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1 Introduction

Switching costs appear naturally in many real-life scenarios, as changing an action

might incur additional costs compared to maintaining it for an extra period. This

can occur due to set-up costs [Akerlof and Yellen, 1985a,b], movement costs [Filar

and Schultz, 1986], or costs of time of inactivity [Yavuz and Jeffcoat, 2007]. For

example, in inspection games [Avenhaus et al., 2002] the inspector typically pays a

price for moving between inspected locations, and gives an opportunity for unde-

tected violations to occur while he is commuting. This additional cost is taken into

account when studying different inspection models, such as environmental protection

[Jørgensen et al., 2010], arms race verification [O’Neill, 1994], border protection [Dar-

lington et al., 2022] and the cyber version of border protection [Rass and Rainer,

2014, Rass et al., 2017]. In this paper, we study the general effect of switching costs

on non-zero-sum scenarios, characterize the set of equilibrium payoffs, and prove the

Folk Theorem for different time horizons and payoff accumulation methods.

The effect of switching costs. The introduction of switching costs to a re-

peated game has two major effects. First, it causes some of the payoff to dissipate:

alternating between two actions yields a lower payoff than their average due to the

cost of switching. This impacts both the worst case payoff a player can defend (i.e.,

the individually rational level), and the payoffs a player can receive in equilibrium.

Second, switching costs serve as a commitment device, as it is costly to change actions

between subsequent stages. For example, when the switching costs are significantly

larger than the stage payoffs, in equilibrium, actions are changed only finitely many

times [Chakrabarti, 1990]. The natural questions that follow are which equilibrium

payoffs can a player obtain in a repeated game with switching costs, how they depart

from the settings without switching costs and how they change as the switching costs

increase.

Our Model. We consider a repeated game and assume that in each time step,

in addition to the payoffs of the strategic interaction, players pay some cost if they

change their previous action. These switching costs are fixed throughout the game,

but can depend on the actions being switched. To change the relative weight between

the switching costs and the payoffs from the strategic interaction, we use a multiplica-

tive factor to change all the switching costs together, without affecting their inner

structure. For example, in the Traveling Inspector Model [Filar and Schultz, 1986],
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this captures the idea that the distance between locations is fixed whereas the cost

of movement depends on the fuel prices which influences all possible routes in the

same multiplicative manner (see Tsodikovich et al. [2022] for details). This leads to

a dynamic game with a stage payoff defined as some weighted sum of the payoffs of

the strategic interaction and the switching cost.

We consider three different variations regarding payoff accumulation and time

horizon. In Section 3, we consider an infinitely repeated game with undiscounted

payoffs. This serves as a benchmark for the infinitely repeated game with discounted

payoffs (Section 4), and for the finitely repeated game (Section 5). In each model, we

study the shape of the set of feasible payoffs and the individually rational level of each

player, which are combined to provide the set of subgame perfect equilibrium (SPE)

payoffs through an adapted version of the Folk Theorem. In addition, we perform

comparative statics in each model to study the effect of an increase in the switching

costs on the equilibrium payoffs of the players.

Our Results. Our paper contains three parts. In the first part, we focus on

infinitely repeated games with undiscounted payoffs, allowing us to establish a Folk

Theorem without the use of a public correlation device and without the Full Dimen-

sionality assumption [Dutta, 1995]. The Folk Theorem is not only interesting on its

own, but it is also a tool to understand the dependence of the equilibrum payoffs on

the switching costs (more precisely, on the weight of the switching costs relative to

the single stage payoffs from the strategic interaction).

We show that when the switching costs are symmetric, the set of equilibrium

payoffs is equal to the intersection of the individually rational payoffs with the feasible

set of a one-shot auxiliary game, constructed by considering only the first two stages

of the repeated game (Section 2.2). Our results provide a novel and simple method

to calculate the feasible set, since we show that it depends solely on the primary

parameters of the game. The symmetry of the switching costs is essential for this

result to hold. When the switching costs are asymmetric, the feasible set is only

a subset of the feasible set of the auxiliary game described above, as we show in

Example 2. Although the symmetry assumption seems restrictive at first, in fact it

is quite general as the common assumption in the switching costs literature is that

the costs are not only symmetric but also independent of the actions being changed

[Chakrabarti, 1990, Lipman and Wang, 2000, 2009].

