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Abstract

This paper presents an inverse Algebraic Wavenumber Identification (AWI) technique for multi-modal 1D-periodic
structures, which can extract complex wavenumbers from steady-state vibration measurements under stochastic con-
ditions. These wave dispersion characteristics provide valuable vibroacoustic indicators for model updating, damage
monitoring in operational conditions, or metamaterial design. Wavenumber extraction techniques are highly sensitive
to noisy measurements, nonuniform sampling points, or geometrical uncertainties. The proposed formulation relies on
algebraic parameters identification to enable the extraction of complex wavenumbers in four scenarios: (a) low Signal
Noise Ratio; (b) small perturbation caused by uncertainties on sampling points’ coordinates; (c) unknown structural
periodicity; (d) nonuniform sampling. This AWI is compared with Inhomogeneous Wave Correlation (IWC) method
and INverse COnvolution MEthod (INCOME) to assess the robustness and accuracy of the method.

Keywords: Wavenumber identification; Periodic structures; Inverse method; Small perturbation; Signal noise;
Nonuniform sampling.

1. Introduction

Wavenumber identification of periodic structures has attracted growing attention in signal processing and mechan-
ical engineering. Periodic structures are materials with periodic variations in geometry or material properties, such
as composite sandwich panels, stiffener plates, and truss beams used in aircraft and marine. Periodic structures are
widely used in structural vibration isolation due to its band gap characteristic [1]. The band gap is a specific frequency
range in which elastic waves cannot propagate. It can be analyzed by dispersion relation, which is usually represented
as the relationship between wavenumber and frequency. To achieve wavenumber identification of one-dimensional
periodic structures, a number of inverse approaches have been developed in the literature [2–10]. Generally, these
inverse methods can be divided into two categories: nonlinear family methods and linear Prony family methods.

In nonlinear family methods, Mc Daniel’s method and the Inhomogeneous Wave Correlation (IWC) method are
two candidates. Mc Daniel et al. [4, 11] developed a bending wavenumber identification method for 1D structures.
This method needs to address a nonlinear fitting optimization problem. Thus it suffers from a high computational cost.
In [6], IWC was proposed to identify the K-space of an anisotropic partially clamped ribbed panel and also applied
to more complex structures by Ichchou and co-authors [12–16]. IWC has been proved to be robust to signal noise
[17, 18] and not be constrained by uniform sampling. However, IWC typically only provides good results when the
displacement field contains many wavelengths, resulting in poor performance at low frequencies. In addition, IWC
requires solving a nonlinear wavenumber searching problem, leading to an expensive computational cost.

In linear Prony family methods, the first proposal dates back to the work of Prony [19], where a non-iterative linear
parameter identification technique was proposed for solving the exponential fitting problem. Based on the principle
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of the Prony method, a series of linear Prony family methods were developed. One example is High Resolution
Wavenumber Analysis (HRWA) [9, 20] which makes use of a high-resolution signal processing algorithm called
Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [2] to estimate the wavenumber of
1D structures. Another noteworthy approach is INverse COnvolution MEthod (INCOME) recently proposed in [10]
where authors reformulated the classic Prony method in convolution framework, allowing us to identify wavenumbers
by a convolution kernel. Compared to nonlinear family methods, the linear Prony family methods are well known for
their estimation accuracy in perfect conditions and computational efficiency. Moreover, they have a high resolution
to extract propagative wavenumbers and evanescent wavenumbers. Unfortunately, these methods suffer from the
constraint of uniform sampling and sensitivity to signal noise, especially with a low signal-to-noise ratio (SNR). In
addition, for periodic structures, Ribeiro et al. [21] have verified numerically and experimentally a conclusion: for the
Prony method, the sampling interval needs to be an integer multiple of the structural periodicity. Therefore, INCOME
is unable to extract the wavenumber when the unit-cell length of the periodic structures is unknown.

In fact, to achieve more realistic identification in practice, it is also inevitable to take into account the impact
of uncertainty of measuring points’ coordinates on the extracted wavenumber [22]. This uncertainty is very common
in experiments. For instance, it can be caused by grid distortion, manipulation error, or geometric uncertainty of
structures. The direct consequence of this uncertainty problem is that displacements of the structure cannot match the
coordinates of measurement points. In this paper, this uncertainty problem is called the small perturbation problem.
The small perturbation is not additive noise, and the resulting measurement error is not only related to the small per-
turbation of measurement points’ coordinates but also connected to the material properties and excitation frequency.
Unfortunately, only a few contributions can be found in the available literature to solve this problem.

To address the drawbacks of the aforementioned inverse methods, this paper proposes a new inverse method
called Algebraic Wavenumber Identification (AWI) technique. It is developed based on the algebraic parameter esti-
mator. Over the last few decades, the algebraic parameters estimator for continuous linear time-invariant systems has
been proposed by Fliess et al. [23–26] and has been theoretically proved to be robust to external signal noise, and
structured perturbation [27]. This estimator has been applied to different fields such as vibrating mechanical systems
[28, 29], and nonlinear dynamic systems [30]. In the context of vibroacoustics, a novel formulation for wavenumber
extraction is proposed in this paper, making it possible to identify the wavenumber of 1D periodic structures under the
following stochastic conditions: a) the high level of external signal noise; b) small perturbation; c) nonuniform sam-
pling; d) the unknown structural periodicity. In detail, the proposed method first uses the algebraic derivative method
and Laplace transform to build a linear differential equation with unknown parameters in the wavenumber domain
based on a set of discrete noisy data. Then, an exact formula with the multiple integrals over signal is obtained when
placed in the spatial domain using operational calculus transform. Finally, the unknown parameters are solved by
using the least-squares method. It is worth noting that the introduction of multiple integrals improves the robustness
of AWI to different measurement errors. Moreover, AWI treats the signal as a continuous function, freeing it from
specific sampling limitations. The highlights of the proposed method are summarized as follows:

• The proposed method allows extracting the wavenumber of 1D periodic structures over the whole frequency
range under stochastic conditions, overcoming the drawbacks of other inverse methods, such as INCOME and
IWC.

