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ON COMPETITION FOR SPATIALLY DISTRIBUTED RESOURCES
IN NETWORKS: AN EXTENDED VERSION

GIORGIO FABBRI∗, SILVIA FAGGIAN†, AND GIUSEPPE FRENI‡

Abstract. We study the dynamics of the exploitation of a natural resource dis-

tributed among and flowing between several nodes connected via a weighted, di-

rected network. The network represents both the locations and the interactions of

the resource nodes. A regulator decides to designate some of the nodes as natu-

ral reserves where no exploitation is allowed. The remaining nodes are assigned

(one-to-one) to players, who will exploit the resource at the node. We show how

the equilibrium exploitation and the resource stocks depend on the productivity of

the resource sites, on the structure of the connections between the sites, and on

the number and the preferences of the agents. The best locations to host nature

reserves are identified according to the model’s parameters, and we find that they

correspond to the most central (in the sense of eigenvector centrality) nodes of a

suitably redefined network that considers the nodes’ productivity.
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1. Introduction

In the exploitation of common property and open access resources, externalities en-

gender distortions that the social planner or agents may wish to strategically regulate

or control. The question of how to estimate and correct such effects has produced

a huge body of literature, in which resource stocks are usually assumed homoge-

neous in space. A relevant exception is given by metapopulation models (see e.g.,

Sanchirico and Wilen, 2005) that explicitly address the possibility that natural re-

source stocks can be spatially distributed, with various productive sites connected by

non-homogeneous migration flows. Migratory fish provide the most obvious example

of a moving distributed stock, but the same spatio-temporal structure is common

to other resources, such as water and oil, which are often flowing between locations.

Moreover, the same dynamics are shared by other non-natural stocks, such as “knowl-

edge” or pollution, which may be generated in specific locations and afterward diffused

to others.
1
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In settings where a network of flows connects the resource extraction sites, do

different productivities of the various sites and different intensities of migration flows

map into a specific hierarchy of the sites? Does this hierarchy affect how the access

of competing agents should be regulated and, in particular, where natural reserves

should be placed?1

While these ranking questions have received scant attention in the metapopulation

literature (however see Costello and Polaski, 2008), they are central in the network

literature (for surveys, see Jackson and Zenou, 2015; Zenou, 2016), within which a

prominent approach consists in studying the Nash equilibrium of static games where

players are connected via a network of externalities, and in identifying the key players

in this equilibrium by using network statistics (Ballester et al., 2006).

In this paper, we take a network perspective on common spatially distributed re-

sources and develop a simple dynamic model where n nodes (n ≥ 2) of a weighted

directed network represent the n sites where the resource resides and evolves in time,

while the weights on the edges give the interregional migrations rates of the resource.

The n regions are heterogeneous not only because they are differently connected, but

also because the growth rates of the resource are possibly different in different re-

gions. The regulator’s task is to assign extraction rights to f < n agents to maximize

a welfare function, which, for the most part, we take to be the sum of the agents’

utilities. We assume that the regulator is constrained to assign at most one agent to

a region. Following the assignment stage, the agents compete for the exploitation of

the resource as in the classic Levhari and Mirman (1980) dynamic game, with four

main differences: 1. time is continuous and the exploitation of the resource occurs

continuously; 2. the stock of the resource is not homogeneous but distributed among

the n regions; 3. the site productivities are assumed to be independent of the stocks;

and, finally, 4. each agent can only access the resource through the single node to

which they are assigned. Further, we assume the instantaneous utility functions of

the agents are isoelastic, consistently with the bulk of the literature on the Levhari-

Mirman game in continuous time. Our main aim is then to study how the structure

of the network affects the regulator’s decision.

1The same questions also apply in more general contexts, including mobile resources with en-

vironmental or amenity values whose reproduction process is affected by economic activities. For

example, given that urban development is likely to worsen conditions at breeding sites of migra-

tory or non-migratory birds that are capable of moving, ranking the sites can help inform zoning

regulations and urban planning.
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The assumption that sites’ growth functions are linear may seem strong, yet it

is valid in many cases including the following: whenever the resource is exhaustible;

when the resource is renewable but the stock is collapsing (and, hence, concave growth

functions with finite steepness at zero at the different sites can be harmlessly approx-

imated by their tangent at the origin); when there exists no fixed factors causing

decreasing returns, for example if the resource is “knowledge” (corresponding to a

non-exhaustible pool of ideas).

Our first contribution is to describe the properties of a Nash equilibrium of the

game; in particular, we show that:

(a) When agents are sufficiently “patient”, in the generalized growth theory sense

that their rate of discount is close to a critical discount rate (see e.g., McFadden, 1973,

for a discussion of critical discount rates in optimal growth theory), and the network

is fully connected, there exists a unique Markov perfect equilibrium (MPE) in linear

strategies for the post-assignment dynamic game (see Theorem 1 and Theorem 2).

(b) The same linear MPE exists and is unique among linear strategies for the class

of strongly connected networks if the state space is appropriately restricted2 (see

Section 3.3 and in particular Proposition 3 and Theorem 3).

(c) At this equilibrium, all agents, independently of the assignment, evaluate the

different site stocks by means of a constant common vector of relative prices that

proves to be the eigenvector centrality of a network that combines the migrations

flows and the sites’ net rates of growth. These two forces interact in determining the

centrality of the sites (Section 4.4). Moreover, at the MPE, our patient agents restrain

themselves the most when assigned to the most central sites but moving an agent from

a peripheral to a more central node does not enhance resource conservation. In fact,

the diminished extraction intensity of the agent only offsets the otherwise negative

effects that a constant extraction rate from more productive sites would have caused

on the resource’s rate of growth.

Our second contribution is that we provide some comparative statics that show

how the equilibrium outcome is affected by the choice of sites for natural reserves,

the number of issued permits, and the network structure. We begin by showing

that when the social planner compares equilibria for different choices of nodes where

natural reserves are set, they find that the welfare of each agent who has obtained

2Many of our results continue to hold or have natural counterparts when source or sink nodes

are added to the network, making it reducible. However, we think that each reducible network is

reducible in its own way, and different kinds of reducibility give rise to different phenomena that

cannot be captured within a single model.
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a permit decreases in the centrality measure of his/her assigned node. Thus, an

utilitarian planner always sets the reserves at the most central regions of the network

(Section 4.1), and permits are always issued in order of centrality, starting from the

most peripheral node.

Once consistent outside options are specified for the agents without permits, the

last result serves as the basis for studying how the number of licenses impacts the

planner welfare function. If a tradeoff exists between the utilities of inframarginal

and marginal concessionaires, then the planner welfare function may have an inter-

nal maximum that can be interpreted as the optimal number of permits. However,

paralleling analogous results obtained in other growth models with externalities (e.g.,

Tornell and Lane, 1999), we find that this tradeoff actually exists only if agents’

intertemporal elasticity of substitution is below a given threshold. Agents with an

elasticity of intertemporal substitution between 1 and that threshold increase their

equilibrium extraction rate when a new license is granted, while agents with elas-

ticity of intertemporal substitution above the threshold behave in the opposite way

(Proposition 7). Here, the decline of the extraction rate is so strong that a higher

number of agents contributes to mitigate the “tragedy of commons” effect. Under

these circumstances, the regulator tends to maximize the number of issued permits.

We also analyze how the outcome changes when the parameters representing the

network are varied (Section 4.2). In our model, the effects of varying the site produc-

tivities and the network density are mediated by the largest eigenvalue of the process

that governs the stocks evolution in absence of exploitation. This eigenvalue coincides

with the von Neumann rate of growth of the system (i.e., the maximum rate of growth

of the resource) and it plays the same role as the productivity parameter in the stan-

dard aggregate linear growth model (Rebelo, 1991). The well-known fact that the

above eigenvalue is an increasing function of the elements of the matrix representing

the process can be used to single out the effect of increasing the site productivities,

but not to study the effect of changing the weights of the network. Indeed, a change

in a migration flow engenders a simultaneous change, which is equal but opposite in

sign, in the net growth rate of the node from which the resource flows. Neverthe-

less, for symmetric networks with different (gross) productivities, we prove that the

largest eigenvalue is a decreasing function of the elements of the adjacency matrix.

The intuition behind this negative effect of increased mobility is that it prevents the

accumulation of the stock in more productive sites. After having established these

basic facts, we then show that, as it occurs for the number of permits, the effect on

the equilibrium rate of growth of a change in the maximum rate of growth depends
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on the value of agents’ elasticity of intertemporal substitution, so that an increase in

the dominant eigenvalue can result in a decrease of the rate of growth.

Our paper is naturally related to the metapopulation literature (Hanski, 1999;

Sanchirico and Wilen, 2005; Smith et al., 2009; Costello and Polaski, 2008, and oth-

ers). A few papers in this stream have explored aspects of the problem of dynamic

strategic interaction with distributed and moving resources, especially to evaluate

whether management of the resources through a system of Territorial Use Rights

(Territorial Use Right for Fishing, or “TURF”, in the case of fisheries) can effec-

tively mitigate the “tragedy of the commons” (see e.g., Kaffine and Costello, 2011,

Costello et al., 2015, Herrera et al., 2016, Costello and Kaffine, 2018, Costello et al.,

2019, de Frutos and Martin-Herran, 2019, Fabbri et al., 2020). For example, Kaffine

and Costello (2011) have shown, using a discrete time model, that Territorial Use

Rights coupled with profits sharing can effectively mitigate the overexploitation of

moving resources. Costello et al. (2015) have extended the same model to show how

partial enclosure of the commons can improve the welfare of the common property

regime. Costello and Kaffine (2018) compared the relative efficiency of centralized

versus decentralized management of a moving resource when users have heterogeneous

preferences for conservation and the regulator has incomplete information about these

preferences. Conversely, in a two-region model in continuous time, Fabbri et al. (2020)

have suggested that modulating the access to the different sites through the assign-

ment of Territorial Use Rights can be effective in increasing the rate of growth of

moving collapsing resources, in a context of high harvesting effort. Apart for the

choice of the time structure (continuous vs discrete), the model we study is similar

to the N-patch discrete time model of Kaffine and Costello (2011). The models, how-

ever, differ in the specifications of both the production functions (linear vs. strictly

concave) and the utility functions (isoelastic vs. linear). In particular, the linear

specification of the instantaneous utility function significantly simplifies the dynam-

ics in the Kaffine and Costello model, implying that the equilibrium path jumps

immediately to the stationary state without any transitional dynamics.

Closely related to this article is the now extensive literature on differential games

in resources economics surveyed in Clemhout and Wan (1994), Dockner et al. (2000)

and Long (2011). In almost all the games considered in that literature, the state vari-

able is scalar (an exception is Clemhout and Wan, 1985, which allows multispecies

predator–prey interactions). Plourde and Yeung (1989) provide a continuous time

version of the Levhari and Mirman (1980) dynamic game. A discussion of the MPE

for the case of an exhaustible resource exploited by n agents can be found in Dockner
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et al. (2000) section 12.1.2. Clemhout and Wan (1985) contains various models of

renewable resources, and also covers the one-dimensional case in which the reproduc-

tion function is linear. Linear versions of the renewable resource game have been used

in development economics by Tornell and Velasco (1992), Tornell and Lane (1999)

and others to show that the interaction of multiple powerful groups can hinder the

rate of growth of poor countries. We discuss the connection with Tornell and Lane

(1999), when we present our comparative statics results 3.

Our work is also broadly related to the network literature that connects the Nash

equilibrium of static games to network statistics (e.g., centrality measures) (Ballester

et al., 2006, Bramuillé et al., 2014, Allouch, 2015). We also connect the policy ex-

traction function of the agents in the Markovian equilibrium of our dynamic game

to a centrality measure of a network. The eigenvector centrality of our network is

also related to the solution of a single-player game and hence to the Pareto efficient

outcomes of the model and to the efficiency prices of optimal extraction plans. In the

network literature, Elliott and Golub (2019) have recently studied a similar problem

in a static framework that uses the eigenvector centrality of the nodes of the mar-

ginal benefits network to characterize the Pareto-efficient and Lindahl outcomes in

the provision of a public good by a group of agents whose actions heterogeneously

benefit each other.

Other works specifically study the role of networks in the management of natu-

ral resources. Currarini et al. (2016) survey various contributions in which network

economics has been utilized in analyzing issues ranging from the pattern and speed

of diffusion of new green technology to the structure and dynamics of international

agreements, from the formation of links in building an environmental coalition to

the role of infrastructural networks in the access to natural resources. Among those

studies, that by İlkılıç (2011) is closest to the question we explore here. İlkılıç (2011)

studies a static game in which a given number of users exploit multiple sources of a

common pool 4, and each user faces marginal costs that are increasing in the total

extraction from the site, due to the presence of source-specific congestion externali-

ties. The main conclusion is that, in the unique Nash equilibrium of the game, the

rate of extraction at each source is proportional to a centrality measure of the links

3There is also some connection with multisector growth models with externalities (e.g., Benhabib

et al., 2000). In this literature, however, the focus is on competitive equilibria. Moreover, the

production functions are specified differently (Cobb-Douglas vs. perfect substitutes).
4For the situation of a common pool with a network of players, we also mention the paper by

Marco and Goetz (2017), in which a model with limited rationality and evolution of social norms is

proposed.
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of the source. Our model provides the basis for developing dynamic versions of the

İlkılıç (2011) model. More recently, Kyriakopoulou and Xepapadeas (2018) studied

the interaction between a global congestion externality and local positive externali-

ties, reflecting collaboration links in the exploitation of a single resource by a given

number of agents. They show that the equilibrium rate of extraction of agents is, in

this case, proportional to their centrality in the local interactions network.