In the second part, we analyze repeated games with discounted payoffs. We show
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that the Folk Theorem holds asymptotically when players are patient enough and the

Full Dimensionality assumption is satisfied. Moreover, the limit set is the same as

for the undiscounted evaluation. The Full Dimensionality assumption can be satisfied

directly by the stage game, and if not, we show it is satisfied in the presence of non-

zero switching costs (Proposition 5). The intuition is that adding switching costs

to players with equivalent utility functions “breaks” the equivalence and adds the

missing dimensions.

In the third part, we analyze finitely repeated games. Here too we prove a Folk

Theorem which is based on the Folk Theorem for finite games of Marlats [2015]. In

fact, under the same conditions of Marlats [2015], we show that the results from

the second part hold here too. This implies that the set of equilibrium payoffs with

discounted payoffs or finite horizon (with appropriate conditions) are asymptotically

equal to the set of equilibrium payoffs with undiscounted payoffs, as discussed in the

subsequent sections.

Throughout the paper we provide comparative statics and study how the set of

equilibrium payoffs change when the relative weight between the switching costs and

the single stage payoffs change, in a similar fashion to the analysis of Tsodikovich

et al. [2022]. We deduce from our characterizations that whenever one of our Folk

Theorems holds, a player cannot do better with higher switching costs (maybe, upto

an error of ε). On the contrary, in cases that the Folk Theorems do not hold, it is

possible for players to benefit from an increase in the switching costs, as we exemplify

in a finitely repeated game. In these cases, it is possible to sustain a better SPE for a

player with high enough switching costs. The intuition is that a high switching cost

introduces a commitment power to the player, and forces the rest to react to his action

knowing he will not change it. As a consequence, he can obtain a higher payoff with

the higher switching costs (effectively, it becomes a sequential game). The positive

effect of high switching costs falls in line with other well established ideas, that when

players are prohibited (here: costly prohibited) from changing actions and the players

are myopic enough, they can force their preferred equilibrium on the others.

Structure of the paper. This introduction is followed by a short literature

review regarding repeated games with switching costs and the relevant Folk Theorems.

In Section 2 we present the notation and the model of our paper. This section is

divided into five parts, as we actually deal with three sub-models. In the first part of

the section, we present the common parts to all the models, which include the one-
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shot game and the switching costs. Then, we present each of the three sub-models

which differ in the way the payoff is accumulated: undiscounted, discounted, and

time-average with a finite horizon. Finally, we present the auxiliary one-shot game

(Section 2.2) which is used to calculate the feasible set of the repeated games.

In Section 3 we discuss the scenario where the payoffs are undiscounted and present

our main results for this case. We show in Section 4 that our results hold also in the

more interesting case of discounted payoffs. In Section 5 we discuss the applicability of

the results to finitely repeated games. In each section, we provide a Folk Theorem and

discuss the implications of increased switching costs, in terms of comparative statics.

We also provide counter-examples showing our assumptions are indeed necessary for

the results to hold. We conclude our work in Section 6. To improve readability the

proofs are relegated to the Appendix.

1.1 Literature Review

Our work relates to two strands of literature, dealing both with the Folk Theorem

and with switching costs in repeated games.

Switching Costs. Switching costs have been studied in the literature in multiple

scenarios, mainly considering the switching costs that consumers pay when changing

firms [Klemperer, 1987, 1995, Beggs and Klemperer, 1992], or setup costs firms have

when setting new prices or starting new projects [Akerlof and Yellen, 1985a,b].

The model of repeated normal-form games with switching costs was proposed by

Filar and Schultz [1986] (see also Filar [1985]) as a method to incorporate movement

costs and lost time into repeated games. In their framework (namely, the Traveling

Inspector Model), only one player pays some switching costs (a moving inspector)

whereas the rest are stationary inspectees. They used this assumption to aggregate

all the inspectees into one player and reduce the repeated game to a two-player

stochastic game where only the inspector controls the transitions. This significantly

simplifies the problem and allows the utilization of the theory of single-controller

stochastic games in the study of their model [Filar, 1980, 1981, Filar and Raghavan,

1984].

