Independent m(|n|) = α|θ| m(|n|) = α|θ| m(|n|) = α|θ|

cases b(|n|) = 0 b(|n|) = 0 b(|n|) = α

Dependent m(|n|) = |θ| a+|n|
|θ|+b−|n|−1

m(|n|) = |θ|a+|n|
|θ|+b m(|n|) = |θ| b+|n|

|θ|+a+b+|n|

non-canonical cases b(|n|) = 0 b(|n|) = 0 b(|n|) = b+|n|
|θ|+a+b+|n|

Table 3: Parametric hypothesis on extended neutral models leading to the nine Pólya splitting
distributions presented in table 1. Dark gray indicates cases where the split distribution has
been characterized (Haegeman and Etienne, 2008) while light gray stands for cases where
both split and sum distributions have been characterized (Etienne et al., 2007). Other cases
(white boxes) are new.

in three categories, depending on a parameter c = -1, 0 or 1. The case c=1 corresponds
to a Dirichlet-multinomial split, the case c=0 to a multinomial split and the case c=-1 to a
hypergeometric split. Our main contribution is to connect those distributions to the neutral
theory of biodiversity in ecology, a useful null model allowing the evaluation of non-neutral
processes such as adaptation or natural selection (Alonso et al., 2006). We found that for
any Polya-splitting distribution, irrespective of the value of c in the split but with a sum
support of the form {0, . . . ,m} where m ∈ N∪{∞}, there exists a multivariate jump process
of neutral species with such stationnary distribution. However, staying at the very general
level for the sum distribution, the associated transition rates may not have a straightforward
biological interpretation. We therefore exhibited, nine transition rates parametrization with
meaningful biological interpretation leading to usual parametric distributions. Reciprocally,
if multivariate jump process of neutral species follows the detailed balance assumption and
has a well-defined stationary distribution of the sum, then the multivariate distribution of
species counts is a Polya-splitting distribution.

Kadmon and Allouche (2007) had already shown that a variety of neutral jump processes
with detailed balance assumption (formalized in eq. 2 in their work) could generate Multino-
mial or Dirichlet-Multinomial split distributions that correspond to Polya distributions with
c = 0 or 1 respectively. However, they did not identify neutral jump processes that could
generate c = −1 because they made the classic assumption that the positive jump rate of
a species j linearly increased with the local population size of species j with a positive or
null slope b that corresponds to a per-capita bitrh rate. Under this assumption, only Multi-
nomial and Dirichlet-multinomial split can be obtained (c = 0 or 1). Because we started
from the description of the full family of Polya-distribution, we were able to ask the ques-
tion of whether Polya-splitting distribution with hypergeometric split (c = −1) could also
be obtained as stationnary distributions of neutral jump processes — which we showed to
be true — and what were the peculiarities of these processes that depart from e.g. models
condidered in Kadmon and Allouche (2007). We evidenced that the key difference is that
hypergeometric split when the positive jump rate of species j linearly decreases with its local
population size. This would correspond to a negative per capita birth rate in Kadmon and
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Allouche (2007), hence explaining why they did not explore this track. Here, we showed that
this negative relationship between positive jump rate and local population size can emerge
in a well-defined case: when a limited quantity of available propagules can immigrate from
the regional pool to a local site where local birth rate is zero, i.e. the community is a pure
sink.