Finally, we note that while we framed our model as a common resource extraction

game, it might also be interpreted as a discrete public goods contribution game where

a group of agents are investing, for example in knowledge, to reach a target when

there are externalities (imagine, for example, multiple connected laboratories trying

to achieve a scientific breakthrough). In that case, the control variables must be

interpreted as costly efforts that influence the state of the project. Homogeneous-

stock versions of the model have been studied in, among others, Kessing (2007),

who show that efforts are strategic complements in time, in Georgiadis (2015), who

analyze optimal contracts for a generalized model in which the evolution of the project

is stochastic, and in Cvitanić and Georgiadis (2016), who propose a budget-balanced

mechanism that induces each agent to choose the first-best effort level. Distributed-

stock versions of the model, which can be developed with the techniques used in

this paper, may have applications in the decisions regarding the formation of teams,

and allowing agents heterogeneous in terms of centrality in a network, they might be

particularly relevant in deciding the optimal team composition.

The remainder of the paper is organized as follows. In Section 2 the model is

described and preliminaries are discussed. Sections 3 contains the main results of

the paper and the description of the Nash equilibrium. In Section 4 the role of the

network structure is discussed with the aid of a variety of examples. Section 5 provides

sketches of possible applications of the developed techniques to other problems while

Section 6 contains the final remarks. The proofs of all analytic results are collected

in Appendix A.

2. The model

We consider a common property resource that is diffused over a (possibly geograph-

ical) area and partitioned in subareas. The resource is mobile in space, meaning that

it can move from one region to another in certain proportions, assumed as given.

It can be renewable or non-renewable. Typical examples of such resources are live-

stock, (e.g., fish or birds), but also water or oil reservoirs, which often spread across
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Figure 1. An example of strongly connected network.

regional or national borders. As a model example, we consider fish mobile, for in-

stance, around different regional or national waters, in seas or oceans. We assume

that these subareas are sufficiently distinct from one another and that each is suffi-

ciently homogeneous that they can be represented as nodes of a network, and that

the presence of an edge between two regions means that they are connected, with the

weight on the edges representing the intensity of such connections. We additionally

assume that any region can be reached from any other, directly or through an indi-

rect path. The network then acts as a space diversification of the resource. Note also

that the assumption of a strongly connected network is naturally satisfied when the

resource is fish, in seas or oceans, as territorial waters (the nodes) are all connected.

The evolution system. Mathematically speaking, we consider a network G, with

n nodes – as many as the number of regions – that we assume to be directed and

weighted. We denote the set of nodes by N := {1, .., n}, and with gij ≥ 0, the weight

upon the edge connecting a source node i and a target node j, with gij representing

the intensity of the outflow from i to j, so that when gij = 0 and gji = 0, there are

no direct paths between the two nodes. We assume:

(H1) G strongly connected, with gii = 0 for all i ∈ N ;

that is, there exists in G a path connecting any two nodes with corresponding strictly

positive coefficients gij and G has no loops.

We denote by G the (weighted) n × n adjacency matrix with elements gij, and

i, j ∈ N , by ei the i-th vector of the canonical basis on Rn, and by 〈·, ·〉 the inner

product in Rn. We also denote by R+ the set of nonnegative real values.
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For all i ∈ N , the quantity Xi(t) stands for the mass at node i at time t, and X(t)

for the vector with components X1(t), .., Xn(t). The evolution in time of mass Xi(t)

on region i depends on several factors:

(a) the natural growth ΓiXi(t) of the resource at time t at node i, embodied by

the (constant) natural growth rate Γi; for renewable resources Γi > 0, while

for non-renewable resources Γi ≤ 0;

(b) the outflow of the resource from region i to a linked region j at time t, given

by gijXi(t), so that the net inflow at location i is given by(
n∑
j=1

gjiXj(t)

)
−

(
n∑
j=1

gijXi(t)

)
= 〈Gei, X(t)〉 −

(
n∑
j=1

gij

)
Xi(t)

(c) the rate of extraction ci(t) at time t from region i.

As a whole, we then have for all i

Ẋi(t) =

(
Γi −

n∑
j=1

gij

)
Xi(t) + 〈Gei, X(t)〉 − ci(t).

If A = (aij) is the diagonal matrix of the net reproduction factors, namely{
aij = 0 if i 6= j

aii ≡ ai = Γi −
(∑j=n

j=1 gij

)
,

c(t) is the vector with components c1(t), .., cn(t), and x0 is the vector of all initial

stocks of the resource at the different nodes; then, the evolution of the system in

vector form is given by:Ẋ(t) = (A+G>)X(t)− c(t), t > 0

X(0) = x0 ∈ Rn
+.

(1)

In addition, we require the following positivity constraints:

ci(t) ≥ 0, t ≥ 0, i ∈ N (2)

as well as

Xi(t) ≥ 0, t ≥ 0, i ∈ N. (3)

To exemplify what connection weights in G signify, we consider the particular

case in which the resource moves toward less crowded areas, proportionally to the

difference Xi(t)−Xj(t) (Fick’s first law). When such difference is positive, fish move

from node i to node j, and when it is negative, from j to i. Then the weights gij
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nodes. The (only) reserve-node is highlighted in green, while red arrows

represent the extractions of the two agents.

express the proportion mentioned above, and gij = gji, with the net inflow at node i

given by

−
n∑
j=1

gij(Xi −Xj) =
n∑
j=1

gijXj −
n∑
j=1

gijXi.

Consequently, G = G>, then A + G> = A + G and the problem simplifies. We will

refer to this subcase as the symmetric case.

Harvesting Rules and Payoffs. We assume that the regulator wishes to devote some

of the n regions to the reproduction of the resource (natural reserves), and to assign

each of the remaining regions to an agent, for exclusive exploitation and enhancing a

Territorial Use Right policy. More precisely, harvesting is prohibited in a subset M

of N, while every node i with i ∈ F := N \M is exclusively assigned to agent i. We

denote by f the number of elements of F , so that elements in M are n− f .

An example where n = 3 and f = 2 is represented in Figure 2, with all possible

configurations for the one reserve.
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Finally, we assume that agents strategically interact in a differential game where agent

i maximizes the payoff

Ji(ci) =

∫ +∞

0

e−ρtu(ci(t))dt, i ∈ F (4)

where

u(c) = ln(c) or u(c) =
c1−σ

1− σ
, σ > 0, σ 6= 1

(the case of a logarithmic u stands for the case σ = 1), where ρ ∈ R is the discount

rate.

2.1. Primitives of the Network. For reasons that will be made clear soon, eigen-

values and eigenvectors of the matrix A + G will have an important role in our dis-

cussion. First, we observe that A + G has an eigenvalue that is simple, real, strictly

greater than the real parts of the other eigenvalues, and with a positive associated

normalized eigenvector, as a consequence of the Perron–Frobenius Theorem and the

fact that G (and then A + G) is irreducible. The transpose A + G> enjoys similar

properties. We then order the eigenvalues of A+G as follows:

λ > Re(λ2) ≥ Re(λ3) ≥ ... ≥ Re(λn). (5)

and call η ∈ Rn
+ (respectively, ζ ∈ Rn

+), the right (resp., left) normalized eigenvectors

of A + G, both associated to λ, and having both strictly positive coordinates. The

rest of the section is then devoted to the interpretation of λ, η, and ζ and associated

useful quantities.

2.1.1. Trajectories in the long run. In the case of null extraction (c ≡ 0) it is well

known that the trajectories of the system converge to the direction of the eigenvector

ζ associated to the dominant eigenvalue λ. Moreover, the trajectories starting on the

ray through ζ remain steadily on the ray at all times. Then ζ represents the direction

of convergence in the long run of the trajectories of the system with null extraction.

2.1.2. Weighted Total Mass. The total mass (or aggregate stock) of the resource is

given by
∑n

i=1 Xi(t). Nonetheless, we rather consider the weighted total mass given

by

〈X(t), η〉 :=
n∑
i=1

Xi(t)ηi.
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namely, the scalar product of X(t) and η. Since all ηi are strictly positive, indeed the

two quantities have time-equivalent magnitude, as suggested by

1

M
〈X(t), η〉 ≤

n∑
i=1

Xi(t) ≤
1

m
〈X(t), η〉 ≤ M

m

n∑
i=1

Xi(t). (6)

where m = mini ηi and M = maxi ηi. In particular, the total mass and the weighted

total mass grow at the same rate.

2.1.3. Growth Rate of the System. In the absence of extraction, that is, for all ci = 0,

λ represents the total mass growth rate. Indeed, (1) implies 〈Ẋ(t), η〉 = λ〈X(t), η〉,
and then

〈X(t), η〉 = eλt〈x0, η〉.
Moreover, net reproduction rates ai satisfy

ai < λ, ∀i ∈ F. (7)

as the expansion in rows of the equality (A+G)η = λη gives

(λ− ai)ηi =
n∑

j=1,j 6=i

gijηj > 0, (8)

with at least one of the gij strictly positive, as the network is strongly connected.

2.1.4. Detrended Trajectory. It is sometimes useful to consider the detrended tra-

jectory of the system in the absence of extraction Y (t) = e−λtX(t) so that

Ẏ (t) = (A + G> − λI)Y (t) with null principal eigenvalue. Hence, 〈Ẏ (t), η〉 =

〈Y (t), (A+G− λI)η〉 = 0 and

〈Y (t), η〉 ≡ 〈x0, η〉, ∀t ≥ 0, (9)

establishing that the state X(t) has constant projection in time along the direction

of η, magnified only by the growth factor eλt.

2.1.5. Meaning of the eigenvector η. We give three interpretations of the components

ηi of eigenvector η. The first two strictly follow from the fact that they are the Von

Neumann prices. However, the last one characterizes them in terms of eigenvector

centralities of nodes in a specific migration matrix:

(1) The component ηi of η measures the long-term productivity of the system at

node i. One way to establish this is to consider the detrended trajectory Y i(t)

starting with a unitary mass concentrated in the i-th node, namely x0 = ei.

Then, by (9)

〈Y i(t), η〉 = ηi,
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implying that the total mass, in the long run, is maximized when such unitary

mass is allocated in the node where ηi is maximal.

(2) The minimal ηi signals also the best node to extract a mass so as to have

minimal impact on the overall growth rate. More precisely, if every player

extracts the resource proportionally to the (weighted) total mass, that is,

ci = Ii(t)〈X(t), η〉, with I(t) = (Ii(t))i denoting the intensities of extraction

at time t, then the evolution of the system becomes

Ẋ(t) = (A+G>)X(t)− 〈X(t), η〉I(t)

which implies 〈Ẋ(t), η〉 = g〈X(t), η〉 with

g = λ−
n∑
i=1

Ii(t)ηi

the new growth rate of the total mass. In particular, the rate g is a decreasing

function of Ii with
∂g

∂Ii
= −ηi, (10)

implying that one has the lowest decrease in the growth rate when the resource

is extracted at the node where ηi is minimal.

(3) The ηi’s represents what network theory terms the eigencentrality of node i,

not of the original G but of a related network G ′ whose adjacency matrix is

A + G. Note that since (A + G)η = λη, and the matrix A − λI is diagonal

with all positive diagonal coefficients λ− ai, one can rewrite

(λI − A)−1Gη = η. (11)

Then η is the dominant eigenvector (of eigenvalue 1) also of the migration

network with adjacency matrix (λI −A)−1G, that is, where the coefficients of

the original adjacency matrix G are magnified by reproduction rates: the i-th

row of G is multiplied by 1/(λ− ai), and flows are magnified by such factor;

the greater ai, the stronger the effect.

3. Existence of Markovian Equilibria

In our investigation of Nash equilibria of the game, we restrict the search to Mar-

kovian equilibria, that is, equilibria in which the strategies (the extraction rates) ci
of the agents are described as reaction maps, in real time, to the observed level of the

stock X(t) at time t, that is

c(t) = ψ(X(t)), with ci(t) = ψi(X(t)), ∀i ∈ N
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(clearly, ψi ≡ 0, i ∈ N \ F ) and the system evolves according to the closed-loop

equation (briefly, CLE)Ẋ(t) = (A+G>)X(t)− ψ(X(t)), t > 0

X(0) = x0,
(12)

provided that such equation has a (unique) solution. We define such reaction maps

as

ψ = (ψ1, ψ2, . . . , ψn), ψi : S → [0,+∞)

where S is a subset of Rn
+ (possibly coinciding with Rn

+, or with a cone contained in

Rn
+), depending on the data of the problem. We denote the set of admissible strategy

profiles by

A = A1 × A2 × · · · × An,

where Ai is the collection of all (re)actions ψi of player i (or a null reaction in nodes

with reserves). We denote by X(t;ψ;x0) or by Xψ,x0(t) the solution of (12). We also

adhere to the custom of denoting by ψ−i all components of ψ different from the i-th,

so that ψ = (ψi, ψ−i).

The idea underlying the definition of a consistent couple below is the following. If

the initial stock x lies in the subset S of the positive orthant and players select their

strategies in A, then the trajectory always remains in S. Now, let’s assume that one

or more agents playing a Markovian strategy deviate from their initial choice for a

lapse of time. In any case, the stock is stirred within the set S, so if the agents’

original choice was optimal for each of their maximization problems, it remains a

feasible and optimal reaction from their new position in S.

Definition 1 (Consistent couple) Assume that for any x0 ∈ S, for any ψ ∈
A, there exists a unique solution Xψ,x0 to (12), with Xψ,x0(t) ∈ S for all t ≥ 0. Then,

the couple (S,A) is said to be consistent.

The existence of a consistent couple is not for free, and we will need to specify how

it must be chosen for different networks (see section 3.3).

The next step is the definition of a Nash equilibrium, for which we will refer to the

following.