The model was later extended by Chakrabarti [1990] and Lipman and Wang [2000,

2009] to scenarios where all players pay switching costs. They assumed that all the

players face the same cost and that the cost is the same for any pair of actions
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being switched. In their early paper, they focused on the equilibria in finite horizon

whereas in the latter they studied the infinitely repeated game (with discounting or

time-averaging). Both models are in discrete time but justified by the discretization

of a continuous model. This leads to a specific structure of the general payoff, which is

different from ours, in which the strategic payoff is normalized whereas the switching

costs are not normalized. In particular, when considering the infinitely repeated game

with time-averaging, infinite switching leads to an infinitely negative (time-averaged)

payoff. As a consequence, we obtain substantially different results. We discuss these

differences along our results.

In Lipman and Wang [2000], they showed that the introduction of switching cost

has two effects and that both can lead the result: a switching cost may serve as com-

mitment to keep the current action (diminishing the profitability of a deviation), but

at the same time can make punishment harder (switching to and from the punishment

strategy incurs costs). In Lipman and Wang [2009], they showed that the asymptotic

behavior of the set of Nash Equilibria in the discounted case depends on the ratio

between the cost of switching and the discount factor. They highlighted especially

that some payoffs disappear due to the necessity to switch infinitely often.

Repeated games with switching costs can also be seen as a particular case of

supergames. Friedman [1971] introduced the notion of supergames as a sequence

of one-shot games where the final payoff of each agent is a discounted average of

the stage payoff. Friedman [1974] extended the previous model by introducing time-

dependent supergames where there is a connection between the actions played at

two consecutive stages. In particular, this includes repeated games with switching

costs: the payoffs today depend on the cost of switching from yesterday’s actions.

Switching costs models provide additional structure compared to supergames, such

as time-homogeneity and partial separation of the players’ payoffs.1

Finally, zero-sum games with switching costs were studied in Tsodikovich et al.

[2022]. Similarly to Filar and Schultz [1986], the authors focused on models where

only one player has switching costs that are paid to the other adversarial player

(otherwise, the game is no longer zero-sum). They studied the regularity of the value

function as a function of the scale of the switching costs. In the current work we

follow the same line and investigate the set of equilibria in a non-zero-sum framework

as a function of this scale.

1The payoff of Player ℓ today does not depend on the actions of the others yesterday.
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We note that under some algebraic manipulation, this model (and games with

switching costs in general) can describe other situations too. For example, Schoen-

makers et al. [2008] studied a model of learning by doing, where repeating an action

grants a bonus. Up to an affine transformation, this is identical to penalizing players

for switching.

Finally, there also exist articles that analyze switching costs in a one- shot game

framework. [Guney and Richter, 2018] focused on the notion of status quo in the

presence of switching costs whereas [Guney and Richter, 2022] developed a notion of

Nash equilibrium with switching cost for one-shot games.

Folk Theorem. The classical Folk Theorem states that any payoff that is fea-

sible (can be achieved by some strategy) and individually rational (above what each

player can guarantee for himself, his minmax level) is supported in equilibrium in

the repeated game with undiscounted payoffs. This proposition, focusing on Nash

equilibrium, can be proven by relying on trigger strategies. The players agree on a

joint plan to generate a feasible payoff as long as all players cooperate. If one of the

players decides to deviate, the others punish him to his minmax level. Aumann and

Shapley [1994] extended this to Sub-game Perfect Equilibria (SPE) by using the two

following ideas: punish only for a finite time instead of forever, and punish for longer

and longer times each time someone deviates.

There exist versions of the Folk Theorem for different repeated interaction models.