• The proposed method is the first to draw inspiration from the algebraic parameters estimator for wavenumber
identification of periodic structures.

• The proposed method has a high resolution to extract propagative wavenumbers and evanescent wavenumbers.
Moreover, it can provide wavenumbers with high precision in perfect condition.

• The proposed method only needs to solve small linear problems, thus having a low computational cost.

The rest of this paper is organized as follows: In Section 2, a stochastic signal model for the beam is firstly
presented, then the formulation of AWI is derived in detail. This is followed by a series of numerical cases to verify
the advantages of AWI over INCOME and IWC. In Section 4, an experimental study is carried out to test the sensitivity
of the AWI and IWC to the samples in the vicinity of structural discontinuities. Some conclusions are presented in
Section 5.
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2. Algebraic Wavenumber Identification (AWI)

This section aims to introduce the theory behind the Algebraic Wavenumber Identification (AWI) technique.
First, a stochastic signal model of the beam in the presence of small perturbation is established in Section 2.1. Then,
in Section 2.2, the fundamental principle of AWI is derived for the case where a single plane wave propagates in
the beam. Section 2.3 provides the formula for the general case where multiple waves are present. Finally, AWI
implementation is introduced in Section 2.4.

2.1. Stochastic signal model of a beam in the presence of small perturbation

The general analytical solution of the transverse displacement for a beam such as the EB beam or periodic beam
at each angular frequency ω can be expressed [31] as:

U(xn) = A1e−ikxn + A2eikxn + A3e−kxn + A4ekxn (1)

where the first two terms are the propagative waves propagating in positive and negative directions, and the second
two terms are evanescent waves, amplitudes of which decrease exponentially with distance. Evanescent waves exist
in structural discontinuities, such as near boundaries or localized excitation sources. Therefore, they are also referred
to as “near fields”. Eq. (1) can also be rewritten as:

U(xn) =
4∑

m=1

Amepm xn (2)

where p1=−ik, p2= ik, p3 = −k, and p4 = k. When multiple waves propagate along the one-dimensional waveguide,
the displacement field can be expressed as a sum of exponential functions:

U(xn) =
nw∑

m=1

Amepm xn (3)

where nw is the number of waves. Am is unknown complex amplitude of mth wave and pm is related to unknown
complex wavenumber km (km = ipm). It can be noted that this is the signal model used in the AWI method in the
perfect condition, which takes into account the propagative waves and evanescent waves.

To build a realistic signal model, it is inevitable to consider measurement points’ uncertainty except for external
signal noise. In the probabilistic framework, geometric variability of measurement points’ coordinates can be quanti-
fied by introducing a random variable δn into each point’s coordinate. Thus, the coordinate of the measurement point
can be expressed as:

x̂n = xn(1 ± δn), n = 1, . . . ,N (4)

where N is the number of measurement points. xn is perfect coordinate of nth measurement point. δn = ∆xξn/xn where
ξn is a random variable called the small perturbation ratio, which obeys uniform distribution, and ∆x is sampling
interval. Therefore, a stochastic signal model is expressed as:

U(x̂n) =
nw∑

m=1

Amepm x̂n =

nw∑
m=1

Amepm xn(1±δn) (5)

To illustrate the measurement error caused by small perturbation, the first-order Taylor expansion of the small

3



perturbation part of Eq. (5) is considered as follows:

nw∑
m=1

Amepm xn(1±δn) =

nw∑
m=1

Amepm xn (1 ± pmxnδn + o(x2
nδ

2
n))

≈

nw∑
m=1

Amepm xn ± Amepm xn pmxnδn (6)

where Amepm xn is unperturbed part and ±Amepm xn pmxnδn is perturbed part. The latter part consists of three impact
factors that lead to the measurement errors: small perturbation ratio ξn and pairwise unknown parameters {Am, pm}

nw
m=1

which are related to the material properties and excitation frequency. Since the coordinates x̂n of small perturbed
samples are unknown in practice, the coordinate of each measurement point is represented by corresponding unper-
turbed coordinates xn. Therefore, U(x̂n) can be represented by S (xn) in the next sections for uniformity of coordinate
notation.

2.2. Fundamental principle (one wave case)

Firstly, the problem formula is proposed. When only one wave propagating in a given direction along the beam
is considered, the displacement field in small perturbation condition can be expressed as:

S (xn) = U(x̂n) = Aepx̂n (7)

where A is unknown complex amplitude and p is related to unknown complex wavenumber k (k = ip). The identifi-
cation of the parameter k is the aim of AWI in this case.

Secondly, a linear differential equation is established in the wavenumber domain. The Laplace transform of
signal in Eq. (7) in the wavenumber domain is given by:

S (s) =
A

s − p
(8)

A characteristic polynomial is defined as:

Ψ(s) = s − p =
1∑

i=0

γ(1 − i)si = γ(1) + γ(0)s (9)

where γ(0) and γ(1) are unknown coefficients of the characteristic polynomial. When γ(0) equals to -1, the γ(1) will
equal to unknown parameter p. Multiplying out the Eq. (8) by Eq. (9), one can obtain:

S (s)Ψ(s) =
A

s − p
(s − p) = A (10)

A differential equation can be established by taking the derivative of Eq. (10) with respect to s one time:

d (S (s)Ψ(s))
ds

= 0 (11)

Taking Eq. (9) into Eq. (11) and according to the basic property1 of algebraic derivative, we can obtain:

1 d( f g)
ds = g d f

ds + f dg
ds
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d (S (s)Ψ(s))
ds

=
d ((γ(1) + γ(0)s)S (s))

ds

= γ(1)
dS (s)

ds
+ γ(0)S (s) + γ(0)s

dS (s)
ds

= 0 (12)

To eliminate derivations operation in the spatial domain, dividing Eq. (12) by s2:

γ(1)
s2

dS (s)
ds
+
γ(0)

s
dS (s)

ds
+
γ(0)
s2 S (s) = 0 (13)

It is noted that AWI treats the displacement field as a continuous function, allowing the extraction of wavenum-
bers from any sampling way.

