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Abstract Multivariate count distributions are crucial for the inference of eco-
logical processes underpinning biodiversity. In particular, neutral theory pro-
vides useful null distributions allowing the evaluation of adaptation or natural
selection. In this paper, we build a broader family of multivariate distribu-
tions: the Polya-splitting distributions. We show that they emerge naturally
as stationary distributions of a multivariate birth-death process. This family of
distributions is a consistent extension of non-zero sum neutral models based on
a master equation approach. It allows considering both total abundance of the
community and relative abundances of species. We emphasize that this family
is large enough to encompass various dependence structures among species.
We also introduce the strong closure under addition property that can be use-
ful to generate nested multi-level dependence structures. Although all Pólya
splitting distributions do not share this property, we provide numerous exam-
ple verifying it. They include the previously known example with independent
species, and also new ones with alternative dependence structures. Overall, we
advocate that Polya-splitting distribution should become a part of the classic
toolbox for the analysis of multivariate count data in ecology, providing al-
ternative approaches to joint species distribution framework. Comparatively,
our approach allows to model dependencies between species at the observa-
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tion level, while the classical JSDM’s model dependencies at the latent process
strata.

Keywords Species Diversity · Ecological Communities · Joint Species
Distribution Model · Neutral Theory · Multivariate Birth-death jump
processes · Stationary Distributions.

Mathematics Subject Classification (2010) 62H05 60J74 92D40

1 Introduction

Understanding the processes that shape the biodiversity of ecological commu-
nities is a major question in the context of global changes. A large fraction
of empirical research about understanding metacommunities relies on pattern-
to-process approaches, i.e. detecting the signature of processes through a sta-
tistical analysis of the observed distribution of species in space and time. The
success of pattern-to-process approaches relies on building an appropriate null
hypothesis, where some target process is nullified, and testing whether obser-
vations deviate from it.

For 20 years, a family of neutral models, inspired from population genet-
ics, have been proposed as a baseline generating null hypotheses to investigate
the effect of species ecological niches. The neutrality assumption consists in
assuming that all individuals are ecologically equivalent irrespective of their
species, genotypes, etc. hence cancelling any effect associated to ecological
niches. One of the most famous example of neutral model is the model intro-
duced by Hubbell (2001). It is a zero-sum game: the total number of individuals
in a community is assumed constant, and dead individuals are immediately
replaced by offspring of the remaining individuals with equal chance to repro-
duce for any of them. Neutral model has challenged former pattern-to-process
approaches of ecological niches, which were based on permutational appo-
raches, by showing that neutrality itself could generate non-random structure
and thus should be filtered out of patterns using specific models (Bell, 2005;
Canard et al., 2012). More precisely, it has been shown that this model yields
a local distribution of species abundances within communities that follows a
Dirichlet-multinomial distribution (Donnelly et al., 2001; Etienne and Alonso,
2005; Harris et al., 2017).

The Dirichlet-multinomial distribution has several practical interests for
pattern-to-process analyses of empirical communities. First, it satisfies useful
property denoted weak closure under addition implying in particular that (i)
if two species are lumped together, the multivariate distribution of the re-
sulting distribution is still a Dirichlet-multinomial distribution with a natural
adaptation of parameters (Laroche et al., 2020); (ii) considering a subgroup of
species, the distribution of species abundances conditionnally to the size of the
subgroup is also Dirichlet-multinomial, with a natural adaptation of parame-
ters (Laroche et al., 2015). These properties have been used to design several
tests in empirical ecological studies. Second, it is readily implemented as a
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hierarchical process (Harris et al., 2017), hence facilitating the computational
aspects or the use of a Bayesian framework for inference purposes.

Importantly, the Dirichlet-multinomial distribution is robust to relaxing
the unrealistic zero-sum assumption, by modelling the stochastic dynamics of
species abundances within a community as a multivariate jump process. Com-
munity size then becomes a random variable fluctuating in time. Using this
approach, Haegeman and Etienne (2008) identified a class of neutral models
for which decomposing species abundances stationary distribution within a
community into a sum distribution (i.e. total number of individuals) and a
conditional split distribution (i.e. species labels of individuals) led to a split
distribution that is still a Dirichlet multinomial.

Although those results about Dirichlet-multinomial split have triggered an
important and fruitful area of empirical research, they still represent a frac-
tion of the possibilities offered by the neutral theory. Most of the litterature
about detecting deviation from neutrality in species abundance data has fo-
cused on the split distribution conditionally to the total number of individuals,
but to our knowledge only few studies simultaneously discuss the sum and the
split (i.e. the full multivariate abundance distribution) as a tool to evaluate
community composition (Etienne et al., 2007b). However this field has been
mostly abandoned in favour to other statistical frameworks based for instance
on the multivariate Poisson - lognormal distribution in the context of the joint
species distribution model (JSDM) (Aı̈tchison and Ho, 1989; Warton et al.,
2015; Ovaskainen and Abrego, 2020). In addition, studies focusing on the split
distribution have mostly focused on formulations of the neutrality assumption
and ancillary hypotheses that necessarily lead to Dirichlet-multinomial distri-
butions. If these assumptions are relaxed or modified, we expect that new split
distributions can be obtained in models that still arguably remain neutral.

Our aim here is to show how relaxing some assumptions of neutral models
can generalize the sum-split decomposition with Dirichlet-multinomial split
to the more general Polya-splitting distributions family. We show that our
framework covers classical distributions but also lead to new ones. Hence our
work promotes a unified neutral-based statistical framework able to tackle the
full multivariate abundance distribution of species, thus making an interesting
mechanistic alternative to current phenomenological JSDMs framework. We
also present a new general property denoted the strong closure under addition.
This property allows in particular proposing approaches based on recursive ap-
plication of splitting distributions to generate communities mixing dependent
or independent species or group of species simultaneously

Section 2 describes the family of multivariate Pólya splitting distributions.
We specifically focus on nine examples of such distributions sharing the prop-
erty of strong closure under addition. Section 3 shows that these distributions
are stationary solutions of the master equation under a specific parametric hy-
pothesis on the ratio between birth and death rates. Section 4 shows that this
parametric assumption corresponds to a mildly extended version of the neutral
theory of biodiversity where the immigration rate of a species can depend on
its local abundance following a relationship identical across all species.
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2 Polya splitting distributions

The first subsection recall the definition of multivariate Pólya distributions
as urn models with n random drawing. Then, assuming that n is a random
number, the second subsection presents the larger family of Pólya splitting
distributions, introduced by Peyhardi and Fernique (2017) and more generally
studied by Peyhardi et al. (2021). Nine examples of Pólya splitting distribu-
tions with remarkable properties are presented, which are repeatedly referred
to in the rest of the article.

2.1 Multivariate Pólya distributions

The Pólya urn model is generally presented in terms of n random drawings
of balls from an urn, that initially contains θj ∈ N∗ balls of the jth color.
One ball is drawn at random and then replaced with c ∈ Z additional balls
of the same color. A negative value for c means that balls are removed from
the urn. This procedure is repeated n times and focus is made on the count
N = (N1, . . . , NJ) of drawn balls for the J ≥ 2 different colors. Let |N | =∑J
j=1Nj denotes the sum of the vector N and ∆n =

{
n ∈ NJ : |n| = n

}
(resp. Nn =

{
n ∈ NJ : |n| ≤ n

}
) the discrete simplex (resp. the discrete corner

of the hypercube). The multivariate count distribution for N is known as the

multivariate Pólya distribution and will be denoted by P [c]
∆n

(θ). Its probability
mass function (pmf) is given by

P|N |=n (N = n) =

J∏
j=1

nj−1∏
k=0

r
[c]
θj

(kj)

n−1∏
k=0

r
[c]
|θ|(k)

,

where r
[c]
θ (k) = θ+ck

k+1 1θ+ck≥0, θ = (θ1, . . . , θJ) ∈ ΘJc . The indicator function

ensures that r
[c]
θ (k) ≥ 0 even if c < 0. Let us define R

[c]
θ (n) =

∏n−1
k=0 r

[c]
θ (k),

then the pmf becomes

P|N |=n (N = n) =

J∏
j=1

R
[c]
θj

(nj)

R
[c]
|θ|(n)

.