The closest to our model are of Friedman [1990], who established a Folk Theorem for

supergames with compact action spaces and some separation between the past actions

of one player and the present payoff of another, and Dutta [1995], who established

the main Folk Theorem for stochastic games. The latter is a natural generalization

of the classical Folk Theorem under some ergodicity assumptions and the Full Di-

mensionality assumption, and is similar to the classical one established by Fudenberg

and Maskin [1986] for repeated games. In particular, Dutta showed that three as-

sumptions are required for the Folk Theorem to hold in this case: independence of the

asymptotic feasible set of the initial state, independence of the asymptotic maxmin of

the initial state, and full dimensionality of the feasible sets. This result was extended

to public monitoring signaling simultaneously in Fudenberg and Yamamoto [2011]

and in Hörner et al. [2011] under similar assumptions. Finally, Marlats [2015] pro-

vided a Folk Theorem for stochastic games with a finite horizon, by adding a richness

condition (see Assumption A4) on the limit set of finite SPE payoffs.

6



How does the introduction of switching costs change the story? As

pointed out in Lipman and Wang [2009], switching costs play two different roles.

First, it changes the set of feasible payoffs. When playing a joint plan, it is possible

to switch rarely compared to the global payoff such that switching costs are negligible,

but it is also possible to use switches to decrease the payoffs, even outside the feasible

set of the one-shot game. Second, it plays a role in the second part of the story, i.e.

the minimax payoffs. The presence of cost for Player ℓ constrains him and therefore

the other players can punish him more. Notice that when punishing, players suffer

first from having bad payoffs but also from the cost of switching actions, hence it is

necessary to threaten them to obtain an SPE or to reward them afterwards. Still,

they established a new Folk Theorem (concerning the time-averaging evaluation)

by introducing a suitable notion of individual rationality, while Chakrabarti [1990]

provided a complete characterization of the payoffs supported by an equilibrium under

the additional assumption that the switching costs out-scale any possible gain in the

one-shot game.

From a technical perspective, expressing a repeated game with switching costs

as a stochastic game has been suggested in Lipman and Wang [2009] (also in Filar

and Schultz [1986], but when only one player pays the switching costs) and used

extensively in Tsodikovich et al. [2022]. In this representation, the states correspond

to the pure actions played in the previous time step, and the payoffs in each state

comprise of the standard single stage payoff and the switching costs. These stochastic

games have additional structure compared to the general ones studied by Dutta [1995],

which facilitates some of the results. For example, the resulting stochastic game is

in fact a dynamic game, as the transitions are deterministic and depend only on the

actions of the players. Similarly, any state is reachable from any state in a single

step, and there are no absorbing states. More importantly, we show that whenever

all players have non-zero switching costs, the special structure of the game fulfills

the Full Dimensionality assumption (Proposition 5), and allows the use of the Folk

Theorem from Dutta [1995].

This relates to the general discontinuity of the set of equilibrium payoffs and

strategies when the switching costs go to zero, which was studied by Lipman and

Wang [2009]. They showed that even a small non-zero switching cost can have a

significant effect on the equilibrium structure. For example, small switching costs can

create multiplicity of equilibria in a setting where without switching costs there is a
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unique equilibrium, and vice-versa. Such phenomena are well understood in light of

Proposition 5, as small non-zero switching costs are enough for a game to fulfill the

Full Dimensionality assumption in cases that the assumption is not fulfilled without

switching costs.

2 The Switching Costs Model

We consider an n-player non-zero-sum game with action-dependent switching costs.

It is formally defined by a tuple Γ “ pN, pIℓqℓPN , puℓqℓPN , pSℓqℓPN , cq where N is a finite

set of n players. For every Player ℓ P N , Iℓ is a finite set of actions of size mℓ, uℓ is

his payoff function from I “
Ś

ℓPN

Iℓ to R and Sℓ “ psℓijq is an mℓ ˆ mℓ switching costs

matrix. We identify the sets of actions with the sets Iℓ “ t1, . . . ,mℓu. The relative

weight of the switching costs compared to the stage payoff is c ě 0.

At each time step t ą 1, each Player ℓ chooses an integer iℓptq P t1, . . . ,mℓu.