Definition 2 (Markovian Perfect Equilibrium) Assume the couple (S,A) is

consistent. We say that a strategy profile ψ ∈ A, is a Markovian Perfect Equilibrium

(MPE) if, for all x0 ∈ S and for all i ∈ F , the control ci(t) = ψi(X
ψ,x0
i (t)) is optimal

for the problem of Player i, given by: the state equation (1) in which cj(t) = ψj(X(t))
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for every j 6= i; the constraints (2); the functional Ji(ci) given by (4), to be maximized

over the set of admissible controls Ai.

Note that if the problem is set at a consistent couple (S,A), a Markovian Nash

equilibrium ψ in A is subgame perfect by definition: if a player deviates (purposefully

or mistakenly) from ψ, they cannot leave the set S, and the strategy profile ψ remains

feasible and Nash from the state reached in S. Hence, adding to the previous remarks,

identifying a suitable consistent couple (S,A) is crucial to ensure subgame perfection

of the equilibria that we compute.

The above notwithstanding, we will proceed by initially assuming that the problem

can be set at a consistent couple (S,A), and that the equilibrium lies in A (Theorem

1 in section 3.1), and by later identifying a consistent couple in different sets of data,

so that the assumptions of Theorem 1 are satisfied (section 3.3).

3.1. Dynamic Programming. In the forthcoming Theorem 1 and the subsequent

remarks, we establish the existence of an MPE, computing an explicit formula for

the equilibrium, the welfare of players, and other relevant quantities. To this end,

we solve the problem of player i by means of Dynamic Programming, as we outline

below:

(1) We define Vi, the value function – or welfare – of player i, as the highest overall

utility of player i among those achieved with a choices of his/her strategy ci,

namely

Vi(x) = sup
ci∈Ai

Ji(ci;x)

where x is the initial stock of the resource and the notation Ji(ci;x) points

out that dependence in Ji;

(2) Given the strategies cj, with j 6= i as known, we associate with the problem

of player i a Hamilton-Jacobi-Bellman (HJB) equation, namely

ρv(x) = max
ci≥0

{
u(ci)− ci

∂v

∂xi
(x)

}
+ 〈x, (A+G)∇v(x)〉 −

∑
j∈F−{i}

(
∂v

∂xj
(x)

)
cj (13)

to which Vi is a (candidate) solution;

(3) We establish the relationship between the maximizing control c∗i and the value

function Vi, u
′(c∗i ) = ∂Vi

∂xi
(x); thus, at every moment, the marginal utility from

extraction is equal to the marginal cost of having a smaller amount of the

resource in the future at node i. Note that, in both cases of power function

and logarithmic utility, u is invertible on the positive real axis, so that the
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previous relationship can be rewritten as

c∗i = ψi(x) ≡ (u′)−1

(
∂Vi
∂xi

(x)

)
(14)

which becomes a closed-loop formula for c∗i , once Vi is known;

(4) Finally, in Theorem 1 we exhibit the welfares Vi’s and a strategy profile c∗ =

(c∗i , c
∗
−i), with linear dependence on the observed stock X(t) that fulfills the

above properties for every i ∈ F , thus an MPE. Specifically, we provide an

analytic formula for c∗ as a function of X(t).

Before detailing these steps, we introduce some useful notation. We define ξ as the

vector with components ξi = η−1
i if i ∈ F , and ξi = 0 otherwise, and ξ η> the n× n

matrix obtained by multiplying the column vector ξ by the row vector η>, in symbols

ξ =
∑
i∈F

η−1
i ei, ξ η> = (ξiηj)ij. (15)

Finally we set

θ :=
ρ+ (σ − 1)λ

1 + (σ − 1)f
. (16)

Theorem 1 Assume u(c) = c1−σ

1−σ , with σ > 0, σ 6= 1, θ > 0. Assume also that

(S,A) is a consistent couple and that ψ∗ : S → Rn
+ given by

ψ∗i (x) =
θ

ηi
〈x, η〉 , for all i ∈ F , ψ∗i (x) = 0, for all i 6∈ F . (17)

is a strategy profile in A. Then:

(i) ψ∗ is an MPE of the game in the sense of Definition 2;

(ii) the welfare of agent i along such equilibrium is

Vi(x) =
θ−σησ−1

i

1− σ
〈x, η〉1−σ ; (18)

(iii) If X∗(t) = Xψ∗,x0(t) is the trajectory at the equilibrium then

〈X∗(t), η〉 = egt〈x0, η〉 (19)

with

g = λ− θf =
λ− fρ

1 + (σ − 1) f
, (20)

The reader will find the proof of Theorem 1 in Appendix A.

Several remarks are due here:
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(1) The same result, with due changes, applies to the case of logarithmic utility

u(c) = ln(c). Although we do not discuss this in detail, it can be proven that

the associated MPE is obtained from (17) setting θ = ρ, corresponding to the

choice σ = 1 in (16). Consequently, the welfare of agent i reads as

Vi(x) =
1

ρ

[
ln

(
ρ

ηi
〈x, η〉

)
+ λ− fρ

]
.

(2) For all choices of u, the extraction ψ∗i and the welfare Vi of player i are greater

at nodes i, with a smaller ηi. This behavior is consistent with (10), as the

overall growth rate g is damaged more at nodes with a greater ηi, resulting

in a future lesser utility. Moreover, agents appear to self-regulate, extracting

less when at a more central node. However, because in equation (20), the rate

of growth is independent from the agent’s assignment, this propensity does

not give the regulator a tool to promote the conservation of the resource: the

diminished intensity of extraction that the agents optimally apply at more

central nodes just offsets the negative effects of exploiting more productive

sites.

(3) Note that (18) implies ∂Vi(x)
∂xj

= θ−σησ−1
i 〈x, η〉−σ ηj so that for any couple of

indices j, k in N one has

∂Vi(x)
∂xj

∂Vi(x)
∂xk

=
ηj
ηk
, (21)

where the left-hand side represents the relative shadow prices of the resources

at nodes j and k, as evaluated by player i. Nonetheless, the right-hand side

does not depend on i, implying that every player gives the same relative

evaluation of stocks, independently of the node where they stand.

(4) Equation (19) says that the weighted total mass 〈X∗(t), η〉 of the resource

at equilibrium grows with rate g, which equals the natural growth rate λ

diminished by a quantity proportional to both θ and the number of players

f . As a consequence of (6), g is also the growth rate in the long run of the

aggregate stock
∑

iXi(t).

3.2. Stability. We are now interested in the long-term behavior of the stock, partic-

ularly in establishing if the stock tends to stabilize over time around certain values

at the different nodes. Technically speaking, we address convergence of transitional

dynamics towards a potential steady state. To do so, it is useful to describe the

equilibrium trajectory through the eigenvectors/eigenvalues of the matrix of the CLE
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(12), in which ψ∗ is implemented, that is, A+G>− θ ξη>. Indeed, by means of (15),

the MPE (17) can be written in vector form as

ψ∗(x) = θ〈x, η〉ξ = θ ξη>x,

and (12) becomes {
Ẋ(t) = (A+G> − θ ξη>)X(t), t > 0

X(0) = x0.
(22)

(for both power and logarithmic utilities, with θ = ρ for the logarithmic utility). Now

we set

θ1 =
λ− Re(λ2)

f
, (23)

(noting that 0 < θ < θ1 is equivalent to g > Re(λ2)), and E = ξη>. The properties of

E are listed in Lemma 2 in the Appendix, and in particular, they imply the following

result.

Lemma 1 Assume 0 < θ < θ1.

(i) A + G − θE> has normalized eigenvector η associated with the eigenvalue

g = λ − θf ; as a consequence, there exists a normalized eigenvector ζ̂ of

A+G> − θE associated to the same eigenvalue g.

(ii) Consider the base {ζ, v2, . . . , vn} of generalized eigenvectors of A+G>, asso-

ciated to the eigenvalues {λ, λ2, . . . , λn}. Then, A+G>− θE has eigenvalues

{g, λ2, . . . , λn} associated respectively with eigenvectors {ζ̂ , v2, . . . , vn}.

The above lemma implies that the extraction process modifies only the direction of

the principal eigenvector of the matrix A + G>, which changes from ζ to ζ̂, and the

associated eigenvalue, which decreases from λ to g. The remaining eigenvalues and

eigenvectors remain the same.

Since both g and ζ̂ depend continuously on θ, and ζ > 0, then there exists θ2 > 0

such that ζ̂ ≡ ζ̂(θ) is definitively positive for all θ < θ2. We then set

θ2 = sup{θ : ζ̂(s) > 0, ∀s ∈ [0, θ]}.

Then, in the next proposition, we discuss the decomposition of the equilibrium tra-

jectory along the eigenvectors directions, and its definitive convergence within the

positive orthant (see also Lemma A.1 in Appendix A).

Proposition 1 Assume 0 < θ < θ1, let X∗ be the equilibrium trajectory de-

scribed in Theorem 1. Then, there exists α̂ ≥ 0 such that the detrended trajectory
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X∗(t)e−gt satisfies

lim
t→+∞

X∗(t)e−gt = α̂ ζ̂. (24)

If in addition θ < θ2, the trajectory enters definitively the positive orthant.

The proof can be found in Appendix A, and has the following consequences and

interpretations:

(1) Stock in the long run. When g is (remains) the eigenvalue with greatest real

part among {g, λ2, . . . , λn}, the equilibrium trajectory X∗ converges toward

the direction of the associated eigenvector ζ̂, meaning that in the long run,

the stock X∗ tends to be distributed in the various nodes proportionally to

the components of ζ̂.

(2) Players are patient. Note that convergence within the positive orthant is

guaranteed by a sufficiently small θ, expressed by the condition 0 < θ <

min{θ1, θ2}. This has a straightforward interpretation regarding logarithmic

utility (θ = ρ), since requiring that θ is sufficiently small is equivalent to

assuming that the agents are sufficiently patient. If instead σ 6= 1 (i.e., the

elasticity of intertemporal substitution is different from 1) and the number of

agents is given, θ ≈ 0 means ρ ≈ ρ̂ ≡ (1 − σ)λ. In optimal growth theory,

the value ρ̂ gives the critical discount rate (i.e., the minimum discount rate

for which an optimal solution exists, in the case of one player). The case of

an exogenous growth rate is dealt with in Brock and Gale (1969), while the

case of a linear technology, the one relevant here, is treated extensively in

McFadden (1973)5. Since with a linear technology there is a trade-off between

the growth rate and the intensity of consumption, we can think that agents

for whom ρ ≈ ρ̂ are patient in the generalized sense that they prefer a high

growth rate over immediate consumption. The peculiarity in our multiagent

setting is that the sign of the difference ρ − ρ̂ is not necessarily positive but

depends on the sign of the denominator in the formula defining θ.

3.3. Subgame Perfection. According to Definitions 1 and 2, the result of Theorem

1 needs to be completed with the identification of a consistent couple (S,A) for the

problem, namely, a set of initial data S and a set of strategy profiles A such that,

when starting from S, the stock vector X(t) can never be stirred out of S when players

choose strategies/reactions in A.

5In both these studies, time is discrete. However, analogous results hold in continuous time.
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The existence and choice of the consistent couple depends on the primitives of the

problem, such as the intensity of the connections between nodes, represented by the

matrix G, and the magnitude of θ described by (16). We then separate the discussion

into the case of a fully connected and the (merely) strongly connected networks.

3.3.1. Fully Connected Networks. We first discuss the case in which the network is

fully connected: all nodes are connected by positive edges, in both directions, and

hypothesis (H1) is replaced by the stronger

(H2) G is fully connected, i.e. gij > 0, ∀i, j ∈ N with i 6= j, and gii = 0,∀i ∈ N .

Under this assumption, as large an S as possible can be chosen, that is

S = Rn
+,

and coupled with set of strategies Ai for player i, i ∈ F , given by

Ai :=

ψi : Rn
+ → [0,+∞) :

(i)ψi is Lipschitz-continuous

(ii)ψi(x) ≤
〈
(A+G>)x, ei

〉
for all x ∈ Rn

+ such that xi = 0.

 (25)

When i 6∈ F we assume Ai contains only the null strategy. Note that the request (i)

that ψi is Lipschitz-continuous6 implies that the CLE (12) has a unique (classical)

solution, X(t); whereas the condition (ii) ensures that, when the mass at node i is

null, the extraction ψi can be at most as much as the inflow at node i from the other

nodes, so that the mass at node i remains non-negative at all times.

Clearly (S,A) defined above is a consistent couple as the (unique) solution of the

CLE (12) starting at a point of the positive orthant x0 remains there contained at all

subsequent times, for all choices of a strategy profile in A.

However, is the strategy profile described in (17) admissible? The answer is affir-

mative for certain values of the data, as we specify below.

Proposition 2 The strategy profile ψ∗ described in (17) lies in A (and conse-

quently, ψ∗ is an MPE) if and only if

0 < θ ≤ gij
ηi
ηj
, ∀i ∈ F, j ∈ N, i 6= j. (26)

Specifically, if (26) is violated, there exist initial data x0 ∈ Rn
+ such that the trajectory

X∗(·) starting at x0 leaves the positive orthant Rn
+ at some times.

6Namely, there is constant L > 0 such that |ψi(x) − ψi(y)| ≤ L|x − y|, for all x, y ∈ Rn+. A

Lipschitz-continuous function is continuous and differentiable almost anywhere (with respect to

Lebesgue measure) and with a bounded derivative, at the points where it exists.
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The proof is in Appendix A.

Again, the condition (26) says that θ needs to be small for ψ∗ to be admissible,

meaning we should assume that agents are sufficiently patient in extracting the re-

source. The critical value for θ is

θ̂ = min

{
gij
ηi
ηj

: i ∈ F, j ∈ N, i 6= j

}
with θ̂ > 0, due to the full connection of the network.