Thirdly, Eq. (13) is turned to the spatial domain. Applying operational calculus rules 2 [32, 33] to each term of
Eq. (13), an exact formula in the spatial domain can be obtained as follows, after rearrangement:

−γ(1)
∫ xn

0

∫ τ1

0
τ2S (τ2) dτ2dτ1 − γ(0)

∫ xn

0
τ1S (τ1) dτ1 + γ(0)

∫ xn

0

∫ τ1

0
S (τ2) dτ2dτ1 = 0 (14)

In order to simplify the expression of Eq. (14), the following equations can be obtained by using integral notation
3 [27]:

γ(1)
∫ (2)

xnS (xn) − γ(0)
(∫ (2)

S (xn) −
∫ (1)

xnS (xn)
)
= 0 (15)

It is noted that the introduction of multiple integrals improves the robustness of AWI to the large measurement
errors since the multiple integrals operate like a low pass filter [34]. Eq. (15) is hold for each sample. Thus, the linear
system of equations can be obtained:

γ(1)ϕ(1, xn) − γ(0)ϕ(0, xn) = 0, n = 1, 2, . . . ,N (16)

with

ϕ(1, xn) =
∫ (2)

xnS (xn), ϕ(0, xn) =
∫ (2)

S (xn) −
∫ (1)

xnS (xn)

Finally, the complex wavenumber is estimated using the least squares method. Eq. (16) can be expressed in the
matrix format:

H1X1 = M1 (17)

with

H1 =


ϕ(1, x1) ϕ(0, x1)
ϕ(1, x2) ϕ(0, x2)
...

...
ϕ(1, xN) ϕ(0, xN)

 , X1 =

[
γ(1)
γ(0)

]
, M1 =


0
0
...
0


2Let ζ denote the usual operational calculus transform acting on signal. Recall that ζ−1

(
dαS (s)

dsα
)
= (−1)αταS (τ) and ζ−1

(
S (s)
sα

)
=∫ xn

0

∫ τ1
0

∫ τ2
0 · · ·

∫ τα−1
0 S (τα) dτα · · · dτ2dτ1

3We have donated by
∫ (α)

S (xn) the quantity
∫ xn

0

∫ τ1
0

∫ τ2
0 · · ·

∫ τα−1
0 S (τα) dτα · · · dτ2dτ1. Moreover,

∫ (1)
S (xn) =

∫
S (xn) =

∫ xn
0 S (τ1) dτ1
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In this context, the unknown parameter p can be estimated by means of the least squares method:{
X1 = argmin{x∗H∗1H1x}
p = − γ(1)

γ(0)
(18)

where X1 is the eigenvector corresponding to the smallest eigenvalue of H∗1H1. Finally, the wavenumber k can be
obtained by:

k = ip (19)

It is important to note that for the linear Prony family methods, the roots obtained from the characteristic poly-
nomial are propagation constants λ. Thus the wavenumber can be obtained by using k = ilnλ/∆x where ∆x is the
uniform sampling interval. In contrast, the wavenumber of AWI is obtained directly from the roots of the characteristic
polynomial Eq. (9), making it free of the uniform sampling constraint.

2.3. General formulation (multiple waves case)
Firstly, the problem formula is proposed. In this section, we consider the general case where the stochastic

displacement field is comprised of multiple waves and their reflections as follows:

S (xn) = U(x̂n) =
nw∑

m=1

Amepm x̂n (20)

where pm is related to unknown complex wavenumber km (km = ipm) of mth wave. AWI aims to extract complex
wavenumbers of all types of waves, including propagative waves and evanescent waves.

Secondly, a linear differential equation is established in the wavenumber domain. A new collection of harmonic
responses can be obtained by computing the Laplace transform of S (xn) in the wavenumber domain:

S (s) =
A1

s − p1
+

A2

s − p2
+ · · · +

Anw

s − pnw

(21)

The corresponding characteristic polynomial in the wavenumber domain is defined as:

Ψ(s) =
nw∏

m=1

(s − pm) =
nw∑
i=0

γ(nw − i)si (22)

where γ(nw − i){i∈[0,nw]} are coefficients of characteristic polynomial and each coefficient is an elementary symmet-
ric polynomial related to {p1, p2, . . . , pnw }. Therefore, a new function in the wavenumber domain is expressed by
multiplying Eq. (21) and Eq. (22):

S (s)Ψ(s) = (
A1

s − p1
+

A2

s − p2
· · · +

Anw

s − pnw

) ×
nw∏

m=1

(s − pm)

= A1(s − p2)(s − p3) · · · (s − pnw ) + · · · + Anw (s − p1)(s − p2) · · · (s − pnw−1)

=

nw∑
m=1

Am

nw∏
i=1,i,m

(s − pi) (23)

As seen in Eq. (23), the highest order of the function S (s)Ψ(s) is nw − 1, thus the following equation can be
obtained by differentiating Eq. (23) nw times:

dnw (S (s)Ψ(s))
dsnw

=
dnw

(
S (s)

∑nw
i=0 γ(nw − i)si

)
dsnw

= 0 (24)

To calculate Eq. (24) easily, the following formulas are introduced:
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• Leibniz formula:

dn (S (s)Ψ(s))
dsn =

n∑
j=0

(
n
j

)
dn− j(S (s))

dsn− j

d j(Ψ(s))
ds j

• nth-order derivative of the wavenumber function sl:

dn(sl)
dsn =



l!
(l − n)!

sl−n, i f 0 < n ≤ l

0, i f 0 < l < n

(−1)n(n − l − 1)!
(−l − 1)!

sl−n, i f l < 0 < n

where n: 1, 2, 3, . . . , nw and
(

f
h

)
= f !/(h!( f − h)!) denotes combination number formula.