The multivariate Pólya distribution turns out to be the multivariate hyerge-
ometric distribution when c = −1, the multinomial distribution when c = 0
and the multivariate negative hyergeometric distribution when c = 1. Reason-
ing by equivalence on the pmf, it can be shown that these three distributions

are the representative elements of their equivalence classes: {P [c]
∆n

(θ) : c < 0},
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{P [c]
∆n

(θ) : c = 0} and {P [c]
∆n

(θ) : c > 0}. Therefore, in the following, a focus
will be made only on the three cases c ∈ {−1, 0, 1}. Let us note that the pmf
for the last two cases can be extended for continuous values of θj ∈ R∗+ for
j = 1, . . . , J . The multivariate negative hyergeometric distribution is thereby
extended to the Dirichlet multinomial distribution. In summary, the three
cases c ∈ {−1, 0, 1} respectively correspond to the

– multivariate hypergeometric distribution, denoted by H∆n(θ) with Θ−1 =

N∗ and R
[−1]
θ (n) =

(
θ
n

)
,

– multinomial distribution, denoted by M∆n
(π) where π = θ/|θ|, Θ0 = R∗+

and R
[0]
θ (n) = θn,

– Dirichlet-multinomial distribution, denoted by DM∆n
(θ) where Θ1 = R∗+

and R
[1]
θ (n) =

(
n+θ−1
n

)
,

The pmf of these three distributions are presented in Table A.2 of Appendix
A. The support is ∆n when c = 0 or c = 1 and is ∆n ∩�θ when c = −1, i.e.,
the intersection between the simplex ∆n and the hyper-rectangle �θ = {n ∈
NJ : n1 ≤ θ1, . . . , nJ ≤ θJ}. It should be noted that some authors refers to the
Dirichlet multinomial distribution as the multivariate Pólya distribution. All
along the paper, the multivariate Pólya distribution will refer to the general
case that encompasses the three cases c ∈ {−1, 0, 1}.

2.2 Specific Pólya splitting distributions with remarkable properties

Pólya distributions cannot be considered as a sensu stricto multivariate dis-
tribution. Indeed, the sum of the random vector N is fixed and only J − 1
elements over J are free. This kind of distribution, supported on ∆n, is said
to be singular. It is possible to define a non-singular version, supported on
Nn. The vector N is said to follow a non-singular Pólya distribution, denoted

by P [c]
Nn

(θ, γ), if the completed vector (N ,m − |N |) follows the singular ver-

sion P [c]
∆n

(θ, γ). However, the support of this extension remains bounded (see
Table A.2 of Appendix A for details about the non-singular version of Pólya
distributions).

Another way to relax the fixed sum assumption, is considering the sum
|N | as a random variable. Let L(ψ) denotes the associated univariate count
distribution. We obtain a Polya splitting distribution, that can be viewed as
a compound distribution denoted as follows:

N ∼ P [c]
∆n

(θ) ∧
n
L(ψ).

where ψ is an univariate or multivariate set of unknown parameters (e.g. uni-
variate for the Poisson distribution and bivariate for the negative binomial
distribution). According to L(ψ), several multivariate distributions can be de-
fined sharing interesting properties.
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The weak closure under addition The weak closure under addition is the sta-
bility under convolution of R

[c]
θ : for all θ, θ′ ∈ Θc

R
[c]
θ ∗R

[c]
θ′ = R

[c]
θ+θ′ , (1)

where ∗ denotes the discrete convolution. This identity plays a central role
among the family of Polya splitting distributions and corresponds to the Van-
dermonde’s identity, the Newton’s binomial theorem and the Hagen-Rothe’s
identity when c = −1, 0 and 1 respectively. It could be shown that equation (1)
implies the stability of the multivariate distribution under marginalization; see
Theorem 1 of Peyhardi et al. (2021) for details. Let focus on two such stability
properties.

(i) if two species are lumped together, the multivariate distribution of the
resulting distribution is still a Pólya splitting distribution with a natural
adaptation of parameters (Laroche et al., 2020), i.e., we have

(N1 +N2, N3, . . . , NJ) ∼ P [c]
∆n

(θ1 + θ2, θ3, . . . , θJ) ∧
n
L(ψ),

(ii) considering a subgroup of species, the distribution of species abundances
conditionally to the size of the subgroup is also Pólya distribution with a
natural adaptation of parameters (Laroche et al., 2015), i.e., we have

(N1, N2, N3)|N1 +N2 +N3 = n ∼ P [c]
∆n

(θ1, θ2, θ3).

It should be noted that all Pólya splitting distributions share this property,
i.e., it holds for any sum distribution L(ψ).

The strong closure under addition A Pólya splitting distribution is said to be
strongly closed under addition if the sum distribution and all the marginal
distributions belong to the same family of parametric distributions, i.e., if we
have

∀j ∈ {1, . . . , J} ∃ψj : Nj ∼ L(ψj).

While weak property is share by all Pólya splitting distributions, strong prop-
erty holds for only specific sum distribution. In the following, we propose nine
sum distributions verifying strong closure property. The first three distribu-
tions naturally extend singular Pólya distributions to their non-singular ver-
sion. The three others leads to independence splitting distributions. Finally,
the three last distributions allows the generalization of classical univariate
count processes to their multivariate version.
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Canonical cases

In the canonical case, the sum distribution is defined as the univariate ver-

sion of the non-singular Pólya distribution P [c]
Nm

(θ, γ) . The sum distribution

is then denoted by P [c]
m (θ, γ); see Table A.1 for details about its pmf and sup-

port. Theorem 4 of Peyhardi et al. (2021) showed that we have the following
distribution identity

P [c]
∆n

(θ) ∧
n
P [c]
m (|θ|, γ) = P [c]

Nm
(θ, γ).

See Table 1 to write this identity in the three cases c ∈ {−1, 0, 1}. It could
be shown that marginals belongs to the same family of distribution, more

preciselyNj ∼ P [c]
m (θj , |θ−j |+γ) (the strong closure under addition holds). The

non-singular version has the advantage that its support Nn has a dimension
equal to J (whereas the support of the singular version ∆n has a dimension
equal to J − 1). Therefore the J variables N1, . . . , NJ are free (not related
by linear function) even if they are not independent. The graphical model of
independence of such a distribution is complete (Peyhardi and Fernique, 2017).
In summary for the canonical case, the variables are free and not independent
but the support is bounded.