Denote by iptq “ piℓptqqℓPN the profile of actions played at stage t. The stage payoff

of Player ℓ is ruℓpipt ´ 1q, iptqq :“ uℓpiptqq ´ c ¨ sℓ
iℓpt´1qiℓptq

, so Player ℓ is penalized for

switching the previous action iℓpt´1q to the action iℓptq by c ¨sℓ
iℓpt´1qiℓptq

. Naturally, at

the first time step, t “ 1, switching costs are not paid and the payoffs are according to

uℓ. This creates an asymmetry between the first stage and the rest of the stages. To

simplify the notation, and although ip0q is not defined, we set ruℓpip0q, ip1qq “ uℓpip1qq.

We assume that for all i, j and for all ℓ P N , sℓij ě 0 and sℓii “ 0. We distinguish

between several sets of agents. If Sℓ “ 0, then Player ℓ has no switching costs. We

denote the set of such players by N0 and the set of players who have switching costs

by N1 “ NzN0. If Sℓ is a matrix where all non-diagonal elements are strictly positive,

Player ℓ pays a cost for any change of actions. We say that he has no free switches

and we denote the set of such players by Nnf .

Note that even when there are two players and u1 “ ´u2, the addition of switching

costs turns the game into a non-zero-sum game, since ru1 ‰ ´ru2. Tsodikovich et al.

[2022] analyzed a similar two-player framework, but assumed that only Player 2 pays

switching costs and that they are paid to Player 1, which makes the game indeed a

zero-sum game. Their analysis can serve as a worst-case analysis in our model.

At each time period the players are also allowed to play mixed actions, where a

mixed action of Player ℓ is a probability distribution over Iℓ. As usual, the set of
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all probability distributions over some finite set A is denoted by ∆pAq, so the set of

mixed actions of Player ℓ is ∆pIℓq. Note that at time t, iℓpt ´ 1q is already known,

even if Player ℓ played a mixed action at time t´ 1. This information is important in

our case, as the utilities at stage t are determined by the pure actions played at stage

t ´ 1. In addition, we assume that players have access to a public randomization

device as it is classic in the literature of Folk Theorems in dynamic environments

[Dutta, 1995, Marlats, 2015].

2.1 Payoff Accumulation and Sub-game Perfect Equilibria

We consider three models which differ in the way that the payoff is accumulated

and the horizon of the game. In all the versions, the equilibrium notion we are

interested in is Sub-game Perfect Equilibrium (SPE). Informally, in these equilibria,

after each history the continuation strategies are best-responses to each other and

are equilibrium strategies in the sub-game that starts at this point. These all are

formally defined in the rest of this subsection.

2.1.1 Finite Game of Length T

The game is played for T ě 1 stages and the payoff of each player is the average

per-stage payoff. Formally, let σ “ pσℓqℓPN be an n-tuple of strategies for the entire

game and pσℓptqqℓPN be the mixed actions played at stage t (given the history). The

average per-stage payoff of Player ℓ is therefore

γℓ
T pσq “ Eσ

˜

1
T

T
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

. (1)

For T “ 1 this is simply the one-shot game without switching costs (ruℓ “ uℓ),

which is hereafter referred to as the one-shot game u. This game is relevant, as the

possible payoffs in this game are the baseline for the possible payoffs and possible

equilibrium payoffs in the repeated game with and without switching costs.

In particular, two important sets are the feasible set of the one-shot game and

the individual rationall payoffs set of the one-shot game. The feasible set of the

game with utilities u “ puℓqℓPN is the convex combination of all the possible vector

payoffs F puq “ Conv ptupiq, i P Iuq . When it is clear from the context, we will simply
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denote this set by F . Similarly, the individually rational level in the repeated game

is related to the individually rational level in the one-shot game, i.e. to the minimax

value. The minimax for Player ℓ in the one-shot game is defined as the maximal

payoff that he can defend when the other players try to minimize his payoff in an

uncorrelated manner:

vℓ “ min
σ´ℓPΣ´ℓ

max
xℓP∆pIℓq

uℓ
pxℓ, σ´ℓ

q,

where Σ´ℓ “
Ś

j‰ℓ

∆pIjq. The set of individually rational payoffs is the set of all payoffs

above the minimax level for all players:

IR “
␣

pyℓqℓPN P Rn, for all ℓ P N, yℓ ě vℓ
(

.