Based on the formulas above, the following equation can be obtained easily:

dnw
(
siS (s)

)
dsnw

= si−nw

nw∑
j=0

d jS (s)
ds j s j

(
i

nw − j

)
(nw − j)!

(
nw

j

)
(25)

In this context, a linear differential equation can be established by combining Eq. (24) and Eq. (25):

nw∑
i=0

nw∑
j=i

(
nw

j

)(
nw − i
nw − j

)
(nw − j)!s j−i d jS (s)

ds j γ(i) = 0 (26)

Similar to one wave case, dividing Eq. (26) by snw+1 can eliminate derivations operation and guarantee that each
term containing the signal S (xn) will be affected by at least an integral in the spatial domain. Thus, the following
equation can be obtained:

nw∑
i=0

nw∑
j=i

(
nw

j

)(
nw − i
nw − j

)
(nw − j)!

1
snw+1+i− j

d jS (s)
ds j γ(i) = 0 (27)

Thirdly, Eq. (27) is turned to the spatial domain. The operational calculus transform is applied to the following
part of the Eq. (27):

nw∑
j=i

1
snw+1+i− j

d jS (s)
ds j =

∫ (nw+1+i− j)

(−1) jx j
nS (xn) (28)

Thus, the following formula can be obtained by incorporating Eq. (28) into Eq. (27):

nw∑
i=0

ϕ(i, xn)γ(i) = 0 (29)

with

ϕ(i, xn) =
nw∑
j=i

(
nw

j

)(
nw − i
nw − j

)
(nw − j)! ×

(∫ (nw+1+i− j)

(−1) jx j
nS (xn)

)
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where
∫ (nw+1+i− j)

(−1) jx j
nS (xn) is a multiple integral [35] which is applied to filter the signal with large measurement

errors and attenuate the effects of high-frequency noise that is probably present in measurements.
Finally, the complex wavenumber is estimated using the least squares method. Eq. (29) can be expressed in the

matrix form:

HX = M (30)

with

H =


ϕ(nw, x1) ϕ(nw − 1, x1) · · · ϕ(0, x1)
ϕ(nw, x2) ϕ(nw − 1, x2) · · · ϕ(0, x2)
...

...
. . .

...
ϕ(nw, xN) ϕ(nw − 1, xN) · · · ϕ(0, xN)

 , X =


γ(nw)
γ(nw − 1)
...
γ(0)

 , M =


0
0
...
0


The estimation of the coefficients of characteristic polynomial Eq. (22) can be obtained by solving the least

squares problem as follows:

X = argmin{x∗H∗Hx} (31)

where the vector X is the eigenvector corresponding to the smallest eigenvalue of H∗H.
After calculating the roots of the characteristic polynomial Eq. (22), the wavenumbers km can be calculated by:

km = ipm (32)

Note that in any case, one wave case mentioned in Section 2.2 or general case in this section, the fundamental step
is to calculate the multiple integrals of coefficients ϕ(i, xn). In this paper, a solution of multiple integrals is proposed
as the following process:

In multiple integrals of Eq. (29), the integral function is a product between displacement field S (xn) and space
variable xn. However, our aim is to calculate the multiple integrals of the displacement field. Thus, the first step is to
split space variable xn from integrals by using the following fact (see [36]):∫ (q)

(xn) jS (xn) =
j∑

i=0

(−1)i
(
i + q − 1

q − 1

)(
j
i

)
i!x j−i

n

∫ (i+q)

S (xn) (33)

Based on the result of Eq. (33), ϕ(i, xn) of Eq. (29) can be rearranged as:

ϕ(i, xn) =
nw∑
j=i

j∑
m=0

(−1)m+ j
(
nw − i
nw − j

)(
m + nw + i − j

nw + i − j

)(
nw

j − m

)
(nw + m − j)!

× x j−m
n

∫ (m+nw+1+i− j)

S (xn)

(34)

To simplify the above equation, the variable change m = j − r is taken into Eq. (34), and the summation on the
index j has the closed form:

nw∑
j=i

(
nw − i
nw − j

)(
nw + i − r
nw + i − j

)
=

(2nw − r)!
(nw − r)!(nw)!

(35)
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and the Eq. (34) becomes:

ϕ(i, xn) =
nw∑

r=0

(−1)r (2nw − r)!
(nw − r)!r!

xr
n

∫ (nw+i+1−r)

S (xn) (36)

In Eq. (36), the multiple integrals of displacement field S (xn) can be calculated by the following fact, which is a
process of converting multiple integrals into a single integral:

∫ (α)

S (xn) =
∫ xn

0

∫ τ1

0

∫ τ2

0
· · ·

∫ τα−1

0
S (τα) dτα · · · dτ2dτ1 =

1
(α − 1)!

∫ xn

0
(xn − τ)α−1S (τ) dτ (37)

Finally, the following equation can be obtained by combining Eq. (36) and Eq. (37):

ϕ(i, xn) =
nw∑
r=0

(−1)r(2nw − r)!xr
n

(nw − r)!r!(nw + i − r)!

∫ xn

0
(xn − τ)nw+i−rS (τ) dτ (38)

where the single integral can be calculated easily using the numerical integration method. In this paper, the single
integral is approximated using the trapezoidal integration method.

2.4. AWI implementation

The algorithm of AWI is implemented for each given frequency as follows:

For each frequency 𝜔 do

For each displacement 𝑆(𝑥𝑛) do

End for

End for

Calculate single integral of Eq. (38) using trapezoidal integration method  

Calculate each element 𝜙 𝑖, 𝑥𝑛 of a new matrix 𝐻 (see Eq. (38))

Build a new matrix 𝐻 using 𝜙 𝑖, 𝑥𝑛 (see Eq. (30))

Calculate the coefficients 𝛾 𝑖 of characteristic polynomial through least squares method (see Eq. (31))

Calculate wavenumber 𝑘𝑚 (see Eq. (32))

Calculate the roots 𝑝𝑚 of characteristic polynomial (see Eq. (22))

Set displacement field, coordinates of measurement points

Algorithm: Algebraic Wavenumber Identification (AWI) technique

Fig. 1. The implementation for AWI.