We focused our study on the stationary state of a biological community following a neutral
jump process. In practice, only a fraction of the community is observed, through a sampling
process. In the case c = 0 or 1, Etienne and Alonso (2005) noticed that the Dirichlet-
multinomial split of the sum among species verify a “subsampling property”: when applying
a hypergeometric sampling process with fixed sample size over the community, the resulting
subsample still followed a Dirichlet-multinomial distribution with the same parameters. We
conjecture that this property still holds for the case c = −1, although this remains to be
properly shown. This property remarkably simplifies the statistical study of species relative
abundances within the community. By contrast, the hypergeometric sampling with fixed
size does not allow studying the sum distribution, because the sample size is artificially
controlled, independently from the real community size. This is quite limiting: our results
emphasized the importance of studying the total sum abundance as a random variable,
because of its links with the dependence structures among species. In particular, we show
that independence is a consequence of parametric assumption made on birth and death
rates and not a necessary assumption per se, contrary to what was posited by other authors
(Etienne et al., 2007). Therefore we suggest that a stronger focus should now be given on
sampling processes that preserves information about the community size, like process that
controls the distance covered or the time spent during sampling rather than the number of
individuals. This requires to explicit sampling models accounting for the spatio-temporal
distribution of studied organisms (Jousimo and Ovaskainen, 2016) and to study stability
properties of associated thinning operators (Peyhardi, 2023).

Pólya splitting distributions induce only two types of dependence structures: either all
species are independent or fully dependent with homogenized correlation sign. To extend
this binary setting towards more complex nested dependence structures between species or
communities, we suggest the use of recursive application of splitting distributions. From this
perspective, the strong closure under addition property plays an essential role by preserving
distributions across levels, hence allowing a full control of generated dependencies. This
emphasizes the importance of using appropriate choices of Pólya splitting distributions at
each level to ensure strong closure under addition.

For instance, let us assume that we aim at simulating species communities composed of
five species s1, . . . , s5. The first three species (s1, s2 and s3) belongs to a community C1

and are all fully positively correlated, corresponding to mutualist species context or species
sharing underlying environmental factors. The two others species (s4 and s5) belongs to a
second community, C2 correlated to C1. These two species s4 and s5 are assumed to be
independent. Such situation can be easily obtained combining negative binomial for the
sum distributions and multinomial or Dirichlet multinomial distributions for split compo-
nents (with specific constraint on parameters); see figure 1). Another example relies on the
simulation of negatively correlated species within the first community C1 (exclusive species
context) and non-dependent species within C2 and assuming independence between C1 and
C2. Such simulation can be performed combining binomial distributions for sum parts with
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multinomial and/or hypergeometric distribution for splits. However, does such sequential
structure is solution of the master equation? It remains an open question and should be
carefully study.

While multinomial or Dirichlet multinomial regression has already been used in neutral
community analysis (Jabot et al., 2008; Jabot, 2010), the inclusion of environmental factors
in the Pólya splitting distributions is a natural extension. It could be achieved assuming
parameters varied according to covariates as follows:

P [c]
∆n
{θ(x)} ∧

n
L{ψ(x)},

where x = (x1, . . . , xp) denotes the vector explanatory variables (see Peyhardi et al. (2021)
for more details in the multinomial splitting regression context). Note that parameters could
be constrained to be the same in the split and sum parts.

Finally, combining graph hierarchical approach with the inclusion of environmental covari-
ates at each node leads to propose nested multi-level inhomogenous splitting models. Such
models should be interesting alternatives to classical approaches used in joint species distri-
bution contexts mainly based on conditional Independence’s (Warton et al., 2015; Ovaskainen
and Abrego, 2020) and the use of the multivariate Poisson log-Normal distribution. Compar-
atively, our approach allows to model dependencies between species at the observation level,
while the classical JSDM’s model dependencies at the latent process strata. While correlation
relationships estimated at the latent processes inform correlations between observations, it
does not allow to deduce dependencies structures at the observation scales (Aı̈tchison and
Ho, 1989; Chiquet et al., 2021). A null correlation does not imply independence in the
multivariate Poisson context.