Independence cases

There exists a sum distribution L∗ such that all the variables N1, . . . , NJ are
mutually independent. Moreover, all the margins belong to the same family
L∗, i.e. the strong closure under addition holds. It could be shown that the
pmf of this distribution is

P (|N | = n) =
R

[c]
|θ|(n)αn∑∞

m=0R
[c]
|θ|(m)αm

, (2)

for some α > 0 and the marginals are given by

P (Nj = n) =
R

[c]
θj

(n)αn∑∞
m=0R

[c]
θj

(m)αm
. (3)

The distribution L∗ belongs to the family of power series distributions. It turns
out to be the binomial distribution (c = −1), the Poisson distribution (c = 0)
and the negative binomial distribution (c = 1) respectively; see Table 1 for
details.
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Dependent non-canonical cases

The last line of Table 1 presents three Pólya splitting distributions that share
the strong closure under addition without independence assumption and dif-
ferent of the canonical case (demonstrations are given in Appendix B). Those
distributions are obtained from the independent case assuming the parameter
α (see eq. (2)) is a random variable. For instance when c = −1, the sum distri-
bution is a binomial distribution compound by a beta distribution, i.e., a beta
binomial distribution. According to (3), it is easily seen that marginals also
follow beta binomial distributions. This particular distribution can be viewed
as a new multivariate extension of the beta binomial distribution different from
the more usual Dirichlet multinomial (non singular version). It is supported on
the hyper-rectangle �θ. For c = 0, the Poisson distribution is coumpound by
a gamma distribution to obtain a negative binomial distribution. The corre-
sponding Pólya splitting distribution turns out to be the natural multivariate
extension, i.e., the negative multinomial distribution. Finally, for c = 1, the
negative binomial is compound by a beta distribution to obtain a negative beta
binomial distribution, also known as the univariate generalized Waring distri-
bution (Irwin, 1968). The corresponding Pólya splitting distribution turns out
to be its natural multivariate extension, known as the multivariate generalized
Waring distribution (MGWD) (Xekalaki, 1986).

Hypergeometric Multinomial Dirichlet multinomial
splitting distributions splitting distributions splitting distributions

c = −1 c = 0 c = 1

Canonical H∆n (θ) ∧
n
Hm(|θ|, γ) M∆n (π) ∧

n
Bm(p) DM∆n (θ) ∧

n
βBm(|θ|, γ)

cases = = =
HNm (θ, γ) MNm (p · π) DMNm (θ, γ)

θ ∈ N∗J , γ ∈ N∗, m ∈ N∗, m ≤ |θ|+ γ π ∈ ∆, m ∈ N∗ θ ∈ R∗J+ , γ ∈ R∗+, m ∈ N∗

(support = (Nm \ Nm−γ) ∩ �θ) (support = Nm) (support = Nm)

Independent H∆n (θ) ∧
n
B|θ|(p) M∆n (π) ∧

n
P(λ) DM∆n (θ) ∧

n
NB(|θ|, p)

cases = = =
J⊗
j=1

Bθj (p)
J⊗
j=1

P(πjλ)
J⊗
j=1

NB(θj , p)

θ ∈ N∗J , p ∈ (0, 1) π ∈ ∆, λ ∈ R∗+ θ ∈ R∗J+ , p ∈ (0, 1)

(support = �θ) (support = NJ ) (support = NJ )

Dependent H∆n (θ) ∧
n
βB|θ|(a, b) M∆n (π) ∧

n
NB(a, p) DM∆n (θ) ∧

n
βNB(|θ|, a, b)

non-canonical = = =
cases Mβ�θ (a, b) NM(a, p · π) MGWD(b, θ, a)

θ ∈ N∗J , a ∈ R∗+, b ∈ R∗+ π ∈ ∆, a ∈ R∗+, b ∈ R∗+ θ ∈ R∗J+ , a ∈ R∗+, b ∈ R∗+
(support = �θ) (support = NJ ) (support = NJ )

Table 1 Nine Pólya splitting distributions that share the strong closure under addition.
The notation N ∼

⊗J
j=1 Lj means that each Nj follows the distribution Lj independently

of all other j′ 6= j.



Extended neutral theory and Pólya splitting distributions 9

3 Stationary distributions of multivariate birth-death processes

We show that the class of Pólya splitting distributions introduced in for-
mer section exactly corresponds to the stationary distributions of multivariate
birth-death processes under specific parametric assumptions on jumping rates.
We further provide more precise conditions on rates that lead to the nine Pólya
splitting distributions previously described (see Table 1). Let us start with the
univariate case (J = 1) to recall classical results that will be useful to explic-
itly describe the stationary distribution of the sum in the multivariate case
(J ≥ 2).

3.1 The univariate case

Let N(t) denote an univariate birth/death process with q+(n) (resp. q−(n))
denoting the birth rate (resp. death rate) for a population of size n. Let pn =
P (N = n) denote the pmf of the stationary distribution. It can be shown, by
induction on n, that solutions of the master equation at stationary state are
solutions of the detailed balance equation:

q−(n+ 1)pn+1 = q+(n)pn

Remark that for every count distribution (pn)n∈N, it is possible to find two
sequences of birth and death rates such that the detailed balance holds. More-
over, assuming that the death rate is positive, i.e., q−(n) > 0 for all n ≥ 1,
then the detailed balance becomes

pn+1 = pnq(n),

where q(n) = q+(n)/q−(n+1). The support of such a distribution is necessary
of the connected form {0, . . . ,m} with m ∈ N ∪ {∞} and we have:

pn =
Qn∑
k≥0Qk

,

where Qn =
∏n−1
k=0 q(k) for n ≥ 1 and Q0 = 1. Specific stationary distribution

are obtain according to specific parametric assumption on q(n). For instance
if q(n) = 1

n+1α for some α ∈ R∗+ then the stationary distribution is a Pois-
son distribution with parameter α. See Appendix C for several examples of
parametric assumption on q(n) that lead to usual univariate distributions (e.g.
binomial, negative binomial).

3.2 The multivariate case

Here we now describe the multivariate jump processN(t) = {N1(t), . . . , NJ(t)}
depicting species abundances within a community. We then focus on suf-
ficient conditions on jumping rates to ensure the existence of a stationary
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distribution with detailed balance. In this specific case, it is straightforward
to derive a closed form of the stationary distribution. In the following let
pn(t) = P{N(t) = n} denote the pmf at time t and pn = P (N = n) denote
the pmf at stationary state.

The master equation

∂pn(t)

∂t
=

J∑
j=1

pn−ej (t)q−j (n−ej)+pn+ej (t)q+j (n+ej)−pn+ej (t){q−j (n)+q+j (n)}

(4)
where q−j (n) (resp. q+j (n)) denotes the jumping rate from n to n− ej (resp.
to n+ ej) and ei is a vector of size J where the elements are all equal to zero
except the ith equal to one. It is usual to assume that q−j (n) > 0 for all n ∈ NJ

such that nj > 0 (i.e., any individual is mortal). Moreover it is assumed that
q+j (0) > 0 for all j = 1, . . . , J (where 0 = (0, . . . , 0) denotes the null vector)
in order to avoid the case of non observed species (i.e., P (Nj = 0) = 1).

The Detailed balance equation is given, for all j ∈ {1, . . . , J} and all n ∈ NJ ,
by

pn+ejq
−
j (n+ ej) = pn q

+
j (n). (5)

Since it is assumed that q−j (n) > 0 for all n ∈ NJ such that nj > 0 then the
detailed balance becomes

pn+ej = pn qj(n) (6)

where qj(n) = q+j (n)/q−j (n + ej). The idea is then to recursively use the
equality (6) in order to express pn according to p0 and thus derive a closed
analytical formula for the stationary distribution pmf of the multivariate jump
process.