3. Numerical study and parametric survey

In this section, a series of numerical cases are tested to validate the advantages of AWI compared to INCOME
and IWC under perfect and stochastic conditions. For stochastic conditions, we consider that samples are affected
by two common stochastic perturbations, including external signal noise and small perturbation. In addition, the
sensitivity of the inverse methods to the periodicity of periodic structures is worth investigating. The sensitivity here
is manifested in two ways: a) the performance of inverse methods when the structural periodicity is approximately
known; b) the performance of inverse methods when the structural periodicity is unknown. These phenomena are
common in practice. For example, periodic structures encased in other materials and structural damage or deformation
will inevitably result in unknown or approximately known structural periodicity. In order to apply AWI to different
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types of structures, three structures, including a homogeneous beam, a homogeneous beam with distributed TMDs,
and a bi-material periodic beam, are considered in this section. The Wave Finite Element Method (WFEM) is seen
as the reference, and the Finite Element Method (FEM) is used to calculate transverse displacements in the next
numerical cases. The normalised wavenumbers by using km∆x/π with unit-cell length ∆x are considered. To facilitate
the description of the research content of each numerical case, we have organized three numerical studies in the form
of a tree diagram, as shown in Fig. 2, where the content in brackets indicates the methods to be compared.

A homogenous beam

A homogenous beam 

with TMDs

A bi-material periodic 

beam

Robust to signal noise (INCOME, AWI) 

Computational time cost (INCOME, IWC, AWI)

Robust to small perturbation (INCOME, AWI) 

Sampling constraints (INCOME, AWI) 

Periodicity of periodic structure is approximated (INCOME, AWI) 

Periodicity of periodic structure is unknown (INCOME, AWI) 

Numerical study

Numerical study 1:

Numerical study 2:

Numerical study 3:

Fig. 2. Tree diagram of the numerical study.

3.1. Numerical study 1: a homogeneous beam

This section is devoted to validating that AWI has a low computational cost and high robustness to signal noise.
Section 3.1.1 firstly compares the performance of AWI, INCOME, and IWC on extracting propagative wavenumbers
and evanescent wavenumbers in perfect condition. Then, the computational costs of these three inverse methods are
compared. Comparatively, Section 3.1.2 compares AWI and INCOME under the stochastic condition where forced
responses are subjected to high levels of signal noise.

The structure in this section is an aluminum cantilever homogeneous beam that is excited with a force of 10 N at
the right end of the beam shown in Fig. 3. The geometrical and material properties are summarized in Table 1.

F

⋮𝑥1 𝑥51𝑥2

Fig. 3. The simulated cantilever homogeneous beam.

Table 1. Characteristics of the homogeneous beam.

Length Height Width Young’s modulus Damping Poisson’s ratio Density Force
50 cm 1 cm 2 cm 70 GPa 2% 0.3 2700 kg/m3 10 N

3.1.1. Comparison of computation time
In this section, three inverse methods are first applied to extract complex wavenumbers using 51 samples (com-

plete data set) in perfect condition. These samples are spaced equally along the whole structure, including the vicinity
of the force excitation and boundaries. The resulting dispersion curves for the propagative wave and the evanescent
wave are plotted in Fig. 4(a) and Fig. 4(b), respectively. From these two figures, two observations can be made.
First, INCOME, AWI can extract both propagative and evanescent wavenumbers, whereas the IWC can only identify

10



propagative wavenumber. This is because the signal models employed by these inverse methods are different. For
INCOME and AWI, the signal is modeled as a sum of exponential functions, as demonstrated by Eq. (3), which in-
cludes the propagative waves and evanescent waves. In addition, INCOME and AWI have a high resolution to extract
these two types of waves in perfect condition. In contrast, the signal model of IWC, U(x) = e−ikx, only considers
propagative waves. Consequently, IWC is unable to identify the evanescent wavenumber. Second, INCOME and
AWI can provide complex wavenumbers with high numerical precision in perfect condition. However, the dispersion
curves obtained by IWC are characterized by fluctuations, particularly in the low-frequency range.
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Fig. 4. (a) Comparison of propagative wavenumbers obtained by IWC, INCOME, and AWI for a homogeneous beam using complete data set in
perfect condition. (b) Comparison of evanescent wavenumbers obtained by INCOME and AWI for a homogeneous beam using complete data set
in perfect condition. (♢—) real part of the wavenumber obtained by IWC, (▷—) imaginary part of the wavenumber obtained by IWC, (×—) real
part of the wavenumber obtained by INCOME, (•—) imaginary part of the wavenumber obtained by INCOME, (△—) real part of the wavenumber
obtained by AWI, (◦—) imaginary part of the wavenumber obtained by AWI, ( ) real part of the wavenumber obtained by WFEM, ( )
imaginary part of the wavenumber obtained by WFEM.
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Fig. 5. (a) Comparison of propagative wavenumber obtained by IWC for a homogeneous beam using the complete and incomplete data set in
perfect condition, respectively. (♢—) real part of the wavenumber obtained by IWC using the complete data set, (▷—) imaginary part of the
wavenumber obtained by IWC using the complete data set, (♢ ) real part of the wavenumber obtained by IWC using the incomplete data
set, (▷ ) imaginary part of the wavenumber obtained by IWC using the incomplete data set, ( ) real part of the wavenumber obtained by
WFEM, ( ) imaginary part of the wavenumber obtained by WFEM. (b) Computational time comparison between IWC, INCOME, and AWI
as a function of the measurement points. (⋆—) computational time of IWC, (▽—) computational time of INCOME, (◁—) computational time of
AWI.
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To improve the accuracy of complex wavenumbers obtained by IWC, one way is to avoid using the samples close
to the boundaries and force excitations, eliminating the influence of evanescent waves on the propagative wavenumber
extraction. In this case, only 41 samples (incomplete data set), excluding 10 samples near the ends of the beam, are
used as input parameters of IWC. As shown in Fig. 5(a), the accuracy of extracted propagative wavenumbers is
improved, especially for the imaginary part of wavenumbers. In most cases, the extraction of evanescent waves is not
of interest. Thus only propagative wavenumbers are extracted by inverse methods in the following sections.