NB(θ1 + θ2, p)

M∆n (π1, π2)

NB (θ1 + θ2, p
′
1)

M∆n (π′1, π
′
2, π

′
3)

NB(θ1 + θ2, p
′′
1) NB(θ1 + θ2, p

′′
2) NB(θ1 + θ2, p

′′
3)

NB(θ1 + θ2, p
′
2)

DM∆n (θ1, θ2)

NB(θ1, p
′
2) NB(θ2, p

′
2)

Dependent communities

Dependent species Independent species

Figure 1: Example of possible simulation schemes combining multi dependent levels
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A Notations of different distributions

Name Notation space parameter support pmf (pn)

Pólya P [c]
m (θ, γ) θ ∈ Θc, γ ∈ Θc, m ∈ N∗

R
[c]
θ (n)R

[c]
γ (m− n)

R
[c]
θ+γ(m)

hypergeometric (c = −1) Hm(k, l) k ∈ N∗, l ∈ N∗,m ∈ N∗, m ≤ k + l {0, . . . ,m} ∩ {m− l, . . . , k}
(
k
n

)(
l

m−n

)(
k+l
m

)
binomial (c = 0) Bm(p) p ∈ (0, 1), m ∈ N∗ {0, . . . ,m}

(
m

n

)
pn(1− p)m−n

beta binomial (c = 1) βBm(a, b) a ∈ R∗+, b ∈ R∗+,m ∈ N∗ {0, . . . ,m}
(
n+a−1
n

)(
m−n+b−1
m−n

)(
m+a+b−1

m

)
Table A.1: Notations and pmf of univariate Pólya distributions

Name Notation space parameter support pmf (pn)

Singular version

multivariate Pólya P [c]
∆n

(θ) n ∈ N∗, θ ∈ ΘJ
c

∏J
j=1R

[c]
θj

(nj)

R
[c]
|θ|(n)

multivariate hypergeometric (c = −1) H∆n(k) n ∈ N∗, k ∈ N∗J ∆n ∩�k

∏J
j=1

(
kj
nj

)(|k|
n

)
multinomial (c = 0) M∆n(π) n ∈ N∗, π ∈ ∆ ∆n

(
n

n

) J∏
j=1

π
nj

j

Dirichlet multinomial (c = 1) DM∆n(α) n ∈ N∗, α ∈ R∗J+ ∆n

∏J
j=1

(
nj+αj−1

nj

)(
n+|α|−1

n

)
Non-singular version

multivariate Pólya P [c]
Nm

(θ, γ) m ∈ N∗, θ ∈ ΘJ
c , γ ∈ Θc

R
[c]
γ (m− |n|)

∏J
j=1R

[c]
θj

(nj)

R
[c]
|θ|+γ(m)

multivariate hypergeometric (c = −1) HNm(k, l) m ∈ N∗, k ∈ N∗J , l ∈ N∗ (Nm \ Nm−l) ∩�k

(
l

m−|n|

)∏J
j=1

(
kj
nj

)(|k|+l
m

)
m ≤ |k|+ l

multinomial (c = 0) MNm(π∗) m ∈ N∗, π∗ ∈ N Nm

(
m

n

)
(1− |π∗|)m−|n|

J∏
j=1

π
nj

j

Dirichlet multinomial (c = 1) DMNm(α, β) m ∈ N∗, α ∈ R∗J+ , β ∈ R∗+ Nm

(
m−|n|+β−1

m−|n|

)∏J
j=1

(
nj+αj−1

nj

)(
m+|α|+β−1

m

)
Table A.2: Notations and pmf of multivariate Pólya distributions (singular and non-singular
versions)
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Name Notation space parameter support pmf (pn)

Poisson P(λ) λ ∈ R∗+ N e−λ
λn

n!

negative binomial NB(r, p) r ∈ R∗+, p ∈ (0, 1) N

(
n+ r − 1

n

)
pn(1− p)r

beta-negative binomial βNB(r, a, b) r ∈ R∗+, a ∈ R∗+, b ∈ R∗+ N

(
n+ r − 1

n

)
B(a+ r, b+ n)

B(a, b)

Table A.3: Notations and pmf of some usual univariate distributions

B Strong closure under addition (specific cases)

Let us show the strong closure under addition for the three Pólya splitting distributions
presented in the third line of Table 1. We have to show that marginal distributions and sum
distribution belong to the same family.