Necessary and sufficient conditions for detailed balance Note that the detailed
balance holds if and only if the product of the quantitites qj along every
increasing path between 0 and n is the same. This is equivalent to assume
that this product is constant along every path between n and n + ei + ej
with i 6= j. There are only two such path: n → n + ei → n + ei + ej and
n 99K n+ ej 99K n+ ej + ei. For the first path the detailed balance equation
gives pn+ei+ej = pn qi(n) qj(n+ei). For the second path the detailed balance
equation gives pn+ei+ej = pn qj(n) qi(n + ej). Therefore a necessary and
sufficient condition to the existence of a solution is the equality

qi(n) qj(n+ ei) = qj(n) qi(n+ ej), (7)

for all i 6= j ∈ {1, . . . , J} and all n ∈ NJ such that pn 6= 0. Equation (7) corre-
sponds to the Kolmogorov’s criterion in the case of a multivariate birth-death
process with positive death rates. This criterion is a necessary and sufficient
condition for the reversibility of the process.
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Parametric assumption on birth and death rates Assume that there exists
some parameters c ∈ {−1, 0, 1} and θ = (θ1, . . . , θJ) ∈ ΘJc and two non-
negative functions s+ and s− such that the birth and death rates have the
following form

q+j (n) = s+(|n|)(θj + cnj)1θj+cnj≥0,

q−j (n) = s−(|n|)nj .
(8)

The birth-deah rate thus becomes

qj(n) = s(|n|) r[c]θj (nj). (9)

where s(n) = s+(n)
s−(n+1) for all n ∈ N and r

[c]
θ (n) = θ+cn

n+1 1θ+cn≥0. It is easily

seen that this parametric assumption (9) respects the Kolmogorov’s criterion
(7) and thus the detailed balance equation (5).

Theorem 1 Assume that the hypothesis (9) holds then

– the stationary distribution for N = (N1, . . . , NJ) is the Polya splitting

distribution P [c]
∆n

(θ) ∧
n
L

– L is the stationary distribution of a univariate process with birth/death

ratio equal to q(n) = s(n)r
[c]
|θ|(n) (its support is necessary of the form

{0, . . . ,m} where m ∈ N ∪ {∞}).

Proof Under assumption (9), using recursively (6), we obtain the pmf of the
stationary distribution as follows:

pn = p0

|n|−1∏
m=0

s(m)

J∏
j=1

nj−1∏
k=0

r
[c]
θj

(k).

Using notations of Section 2 we obtain

pn = p0

|n|−1∏
m=0

s(m)

J∏
j=1

R
[c]
θj

(nj).

Since the pmf is written as a recurrent product, it can be remarked that the
support of the stationary distribution is exactly the connexe Nm when c = 0
or c = 1 and the connexe Nm ∩ �θ when c = −1, where m is the smaller
integer such that s(m) = 0. Note that if m = +∞ then the support becomes
NJ when c = 0 or c = 1 and �θ when c = −1. Otherwise, We know that the
probability of n can be conditioned by the sum as follows:

pn = P (|N | = |n|) P|N |=|n|(N = n).

By identifiability between the two previous equalities (on the support) we
obtain the sum distribution and the split distribution (repartition into com-
ponents given the sum). More precisely we have

P|N |=n(N = n) =

∏J
j=1R

[c]
θj

(nj)

C(n)
,
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for all n ∈ N, where C(n) is the normalizing constant

C(n) =
∑
n∈∆n

J∏
j=1

R
[c]
θj

(nj),

and

P (|N | = n) =
C(n)

∏n−1
k=0 s(k)∑

m≥0 C(m)
∏m−1
k=0 s(k)

.

Note that C(n) is positive since the identification is made on the support.

Now remark that C(n) turns out to be the convolution C = R
[c]
θ1
∗ · · · ∗ R[c]

θJ
.

According to the Newton’s binomial theorem, for c = 0, (respectively the
Vandermonde’s identity for c = −1 and the Hagen-Rothe identity for c = 1)
we have

R
[c]
θ1
∗ · · · ∗R[c]

θJ
= R

[c]
|θ|,

and thus the pmf of N given the sum |N | = n is

P|N |=n(N = n) =

∏J
j=1R

[c]
θj

(nj)

R
[c]
|θ|(n)

,

i.e., given |N | = n we have N ∼ P [c]
∆n

(θ) (multivariate Polya distribution).
The sum distribution is now given by

P (|N | = n) =
R

[c]
|θ|(n)

∏n−1
k=0 s(k)∑

m≥0R
[c]
|θ|(m)

∏m−1
k=0 s(k)

. (10)

By definition we have R
[c]
|θ|(n) =

∏n−1
k=0 r

[c]
|θ|(k) (with convention R

[c]
|θ|(0) = 1)

and so the sum distribution can be viewed as the stationary distribution of an
univariate process whose the ratio of birth/death is q(n) = s(n)r|θ|(n). ut

Parametric hypothesis on s(n)

As long as the function s(n) is not determined, the sum distribution L(ψ) can
take any form with a connected support containing zero. In the following we
propose some parametric assumption on s(n) that lead to the nine Pólya split-
ting distributions of Table 1. According to Theorem 1 the sum is a univariate

birth-death process driven by the birth/death rate q(n) = s(n)r
[c]
|θ|(n). Ap-

pendix C details the parametric form for q(n) that leads to specific univariate
distributions (binomial, Poisson, etc . . . ). By identification it is possible to find
the parametric form of s(n) in each case c ∈ {−1, 0, 1} and deduce the sum
distribution as compiled in table 2. It is also possible to find the parametric
form of s(n) in a general way, i.e., for any c ∈ {−1, 0, 1}; see Appendix D for
details about the canonical cases.
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Setting apart the canonical case with c = 1 and γ < 1, which will be dis-
cussed later, we observe clear qualitative differences among the nine examples.
Each case corresponds to a particular variation profile of s(n). The function
s decreases in the canonical case, is constant in the independent case and
increases in the dependent non-canonical case (see Appendix F for details).
Moreover, as c increases in {−1, 0, 1}, the convexity of s(n) shows consistent
changes which do not depend on the considered case. When c = −1, s(n) is
convex, when c = 0, s(n) is linear and, when c = 1, s(n) is concave.

The exception to above pattern is the canonical case with c = 1 when γ < 1.
In this case, s(n) is increasing and convex, thus resembling the dependent non-
canonical case with c = −1. This exception is obtained when the sum follows
the beta binomial distribution βBm(|θ|, γ) with γ < 1 inducing a peak at
n = m, hence promoting saturation of community size at m.

c = −1 c = 0 c = 1

Canonical s(n) =
m− n

γ −m+ n+ 1
1m−γ≤n<m s(n) =

m− n
γ

1n<m s(n) =
m− n

γ +m− n− 1
1n<m

cases γ ∈ N∗, m ∈ N∗, m ≤ |θ|+ γ γ ∈ R∗+, m ∈ N∗ γ ∈ R∗+, m ∈ N∗

Independent s(n) = α s(n) = α s(n) = α

cases α ∈ R∗+ α ∈ R∗+ α ∈ (0, 1)

Dependent s(n) =
a+ n

|θ|+ b− n− 1
1n<|θ| s(n) =

a+ n

|θ|+ b
s(n) =

b+ n

|θ|+ a+ b+ n
non-canonical

cases a ∈ R∗+ and b ∈ R∗+ a ∈ R∗+ and b ∈ R∗+ a ∈ R∗+ and b ∈ R∗+

Table 2 Parametric hypothesis on s(n) that lead to the nine Pólya splitting distributions
of Table 1