The computational time of each inverse method is calculated in four steps in this section. The first step is to obtain
10 data sets containing 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 displacements obtained from the displacement shape
at a certain frequency, respectively. The second step is to collect the computational time when each inverse method is
performed on these 10 sets of data, respectively. The third step is to repeat the first and the second step at 30 different
frequencies. The final step is to average the computation time of each inverse method on these frequency points. The
averaged computational time of IWC, INCOME, and AWI is compared in Fig. 5(b). This figure illustrates that AWI
and INCOME have lower computational costs than IWC, with AWI being five to eight times faster than IWC.

3.1.2. Noise sensitivity
The experimental samples are often disturbed by external signal noise. Thus we add white gaussian noise to

transverse displacements, with a signal-to-noise ratio of 25 in this section. The resulting dispersion curves obtained
by INCOME and AWI are shown in Fig. 6(a) and Fig. 6(b), respectively. From these two figures, two phenomena
can be observed. First, AWI is more robust than INCOME. It makes sense because AWI improves the robustness to
signal noise by introducing the multiple integrals of the signal. Multiple integrals operate like loss pass filters. Second,
INCOME suffers from the problem of yielding complex results when identifying the real part of the wavenumber. This
is because the essence of INCOME is the Prony method. As mentioned in [3, 37], the Prony method often produces
complex values as the result of estimating real parameters when the signal is affected by high levels of signal noise.
Comparatively, AWI does not suffer from such a limitation.
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Fig. 6. Dispersion curves comparison for a homogeneous beam under signal noise (SNR=25) condition: (a) INCOME and WFEM; (b) AWI and
WFEM. (×) real part of the wavenumber obtained by INCOME, (•) imaginary part of the wavenumber obtained by INCOME, (△) real part of the
wavenumber obtained by AWI, (◦) imaginary part of the wavenumber obtained by AWI, ( ) real part of the wavenumber obtained by WFEM,
( ) imaginary part of the wavenumber obtained by WFEM.

3.2. Numerical study 2: a homogeneous beam with Tuned Mass Dampers (TMDs)

In this section, AWI and INCOME are compared under small perturbation conditions. In Section 3.2.1, the
uniform small perturbed samples are selected as input parameters of AWI and INCOME, while the nonuniform small
perturbed samples are considered in Section 3.2.2, which also validates that AWI is not limited to uniform sampling.
The maximum small perturbation ratio ξn is taken as 20% for each measurement point.
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The structure in this numerical study is a homogeneous beam with distributed TMDs, as shown in Fig. 7. The
host structure is a classical steel beam that is equipped with distributed TMDs, modeled as a mass-spring system. The
properties of host beam and TMDs are shown in Table 2 and Table 3 respectively.

⋮

F
a unit cell

20 unit cells

Fig. 7. The simulated cantilever homogeneous beam with TMDs.

Table 2. Characteristics of the steel host beam.

Length Height Width Young’s modulus Damping Poisson ratio Density Force
80 cm 1 cm 3 cm 210 GPa 0.8% 0.3 7900 kg/m3 10 N

Table 3. Characteristics of TMD device.

Number of TMD Mass ratio Damping Resonance frequency
20 2% 0.5% 400 Hz

3.2.1. Uniform sampling case under small perturbation condition
In this case, AWI and INCOME are applied to 81 uniform small perturbed samples. Fig. 8 shows operational

deflection shape at 400 Hz. To observe measurement errors caused by the small perturbation problem, we only provide
the first 31 displacements. For example, the zoomed sub-picture in Fig. 8 clearly shows the deviation of the disturbed
displacements from the corresponding undisturbed displacements for the measurement points at 0.28 m and 0.29 m.
The dispersion curves obtained by each method are shown in Fig. 9(a) and Fig. 9(b). Unsurprisingly, there is a good
agreement between AWI and WFEM. On the other hand, the band gap from approximately 390 Hz to 410 Hz can be
easily identified by AWI. In contrast, INCOME fails to extract wavenumber in this condition, especially in the vicinity
of the band gap where the dispersion curve is featured by big fluctuations.
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Fig. 8. Operational deflection shape at 400Hz. (▽ ) uniform perfect samples, (•) uniform small perturbed samples.
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Fig. 9. Dispersion curves comparison for a homogeneous beam with TMDs under uniform sampling and small perturbation condition: (a) INCOME
and WFEM; (b) AWI and WFEM. (×—) real part of the wavenumber obtained by INCOME, (•—) imaginary part of the wavenumber obtained by
INCOME, (△—) real part of the wavenumber obtained by AWI, (◦—) imaginary part of the wavenumber obtained by AWI, ( ) real part of the
wavenumber obtained by WFEM, ( ) imaginary part of the wavenumber obtained by WFEM.

3.2.2. Nonuniform sampling case under small perturbation condition
In this case, 81 nonuniform small perturbed samples are chosen as input parameters of AWI and INCOME,

respectively. For INCOME, to address its limitation of uniform sampling, the cubic spline interpolation is applied to
reconstruct uniform samples from nonuniform samples. For example, Fig. 10 shows the displacements of the first
31 measurement points at 500 Hz after using the interpolation strategy. It can be observed that many interpolated
samples produce significant displacement errors, such as the measurement points at 0.05 m and 0.06 m, leading to
a severely ill-posed problem for INCOME. Consequently, significant deviations between wavenumbers generated by
INCOME and those obtained by WFEM exist, as shown in Fig. 11(a). Moreover, this figure indicates that it is
difficult to distinguish the location of the band gap by INCOME in this case. Comparatively, Fig. 11(b), which is the
result of AWI, indicates that AWI still performs well on wavenumber identification under this stochastic condition.
This is because AWI can identify wavenumbers using nonuniform samples as input parameters, avoiding the use of
interpolation strategy, and the introduction of multiple integrals improves the robustness of AWI to large measurement
errors.
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Fig. 10. Operational deflection shape at 500 Hz. (▽ ) uniform perfect samples, (•) nonuniform small perturbed samples, (+) uniform
interpolated samples.