• c = −1 According to Theorem 1 of Peyhardi et al. (2021) the marginals are given by
the hypergeometric damage distribution

Hn(θj, |θ−j|) ∧
n
βB|θ|(a, b) = Hn(θj, |θ−j|) ∧

n

{
B|θ|(p) ∧

p
β(a, b)

}
=
{
Hn(θj, |θ−j|) ∧

n
B|θ|(p)

}
∧
p
β(a, b)

= Bθj(p) ∧
p
β(a, b)

Hn(θj, |θ−j|) ∧
n
βB|θ|(a, b) = βBθj(a, b)

The first equality uses the definition of the beta-binomial distribution, the second one
uses the Fubini theorem (inversion of sum on n and integral on p), the third one
uses the stability of the binomial distribution under hypergeometric damage process
(obtained in the case of independence) and the last one uses again the definition of the
beta-binomial distribution.

• c = 0 According to Theorem 1 of Peyhardi et al. (2021) the marginals are given by the
binomial damage distribution Bn(πj) ∧

n
NB(r, p). Theorem 6 of Peyhardi et al. (2021)

showed the stability of the negative binomial distribution under the binomial damage
process, i.e., we have

Bn(πj) ∧
n
NB(r, p) = NB(r, p′),

where p′ =
πjp

πjp+1−p . The demonstration is based on the generative function of a binomial

damage distribution. This result can also be obtained by following the way of the
demonstartion of the previous case, recalling that a negative binomial is a Poisson
mixed by a gamma distribution.
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• c = 1 According to Theorem 1 of Peyhardi et al. (2021) the marginals are given by the
beta-binomial damage distribution

βBn(θj, |θ−j|) ∧
n
βNB(|θ|, a, b) = βBn(θj, |θ−j|) ∧

n

{
NB(|θ|, p) ∧

p
β(a, b)

}
=
{
βBn(θj, |θ−j|) ∧

n
NB(|θ|, p)

}
∧
p
β(a, b)

= NB(θj, p) ∧
p
β(a, b)

βBn(θj, |θ−j|) ∧
n
βNB(|θ|, a, b) = βNB(θj, a, b)

This demonstration follows the same ways as in case c = −1.

C Some stationary distributions of univariate birth-

death process

According to different assumptions on the ratio q(n) = q+(n)
q−(n+1)

, we find different distributions

(pn)n≥0. Recall that

pn =
Qn∑
m≥0Qm

,

with Qn =
∏n−1

k=0 q(k).

C.1 Univariate Pólya distributions

• Hypergeometric distribution: if q(n) = (k−n)(m−n)
(n+1)(l−m+n+1)

1max(0,m−l)≤n<min(m,k) with k ∈

N∗, l ∈ N∗ and m ≤ k + l then Qn =
(k
n)(

l
m−n)

( l
m)

and

pn =

(
k
n

)(
l

m−n

)(
k+l
m

) , max(0,m− l) ≤ n ≤ min(m, k),

i.e., N ∼ Hm(k, l).

• Binomial distribution: if q(n) = (M−n)π
(n+1)(1−π)

1n<m with π ∈ (0, 1) and m ∈ N∗ then

Qn =

(
m

n

)
πn

(1− π)n
and

pn =

(
m

n

)
πn (1− π)m−n , 0 ≤ n ≤ m

i.e., N ∼ Bm(π).
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• Beta-binomial distribution: if q(n) = (a+n)(m−n)
(n+1)(m+b−n−1)

1n<m with a ∈ R∗+, b ∈ R∗+ and

m ∈ N∗ then Qn =
(n+a−1

n )(m−n+b−1
m−n )

(m+b−1
m )

and

pn =

(
n+a−1
n

)(
m−n+b−1
m−n

)(
m+a+b−1

m

) , n ≤ m

i.e., N ∼ βBm(a, b).