3.3.2. Strongly Connected Networks. For a strongly connected network where some

gij, i 6= j are null, Proposition 2 implies that there exist some initial positions x0

from which the trajectory X∗ solving (22) is not feasible, i.e. X∗(t) leaves the positive

orthant, at least for some times t. An example of this fact follows.

Example. Consider a network with n ≥ 4 nodes, and in

which node i is only connected to node i+ 1 (and node

n only to node 1) with edge weight 1, and all natural

growth rates Γi = Γ. (Note that with such symmetry

nodes are fundamentally indistinguishable.)
:

We have λ = Γ, η = ζ = 1√
n

∑n
j=1 ej, and the candidate MPE, out of the reserves,

is ψ∗i (x) = θ
∑n

j=1 xj. Assume X∗ is the candidate equilibrium trajectory and 1 ∈ F ,

so that

Ẋ∗1 (t) = (Γ− 1)X∗1 +X∗n − θ
n∑
j=1

X∗j (t),

and consider the initial condition x0 = e3. Then (X∗1 )′(0) = −θX3(0) = −θ and the

trajectory leaves immediately the positive orthant for every θ > 0.

Nonetheless, exhibiting a consistent couple is possible, at least in presence of some

effort constraints, which introduce in the model the feature that extraction is more

difficult when the resource is less abundant. More precisely, we consider the standard

Schaefer catch functions βiEixi, where the stock xi is bilinearly combined with player

i ’s effort Ei, and the catchability parameter βi, βi ≥ 0 for all i ∈ F . Assuming player

i ’s total capacity for effort is finite and normalized to 1, we derive the constraints

ψi(x) ≤ βixi

We define Aβ = Aβ1
1 × · · · × Aβn

n , where the strategy set of player i is

Aβi
i :=

{
ψi : S → [0,+∞) :

(i)ψi is Lipschitz-continuous

(ii)ψi(x) ≤ βixi, for all x ∈ S.

}
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Strategies in Aβj
j at reserve nodes j 6∈ F are chosen null.

We now establish the existence of a cone S in Rn
+ such that (S,Aβ) is a consistent

couple. For a positive defined matrix P ∈ Rn × Rn and a real constant d, we define

the ellipsoid depending on P , d and the positive eigenvector ζ

E(P, d) :=
{
x ∈ Rn

+ : x>Px ≤ d
}
,

and the positive cone through the origin containing it

S∗ = {ry : r > 0, y ∈ ζ + E(P, d)}. (27)

Note that for d small enough, E(P, d) is an arbitrarily small neighborhood of the

origin, regardless of the choice of P . Consequently, for a small enough d, both ζ +

E(P, d) and S∗ are entirely contained in (0,+∞)n.

Proposition 3 Let ψ∗ be the strategy profile described in (17), and X∗(t) :=

X(t;x0, ψ
∗) the associated trajectory. Let additionally S∗ be the cone defined in (27)

and contained in (0,+∞)n, and let 0 < θ < min{θ1, θ2}. Then, for small enough

catchability parameters βi (with βi > 0) and extraction intensity θ (θ possibly smaller

than min{θ1, θ2}), the couple (S∗,Aβ) is consistent, the strategy profile ψ∗ is admis-

sible, and hence ψ∗ is an MPE in (S∗,Aβ).

See Appendix A for the proof.

3.4. Uniqueness of the equilibrium. Finding all the MPE for our problem would

require simultaneously solving f interdependent partial differential equations of type

(13), one for every player. Obviously, when the state variable is scalar, the system

reduces to a system of ordinary differential equations, for which standard uniqueness

results can sometimes be used (e.g., Cvitanić and Georgiadis, 2016), but with a state

variable dimension of at least 2 we are not aware of any uniqueness result for systems

of PDE of such general form. Nonetheless, assuming that linear strategies are salient

because of their simplicity and that, therefore, players are more likely to coordinate

on this kind of equilibria rather than on (eventually existing) alternative equilibria

with more complex structure, we analyze uniqueness among linear strategies.

Regarding the strategy profile ψ∗ given by (17), we are able to prove that:

(i) when the network is fully connected (i.e., in the unconstrained problem), ψ∗

is the unique linear MPE for the problem on (Rn
+,A);

(ii) for a general strongly connected network (i.e., for the problem with effort

constraints), ψ∗ is the unique linear MPE for the problem on (S∗,Aβ), if

β > 0 and θ > 0 are small enough.



SPATIALLY DISTRIBUTED RESOURCES IN NETWORKS (EXTENDED VERSION) 23

Theorem 2 Assume (H2), i.e. G fully connected, and θ ∈ (0, θ̂) and that f < n

(i.e., there exists at least a reserve). Then the hypotheses of Theorem 1 are verified at

the consistent couple (Rn
+,A) and the strategy profile ψ∗ there described is the unique

linear MPE of the game, namely, the unique form ψj(x) = 〈wj, x〉, with wj ∈ Rn
+.

The long and nontrivial proof of this statement is contained in the Appendix.

The presence of reserves is quite primal in the topic of this paper so the assumption

f < n in Theorem 2 can be considered not particularly strong. However, note that

this assumption is indispensable: one can construct examples of systems with f = n

(and that verify the other assumptions of the theorem) in which more than one linear

equilibrium can be constructed. However, these are specific examples that likely only

take place on a set of measure zero on the space of admissible parameters.

A counterpart of the result proved in Theorem 2 can additionally be stated for

the second consistent couple characterized in Proposition 3, namely, the cone and

the effort-constrained controls. Here, we do not need to restrict to fully connected

networks but need to work with sufficiently small efforts βi. The result is as follows.

Theorem 3 Suppose that the hypotheses of Proposition 3 are verified. If θ ∈
(0, θ1) and β > 0 are small enough the MPE given in Theorem 1 and Proposition 3

is the unique linear MPE of the game on (S∗,Aβ).

A sketch of the proof, very similar and even simpler than the one of Theorem 2,

can be found in Appendix A.

4. Comparative statics

4.1. Optimal Location of the Reserves. Here, we assume that the number f

of extraction permits are given and that the intervention of the regulator is limited

to deciding where natural reserves are placed among the available n regions. This

decision is made at the beginning of the game and never changed afterwards.

We assume the regulator aggregates preferences in a Benthamian way, that is,

they act to maximize the sum of the utilities of all players, knowing that agents will

choose their strategies according to Theorem 1. We assume also that the equilibrium

strategies are admissible for the given set of data, for any choice of reserves placement.

The regulator then compares the outcome of different equilibria associated to different

placements of the n − f reserves and chooses the configuration maximizing the sum

of utilities of players.



24 G.FABBRI, S.FAGGIAN, AND G. FRENI

In symbols, if F = {F ⊂ N : |F | = f} describes all possible subsets of N having f

elements, he/she maximizes with respect to F ∈ F

W (x, F ) =
∑
i∈F

Vi(x). (28)

where value functions Vi are those described in Theorem 1, and x is the initial distri-

bution of the resource through the nodes. Thus, the following result is a corollary of

Theorem 1.

Proposition 4 In the hypotheses of Theorem 1, assume the strategies profile

ψ∗ is admissible at x0 for any choice of F ∈ F . Then the social welfare W defined in

(28) is maximized if the natural reserves are built at a subset F of nodes i where ηi
are highest. If FMAX ∈ F is one of such choices, then

W (x0) =
θ−σ

1− σ
〈x, η〉1−σ

∑
i∈FMAX

ησ−1
i . (29)

The proof is straightforward. This result has a clear explanation. In Section 2.1 we

showed that ηi measures the long term productivity at node i, and in (21) that every

player gives the same evaluation of stocks independently of the node where they stand.

Moreover, as observed in Section 3.2, “patient” agents (i.e., agents whose optimal

rate of extraction θ is small) prefer to consume dividends rather than the stock.

Given that resource flows extracted in the different regions are perfect substitutes, it

clearly follows that the regulator must optimally preserve those units of stocks that

prospectively have a higher productivity.

4.2. Comparative Growth Rates. We now analyze how the long-term growth rate

of the resource stocks, namely g given by (20), changes with respect to the parameters

of the system.

We start by varying reproduction rates Γi, embodying local productivity advance-

ments, and the entries of the adjacency matrix G, describing flows among nodes. As

equation (20) shows, the largest eigenvalue of the matrix A + G (i.e., the maximum

rate of growth of the system) is the medium through which these “technological” pa-

rameters impact the equilibrium rate of growth. Hence, the two relevant questions to

ask are: how does the largest eigenvalue change with changes in the “technological”

parameters? How does a change in the largest eigenvalue affect the rate of growth?

To answer the latter question so as to convey economic intuitions, it is useful

to rewrite equation (20) explicitly considering the dependence of the equilibrium
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extraction rate θ on the largest eigenvalue λ:

g = λ− θ(λ)f. (30)

Then, recalling that θ is given by (16), we derive

dθ

dλ
= − 1− σ

1− (1− σ)f
, (31)

which is certainly positive if (1−σ) < 0, while it has the opposite sign of 1−(1−σ)f ,

that is the denominator in (16), if (1− σ) > 07.

Thus, there are two different cases in which the agents exploit the resource more

intensively when λ is greater: when (1−σ) < 0 and when (1−σ) > 0 and 1−(1−σ)f <

0. However, these two cases differ, because in the former dθ
dλ

= 1
f−(1−σ)−1 <

1
f
, while

in the latter dθ
dλ

> 1
f
. Therefore, under the latter parameter configuration there

is a disproportionate increase of the agents equilibrium extraction rates implying
dg
dλ

= 1− f dθ
dλ
< 0. In the context of a development model with common and multiple

private stocks, Tornell and Lane (1999) dubbed this disproportionate agents reaction

the voracity effect.

On this basis, recalling that Theorem 1 ensures the existence of an MPE when

θ > 0, so that numerator and denominator in (16) bear necessarily the same sign, the

following two regimes can be identified:

(a) A standard regime, in which ρ − (1 − σ)λ > 0 and 1 + (σ − 1)f > 0. These

same conditions can be reformulated as follows:

ρ− (1− σ)λ > 0, and (σ ≥ 1, f ≥ 1) ∨
(

0 < σ < 1, 1 ≤ f <
1

1− σ

)
, (32)

where with σ = 1 we intend the case of logarithmic utility.

(b) A voracious regime with negative numerator and denominator, i.e. ρ − (1 −
σ)λ < 0 and 1 + (σ − 1)f < 0, which can be reformulated as

ρ− (1− σ)λ < 0, 0 < σ < 1, f >
1

1− σ
. (33)

We note that a positive sign of ρ− (1− σ)λ, only holding in the standard regime,

is a necessary and sufficient condition for a finite value function regarding a single

player (f = 1), and regarding a social planner maximizing the sum of utilities of

players. Moreover, as λ represents the asymptotic growth rate of the resource under

null extraction, the result is consistent with the parallel condition ρ − (1 − σ)A > 0

in the standard single-player/social-planner AK-models (for extraction or growth).

7We recall that in the case of σ = 1 the rate of extraction coincides with the rate of discount and

is, therefore, independent from λ.
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The role of the condition ρ− (1−σ)λ > 0 remains the same in a game with a general

number f of players. Conversely, in the game with f players, when ρ− (1− σ)λ > 0

and σ < 1 hold, the condition 1 + (σ − 1)f > 0 implies a restriction on the number

of players, as necessarily f < 1
1−σ . This condition descends from the fact that each

agent, in solving their control problem, perceives a maximum rate of growth of the

resource that is given by λ − (f − 1)θ. Hence their value function is finite if and

only if ρ + (σ − 1)[λ − (f − 1)θ] > 0. Given the value of θ, this is equivalent to

1 + (σ − 1)f > 0. Similar conditions for the aggregate cases with A = 0 are given in

Dockner et al. (2000).

In the voracious regime (33), the outcome for the game and the social planner

problem diverge: over an infinite horizon, the social planner problem is not well

defined, as some strategies engender an infinite value function; conversely, a Nash

equilibrium for the game does exist, as players at the equilibrium tend to overexploit

the resource, hence reducing their future earnings, and keeping their value functions

finite.

The two regimes recur, giving rise to significantly different system behaviors8. We

have already specifically shown that, while in the standard regime a greater value of

λ implies a greater rate of growth, in the voracious regime, whenever the value of λ

is greater, the agents always coordinate on a Nash equilibrium with a lower growth

rate. Formally, we have the following proposition.

Proposition 5 In the assumptions of Theorem 1, consider the growth rate g of

the system described in (20), as a function of the dominant eigenvalue λ. Then:

(i) g is strictly increasing in λ, in the standard regime (32);

(ii) g is strictly decreasing in λ, in the voracious regime (33).

With these preliminaries in place and given the well-known result that the largest

eigenvalue of an irreducible Metzler matrix is an increasing function of its elements,

the comparative statics regarding the reproduction rate Γi is now a straightforward

corollary of the above proposition.

Corollary 1 In the assumptions of Theorem 1, consider the growth rate g of

the system described in (20), as a function of the reproduction rate Γi. Then:

(i) g is strictly increasing in Γi, in the standard regime (32);

8On whether one regime is more realistic than the other, the empirical evidence is inconclusive.

Some studies report an elasticity of intertemporal substitution 1
σ close to zero (see for instance Hall,

1988 and Best et al., 2020), while others report values greater than 1 (e.g. Gruber, 2013).
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(ii) g is strictly decreasing in Γi, in the voracious regime (33).

Next, we analyze how the growth rate g changes with changes in the entries of the

adjacency matrix G. Note that we cannot use the fact that λ is an increasing function

of the elements of the matrix A+G. Indeed, a change in a migration flow engenders

a simultaneous change that is equal but opposite in sign, in the net growth rate of

the node from which the resource flows. Nevertheless, for symmetric networks, we

can establish the following result.