4 Biological interpretations of the Pólya splitting distributions

From a biological perspective, the birth and death rates of the multivariate
jump process defined by the master equation (see eq. (4)) are generally as-
sumed to have the following form:

q+j (n) = mj(n) + njbj(n)

q−j (n) = njdj(n)

where mj(n) is the immigration rate of species j, bj(n) is the per-capita
local reproduction rate of species j and dj(n) is the per-capita local death-
or-emigration rate of species j. Classical neutral models make two additional
assumptions. The first corresponds to the strong neutrality:
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q+j (n) = m(|n|)πj + njb(|n|)
q−j (n) = njd(|n|) (11)

The second assumption is detailed balance. Given the strong neutrality as-
sumption and discarding degenerated cases m(0) = 0 or m(1) = 0, detailed
balance occurs if and only if there exists a constant Ĩ ≥ 0 such that

b(n) = Ĩm(n) (12)

for all n ∈ N∗ (see Appendix E). The parameter I = 1/Ĩ his known as the
effective number of migrants (Etienne and Olff, 2004). Here we focus on a gen-
eralization of equations (11), considering new expressions of birth and death
rates as follows:

q+j (n) =
[
m(|n|)

(
πj − K̃nj

)
+ njb(|n|)

]
1πj−K̃nj≥0

q−j (n) = njd(|n|)
(13)

with K̃ ∈ R+. The master equation with assumption (13) can be called a
neutral model with density-dependent immigration, because the rate of immi-
gration of species j is now m(|n|)(πj − K̃nj), which depends on species j and

on the local population size nj . Assuming K̃ = 0 leads to the usual equations
(11). We still assume (12), which is a necessary and sufficient condition to
obtain detailed balance (see Appendix E.2 for details about the necessity). As
corollary of Theorem 1, we obtain the link between the neutral model with
density-dependent immigration (13) and assumption (8) that leads to Pólya
splitting distributions.

Corollary 1 Any Polya splitting distribution (with sum distribution support
of the form {0, . . . ,m} where m ∈ N ∪ {∞}) can be obtained as a stationnary
distribution of a jumping process with rates (13) verifying detailed balance
condition (12). Reciprocally, let a jumping process with rates (13) with detail
balance condition (12). If at least K̃ or Ĩ is null then the stationary distribution
is a Polya splitting distribution.

Proof Let P [c]
∆n

(θ) ∧
n
L be a Pólya splitting distribution with sum distribution

support of the form {0, . . . ,m} where m ∈ N∪ {∞}. According to Theorem 1
this is the stationary distribution of a jumping process satisfying assumption
(9) on qj(n). Let πj = θj/|θ| and m(n), d(n) such that

m(n)

d(n+ 1)
= |θ|s(n). (14)

Moreover, let assume that

K̃ =

{
|θ|−1 if c = −1,
0 if c = 0 or c = 1,

and Ĩ =

{
0 if c = −1 or c = 0,
|θ|−1 if c = 1.
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Then

qj(n) =
m(|n|)

d(|n|+ 1)

πj + (Ĩ − K̃)nj
nj + 1

1θj+cnj≥0,

qj(n) =
m(|n|)

(
πj − K̃nj

)
+ b(|n|)nj

d(|n|+ 1)(nj + 1)
1θj+cnj≥0,

where b(n) = Ĩm(n) and 1θj+cnj≥0 = 1πj−K̃nj≥0 and thus the desired result.

Reciprocally, let a jumping process with rates (13) with detail balance condi-
tion (12). If at least K̃ or Ĩ is null then the parametrization is reversible. ut

In the previous section, we derived results about the variation of s(n)
among the nine Pólya splitting distributions presented in table 1. Migration

m(n) and death d(n) rates directly relate to s(n) through s(n) = |θ|−1 m(n)
d(n+1) .

Therefore, when assuming that one of these rates is constant with commu-
nity size n, one obtains biologically interpretable results about the density-
dependence effect on the other rate. For instance, if one assumes that d(n) = 1
(i.e., constant per-capita local death or emigration rate), m(n) = |θ|s(n). Here
again discarding the canonical case with c = 1 and γ < 1, we obtain that m(n)
always decreases in canonical cases, is constant in independent cases and in-
creases in dependent non-canonical cases. From a biological perspective, this
suggests that, as community size increases and before hitting a potential reg-
ulation threshold m < ∞, immigration and reproduction of within the com-
munity become harder in the canonical case (negative density dependence),
remain unaffected in the independent case and become easier in the other
case (positive density dependence). We also obtain that m(n) is convex when
c = −1, which suggest that the marginal variation in reproduction and im-
migration increases as community density increases. Migration m(n) is linear
when c = 0 and is concave when c = 1, which means that the marginal
variation in reproduction and immigration increases as community density
decreases (see Table 3).

c = −1 c = 0 c = 1

All K̃ = |θ|−1 K̃ = 0 K̃ = 0

cases Ĩ = 0 Ĩ = 0 Ĩ = |θ|−1

d(|n|) = 1 d(|n|) = 1 d(|n|) = 1

Canonical m(|n|) = |θ| (m−|n|)
γ+1−(m−|n|)1|n|≤m m(|n|) =

|θ|
γ

(m− |n|)1|n|≤m m(|n|) = |θ| m−|n|
γ−1+m−|n|1|n|≤m

cases b(|n|) = 0 b(|n|) = 0 b(|n|) =
m−|n|

γ−1+m−|n|1|n|≤m
Independent m(|n|) = α|θ| m(|n|) = α|θ| m(|n|) = α|θ|

cases b(|n|) = 0 b(|n|) = 0 b(|n|) = α

Dependent m(|n|) = |θ| a+|n|
|θ|+b−|n|−1

m(|n|) = |θ|a+|n||θ|+b m(|n|) = |θ| b+|n|
|θ|+a+b+|n|

non-canonical cases b(|n|) = 0 b(|n|) = 0 b(|n|) =
b+|n|

|θ|+a+b+|n|

Table 3 Parametric hypothesis on extended neutral models leading to the nine Pólya
splitting distributions presented in table 1. Dark gray indicates cases where the split dis-
tribution has been characterized (Haegeman and Etienne, 2008) while light gray stands for
cases where both split and sum distributions have been characterized (Etienne et al., 2007b).
Other cases (white boxes) are new.
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5 Discussion and perspectives

Neutral theory is crucial in ecology through its position as an useful null model
allowing the evaluation of non-neutral processes such as adaptation or natural
selection (Alonso et al., 2006). In this paper, we present Pólya splitting distri-
bution family which are solutions of a master equation that extends classical
neutral models and covers more general ecological contexts. For instance, we
propose the c = −1 case leading to multivariate hypergeometric as splitting
distribution. This case reflects different biological events such as (i) species
immigration process is limited by conspecific or (ii) immigration pool is lim-
ited or deacreasing over time. This case (c = −1) is not covered by classical
neutral models, under our more general consideration, it appears as a natural
case.

Here, we do not assume that the sum abundance of the community is a
deterministic quantity (which had been the case in seminal neutral models
Hubbell (2001)), because this assumption is not compatible with the master
equation approach, and seems biologically unrealistic. However we still obtain
Dirichlet-multinomial splitting as a particular case within the Pólya-splitting
distribution family, which was the main feature of these former neutral models.
Considering total sum abundance as a random variable lead us to reveal links
between dependence structures among species and the distribution of the total
sum abundance. More precisely, we show that independence is a consequence
of parametric assumption made on birth and death rates and not a necessary
assumption per se, contrary to what was posited by other authors (Etienne
et al., 2007a).