C.2 Other univariate distributions

• Poisson distribution: if q(n) = 1
n+1

α with α ∈ R∗+ then Qn = αn

n!
and

pn = e−α
αn

n!
, n ≥ 0,

i.e., N ∼ P(α).

• Negative binomial distribution: if q(n) = n+α
n+1

π with π ∈ (0, 1) and α ∈ (0,∞) then

Qn =
(
n+α−1

n

)
πn and

pn =

(
n+ α− 1

n

)
πn(1− π)α, n ≥ 0,

i.e., N ∼ NB(α, π).

Geometric distribution: if q(n) = π with π ∈ (0, 1) then Qn = πn and

pn = πn(1− π), n ≥ 0,

i.e., N ∼ G(π).

Remark that the geometric distribution is a sub-case of the negative-binomial distribu-
tion, more precisely we have G(π) = NB(1, π).

• Beta negative binomial distribution: if q(n) = (α+n)(b+n)
(n+1)(α+a+b+n)

with α ∈ R∗+, b ∈ R∗+ and

a ∈ R∗+ then Qn =
(
n+α−1

n

)Γ(b+n)Γ(α+a+b)
Γ(b)Γ(α+a+b+n)

=
(
n+α−1

n

)B(a+α,b+n)
B(α+a,b)

and

pn =

(
n+ α− 1

n

)
B(a+ α, b+ n)

B(a, b)
,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

, i.e., N ∼ βNB(α, a, b).

Remark that if the parameters a and b are positive integers, then the beta-binomial
distribution turns out to be the negative hypergeometric distribution. Otherwise, the
beta negative binomial distribution is also called the generalized waring distribution
(Irwin, 1968).
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D Parametric hypothesis on s(n) for the canonical case

Assume that s(n) = 1/r
[c]
γ (m− n− 1) for some γ ∈ Θ and m ∈ N. Then we have

n−1∏
k=0

s(k) =
1∏n−1

k=0 r
[c]
γ (m− k − 1)

=
1

r
[c]
γ (m− 1)× · · · × r[c]

γ (m− n)

=
r

[c]
γ (m− n− 1)× · · · × r[c]

γ (0)

r
[c]
γ (m− 1)× · · · × r[c]

γ (0)
n−1∏
k=0

s(k) =
R

[c]
γ (m− n)

R
[c]
γ (m)

Therefore

m∑
n=0

R
[c]
|θ|(n)

n−1∏
k=0

s(k) =
1

R
[c]
γ (m)

m∑
n=0

R
[c]
|θ|(n)R[c]

γ (m− n)

=
1

R
[c]
γ (m)

(R
[c]
|θ| ∗R

[c]
γ )(m)

m∑
n=0

R
[c]
|θ|(n)

n−1∏
k=0

s(k) =
1

R
[c]
γ (m)

R
[c]
|θ|+γ(m)

Finally the pmf of the sum given by (11) becomes

P (|N | = n) =
R

[c]
|θ|(n)R

[c]
γ (m− n)

R
[c]
|θ|+γ(m)

,

for all n ≤ m and zero otherwise. This is the pmf of the univariate Pólya distribution
P [c]
m (|θ|, γ). Therefore the multivariate stationary distribution is the non-singular version of

the Pólya distribution thanks to the identity

P [c]
∆n

(θ) ∧
n
P [c]
m (|θ|, γ) = P [c]

Nm
(θ, γ).

According to Theorem 1 of Peyhardi et al. (2021) the marginals are given by the damage
distributions

P [c]
n (θj, |θ−j|) ∧

n
P [c]
m (|θ|, γ) = P [c]

m (θj, |θ|+ γ),

for all j = 1, . . . , J .
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E Necessary and sufficient condition for detailed bal-

ance in the classic neutral theory and with density-

dependent migration

E.1 Classic neutral theory

Recall the assumptions of classic neutral theory regarding the jumping rates (12):

q+
j (n) = m(|n|)πj + njb(|n|)
q−j (n) = njd(|n|)

where we assume that n > 0 =⇒ d(n) > 0 (i.e. no individual is immortal).
We assume that the above process has a stationnary distribution with support S ⊂ NJ .