14



200 300 400 500 600 700 800
Frequency (Hz)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

W
av

en
u

m
b

er
 (

n
o

rm
al

is
ed

)

(a)

200 300 400 500 600 700 800
Frequency (Hz)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

W
av

en
u

m
b

er
 (

n
o

rm
al

is
ed

)

(b)

Fig. 11. Dispersion curves comparison for a homogeneous beam with TMDs under nonuniform sampling and small perturbation condition: (a)
INCOME and WFEM; (b) AWI and WFEM. (×—) real part of the wavenumber obtained by INCOME, (•—) imaginary part of the wavenumber
obtained by INCOME, (△—) real part of the wavenumber obtained by AWI, (◦—) imaginary part of the wavenumber obtained by AWI, ( )
real part of the wavenumber obtained by WFEM, ( ) imaginary part of the wavenumber obtained by WFEM.

3.3. Numerical study 3: a bi-material periodic beam

To investigate the sensitivity of AWI and INCOME to the periodicity of periodic structures, AWI and INCOME
are applied to a bi-material periodic beam composed of 5 unit cells, as shown in Fig. 12(a). Fig. 12(b) shows a unit
cell composed of two aluminum parts (Young’s modulus E = 70 GPa, mass density ρ = 2700 kg/m3, poisson ratio ν
= 0.33, damping η = 0.7%). The length and radius of part A are 10 cm and 1 cm, while the length and radius of part
B are 20 cm and 4 cm. The unit-cell length is 40 cm. In this study, the samples are extracted in the perfect condition
for INCOME, while the small perturbed samples with 10% of the maximum small perturbation ratio are considered
for AWI.

INCOME requires the sampling interval to be an integer multiple of the periodicity of periodic structures. There-
fore, two cases are worth studying: a) the approximated periodicity is chosen as 41 cm; b) the unit-cell length is
chosen as 1 cm when the structural periodicity is unknown. Fig. 13 and Fig. 14 present the dispersion curves obtained
by INCOME in these two conditions, respectively. Fig. 13 shows that INCOME is unable to extract the accurate
dispersion curve even in a perfect condition when only an approximation of structural periodicity is known, while Fig.
14 demonstrates that estimation results are completely wrong when the structural periodicity is unknown. In contrast,
AWI has no specific sampling requirements for periodic structures. Therefore, as shown in Fig. 15, when the unit-cell
length is unknown, the dispersion curve obtained by AWI agrees well with the result of WFEM, even in the presence
of small perturbation.

a unit cell

5 unit cells

F

(a) (b)

Fig. 12. (a) The simulated cantilever bi-material periodic structure. (b) Unit cell.
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Fig. 13. Comparison of dispersion curves obtained by INCOME and WFEM for a bi-material periodic beam under the perfect condition when the
unit-cell length is approximated as 41 cm. (×—) real part of the wavenumber obtained by INCOME, (•—) imaginary part of the wavenumber
obtained by INCOME, ( ) real part of the wavenumber obtained by WFEM, ( ) imaginary part of the wavenumber obtained by WFEM.
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Fig. 14. Comparison of dispersion curves obtained by INCOME and WFEM for a bi-material periodic beam under the perfect condition when
the unit-cell length is unknown. (×—) real part of the wavenumber obtained by INCOME, (•—) imaginary part of the wavenumber obtained by
INCOME, ( ) real part of the wavenumber obtained by WFEM, ( ) imaginary part of the wavenumber obtained by WFEM.
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Fig. 15. Comparison of dispersion curves obtained by AWI and WFEM for a bi-material periodic beam under small perturbation condition when
the unit-cell length is unknown. (△—) real part of the wavenumber obtained by AWI, (◦—) imaginary part of the wavenumber obtained by AWI,
( ) real part of the wavenumber obtained by WFEM, ( ) imaginary part of the wavenumber obtained by WFEM.
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4. Experimental study

In this experimental study, the AWI and IWC are applied to extract the complex wavenumbers of an aluminum
beam to investigate their sensitivity to the samples in the structural discontinuities. The tested aluminum beam (E = 79
GPa, ν = 0.33, ρ = 2700 kg/m3) has the dimensions of 101 cm × 2 cm and the thickness is 1 cm. Fig. 16 presents the
experimental set-up for measuring the displacement field. The beam was suspended at the top of a fixed frame and
was excited with a white noise by an electrodynamic shaker at the top of the beam. A scanning laser vibrometer was
used to measure 200 equally spaced displacements with a 0.5 cm sampling interval. These measured displacements
are distributed throughout the structure, including those near the excitation force and the boundaries.

Polytec Scanning 

Vibrometer (PSV-400)

Freely suspended

Aluminum beam

Shaker: Gearing & 

Watson V4

Power Amplifier

Vibrometer Controller

Fig. 16. Experiment set-up for measuring the vibratory field of the aluminum beam
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Fig. 17. Envelope of coherence function calculated for all measurement points. ( ) minimum value of coherence function ( ) maximum
value of coherence function.