Pólya splitting distributions induce only two types of dependence struc-
tures: either all species are independent or fully dependent with homogenized
correlation sign. To extend this binary setting towards more complex nested
dependence structures between species or communities, we suggest the use
of recursive application of splitting distributions. From this perspective, the
strong closure under addition property plays an essential role by preserving
distributions across levels, hence allowing a full control of generated depen-
dencies. This emphasizes the importance of using appropriate choices of Pólya
splitting distributions at each level to ensure strong closure under addition.

For instance, let us assume that we aim at simulating species communities
composed of five species s1, . . . , s5. The first three species (s1, s2 and s3) be-
longs to a community C1 and are all fully positively correlated, corresponding
to mutualist species context or species sharing underlying environmental fac-
tors. The two others species (s4 and s5) belongs to a second community, C2

correlated to C1. These two species s4 and s5 are assumed to be independent.
Such situation can be easily obtained combining negative binomial for the sum
distributions and multinomial or Dirichlet multinomial distributions for split
components (with specific constraint on parameters); see figure 1). Another ex-
ample relies on the simulation of negatively correlated species within the first
community C1 (exclusive species context) and non-dependent species within
C2 and assuming independence between C1 and C2. Such simulation can be
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performed combining binomial distributions for sum parts with multinomial
and/or hypergeometric distribution for splits. However, does such sequential
structure is solution of the master equation? It remains an open question and
should be carefully study.

While multinomial or Dirichlet multinomial regression has already been
used in neutral community analysis (Jabot et al., 2008; Jabot, 2010), the in-
clusion of environmental factors in the Pólya splitting distributions is a natural
extension. It could be achieved assuming parameters varied according to co-
variates as follows:

P [c]
∆n
{θ(x)} ∧

n
L{ψ(x)},

where x = (x1, . . . , xp) denotes the vector explanatory variables (see Peyhardi
et al. (2021) for more details in the multinomial splitting regression context).
Note that parameters could be constrained to be the same in the split and
sum parts.

Finally, combining graph hierarchical approach with the inclusion of en-
vironmental covariates at each node leads to propose nested multi-level inho-
mogenous splitting models. Such models should be interesting alternatives to
classical approaches used in joint species distribution contexts mainly based
on conditional Independence’s (Warton et al., 2015; Ovaskainen and Abrego,
2020) and the use of the multivariate Poisson log-Normal distribution. Com-
paratively, our approach allows to model dependencies between species at the
observation level, while the classical JSDM’s model dependencies at the latent
process strata. While correlation relationships estimated at the latent pro-
cesses inform correlations between observations, it does not allow to deduce
dependencies structures at the observation scales (Aı̈tchison and Ho, 1989;
Chiquet et al., 2021). A null correlation does not imply independence in the
multivariate Poisson context.

NB(θ1 + θ2, p)

M∆n (π1, π2)

NB
(
θ1 + θ2, p′1

)

M∆n

(
π′1, π

′
2, π
′
3

)

NB(θ1 + θ2, p′′1 )NB(θ1 + θ2, p′′2 )NB(θ1 + θ2, p′′3 )

NB(θ1 + θ2, p′2)

DM∆n (θ1, θ2)

NB(θ1, p′2) NB(θ2, p′2)

Dependent communities

Dependent species Independent species

Fig. 1 Example of possible simulation schemes combining multi dependent levels
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A Notations of different distributions

Name Notation space parameter support pmf (pn)

Pólya P [c]
m (θ, γ) θ ∈ Θc, γ ∈ Θc, m ∈ N∗

R
[c]
θ (n)R

[c]
γ (m− n)

R
[c]
θ+γ(m)

hypergeometric (c = −1) Hm(k, l) k ∈ N∗, l ∈ N∗,m ∈ N∗, m ≤ k + l {0, . . . ,m} ∩ {m− l, . . . , k}

(k
n

)( l
m−n

)(k+l
m

)
binomial (c = 0) Bm(p) p ∈ (0, 1), m ∈ N∗ {0, . . . ,m}

(m
n

)
pn(1− p)m−n

beta binomial (c = 1) βBm(a, b) a ∈ R∗+, b ∈ R∗+,m ∈ N∗ {0, . . . ,m}

(n+a−1
n

)(m−n+b−1
m−n

)(m+a+b−1
m

)
Table A.1 Notations and pmf of univariate Pólya distributions

Name Notation space parameter support pmf (pn)

Singular version

multivariate Pólya P [c]
∆n

(θ) n ∈ N∗, θ ∈ ΘJc

∏J
j=1R

[c]
θj

(nj)

R
[c]
|θ|(n)

multivariate hypergeometric (c = −1) H∆n (k) n ∈ N∗, k ∈ N∗J ∆n ∩ �k

∏J
j=1

(kj
nj

)
(|k|
n

)
multinomial (c = 0) M∆n (π) n ∈ N∗, π ∈ ∆ ∆n

(n
n

) J∏
j=1

π
nj

j

Dirichlet multinomial (c = 1) DM∆n (α) n ∈ N∗, α ∈ R∗J+ ∆n

∏J
j=1

(nj+αj−1
nj

)
(n+|α|−1

n

)
Non-singular version

multivariate Pólya P [c]
Nm (θ, γ) m ∈ N∗, θ ∈ ΘJc , γ ∈ Θc

R
[c]
γ (m− |n|)

∏J
j=1R

[c]
θj

(nj)

R
[c]
|θ|+γ(m)

multivariate hypergeometric (c = −1) HNm (k, l) m ∈ N∗, k ∈ N∗J , l ∈ N∗ (Nm \ Nm−l) ∩ �k

( l
m−|n|

)∏J
j=1

(kj
nj

)
(|k|+l
m

)
m ≤ |k|+ l

multinomial (c = 0) MNm (π∗) m ∈ N∗, π∗ ∈ N Nm
(m
n

)
(1− |π∗|)m−|n|

J∏
j=1

π
nj

j

Dirichlet multinomial (c = 1) DMNm (α, β) m ∈ N∗, α ∈ R∗J+ , β ∈ R∗+ Nm

(m−|n|+β−1
m−|n|

)∏J
j=1

(nj+αj−1
nj

)
(m+|α|+β−1

m

)
Table A.2 Notations and pmf of multivariate Pólya distributions (singular and non-
singular versions)
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Name Notation space parameter support pmf (pn)

Poisson P(λ) λ ∈ R∗+ N e−λ
λn

n!

negative binomial NB(r, p) r ∈ R∗+, p ∈ (0, 1) N
(n+ r − 1

n

)
pn(1− p)r

beta-negative binomial βNB(r, a, b) r ∈ R∗+, a ∈ R∗+, b ∈ R∗+ N
(n+ r − 1

n

)B(a+ r, b+ n)

B(a, b)

Table A.3 Notations and pmf of some usual univariate distributions

B Strong closure under addition (specific cases)

Let us show the strong closure under addition for the three Pólya splitting distributions
presented in the third line of Table 1. We have to show that marginal distributions and sum
distribution belong to the same family.

– c = −1 According to Theorem 1 of Peyhardi et al. (2021) the marginals are given by
the hypergeometric damage distribution

Hn(θj , |θ−j |) ∧
n
βB|θ|(a, b) = Hn(θj , |θ−j |) ∧

n

{
B|θ|(p) ∧

p
β(a, b)

}
=
{
Hn(θj , |θ−j |) ∧

n
B|θ|(p)

}
∧
p
β(a, b)

= Bθj (p) ∧
p
β(a, b)

Hn(θj , |θ−j |) ∧
n
βB|θ|(a, b) = βBθj (a, b)

The first equality uses the definition of the beta-binomial distribution, the second one
uses the Fubini theorem (inversion of sum on n and integral on p), the third one uses the
stability of the binomial distribution under hypergeometric damage process (obtained in
the case of independence) and the last one uses again the definition of the beta-binomial
distribution.