Because no individual is immortal, 0 ∈ S and if n ∈ S and n′ ∈ NJ | ∀i ∈ {1, ..., J}, n′i ≤ ni
then n′ ∈ S.

Define Km = min{n ∈ N|m(n) = 0} and K = min{n ∈ N|m(n) = b(n) = 0}. By
definition, Km ≤ K ≤ +∞. If Km = 0 then S = {0}. If Km > 0 then S = NK . In what
follows we assume that Km > 0 and S = NK .

We seek for necessary conditions to obtain detailed balance of the stationary distribution
which is depicted by the Kolmogrorov criterion (7):

∀n ∈ NK , ∀(i, j) ∈ {1, ..., J}2, qi(n) qj(n+ ei) = qj(n) qi(n+ ej),

where qj(n) =
q+j (n)

q−j (n+ej)
. Recall that qj is well defined because no individual is immortal.

Using the expression of jumping rates, the Kolmogorov criterion becomes :

[m(|n|)πi + nib(|n|)] [m(|n|+ 1)πj + njb(|n|+ 1)]
= [m(|n|)πj + njb(|n|)] [m(|n|+ 1)πi + nib(|n|+ 1)] ,

which can be simplified as :

(πinj − πjni) [m(|n|)b(|n|+ 1)−m(|n|+ 1)b(|n|)] = 0

which implies in turn that :

∀n ∈ {1, ..., K − 1}, m(n)b(n+ 1) = m(n+ 1)b(n) (16)

Declining constraint (16) along possible initializations of m(n) and b(n) yields:

• if m(1) = b(1) = 0 : K = 1 and constraint (16) disappears.

• if m(1) = 0 and b(1) > 0 : ∀n ∈ {1, ..., K − 1},m(n) = 0

• if m(1) > 0 and b(1) = 0 : ∀n ∈ {1, ..., K − 1}, b(n) = 0

• if m(1) > 0 and b(1) > 0 : ∀n ∈ {1, ..., K − 1} : m(n) > 0, b(n) > 0 and :
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b(n) = Ĩm(n)

where Ĩ = b(1)
m(1)

.
In summary, we have shown that the stationnary distribution verifies detailed balance

only if one of the following conditions holds

• Km = 0

• Km = 1 and ∀n ∈ {1, ..., K − 1},m(n) = 0

• Km > 1 and ∃ Ĩ ≥ 0 | ∀n ∈ {1, ..., Km}, b(n) = Ĩm(n)

Reciprocally, it is straightforward to show that each of these conditions is sufficient to obtain
detailed balance of the stationary distribution.

E.2 Neutral theory with density-dependent migration

We now turn to the extension of neutral theory including density-dependent immigration as
defined in equation (14), which we recall here :

q+
j (n) =

[
m(|n|)

(
πj − K̃nj

)
+ njb(|n|)

]
1πj−K̃nj≥0

q−j (n) = njd(|n|)

with K̃ ∈ R+. We define Kj = max{nj ∈ N|πj − K̃nj > 0} + 1 and �K̃ the hypercube
{0, ..., K1} × {0, ..., K2} × ...× {0, ..., KJ}.

We also define Km and K like in previous section and we assume that Km > 0. Then the
support of the stationary distribution is S = �K̃ ∩ NK

We seek for necessary conditions to obtain detailed balance of the stationary distribution
which is depicted by the Kolmogrorov criterion (7). Using the expression of jumping rates
in (14), the Kolmogorov criterion becomes :

[
m(|n|)

(
πi − K̃ni

)
+ nib(|n|)

] [
m(|n|+ 1)

(
πj − K̃nj

)
+ njb(|n|+ 1)

]
1πi−K̃ni≥0∩πj−K̃nj≥0

=
[
m(|n|)

(
πi − K̃ni

)
+ nib(|n|)