Proposition 6 Assume G is symmetric, i.e. gij = gji. Consider the dominant

eigenvalue λ of the matrix A + G as a function of gij (i, j ∈ N , i 6= j). Then λ is a

nonincreasing function of gij. Moreover, λ is strictly decreasing if Γi 6= Γj.

The intuition behind the negative effect of increased mobility on the maximum

growth rate λ is that it prevents the accumulation of the stock in more productive

sites. Having proved this, we can again invoke Proposition 5 to conclude that, as

for the local reproduction rates, the manner in which this effect translates on the

equilibrium rate of growth depends on which of the two above regimes prevails. In

particular, we have the following result.

Corollary 2 Assume G is symmetric, i.e. gij = gji. In the assumptions of

Theorem 1, consider the growth rate g of the system described in (20), as a function

of gij (i, j ∈ N , i 6= j). Then:

(i) g is a nonincreasing function of gij, in the standard regime (32);

(ii) g is a nondecreasing function of gij, in the voracious regime (33).

Finally, we analyze how the equilibrium growth rate of the system, g, is affected

by the number f of issued extraction permits. The conclusions once again diverge in

the standard and voracious regimes.

Proposition 7 In the assumptions of Theorem 1, consider the growth rate g of

the system described in (20), as a function of the number of players f . Then:

(i) g is strictly decreasing in f , in the standard regime (32);

(ii) g is strictly increasing in f , in the voracious regime (33).

The picture emerging from Proposition 7 is pretty transparent. In the standard

regime a “tragedy of commons” mechanism prevails: the higher the number of agents

the quicker they tend to appropriate the resource to avoid being preceded by the

others. Conversely, in the voracious regime a higher number of players interferes with
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the voracious baseline attitude so that the greater the competition the more resource

survival is guaranteed.

4.3. Endogenizing the number of permits. Presently, the number of agents in-

volved in the game, i.e. the number f of issued extraction permits, has been given

exogenously. In this section, we briefly discuss the case in which the social regulator

can choose such number f ∗ to maximize the overall welfare W described in (29).

We assume there are fM < n potential concessionaires, hence, the regulator chooses

a number f in the set {0, 1, . . . , fM}. Note that the outside option for the players

must be specified differently for the two cases σ ≥ 1 and σ < 1. In the former, indeed,

the value function Vi(x) of an agent with extraction rights is unbounded below (it

goes to −∞, if x → 0), and −∞ is the only consistent outside option. This implies

that with σ ≥ 1, the only possibility for the regulator to keep the value of the welfare

function above −∞ is to choose f = fM . In the latter case, Vi(x) is bounded below

by zero, and so the outside option can be consistently set at zero – as under these

circumstances no agent with a permit has ever an incentive to quit the game, while an

outsider always wants to join the game. Henceforth, therefore, we limit our analysis

to the case of σ < 1.

Let us order the sites according to their eigenvector centrality, with site 1 the most

peripheral one. Proposition 4 implies that issuing the permits in increasing order of

centrality is a necessary condition for welfare maximization. Therefore, when f ≤ fM
permits are issued, the welfare function for f > 0 can be written as

W (f) =
[θ(f)]−σ

1− σ
〈x, η〉1−σ

f∑
i=1

(ηi)
σ−1, (34)

where θ(f) = ρ−(1−σ)λ
1−(1−σ)f

> 0, and we can set W (0) = 0.

Recalling Proposition 7, comparative statics analysis with respect to the number

of permits can be performed under the two (mutually exclusive) sets of assumption,

standard (32) and voracious (33).

To study the maximum of the function in equation (34), we first note that

∂θ

∂f
=

1− σ
(1− (1− σ)f)2

(ρ− (1− σ)λ), (35)

so that θ(f + 1) > θ(f) holds in the standard case, while θ(f + 1) < θ(f) if voracity

prevails. Then, we split the effect of issuing an additional permit into the sum of two
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terms

W (f + 1)−W (f) =
[θ(f + 1)]−σ − [θ(f)]−σ

1− σ
〈x, η〉1−σ

f∑
i=1

(ηi)
σ−1+

+
[θ(f + 1)]−σ

1− σ
〈x, η〉1−σ(ηf+1)σ−1, (36)

where the first term measures the effects on the value functions of the inframarginal

concessionaires and the second the effect on the value function of the marginal conces-

sionaire. As in the voracious regime an additional agent creates positive externalities

on inframarginal concessionaires, we have the immediate implication that in this case

the optimal number f ∗ of permits is fM . In the standard regime, instead, the exter-

nalities on inframarginal concessionaires are negative and the optimal number f ∗ of

permits can be smaller than fM . We show in Proposition 8 that, in the latter case,

W (f + 1)−W (f) is positive for f = 0 and can change sign at most once for f > 0.

Therefore, if f ∗ < fM , a standard interpretation in terms of public goods applies:

the surplus of the planner (who in our case places equal weights on all players) is

maximized at the maximum f for which the marginal benefit is still greater than the

sum of marginal costs the group of agents incurs.

Proposition 8 In the assumptions of Theorem 1, consider the social welfare

W (f) described in (34), as a function of the number of players f . Then:

(i) Assume the standard regime (32), with 0 < σ < 1, ρ − (1 − σ)λ > 0, f ∈
[1, 1

1−σ ). Then there exists f ∗ ∈ {1, .., fM} such that W is, on {1, .., fM},
increasing for f < f ∗, and decreasing for f > f ∗, with maximum at f ∗.

(ii) In the voracious regime (33), the maximum of W (f) is reached at f ∗ = fM .

4.4. Hierarchy of Nodes. In section 4.1 we widely discussed how all agents, at

our equilibrium (17), evaluate the different sites’ stocks by means of a vector of

relative prices η, independently of the assignment. Nodes are ordered in a hierarchy

determined by the magnitude of the components of η: the smaller ηi, the greater

the welfare of player i. In section 2.1.5 we also noted that the ηi represent the

eigencentrality of node i (not of the original network G but) of a strongly connected

network G ′ associated to the matrix A + G, thus combining the migration flows and

the net rates of growth at the sites. In this section we analyze how these two forces

interact in determining the eigencentrality η of the sites.
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4.4.1. A Two-region Example. The joint role of flow coefficients gij and of net repro-

duction rates ai (or, equivalently, of reproduction rates Γi) in determining eigencen-

trality preferences is already apparent in an example with two regions and a single

player. Assume that

A+G =

[
a1 g12

g21 a2

]
and, without loss of generality, a1 ≥ a2 and η = (µ, 1)>. As a consequence of

Proposition 4, the reserve is best set at node 1 when µ > 1, at node 2 when µ < 1

and indifferently at node 1 or 2 when µ = 1. Note also that, given that there is a

single agent, conditional on the assignment, the outcome is always Pareto efficient.

To better understand the role of the parameters we expand[
a1 g12

g21 a2

][
µ

1

]
= λ

[
µ

1

]
,

to obtain a1 + g12
µ

= g21µ+a2 ⇐⇒ µ = g12
g21

1
µ

+ a1−a2
g21

, and represent the solution of the

last equation as the intersection in the plane (ν, µ) of the line µ = g12
g21
ν+ a1−a2

g21
and the

hyperbola µν = 1, as depicted in Figure 3. When the component µ of the intersection

sits above the bisectrix of the first orthant, the reserve is best set at node 1 (otherwise

at node 2). This fact is influenced both by the slope g12/g21 depending on the flows

intensity between regions, as well as by the intercept a1−a2
g21

on the µ-axis, depending

on the net productivities.

Figure 3. AB e A′B′ represent two instances of equation µ = g12
g21
ν +

a1−a2
g21

, with OA (or OA′) equal to a1−a2
g21

. In the case of AB, the reserve

is best placed at node 1, while in the case of A′B′ at node 2.
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4.4.2. An example with a unique breeding ground. Suppose the stock is distributed

over three nodes and that node 3 is the only breeding ground for the resource, with

positive growth rate Γ3 > 0, while Γ1 = Γ2 = 0. To simplify the analysis, we

suppose the intensity of the migration between nodes is given by a weighted undirected

network, where 0 < a < 1 is the weight of the connection between nodes 1 and 2, and

1− a the weight on the links between the breeding place (node 3) and nodes 1 and 2.

Moreover, we assume Γ3 = (1− a). Since

A+G =

 −1 a 1− a
a −1 1− a

1− a 1− a −(1− a)

 ,

it can be easily verified that the dominant eigenvalue and the corresponding eigen-

vector are given by

λ = (
√

2− 1)(1− a), η =

(
1

2
,

1

2
,

1√
2

)>
.

Assuming the two acting agents have a logarithmic utility with discount ρ > 0, the

(candidate) optimal strategy of an agent assigned to nodes 1 or 2 is c1 = c2 = ρ(x1 +

x2 +
√

2x3), while that of an agent assigned to region 3 is c3 = ρ( 1√
2
x1 + 1√

2
x2 + x3).

In view of Proposition 4, if the regulator maximizes the sum of the agents’ utilities

and the profile

(ψ1(x), ψ2(x), ψ3(x)) =
(
ρ(x1 + x2 +

√
2x3), ρ(x1 + x2 +

√
2x3), 0

)
is feasible, then the reserve should definitely be placed at node 3. Said differently,

protecting the only breeding ground is welfare-maximizing for the regulator.

To complete the discussion, we analyze feasibility of the above strategy profile, in

the absence of effort constraints. Proposition 2 implies the above strategy is feasible

if and only if

ρ ≤ 1√
2

min{a, 1− a}.

Therefore, the equilibrium exists if the agents are sufficiently patient. Furthermore,

by Theorem 2, such equilibrium is the unique linear MPE.

4.4.3. Networks with equal net reproduction rates. We now analyze the hierarchy of

nodes when they are all are equally productive. We start with an example with

three regions and two agents, where nodes bear the same net productivity, and are
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connected with different weights, as described in

A+G =

 −2b a a

b −2b b

b b −2b

 ,

where a > b > 0. The dominant eigenvalue and the corresponding eigenvector are

λ = (η̂1 − 1)b, η = (η̂1, 1, 1)> ,

where η̂1 > 1 is the positive solution of the equation η2
1 + η1 − 2a/b = 0. We also

assume logarithmic utilities, with discount rate ρ. According to Proposition 4, the

best choice for the regulator is to place the reserve at node 1; moreover,

(ψ1(x), ψ2(x), ψ3(x)) = (0, ρ(η̂1x1 + x2 + x3), ρ(η̂1x1 + x2 + x3))

is the unique linear MPE, when agents are patient enough to satisfy the condition

ρ ≤ 1
η̂1
b consistently with Proposition 2. In this case, protecting the site with the

largest migration routes is the welfare-maximizing policy.

The above result can be generalized as follows to networks with identical net pro-

ductivities, i.e., with

ai = Γi −
n∑
j=1

gij ≡ a for all i ∈ N.

We denote the Perron–Frobenius eigenvalue for G by λ◦ and the associated normalized

eigenvector by η◦. In this context, A + G = aI + G, and the eigenvectors of G

and aI + G are the same, implying η = η◦ (with η, η◦ associated, respectively, to

eigenvalues λ, λ◦ = λ − a). Hence, when nodes are equally productive, all sites are

ranked according to the eigenvector centrality η◦ of the migration network G, with

ηi higher when node i is better connected to the other nodes. Differently said, when

nodes are undifferentiated with respect to productivity, the migration network rules

the hierarchy.

4.4.4. Fully Connected Networks with Equal Flows. We now investigate what impacts

the hierarchy of the nodes when we assume that the structure of the network is neutral.

To this extent, we assume a complete symmetry of the network, i.e., that different

nodes are all connected to one another with the same intensity of connection α > 0.

That translates into gij = α for all i 6= j, and gii = 0. Combining the i-th and the

`-th row of equation (8), one obtains

η` =
ai − λ− α
a` − λ− α

ηi,
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so that from a` − λ− α < 0 (see (7)) one derives

η` ≥ ηi ⇐⇒ a` ≥ ai ⇐⇒ Γ` ≥ Γi.

Thus, when the network structure is neutral, nodes are ordered in decreasing order

of (natural or net) productivity.

4.4.5. More on hierarchy of general networks. In the analysis of the previous subcases,

we established a monotonic relationship between Γi, η
◦
i and ηi. But is this a general

rule? For example, assume a node i has, with respect to another node j, a greater

centrality in the network G, namely η◦i ≥ η◦i , and a greater reproduction rate and

Γi ≥ Γj. Is the reserve then better placed at node i than at node j? Namely, do we

have ηi ≥ ηj? The answer is in the negative, as explained by means of the following

example. Consider the network described by Γ1 = 1, Γ2 = 1 + b, Γ3 = 0,

G =

0 1 0

0 0 1

2 0 0

 , A+G =

0 1 0

0 b 1

2 0 −2


with b > 0. By explicit calculation one has λ◦ = 3

√
2 and η◦ = µ◦/|µ◦| with µ◦ =

(2−2/3, 2−1/3, 1)>. Note that η◦2 > η◦1 and Γ2 > Γ1, that is, node 2 precedes node 1 both

in productivity (natural and net) and centrality. Nonetheless, η1 > η2 for some choices

of positive b, as we show next. To this extent, if η = µ/|µ| , with µ = (1, µ2, µ3)>,

then µ satisfies 0 1 0

0 b 1

2 0 −2


 1

µ2

µ3

 = λ

 1

µ2

µ3

 ,

whose expansion implies

µ1 = 1, µ2 = λ, µ3 = λ(λ− b), b = λ− 2

λ(λ+ 2)
.