– c = 0 According to Theorem 1 of Peyhardi et al. (2021) the marginals are given by the
binomial damage distribution Bn(πj) ∧

n
NB(r, p). Theorem 6 of Peyhardi et al. (2021)

showed the stability of the negative binomial distribution under the binomial damage
process, i.e., we have

Bn(πj) ∧
n
NB(r, p) = NB(r, p′),

where p′ =
πjp

πjp+1−p . The demonstration is based on the generative function of a bi-

nomial damage distribution. This result can also be obtained by following the way of
the demonstartion of the previous case, recalling that a negative binomial is a Poisson
mixed by a gamma distribution.

– c = 1 According to Theorem 1 of Peyhardi et al. (2021) the marginals are given by the
beta-binomial damage distribution

βBn(θj , |θ−j |) ∧
n
βNB(|θ|, a, b) = βBn(θj , |θ−j |) ∧

n

{
NB(|θ|, p) ∧

p
β(a, b)

}
=
{
βBn(θj , |θ−j |) ∧

n
NB(|θ|, p)

}
∧
p
β(a, b)

= NB(θj , p) ∧
p
β(a, b)

βBn(θj , |θ−j |) ∧
n
βNB(|θ|, a, b) = βNB(θj , a, b)

This demonstration follows the same ways as in case c = −1.
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C Some stationary distributions of univariate birt-death process

According to different assumptions on the ratio q(n) =
q+(n)

q−(n+1)
, we find different distribu-

tions (pn)n≥0. Recall that

pn =
Qn∑

m≥0Qm
,

with Qn =
∏n−1
k=0 q(k).

C.1 Univariate Pólya distributions

– Hypergeometric distribution: if q(n) =
(k−n)(m−n)

(n+1)(l−m+n+1)
1max(0,m−l)≤n<min(m,k) with

k ∈ N∗, l ∈ N∗ and m ≤ k + l then Qn =

(
k
n

)(
l

m−n

)
(

l
m

) and

pn =

(k
n

)( l
m−n

)(k+l
m

) , max(0,m− l) ≤ n ≤ min(m, k),

i.e., N ∼ Hm(k, l).

– Binomial distribution: if q(n) =
(M−n)π

(n+1)(1−π)1n<m with π ∈ (0, 1) and m ∈ N∗ then

Qn =
(m
n

) πn

(1− π)n
and

pn =
(m
n

)
πn (1− π)m−n , 0 ≤ n ≤ m

i.e., N ∼ Bm(π).

– Beta-binomial distribution: if q(n) =
(a+n)(m−n)

(n+1)(m+b−n−1)
1n<m with a ∈ R∗+, b ∈ R∗+ and

m ∈ N∗ then Qn =

(
n+a−1

n

)(
m−n+b−1

m−n

)
(
m+b−1

m

) and

pn =

(n+a−1
n

)(m−n+b−1
m−n

)(m+a+b−1
m

) , n ≤ m

i.e., N ∼ βBm(a, b).

C.2 Other univariate distributions

– Poisson distribution: if q(n) = 1
n+1

α with α ∈ R∗+ then Qn = αn

n!
and

pn = e−α
αn

n!
, n ≥ 0,

i.e., N ∼ P(α).
– Negative binomial distribution: if q(n) = n+α

n+1
π with π ∈ (0, 1) and α ∈ (0,∞) then

Qn =
(n+α−1

n

)
πn and

pn =
(n+ α− 1

n

)
πn(1− π)α, n ≥ 0,

i.e., N ∼ NB(α, π).
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Geometric distribution: if q(n) = π with π ∈ (0, 1) then Qn = πn and

pn = πn(1− π), n ≥ 0,

i.e., N ∼ G(π).
Remark that the geometric distribution is a sub-case of the negative-binomial distribu-
tion, more precisely we have G(π) = NB(1, π).

– Beta negative binomial distribution: if q(n) =
(α+n)(b+n)

(n+1)(α+a+b+n)
with α ∈ R∗+, b ∈ R∗+

and a ∈ R∗+ then Qn =
(n+α−1

n

)Γ (b+n)Γ (α+a+b)
Γ (b)Γ (α+a+b+n)

=
(n+α−1

n

)B(a+α,b+n)
B(α+a,b)

and

pn =
(n+ α− 1

n

)B(a+ α, b+ n)

B(a, b)
,

where B(a, b) =
Γ (a)Γ (b)
Γ (a+b)

, i.e., N ∼ βNB(α, a, b).

Remark that if the parameters a and b are positive integers, then the beta-binomial
distribution turns out to be the negative hypergeometric distribution. Otherwise, the
beta negative binomial distribution is also called the generalized waring distribution
(Irwin, 1968).

D Parametric hypothesis on s(n) for the canonical case

Assume that s(n) = 1/r
[c]
γ (m− n− 1) for some γ ∈ Θ and m ∈ N. Then we have

n−1∏
k=0

s(k) =
1∏n−1

k=0 r
[c]
γ (m− k − 1)

=
1

r
[c]
γ (m− 1)× · · · × r[c]γ (m− n)

=
r
[c]
γ (m− n− 1)× · · · × r[c]γ (0)

r
[c]
γ (m− 1)× · · · × r[c]γ (0)

n−1∏
k=0

s(k) =
R

[c]
γ (m− n)

R
[c]
γ (m)

Therefore

m∑
n=0

R
[c]
|θ|(n)

n−1∏
k=0

s(k) =
1

R
[c]
γ (m)

m∑
n=0

R
[c]
|θ|(n)R

[c]
γ (m− n)

=
1

R
[c]
γ (m)

(R
[c]
|θ| ∗R

[c]
γ )(m)

m∑
n=0

R
[c]
|θ|(n)

n−1∏
k=0

s(k) =
1

R
[c]
γ (m)

R
[c]
|θ|+γ(m)

Finally the pmf of the sum given by (10) becomes

P (|N | = n) =
R

[c]
|θ|(n)R

[c]
γ (m− n)

R
[c]
|θ|+γ(m)

,

for all n ≤ m and zero otherwise. This is the pmf of the univariate Pólya distribution

P [c]
m (|θ|, γ). Therefore the multivariate stationary distribution is the non-singular version of

the Pólya distribution thanks to the identity

P [c]
∆n

(θ) ∧
n
P [c]
m (|θ|, γ) = P [c]

Nm (θ, γ).
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According to Theorem 1 of Peyhardi et al. (2021) the marginals are given by the damage
distributions

P [c]
n (θj , |θ−j |) ∧

n
P [c]
m (|θ|, γ) = P [c]

m (θj , |θ|+ γ),

for all j = 1, . . . , J .

E Necessary and sufficient condition for detailed balance in the
classic neutral theory and with density-dependent migration

E.1 Classic neutral theory

Recall the assumptions of classic neutral theory regarding the jumping rates (11):

q+j (n) = m(|n|)πj + njb(|n|)
q−j (n) = njd(|n|)

where we assume that n > 0 =⇒ d(n) > 0 (i.e. no individual is immortal).
We assume that the above process has a stationnary distribution with support S ⊂ NJ .

Because no individual is immortal, 0 ∈ S and if n ∈ S and n′ ∈ NJ | ∀i ∈ {1, ..., J}, n′i ≤ ni
then n′ ∈ S.