] [
m(|n|+ 1)

(
πj − K̃nj

)
+ njb(|n|+ 1)

]
1πi−K̃ni≥0∩πj−K̃nj≥0

which can be simplified as :

(πinj − πjni) [m(|n|)b(|n|+ 1)−m(|n|+ 1)b(|n|)] 1πi−K̃ni≥0∩πj−K̃nj≥0 = 0

which implies in turn that :

∀n ∈ {0, ..., K ′ − 1}, m(n)b(n+ 1) = m(n+ 1)b(n) (17)

where K ′ = min
(∑J

j=1Kj − 1, K
)

Declining constraint (17) along possible initializations of m(n) and b(n) yields:
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• if m(1) = b(1) = 0 : K = 1 and constraint (17) disappears.

• if m(1) = 0 and b(1) > 0 : ∀n ∈ {1, ..., K ′ − 1},m(n) = 0

• if m(1) > 0 and b(1) = 0 : ∀n ∈ {1, ..., K ′ − 1}, b(n) = 0

• if m(1) > 0 and b(1) > 0 : ∀n ∈ {1, ..., K ′ − 1} : m(n) > 0, b(n) > 0 and :

b(n) = Ĩm(n)

where Ĩ = b(1)
m(1)

. In summary, we have shown that the stationnary distribution verifies detailed
balance only if one of the following conditions holds

• Km = 0

• Km = 1 and ∀n ∈ {1, ..., K ′ − 1},m(n) = 0

• Km > 1 and ∃ Ĩ ≥ 0 | ∀n ∈ {1, ..., K ′}, b(n) = Ĩm(n)

Reciprocally, it is straightforward to show that each of these conditions is sufficient to obtain
detailed balance of the stationary distribution.

F Variation and convexity of n→ s(n)

c = −1 c = 0 c = 1

Canonical s′(n) =
−(γ + 1)

(n− (m− γ) + 1)2
1m−γ≤n≤m s′(n) = −1

γ
1n≤m s′(n) =

−(γ − 1)

(γ +m− n− 1)2
1n≤m

cases γ ∈ N∗, m ∈ N∗, m ≤ |θ|+ γ γ ∈ R∗+, m ∈ N∗ γ ∈ R∗+, m ∈ N∗

=⇒ s decreases on (m− γ,m) =⇒ s decreases on (0,m)

{
γ < 1 =⇒ s increases on (0,m)

γ > 1 =⇒ s decreases on (0,m)

=⇒ s′ increases on (m− γ,m) =⇒ s′ constant on (0,m)


γ < 1

2
=⇒ s′ increases on (0,m− 1)

1
2
< γ < 1 =⇒ s′ increases on (0,m)

γ > 1 =⇒ s′ decreases on (0,m)

Independent s′(n) = 0 s′(n) = 0 s′(n) = 0

cases α ∈ R∗+ α ∈ R∗+ α ∈ (0, 1)

=⇒ s constant on (0,+∞) =⇒ s constant on (0,+∞) =⇒ s constant on (0,+∞)

=⇒ s′ constant on (0,+∞) =⇒ s′ constant on (0,+∞) =⇒ s′ constant on (0,+∞)

Dependent s′(n) =
|θ|+ b+ a− 1

(|θ|+ b− n− 1)2
1n<|θ| s′(n) =

1

|θ|+ b
s′(n) =

|θ|+ a

(|θ|+ a+ b+ n)2

non-canonical a ∈ R∗+, b ∈ R∗+ a ∈ R∗+ and b ∈ R∗+ a ∈ R∗+ and b ∈ R∗+

cases =⇒ s increases on (0, |θ|) =⇒ s constant on (0,+∞) =⇒ s increases on (0,+∞)

=⇒ s′ increases on (0, |θ|) =⇒ s′ constant on (0,+∞) =⇒ s′ decreases on (0,+∞)

Table F.1: Variation and convexity of s for the nine Pólya splitting distributions of Table
1
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