Note that the last equation implies in particular that b is an increasing function of

λ and vice versa. A direct calculation shows that for b = 0 one has λ(0) ' 0.8, so

that by continuity λ(0) < λ(b) < 1 for small positive b. Hence η1 > η2 and a reserve

is better set at node 1 rather than at node 2. Thus, the relationship between the

hierarchy dictated by the eigencentrality η and the productivity/network structure is

complex and generally nonmonotonic.

Finally, we interpret of eigencentrality ηi as a measure of productivity and connec-

tiveness not only of the i-th node, but also of the nodes more directly connected to
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it. In the previous example we set Γ1 = Γ2 = 1 and Γ3 = 2 + a. In this case

µ1 = 1, µ2 = λ, µ3 = λ2, a = λ− 2

λ2
,

with λ an increasing function of a, moreover for a = −1 one has µ1 = µ2 = µ3 = 1,

and λ = 1, so that λ > 1 if and only if a > −1. Therefore

µ1 < µ2 < µ3 for a > −1, and µ1 > µ2 > µ3 for a < −1.

Hence, an increasing reproduction rate Γ3 not only increases η3, making (definitively)

node 3 the most central, but also influences the centrality η2 of node 2, which is more

directly connected to it than node 1.

5. Extensions of the Model and Other Applications

We have derived our results in the context of games of extraction of a (possibly

renewable) resource, such as fish. However, they can be more broadly applied to

games with distributed state variables, such as growth models with local capital

goods and externalities, pollution games with spatially distributed stocks and, with

some adaptation, contribution games on networks.

5.1. Growth Models with Externalities. First, we consider a growth model in

which production is distributed among the n nodes of a network. Assume that all local

production functions are linear and of type yi = Γiki, that capitals decay at rates δi,

and that production generates non-negative externalities on stocks of the other nodes,

linearly depending on production levels; namely, hjiΓjkj is the externality generated

by node-j on node-i, where hij are given nonnegative coefficients. The state equation

at node-i is then given by

k̇i(t) = (Γi − δi)ki(t) +
∑
j 6=i

hjiΓjkj(t)− ci(t),

and in matricial form the system dynamics is given by

k̇(t) = [(I +H>)Γ−D]k(t)− c(t)

where Γ is the diagonal matrix of productivities Γi, H = (hij), and D is the (also

diagonal) matrix of decay rates δi. This system is of type (1) when we set

A = Γ−D, G = ΓH and f = n.
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If we assume that player i maximizes (4), then under the hypothesis of Theorem 1 a

linear MPE of the game is given by

ψ∗(k) =
ρ− (1− σ)λ

1− (1− σ)n

〈k, η〉
ηi

, for all i,

where λ is still the dominant eigenvalue of the matrix [(I + H>)Γ − D] and η the

associated positive eigenvector. Comparative statics is much the same as in the orig-

inal model, with the exception that increasing links hij always imply an increasing

eigenvalue λ. However, as noted in Section 3.4, the uniqueness of the linear equilib-

rium should be further investigated, as with f = n the above MPE is probably only

generically the unique linear MPE equilibrium of the game9.

In the above model, all externalities are non-negative. However, extensions of

the Perron-Frobenius theory to matrices with some negative entries (for example,

eventually positive or eventually exponentially positive matrices, see e.g. Noutnos

and Tsatsomeros, 2008) can be used to extend the analysis to cases in which positive

and negative externalities coexist.

5.2. Pollution Games. The model can be also applied to study spatial diffusion of

pollution. A most direct interpretation takes the state variables as local measures of

environmental quality and the weighted sum 〈X(t), η〉 as the corresponding aggregate

measure of environmental quality. The model then becomes a dynamic pollution game

in which “clearness” moves across different locations and is depleted by the agents’

local economic activities. Here, the dominant eigenvalue represents the overall rate

of natural regeneration. Therefore, it is natural to assume λ ≥ 0. However, if

g = λ − θf ≤ 0, the environmental quality is either stationary or declining, so that

carrying capacities (i.e., saturation points) need not be explicitly modeled. Hence,

(18) implies that the best overall outcome is reached when stocking of the resource (the

reserves) takes place at nodes with the greatest eigencentralities ηi or, equivalently,

pollution is null at those nodes.

In a further generalization of the model, the direct costs of pollution could be

considered by assuming stock-dependent utility functions.

5.3. Contribution Games. Finally, an adaptation of our technique can be utilized

to generalize the dynamic contribution game in Cvitanić and Georgiadis (2016) (see

also Georgiadis (2015)). There, the authors assume that f agents exert costly efforts

9Assuming to exemplify logarithmic utility functions, in case Γ−D = rI, where r ∈ R, ψ∗∗(k) =

ρki+
∑
j 6=i hjiΓjkj(t), for all i, is a second linear MPE of the game. This can be easily verified with

the procedure used in Theorem 1.
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to reach a target associated to a prize V . The target is an exogenously given level q̄

of the state of a project, represented by a one-dimensional state variable X(t)

In a generalized version with a distributed stock, one can consider an n− dimen-

sional vector X(t) of states, built up at a subset of the n nodes of a network by

the agents efforts, and a scalar function q(X(t)) : Rn
+ → R+ giving the state of the

project. The stocks are mobile through connected nodes (e.g., one can think of knowl-

edge that spreads through a network), giving rise to an evolution system of type (1)
10. The possibility of free riding is so allowed.

A simple case occurs when q̇(X(t)) ≥ 0, meaning progress is irreversible, and there

is no progress without efforts, so that q̇(X(t)) = 0 if ci(t) ≡ 0. This translates

into requiring that q(X(t)) = 〈X(t), η〉 and that the matrix A + G has dominant

eigenvalue λ = 0, as 〈X ′(t), η〉 = λ 〈X(t), η〉 when ci(t) ≡ 0. Thus, setting at q̄ > 0

the completion of the project and assuming the cost function at node i is given by

the convex function bi(ci), the problem of player i is to maximize

J i(ci;x) = −
∫ Tci

0

e−ρtbi(ci(t))dt+ e−ρTciαiV

where Tci is the strategy-dependent time when the goal is reached (possibly infinite).

Setting q(t) ≡ q(X(t)) = 〈X(t), η〉 and proceeding like in Theorem 1 in Cvitanić

and Georgiadis (2016), one can establish that a solution for the system of HBJ equa-

tions that characterizes the MPE of a scalar model whose state equation is

q̇ =

f∑
i=1

ηici,

exists and, provided q̄ is so small that at least an agent has incentive to complete the

project even without any contributions from the other agents, is unique in a large

class of functions. Theorem 1 can then be utilized to verify that if vi(q) are the value

functions at the MPE of the aggregate model, then Vi(x) = vi(〈x, η〉) are the value

functions in an MPE when the stocks are distributed.

To illustrate with a simple example, in which it is possible to characterize the

solution analytically, assume all cost functions are quadratic and uniform across the

nodes: bi(ci(t)) = γ
2
ci(t)

2, for all i, with γ a positive constant, and that the regulator

wants to pick up a single agent with the objective to minimize the project’s completion

time. The system of PDEs characterizing the MPE is then given by the f equations,

10Of course, the signs of the control variables ci in the state equation have to be reversed
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one for each agent i,

ρVi(x) = 〈x, (A+G)DVi(x)〉+

〈∑
j 6=i

cjej, DVi(x)

〉
+ 〈ciei, DVi(x)〉 − γ

2
c2
i ,

where, in order that all Hamiltonian functions are maximized, we must set

〈ei, DVi(x)〉 = γci

and, for all j 6= i,

〈ej, DVj(x)〉 = γcj.

This system must be satisfied on the intersection of the first orthant with the set

〈x, η〉 ≤ q̄. Moreover, Vi(x) = αiV for all i on the boundary 〈x, η〉 = q̄.

The corresponding system of HJB equations for the aggregate model,

ρvi(q) =
1

2γ
η2
i

(
dvi(q)

dq

)2

+
1

γ

dvi(q)

dq

∑
j 6=i

η2
j

dvj(q)

dq
, (37)

is defined on interval 0 ≤ q ≤ q̄ and the solution must satisfy the f boundary

conditions vi(q̄) = αiV .

Given that if αi = 1, and αj = 0 for j 6= i, only agent i can have an incentive to

exert an effort, then, vj(q) = 0 for j 6= i, and thus system (37) reduces to the scalar

ODE

γρvi(q) =
1

2
η2
i

(
dvi(q)

dq

)2

, (38)

for which the solution is a quadratic function provided V ≥ γρ
2η2i
q̄2 (i.e., agent i has an

incentive to complete the project if and only if the ratio q̄2

V
is sufficiently small). In

particular, by equating the coefficients, one obtains the formula for the value function

vi(q) =
γρ

2η2
i

q2 +miq +
η2
i

2γρ
m2
i , (39)

where mi > 0 is determined by using the boundary condition

V =
γρ

2η2
i

q̄2 +miq̄ +
η2
i

2γρ
m2
i . (40)

Thus, in the model with a distributed stock, the value function for the agent i is

obtained immediately:

Vi(x) =
γρ

2η2
i

〈x, η〉2 +mi 〈x, η〉+
η2
i

2γρ
m2
i . (41)
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Note now that the boundary condition (40) implies that η2
imi is increasing in the

eigencentrality of the node and that from the Hamiltonian condition it follows that

〈ei, DVi(x)〉 =
γρ

η2
i

ηi 〈x, η〉+miηi = γci.

By substituting this into the state equation, the CLE, when the regulator picks up

agent i, satisfies

Ẋ(t) = (A+GT )X(t) + [
ρ

ηi
〈X(t), η〉+

mi

γ
ηi)]ei,

and therefore, 〈
Ẋ(t), η

〉
= ρ 〈X(t), η〉+

mi

γ
η2
i .

The most central agent is thus the one completing the project in the shortest time

and, therefore, the one the regulator should select.

6. Concluding remarks

The main aim of this paper was to explore, using a simple framework with het-

erogeneous regions and a given number of agents, how the structure of the migration

network affects competition for spatially distributed moving resources. We found that

if the regulator’s objective is to maximize the unweighted sum of the utilities of the

agents, and they are constrained to assign no more than one agent to each region,

then the reserves should be localized in the most central regions. Here, the relevant

centrality measure is given by the eigenvector centrality of a derived network obtained

by magnifying the links of each node in the original migration network by a factor

that is increasing in the productivity of the node itself.

Although in our analysis both the agents and the regulator in our analysis care

only about consumption of the resource, our model provides a basis for more general

analyses in which preferences for conservation are considered, introducing, for exam-

ple, the resource stocks in the utility functions of the agents and/or in the regulator

welfare function. A theme of this analysis will be how the role of the regulator is

enhanced under the new hypotheses.

In a different vein, the role of the regulator could additionally be examined in

more general contexts in which a “bad” extreme equilibrium coexists with the interior

equilibrium. For example, an extreme equilibrium can be expected to exist in variants

of our model if the extracted resource can be stored (e.g., Kremer and Morcom,

2000). In this case, a spatially structured policy could be a useful tool to eliminate
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the incentives that might potentially lead the agents to coordinate on the “bad”

outcome.
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Appendix A. Proofs

Proof of Theorem 1. We initially take the perspective of player i, active at node

i. For all other players, we assume that they play a Markovian strategy, described by

cj(t) = dj 〈X(t), η〉 , with j ∈ F − {i},

where dj are non-negative real numbers. With this choice, the HJB equation (13) can

be rewritten as

ρv(x) =
σ

1− σ

(
∂v

∂xi

)1− 1
σ

+ 〈x, (A+G)∇v(x)〉 − 〈x, η〉
∑

j∈F−{i}

(
∂v

∂xj

)
dj

with maximum attained at

ci =

(
∂v

∂xj

)− 1
σ

. (42)
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Step 1: we search for a solution of HJB equation of type

v(x) =
bi

1− σ
〈x, η〉1−σ , with ∇v(x) = bi 〈x, η〉−σ η (43)

where bi is a suitable positive real number. Substituting v and its partial derivatives

into the HJB equation, we derive that v is a solution if and only if

bi =
1

ηi

(
σηi

ρ− λ (1− σ) + (1− σ)
∑

j∈F−{i} ηjdj

)σ

.

Note that the quantity above will be proven well defined (i.e., the argument of power

σ is nonnegative) once (44) is established.

Step 2: Markovian equilibrium. From (42) follows

ci(t) = (biηi)
− 1
σ 〈X(t), η〉 ,

moreover, at the equilibrium one has di = (biηi)
− 1
σ , implying

di =
1

ηi

ρ− λ (1− σ)

1− (1− σ) f
=

θ

ηi
, and bi = ησ−1

i θ−σ (44)

from which formulas (17) and (18) derive.

Step 3: Closed loop equation. Note that along the equilibrium trajectories, c(t) =

θ〈X(t), η〉ξ = θ ξη>X(t), so that the evolution system can be rephrased as in (22).

Statement (iii) follows from

〈Ẋ(t), η〉 = 〈X(t), (A+G)η〉 − 〈X(t), η〉〈ξ, η〉 = 〈X(t), η〉(λ− θf)

where λ− θf = g = (λ− fρ)(1 + (σ − 1) f)−1.

Step 4: Best response. We verify now that the feedback strategy (17) is the best

response for Player i, when the other players choose ψj, with j 6= i, as in (17). Then

the problem of Player i is maximizing (4) under the dynamics{
Ẋ(t) = (A+G> − θ ξiη>)X(t)− ci(t)ei, t > 0

X(0) = x0.
(45)

where the vector ξi coincides with ξ except for the i-th component, which is set equal

to 0, namely ξi` = ξ` for all ` 6= i, and ξii = 0.