The coherence values for all measurement points are plotted in Fig. 17. The lower the coherence value, the
more affected the samples are by signal noise. It can be seen that some samples are affected by relatively larger signal
noise at some frequencies, such as samples at 4925 Hz. Two data sets are used as the input parameters of IWC and
AWI, respectively. The first data set (complete data set) includes all measured displacements, while the second data
set (incomplete data set) has 180 measured displacements with the exclusion of 20 measurement points near the ends
of the beam. Fig. 18 and Fig. 19 show the complex wavenumbers obtained by IWC and AWI based on these two
data sets, respectively. As can be seen in Fig. 18, IWC returns a better estimation of the complex wavenumbers
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Fig. 18. Comparison of wavenumber obtained by IWC using the complete and incomplete data set: (a) real part of wavenumber; (b) imaginary part
of wavenumber. (♢—) real part of the wavenumber obtained by IWC using the complete data set, (▷—) imaginary part of the wavenumber obtained
by IWC using the complete data set, (♢ ) real part of the wavenumber obtained by IWC using the incomplete data set, (▷ ) imaginary part
of the wavenumber obtained by IWC using the incomplete data set, ( ) real part of the wavenumber obtained by WFEM.
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Fig. 19. Comparison of wavenumber obtained by AWI using the complete and incomplete data set: (a) real part of wavenumber; (b) imaginary part
of wavenumber. (△—) real part of the wavenumber obtained by AWI using the complete data set, (◦—) imaginary part of the wavenumber obtained
by AWI using the complete data set, (△ ) real part of the wavenumber obtained by AWI using the incomplete data set, (◦ ) imaginary part
of the wavenumber obtained by AWI using the incomplete data set, ( ) real part of the wavenumber obtained by WFEM.

when using the second data set, especially for the imaginary part of wavenumbers. This phenomenon is also observed
in the IWC results studied in Section 3.1.1. The reason behind this phenomenon is that the energy associated with
nearly evanescent waves is contained near structural discontinuities, such as force sources or boundaries, accounting
for a small portion of the overall signal. Thus, discarding the displacements of measurement points at the structural
discontinuities can reduce the effect of evanescent waves on the propagative wavenumber extraction, especially on the
imaginary part of the wavenumber, which is associated with wave attenuation. It is also worth noting that the signal
model of IWC does not contain the evanescent wave component. Thus the IWC itself cannot eliminate the effect of
evanescent waves on the wavenumber extraction of propagating waves.

Comparatively, the AWI signal model includes the evanescent wave component, and it can be used to extract
propagative and evanescent wavenumbers with high resolution, as discussed in Section 3.1.1. Thus, AWI has the
ability to reduce the influence of evanescent waves on propagative wavenumber identification to a certain degree. Fig.
19 shows that the accuracy of complex wavenumbers obtained by AWI is slightly improved when only samples from
the far field are considered. In addition to eliminating the effect of evanescent waves, this is most likely also due to the
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exclusion of samples at both ends of the beam, which are typically more disturbed by signal noise. Furthermore, the
accuracy of the imaginary part of the wavenumber extracted by AWI is higher than that of IWC. IWC does not seem
to be adapted to extract the imaginary part of the wavenumber for low damping structures, and the same conclusion
was also obtained by [7, 12, 38].

5. Conclusions

In this paper, Algebraic Wavenumber Identification (AWI) technique was developed based on the algebraic pa-
rameter estimator. The main contribution of AWI is that it can perform well on wavenumber extraction under different
stochastic conditions, overcoming some known drawbacks of IWC and INCOME, which are the representative non-
linear family method and linear Prony family method, respectively. A comparison of the general properties between
the proposed method and these two inverse methods is summarized in Table 4 wherein “Exact” refers to the ability
to extract exact wavenumbers in the perfect condition and “uncertainty” refers to the small perturbation caused by
uncertainty in geometric coordinates of measurement points. Additionally, INCOME is not adapted to extracting
wavenumbers in periodic structures of unknown periodic length, while IWC and AWI do not have this limitation.

Table 4. Comparison of general properties between IWC, INCOME, and AWI.

Methods Exact Sampling limits Computational time Robust to signal noise Robust to uncertainty Frequency range
IWC No None Time-consuming Yes Yes Mid-High

INCOME Yes Periodicity Efficient No No All
AWI Yes None Efficient Yes Yes All

In this work, three numerical cases are used to validate the ability of AWI to overcome the drawbacks of INCOME
and IWC mentioned in Table 4. In the first numerical study, AWI, INCOME, and IWC are applied to a homogeneous
aluminum beam under the perfect condition and signal noise condition. The results show that AWI is 5 to 8 times faster
than IWC, and AWI is more robust than INCOME when samples are affected by the high level of signal noise. The
second numerical study is investigated on a meta-structure to compare AWI and INCOME under small perturbation
conditions and nonuniform sampling conditions. This numerical case illustrates that INCOME is sensitive to small
perturbation and limited to uniform sampling, whereas AWI has a good performance in identifying wavenumber and
band gap under these two stochastic conditions. Finally, the ability of AWI to extract the complex wavenumber
of periodic structures when the structural periodicity is unknown is validated through a bi-material periodic beam.
Notably, the good performance of AWI can be attributed to three factors: a) The multiple integrals are introduced in
the formula of AWI to improve its robustness to measurement errors; b) AWI treats the signal as a continuous function,
resulting in the fact the AWI is not limited to uniform sampling and not sensitive to structural periodicity; c) The AWI
algorithm only involves the several linear equations, reducing the computational cost compared to nonlinear family
inverse methods, such as IWC.

In addition, AWI and IWC are applied to different experimental data sets of an aluminum beam. By means of
this experimental study, two conclusions can be obtained: (a) the performance of AWI and IWC can be improved
when only using the samples which have a distance from the force source and boundaries as input parameters. This is
because this sampling way can reduce the influence of the evanescent waves on the accuracy of extracted propagative
wavenumbers; (b) AWI has the ability to reduce the influence of evanescent waves on propagative wavenumber extrac-
tion to a certain degree due to the fact that AWI can extract propagative wavenumbers and evanescent wavenumbers
with high resolution. For 2D applications, AWI needs to solve the problem with bivariate parameter extraction, which
is the challenge of the algebraic parameter estimator. A forthcoming study should address the potential applicability
of AWI concept to tackle 2D problems. This will be the object of a forthcoming paper.
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