Define Km = min{n ∈ N|m(n) = 0} and K = min{n ∈ N|m(n) = b(n) = 0}. By
definition, Km ≤ K ≤ +∞. If Km = 0 then S = {0}. If Km > 0 then S = NK . In what
follows we assume that Km > 0 and S = NK .

We seek for necessary conditions to obtain detailed balance of the stationary distribution
which is depicted by the Kolmogrorov criterion (7):

∀n ∈ NK , ∀(i, j) ∈ {1, ..., J}2, qi(n) qj(n+ ei) = qj(n) qi(n+ ej),

where qj(n) =
q+j (n)

q−j (n+ej)
. Recall that qj is well defined because no individual is immortal.

Using the expression of jumping rates, the Kolmogorov criterion becomes :

[m(|n|)πi + nib(|n|)] [m(|n|+ 1)πj + njb(|n|+ 1)]
= [m(|n|)πj + njb(|n|)] [m(|n|+ 1)πi + nib(|n|+ 1)] ,

which can be simplified as :

(πinj − πjni) [m(|n|)b(|n|+ 1)−m(|n|+ 1)b(|n|)] = 0

which implies in turn that :

∀n ∈ {1, ...,K − 1}, m(n)b(n+ 1) = m(n+ 1)b(n) (15)

Declining constraint (15) along possible initializations of m(n) and b(n) yields:

– if m(1) = b(1) = 0 : K = 1 and constraint (15) disappears.
– if m(1) = 0 and b(1) > 0 : ∀n ∈ {1, ...,K − 1},m(n) = 0
– if m(1) > 0 and b(1) = 0 : ∀n ∈ {1, ...,K − 1}, b(n) = 0
– if m(1) > 0 and b(1) > 0 : ∀n ∈ {1, ...,K − 1} : m(n) > 0, b(n) > 0 and :

b(n) = Ĩm(n)

where Ĩ =
b(1)
m(1)

.

In summary, we have shown that the stationnary distribution verifies detailed balance
only if one of the following conditions holds

– Km = 0
– Km = 1 and ∀n ∈ {1, ...,K − 1},m(n) = 0
– Km > 1 and ∃ Ĩ ≥ 0 | ∀n ∈ {1, ...,Km}, b(n) = Ĩm(n)

Reciprocally, it is straightforward to show that each of these conditions is sufficient to obtain
detailed balance of the stationary distribution.
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E.2 Neutral theory with density-dependent migration

We now turn to the extension of neutral theory including density-dependent immigration
as defined in equation (13), which we recall here :

q+j (n) =
[
m(|n|)

(
πj − K̃nj

)
+ njb(|n|)

]
1πj−K̃nj≥0

q−j (n) = njd(|n|)

with K̃ ∈ R+. We define Kj = max{nj ∈ N|πj − K̃nj > 0} + 1 and �K̃ the hypercube
{0, ...,K1} × {0, ...,K2} × ...× {0, ...,KJ}.

We also define Km and K like in previous section and we assume that Km > 0. Then
the support of the stationary distribution is S = �K̃ ∩ NK

We seek for necessary conditions to obtain detailed balance of the stationary distribution
which is depicted by the Kolmogrorov criterion (7). Using the expression of jumping rates
in (13), the Kolmogorov criterion becomes :

[
m(|n|)

(
πi − K̃ni

)
+ nib(|n|)

] [
m(|n|+ 1)

(
πj − K̃nj

)
+ njb(|n|+ 1)

]
1πi−K̃ni≥0∩πj−K̃nj≥0

=
[
m(|n|)

(
πi − K̃ni

)
+ nib(|n|)

] [
m(|n|+ 1)

(
πj − K̃nj

)
+ njb(|n|+ 1)

]
1πi−K̃ni≥0∩πj−K̃nj≥0

which can be simplified as :

(πinj − πjni) [m(|n|)b(|n|+ 1)−m(|n|+ 1)b(|n|)] 1πi−K̃ni≥0∩πj−K̃nj≥0 = 0

which implies in turn that :

∀n ∈ {0, ...,K′ − 1}, m(n)b(n+ 1) = m(n+ 1)b(n) (16)

where K′ = min
(∑J

j=1Kj − 1,K
)

Declining constraint (16) along possible initializations of m(n) and b(n) yields:

– if m(1) = b(1) = 0 : K = 1 and constraint (16) disappears.
– if m(1) = 0 and b(1) > 0 : ∀n ∈ {1, ...,K′ − 1},m(n) = 0
– if m(1) > 0 and b(1) = 0 : ∀n ∈ {1, ...,K′ − 1}, b(n) = 0
– if m(1) > 0 and b(1) > 0 : ∀n ∈ {1, ...,K′ − 1} : m(n) > 0, b(n) > 0 and :

b(n) = Ĩm(n)

where Ĩ =
b(1)
m(1)

. In summary, we have shown that the stationnary distribution verifies

detailed balance only if one of the following conditions holds

– Km = 0
– Km = 1 and ∀n ∈ {1, ...,K′ − 1},m(n) = 0
– Km > 1 and ∃ Ĩ ≥ 0 | ∀n ∈ {1, ...,K′}, b(n) = Ĩm(n)

Reciprocally, it is straightforward to show that each of these conditions is sufficient to obtain
detailed balance of the stationary distribution.
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F Variation and convexity of n→ s(n)

c = −1 c = 0 c = 1

Canonical s′(n) =
−(γ + 1)

(n− (m− γ) + 1)2
1m−γ≤n≤m s′(n) = −

1

γ
1n≤m s′(n) =

−(γ − 1)

(γ +m− n− 1)2
1n≤m

cases γ ∈ N∗, m ∈ N∗, m ≤ |θ|+ γ γ ∈ R∗+, m ∈ N∗ γ ∈ R∗+, m ∈ N∗

=⇒ s decreases on (m− γ,m) =⇒ s decreases on (0,m)

{
γ < 1 =⇒ s increases on (0,m)

γ > 1 =⇒ s decreases on (0,m)

=⇒ s′ increases on (m− γ,m) =⇒ s′ constant on (0,m)


γ < 1

2
=⇒ s′ increases on (0,m− 1)

1
2
< γ < 1 =⇒ s′ increases on (0,m)

γ > 1 =⇒ s′ decreases on (0,m)

Independent s′(n) = 0 s′(n) = 0 s′(n) = 0

cases α ∈ R∗+ α ∈ R∗+ α ∈ (0, 1)

=⇒ s constant on (0,+∞) =⇒ s constant on (0,+∞) =⇒ s constant on (0,+∞)

=⇒ s′ constant on (0,+∞) =⇒ s′ constant on (0,+∞) =⇒ s′ constant on (0,+∞)

Dependent s′(n) =
|θ|+ b+ a− 1

(|θ|+ b− n− 1)2
1n<|θ| s′(n) =

1

|θ|+ b
s′(n) =

|θ|+ a

(|θ|+ a+ b+ n)2

non-canonical a ∈ R∗+, b ∈ R∗+ a ∈ R∗+ and b ∈ R∗+ a ∈ R∗+ and b ∈ R∗+

cases =⇒ s increases on (0, |θ|) =⇒ s constant on (0,+∞) =⇒ s increases on (0,+∞)

=⇒ s′ increases on (0, |θ|) =⇒ s′ constant on (0,+∞) =⇒ s′ decreases on (0,+∞)

Table F.1 Variation and convexity of s for the nine Pólya splitting distributions of Table

1