Set c∗i (t) = ψ(X∗(t)) and let ci(t) be any other admissible control, with X∗(t)

and X(t), respectively, the associated trajectories. Now we consider the quantity

(c∗i (t)−ci(t)) ∂v∂xi (X
∗(t)) and use the fact that c∗i (t) realizes the maximum in (42) with

dj = θ/ηj, and p = ∇v(X∗(t)) to derive

1

1− σ
(
c∗i (t)

1−σ − ci(t)1−σ) ≥ (c∗i (t)− ci(t))
∂v

∂xi
(X∗(t)) (46)
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Next, observe that adding and subtracting
〈
(A + G> − θ ξiη>)(X∗(t) −

X(t)),∇v(X∗(t))
〉

and making use of (45), the right-hand side in (46) equals〈
(A+G> − θ ξiη>)(X∗(t)−X(t)),∇v(X∗(t))

〉
−
〈
(Ẋ∗(t)− Ẋ(t)),∇v(X∗(t))

〉
=
〈
X∗(t)−X(t), (A+G− θη(ξi)>)∇v(X∗(t))

〉
−
〈
(Ẋ∗(t)− Ẋ(t)),∇v(X∗(t))

〉
.

(47)

Recalling (43) and (19), we have

∇v(X∗(t)) = bi〈X∗(t), η〉−ση = bie
−σgt〈x0, η〉−ση.

Using this expression and the fact that (A + G − θη(ξi)>)η = (λ − θ(f − 1))η, the

expression in (47) can be written as

= bi〈x0, η〉−σe−σgt
[〈
X∗(t)−X(t), [λ− θ(f − 1)]η

〉
−
〈
(Ẋ∗(t)− Ẋ(t)), η

〉]
Thus, utilizing these estimates and integrating (46) on [0, T ] for T > 0, we obtain∫ T

0

e−ρt

1− σ
(
c∗i (t)

1−σ − ci(t)1−σ) dt ≥
bi〈x0, η〉−σ

[ ∫ T

0

e−(σg+ρ)t
〈
X∗(t)−X(t), (λ−θ(f−1))η

〉
dt−

∫ T

0

e−(σg+ρ)t
〈
(Ẋ∗(t)−Ẋ(t)), η

〉
dt

]
(48)

and, integrating by parts the last term, the right-hand side equals

= bi〈x0, η〉−σ
[ ∫ T

0

e−(σg+ρ)t
〈
X∗(t)−X(t),

(
λ− θ(f − 1)

)
η
〉
dt+

− e−(ρ+σg)T 〈(X∗(T )−X(T )), η〉 −
∫ T

0

e−(σg+ρ)t
〈
(X∗(t)−X(t)), (σg + ρ)η

〉
dt

]
= bi〈x0, η〉−σe−(ρ+σg)T 〈(X(T )−X∗(T )), η〉 ≥ −bi〈x0, η〉−σe−(ρ+σg)T 〈X∗(T ), η〉 (49)

where the last equality is a consequence of σg+ρ = λ−θ(f−1), and the last inequality

a consequence of 〈X(T ), η〉 ≥ 0, as X(T ) is admissible and hence non-negative. Now

e−(ρ+σg)T 〈X∗(T ), η〉 = e−(ρ+σg)T egT 〈x0, η〉 decreases to 0, as T tends to +∞, as

g(1− σ)− ρ = −θ < 0. (50)

Thus, taking the limit as T tends to +∞ of the inequalities (48)(49), implies∫ +∞

0

e−ρt
c∗i (t)

1−σ

1− σ
dt ≥

∫ +∞

0

e−ρt
ci(t)

1−σ

1− σ
dt,

that is, the optimality of c∗i (t). (Note that limits exist, as integrals are monotonic in

T ).



44 G.FABBRI, S.FAGGIAN, AND G. FRENI

�

Lemma 2 Let E = ξη>. The matrix E has an eigenvalue f with multiplicity 1,

associated to the (right) eigenvector ξ and left eigenvector η; moreover it has eigen-

value 0 with multiplicity n− 1. All eigenvectors of E (respectively, E>) associated to

the zero eigenvalue are orthogonal to ξ (respectively, η).

The above statements can be proven by induction, and we omit the easy (but rather

tedious) proof.

Proof of Lemma 1. The proof of (i) is trivial. To prove (ii), we first show that

all vi with i = 2, . . . , n are orthogonal to η. The property is well known but we

detail it here for the reader’s convenience. Consider the eigenvalue λ2. Assume the

associated Jordan block has dimension m, and let v1
2, . . . , v

m
2 the associated general-

ized eigenvectors. It is then known that, if V j
2 =

{
v ∈ Rn | (A+G> − λ2I)jv = 0

}
,

with j ∈ {1, 2, . . . ,m}, a suitable choice of the vj2’s is v1
2 ∈ V m

2 − V m−1
2 , and

vj2 = (A + G> − λ2I)j−1v1
2, for all j. According to our initial notation, we can

set v2 := v1
2, v3 := v2

2, . . . , vm+1 := vm2 .

Now we show that every vj2, associated to the eigenvalue λ2 is orthogonal to η.

Indeed (A+G> − λ2I)mv1
2 = 0 implies, for every j = 1, . . . ,m

0 = η>(A+G> − λ2)j(A+G> − λ2)m−jv1
2 = (λ− λ2)jη> vm−j+1

2

and since λ 6= λ2 then η> vm−j+1
2 = 0, implying η is orthogonal to vj2 for all j. We

can then proceed similarly for all the other eigenvalues of A + G> different from λ2,

and thus obtain a complete base of generalized eigenvectors {ζ, v2, . . . , vn}.
Now vi, i = 2, . . . , n, is an eigenvector of A+G> − θE of eigenvalue λi if and only if

(A+G> − θE)vi = λivi ⇐⇒ Evi = 0 ⇐⇒ η>vi = 0,

which is a consequence of Lemma 2. �

The proof of Lemma A.1 and Proposition 1 are well known facts (see, e.g., chap-

ter 1 in Colonius and Kliemann (2014)) and we provide them here for the reader’s

convenience.

Lemma A.1 In the assumptions of Proposition 1, there exist continuous coeffi-

cients mi, linear in x0, with limt→∞mi(t)e
−εt = 0 for all ε > 0, and such that

X∗(t) = m1(t)egtζ̂ +
n∑
i=2

eRe(λi)tmi(t)vi. (51)
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Proof. If J is the real Jordan form of the matrix A + G> − θE, then there exists a

real invertible matrix P such that P−1(A + G> − θE)P = J . Consequently, there

exist real coefficients βi such that

X∗(t) = et(A+G>−θE)x = PetJ

(
n∑
i=1

〈x0, vi〉P−1vi

)
= P

n∑
i=1

βie
JtP−1vi. (52)

It follows then from the general theory (see for instance Section 1.3 of Colonius

and Kliemann (2014)) that eJtP−1vi = eRe(λi)tMi(t)P
−1vi where Mi(t) is a block

matrix (that is non-zero only on the Jordan block related to λi) whose coefficients are

products of sinus and cosinus functions of t and of polynomials of t with maximum

degree the dimensions of the generalized eigenspace. As PeJtP−1vi is again an element

of the generalized eigenspace associated to λi, it can be written as a linear combination

of the eigenvectors related to the same generalized eigenspace, with the coefficient

having the same described behavior as t, and then the claim follows. �

Proof of Proposition 1. The proof is entirely based on Lemma A.1 and follows

from (51), once we observe that Mi(t) for a simple eigenvalue is just a real coefficient.

�

Proof of Proposition 2. If we specify condition (ii) of (25) for x = ej and for j 6= i

we get (26); hence, it is necessary. However, if we suppose that (26) is verified, given

x =
∑

j 6=i xjej for some xj ≥ 0, we have

ψi(x) =
∑
j 6=i

xj
θ

ηi
ηj ≤

∑
j 6=i

xj

gijηj
ηi

ηi
ηj = 〈x,Gei〉 =

〈
G>x, ei

〉
+
〈
(A+G>)x, ei

〉
wherein for the inequality we utilized (26) and in the last equality we utilized that

xi = 0 and A is diagonal so that 〈Ax, ei〉 = 0. Therefore, (26) is also sufficient.

To prove the last claim, observe that the condition (26) is equivalent to requiring

that the matrix of system (22) (having nondiagonal terms gij − θηiξj), is indeed a

Metzler matrix, that is, a matrix with non-negative off-diagonal coefficients. This is

equivalent to establishing that the system is positive, that is, it has solutions contained

in the positive orthant Rn
+ for all initial conditions x ∈ Rn

+ (see, for example, Farina

and Rinaldi, 2000, Chapter 2): as soon as a such a condition is violated, there exist

trajectories of the system starting at some x0 ∈ Rn
+ which comes out of the positive

orthant Rn
+. �

Proof of Proposition 3. For simplicity, we prove the assertion for the case of all

βi ≡ β > 0 (for the general case the adjustment is minimal). When β = 0, the agents
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can only choose to fish null amounts at every node and, arguing as in Proposition

1, whatever the initial condition x0 ∈ Rn
+, the system converges to the vector ζ. By

making use of the decomposition of Lemma A.1, and of the fact that θ < min{θ1, θ2},
the projection of the detrended trajectory X∗(t)e−λt on the (n−1)-dimensional space

ζ⊥, has eigenvalues with negative part and then (see Bitsoris, 1991), the set E(P, d)

is (positively) invariant for the projected system and the vector field of the velocities

on the boundary of E(P, d) is strictly inward.

By continuity there exists β̄ > 0 such that, for any β ∈ [0, β̄], the projection of any

vector field of the velocities satisfying

[A+GT − β]X(t) ≤ Ẋ(t) ≤ [A+GT ]X(t), (53)

on the boundary of S∗ is inward and then, for any choice of the strategies in Aβ,

the system remains in S∗. This prove that (S∗,Aβ) is a consistent couple so if the

equilibrium described in Theorem 1 is admissible, then it is also subgame perfect.

Since S∗ ⊆ (0,+∞)n (and it does not touch the boundary of Rn
+, except at the

origin) there exist constants ri such that, for any x ∈ S∗,

ri

(∑
j 6=i

xjηj

)
≤ xi

and then, for θ and βi’s such that θ < βmin
i

(ηi/ri), we have

ψ(x) =
θ

ηi
〈x, η〉 ≤ θ

ηi

xi
ri
≤ βxi

and the set of strategy and the equilibrium described in Theorem 1 is admissible, and

hence a Markov perfect equilibrium.

�

Proof of Theorem 2. Assume that ψ̂j(x) = 〈wj, x〉, with wj ∈ Rn
+, j ∈ N is a

linear MPE in A. We want to show that necessarily ψ̂ = ψ∗. Note that when starting

at x = ej, the extraction rate 〈wj, ei〉 = wji , which implies wji ≥ 0, for all i ∈ N .

Then we define the square non-negative matrices

W :=
∑
j∈N

ej(w
j)>, W−i :=

∑
j∈N,j 6=i

ej(w
j)>

so that the stock evolves with law Ẋ = (A+G>−W )X. Given that ψ̂ is admissible (it

lies in A by hypothesis) at every initial stock x0 ∈ Rn
+, then Xψ,x0(t) ≥ 0 for all t ≥ 0



SPATIALLY DISTRIBUTED RESOURCES IN NETWORKS (EXTENDED VERSION) 47

(see for example Farina and Rinaldi, 2000, Chapter 211), implying that A+G> −W
is a Metzler matrix. Since the wj’s are positive, A+G>−W−i = A+G>−W +wiei
is a fortiori a Metzler matrix.

We now take the viewpoint of player i: assume that the other players stick to the

choice ψ̂−i, and solve the problem for player i to maximize (4) for ci ∈ Ai, when

subject to

Ẋ(t) = (A+G> −W−i)X(t)− ci(t)ei, X(0) = x0

and under the constraint Xi(t) ≥ 0 for all t ≥ 0.12

The case A + G −W> is irreducible. We treat the case for u(c) = (1 − σ)−1c1−σ,

the proof for logarithmic utility is very similar. As a first step we assume A+G−W>

is irreducible. Then, a fortiori, A + G −W>
−i is irreducible. The Perron–Frobenius

theorem implies that A+G−W> (A+G−W>
−i) has a simple, real eigenvalue λ̂ (λ̂i)

strictly greater than all other eigenvalues’ real parts, and associated to the unique

strictly positive eigenvector η̂ (η̂i).

The problem of agent i is associated to an HJB equation of type (13) where cj is

replaced by ψj(x) for every j 6= i. Now set η̂i = (η̂i1, η̂
i
2, . . . , η̂

i
n), and

b =

(
σ

ρ− λ̂i(1− σ)

)σ

(η̂ii)
σ−1, and θi =

ρ− λ̂i(1− σ)

σ
. (54)

Similar to Theorem 1, one can verify that a solution of this HJB equation is given by

v(x) = b(1− σ)−1 〈x, η̂i〉1−σ, and moreover that (14) implies that the only candidate

optimal extraction policy is

c∗i =
θi

η̂ii

〈
η̂i, x

〉
,

Optimality can be proved by means of a standard verification argument, as in Theo-

rem 1. Since c∗i is the only optimizer, then ψ̂i(x) coincides with c∗i , implying

A+G−W> = (A+G−W>
−i)− θiEi.

11Observe that in Farina and Rinaldi (2000), the authors often work under the hypothesis of

non-negativity of the matrices. Clearly, all the results we utilize straightforwardly generalize to the

case of Metzler matrices. This is true also for other mentioned texts.
12Observe that, since A + G −W>−i is a Metzler matrix, the constraint Xi ≥ 0 (together with

the non-negativity of the initial datum) is enough to ensure that all the components of X remain

non-negative.
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where Ei = 1
η̂ii
η̂ie>i . Note: Ei η̂

i = η̂i so that η̂i is a strictly positive eigenvector

of both the right-hand and left-hand sides of the above identity. Since by Perron-

Frobenius’s theorem the positive eigenvector is unique, necessarily

η̂ ≡ η̂i, and λ̂ = λ̂i − θi =
λ̂i − ρ
σ

, (55)

and that can equally be proven for all i ∈ F . Hence, θi ≡ ρ− λ̂(1− σ) for all i, and

W> =
∑
i∈F

θiEi ⇒ W>η̂ = (ρ− (1− σ)λ̂)f η̂.

so that, by difference, η̂ is also a positive eigenvector of A + G, i.e. (A + G)η̂ =

(ρ − (1 − σ)λ̂)fη̂ + λ̂η̂. But then, necessarily, η̂ ≡ η, and (ρ − (1 − σ)λ̂)f + λ̂ ≡ λ.

Therefore, λ = θif + ρ−θi
1−σ , and θi = ρ+(σ−1)λ

1+(σ−1)f
= θ. Thus, we have proven that ψ∗ ≡ ψ̂.

The case A+G−W> reducible. We pass now to the analysis of the case A+G−W>

reducible. To simplify the notation we set M = A + G> −W and, for any agent i,

M−i = A + G> −W + eiw
i>. Barring a permutation (i.e., changing the names of

the locations), we can assume that M> = A+G−W> is in its Frobenius form (see

(1.7.1) page 38 of Bapat and Raghavan (1997)), that in this case reads as

M> =


M>

1 M>
21 . . . M>

K1

0 M>
2 . . . M>

K2
... 0

. . .

0 0 0 M>
K

 (56)

with irreducible submatrices M>
k on the diagonal (some M>

Ki can contain zeros). Since

G has strictly positive and no-extraction arises in reserves, all the matrix elements

from a reserve to any other location need to be strictly positive so reserves are among

the locations associated to M>
K , although the same block may partly also refer to

fishing locations.

As before, we denote by λ̂ the dominant eigenvalue of M> (even if not reducible it

is a Metzler matrix), and by η̂ one of the associated eigenvectors; by λ̂i the dominant

eigenvalue of M>
−i, and by η̂i one of the associated eigenvectors. Moreover, we denote

by λk the dominant eigenvalue of Mk for any k = 1, . . . , K.

After these introductory elements we divide the rest of the proof in two steps.

Step 1: if there exists i ∈ F for which η̂i > 0, then the only linear equilibrium is

the one described in Theorem 1.

Indeed, arguing as in the case of an irreducible M , we obtain again wi = (θi/η̂ii)η̂
i,

where θi is given by (54), and moreover that η̂i is an eigenvector of the matrix M>.
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Since η̂i > 0 by assumption it needs to be the unique dominant eigenvector of M>

(Theorem 11, page 36 of Farina and Rinaldi (2000)) and in particular to coincide with

η̂.

We look now at the behavior of other agents. We call agent-jk any agent j fishing

(at the node j) in the subset of nodes k. Its extraction vector at the given equilibrium

is denoted by wj = (w
(1)
jk , w

(2)
jk , . . . , w

(K)
jk )>, where w

(h)
jk is a vector with as many

coordinates as the dimension of block Mh. We first look at a possible agent in one of

the nodes related to K.

First observe that (since KK is the down-right block and since we already proved

that the unique dominant eigenvector of M> is strictly positive), one needs to have

λK = λ̂. Moreover, λ̂ is the maximum of all λk, thus λK ≥ λk for all k. Now the

control problem for agent-jK is associated to the matrix

M>
−j =


M>

1 M>
21 . . . M>

K1

0 M>
2 . . . M>

K2
... 0

. . .

0 0 0 M>
K

+


0 . . . 0 w

(1)
jK

0 . . . 0 w
(2)
jK

...
...

...
...

0 . . . 0 w
(K)
jK

 . (57)

The Perron’s eigenvalue of M>
K + w

(K)
jK is higher than λK and then of all λk. Then

the dominant eigenvalue of M>
−j is strictly positive, unique and it is associated to the

eigenvalue of M>
K +w

(K)
jK . Arguing again as above, one computes the optimal closed-

loop control of agent-jK and verifies that wj = (θj/η̂jj )η̂ (where η̂ is the Frobenius

eigenvector of M>).

We show now that the same holds for any other agent-jk, k 6= K. We first show

that there exists a unique eigenvector associated to λ̂j and it is strictly positive.

We consider the matrix [
ajk m>Kjk
gjkK M>

K

]
which is the proper principal submatrix of M>

−j obtained by removing all rows and

corresponding columns that are not in the K block and are not jk. Its dominant

eigenvalue is strictly greater than λK but, at the same time (see Theorem 1.7.4 of

Bapat and Raghavan (1997)) it is smaller than λ̂j so λ̂j > λ̂ = λK . This implies that

all matrices of type [λ̂jI −M>
k ] have strictly positive inverse (see Theorem 1.7.2 page

35 of Bapat and Raghavan, 1997).

This fact is sufficient to show that all the components of any eigenvector η̂j asso-

ciated to λ̂j (which is ex-post unique, see Theorem 11, page 36 of Farina and Rinaldi

(2000)) are strictly positive.
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For the components related to the block K we have:

η̂jK = η̂j(j)[λ̂jI −M>
KK ]−1gjkK , (58)

where η̂jK is the part of the eigenvector η̂j corresponding to the areas in K, η̂jK(j) is

the j-th component of the same eigenvector, and gjkK is the vector of inflows from the

K part. Therefore, prices in this subset are either all positive or all zero. Proceeding

recursively, the same alternative occurs for all prices in the other blocks of the matrix.

So eventually η̂j > 0, and this is true for all agents.

Following the same argument as in the irreducible case, we first compute the optimal

closed loop controls of all agents and see that, for all j, wj is indeed the Frobenius’s

eigenvector of M> and then verify that the wj are indeed, except for multiplication

factors, the unique strictly positive eigenvectors of A + G. Uniqueness of the multi-

plication factors is found in the proof of Theorem 1, so that uniqueness of the linear

equilibrium is proven.

Step 2: There exists an agent i for which η̂i > 0.

In the case in which agents concentrate in the subset K of nodes, the matrix is

irreducible. Then we can assume w.l.o.g. that agents are distributed also in regions

other than those in the subset K. If λK > λk, then, arguing as in Step 1, all η̂i’s

are strictly positive and coinciding with η̂. In the opposite case, there exists k∗, with

k∗ 6= K such that λk∗ ≥ Reλk , for all k = 1, . . . , K.

Now consider an agent-ik∗, that is, operating in region i and belonging to subset

k∗. Arguing as in Step 1, we see that the matrix M−i = M>
k∗ +w

(k∗)
ik∗ e

>
i has eigenvalue

λ̂i with λ̂i > λk∗ . Thus, all matrices of type [λ̂iI −M>
k ] with k 6= k∗ have a positive

inverse.

In particular (58) holds:

η̂iK = η̂i(i)[λ̂iI −M>
K ]−1gik∗K . (59)

Substituting backwards into the eigenvector equation for the K − k∗ − 1 block, we

find a similar equation. Proceeding iteratively until we reach k∗, we see that all

prices in the areas “downstream” of k∗ are either all positive, if the component of the

eigenvector at ik∗ is positive, or all zero, if the same component is zero. However,

this component cannot be zero, since otherwise one would have to find a non-strictly

positive eigenvector of the irreducible matrix

M>
k∗k∗ + w

(k∗)
ik∗ e

>
ik∗ .
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Since the components of the eigenvector at ik∗ are positive, all prices “upstream” of

k∗ are also positive. We therefore have an agent with positive prices. �

Proof of Theorem 3 (Sketch). The existence part of the statement is of course

proved in Proposition 3. We sketch here the proof of the uniqueness which follows

the same arguments we utilized in the proof of Theorem 2.

We assume a linear MPE, that is, a set of strategies of the form ψ̂j(x) = 〈wj, x〉,
with wj ∈ Rn

+, j ∈ N .

First, arguing as in the proof of Proposition 3 (remaining, thanks to the same

proposition, the trajectories in the cone which is contained in (0,+∞)n) we know

that, along the admissible trajectory, we can always estimate each component of

x as the product of any other component and some suitable positive constant. In

particular, there exist constants sjm > 0 (which depend only on the cone structure so

can be chosen independently of β), such that

xj ≤ sjmxm

Since we work here under the constraint ψ̂j(x) = 〈wj, x〉 ≤ βxj (and, as proven in

the proof of Theorem 2, all the wjm are non-negative) we have in particular, for all

m ∈ N , wjmxm ≤ βxj so that we obtain

wjm ≤ β
xj
xm
≤ βsjm.

If one chooses β > 0 small enough, by continuity, since the matrix A + G has a

simple dominant eigenvalue associated to a strictly positive eigenvector, the same

properties hold for the matrix A + G −W> and for all the matrices A + G −W>
i .

Then, after choosing a θ small enough to ensure (as in the proof of Proposition 3)

that the candidate equilibrium is admissible, we can argue exactly as in the proof of

Theorem 2 in the case where A+G−W> is irreducible. �

Proof of Proposition 4. We choose F a certain subset of N made of f elements

and we denote by ψF the related equilibrium introduced in Theorem 1 (in the text of

Theorem 1 it was called simply ψ but here we underline the role of the choice of F ).

The corresponding value for the social welfare W is

W (x0) = θ−σ 〈x0, η〉1−σ
∑
i∈F

ησ−1
i

1− σ
.

In this expression, the only part that depends on the choice of F is the sum. Each term

of the sum is a (strictly) decreasing function of the corresponding ηi so the highest

value of the sum and of the social welfare is reached when we choose to authorize
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fishing in the nodes i where ηi is the lowest and then to establish the natural reserves

in the nodes where the ηi are the highest. �

Proof of Proposition 5. The proof of the proposition is given in the text that

precedes it. �

Proof of Proposition 6. We first check the effect of an ε increase of gij, with i 6= j,

on the value of λ. To this extent, fix ε > 0 and define Mij := (ei e
>
j +ej e

>
i )− (ei e

>
i +

ej e
>
j ), and note that the system matrix changes from A+G to A+G+ εMij. Note

that this last matrix can be written as the sum of two Metzler matrices

A+G+ εMij = [A− ε(ei e>i + ej e
>
j )] + [G+ ε(ei e

>
j + ej e

>
i )]

so that it is itself a Metzler matrix. Moreover, Mij is a negative-semidefinite matrix so

that 〈x,Mijx〉 ≤ 0 for all x ∈ Rn. We denote by ηε its Perron-Frobenius eigenvector

of norm 1, and by λε the associated Perron-Frobenius eigenvalue. Since the network

matrix is symmetric, we can utilize the variational characterization of eigenvalues (see

for instance Corollary III.1.2 of Bhatia, 2013) so that

max
x∈Rn\{0}

〈x, (A+G+ εMij)x〉
|x|2

= λε =
〈ηε, (A+G+ εMij)ηε〉

|ηε|2

=
〈ηε, (A+G)ηε〉

|ηε|2
+ ε
〈ηε,Mijηε〉
|ηε|2

≤ max
x∈Rn\{0}

〈x, (A+G)x〉
|x|2

+ ε
〈ηε,Mijηε〉
|ηε|2

≤ max
x∈Rn\{0}

〈x, (A+G)x〉
|x|2

= λ (60)

This means that dλ
dgi,j
≤ 0. �

Proof of Proposition 7. Calculating the derivative of the expression (20) w.r.t. f ,

we obtain
dg

df
= − ρ− (1− σ)λ

(1− (1− σ)f)2
= − θ

(1− (1− σ)f)
.

We are interested in the case θ > 0, and the claim follows immediately. �

Proof of Proposition 8. We build a differentiable function Ŵ (s) coinciding with

W (s) on N. Set φ : (0,+∞) → [0,+∞), φ(t) =
∑n

j=1(ηj)
σ−1χ]j−1,j](t) where χI is

the indicator function of the interval I, that is χI(t) = 1 when t ∈ I and 0 elsewhere.

Note that

φ(j) = ησ−1
j and

∫ j

0

φ(t)dt =

j∑
i=1

(ηi)
σ−1.
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Then, the differentiable function

Ŵ (s) :=
θ−σ(s)

1− σ
〈x, η〉1−σ

∫ s

0

φ(t)dt,

coincides with W (s) for all s ∈ {1, . . . , fM}. Now

∂Ŵ (s)

∂s
=
〈x, η〉1−σ[θ(s)]−σ

1− σ

(
−σθ

′(s)

θ(s)

∫ s

0

φ(t)dt+ φ(s)

)
and if we set for s > 0

L(s) =
φ(s)∫ s

0
φ(t)dt

, R(s) = σ
θ′(s)

θ(s)
=

σ(1− σ)

1− (1− σ)s

then ∂Ŵ (s)/∂s ≥ 0 iff L(s) ≥ R(s).

In the standard regime (i), L(1) = 1 and, for σ < 1, L(s) is a piecewise continuous

and decreasing function of s, as ∀s ≥ 0, h ≥ 0

φ(s) ≥ φ(s+ h), and

∫ s

0

φ(t)dt ≤
∫ s+h

0

φ(t)dt.

. Instead, R(1) = 1−σ and R(s) is increasing to +∞, as s→ 1
1−σ . Since L(1) > R(1),

there exists ŝ > 1 such that

∂Ŵ (s)

∂s
≥ 0, s ∈ (1, ŝ], e

∂Ŵ (s)

∂s
≤ 0, s ∈ [ŝ,

1

1− σ
[

Hence the maximum value of W (s) is reached at f ∗ = fM if bŝc+ 1 ≥ fM (being bŝc
the integer part of ŝ) or, if ŝc+ 1 < fM in one of the two points bŝc or bŝc+ 1.

In the voracious regime (ii), one has L(s) ≥ 0 for all s, while R(s) < 0 for all s,

then W ′(s) > 0 for all s and f ∗ = fM . �
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