If n “ 2, then vℓ is the value of the zero-sum finite game where Player ℓ has payoff

uℓ whereas Player ´ℓ has payoff ´uℓ. If n ą 2, it is also the value of a zero-sum

game but it is no longer a finite game since the set of strategies Σ´ℓ is not a product

state space. As mentioned above, the notion of equilibrium we study in the paper is

SPE, i.e., equilibria in which after each history no player has an incentive to deviate.

However, it is not possible to consider the continuation payoffs after each history in

the standard manner, since the sub-game starting after each history of length t ą 1

includes an initial state and possible payment of switching costs, while the original

game is defined such that switching costs do not exist in the first stage. We resolve

this issue by a slight abuse of notation. Fix σ “ pσℓqℓPN be a profile of strategies

and let ht be a history of length t ă T , i.e., ht P I t. We define γT pσ, htq to be the

payoff of a game whose first t stages are according to ht (regardless of the strategy

profile) and the rest of the T ´ t stages are according to the strategy profile σ. A

strategy profile is a sub-game perfect equilibrium if after every history no player has

a profitable deviation, even if this history is not part of the equilibrium path.

Definition 1. A profile of strategies σ˚ “ pσℓ
˚qℓPN is a Sub-game Perfect Equilibrium

(SPE) in the finite game of length T if after every history ht of length t ă T , every

ℓ P N , and for every σℓ strategy of Player ℓ,

γℓ
T

`

pσℓ, pσ˚q
´ℓ

q, ht

˘

ď γℓ
T pσ˚, htq,

where as usual, pσ˚q´ℓ is the vector σ˚ without σℓ
˚. The vector pγℓ

T pσ˚qqℓPN is then

called an SPE Payoff of the finitely repeated game of length T . We denote by SPET pcq
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the set of SPE Payoffs.

2.1.2 δ-Discounted Payoffs Game

The game has infinitely many stages and the payoff of each player is discounted

according to δ P p0, 1q. Formally, let σ “ pσℓqℓPN be an n-tuple of strategies for the

entire game and pσℓptqqℓPN be the mixed actions played at stage t (given the history).

The δ-discounted payoff of Player ℓ is therefore

γℓ
δpσq “ Eσ

˜

p1 ´ δq

8
ÿ

t“1

δt´1
ruℓ

pipt ´ 1q, iptqq

¸

. (2)

The closer the discount factor to 1, the more patient the players are. We define the

SPE for this case in an analogous manner to Definition 1.

Definition 2. A profile of strategies σ˚ “ pσℓ
˚qℓPN is a Sub-game Perfect Equilibrium

(SPE) in the δ-discounted payoffs game if after every finite history h, every ℓ P N ,

and for every σℓ strategy of Player ℓ,

γℓ
δ

`

pσℓ, pσ˚q
´ℓ

q, h
˘

ď γℓ
δpσ˚, hq.

The vector pγℓ
δpσ˚qqℓPN is then called an SPE Payoff of the δ-discounted game. We

denote by SPEδpcq the set of SPE Payoffs.

2.1.3 Undiscounted Payoffs Game

The game is played infinitely many stages and the payoff of each player is the limit

of the average payoffs. Formally, let σ “ pσℓqℓPN be an n-tuple of strategies for the

entire game and pσℓptqqℓPN be the mixed actions played at stage t (given the history).

The undiscounted payoff of Player ℓ is therefore

γℓ
pσq “ Eσ

˜

lim inf
TÑ8

1
T

T
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

. (3)

We define the SPE for this case in an analogous manner to Definitions 1 and 2.

Note that here the continuation payoffs can be considered in the regular manner,

as the switching costs at the first stage of the sub-game are negligible compared to
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the long-term average. On the contrary, we impose a stronger assumption on the

convergence of the payoffs, as is done in Maschler et al. [2013] (Definition 13.16).

Definition 3. A profile of strategies σ˚ “ pσℓqℓPN is a Sub-game Perfect Equilib-

rium (SPE) in the undiscounted game if with probability 1, the mean-average payoff

converges and after every history, no player has an incentive to deviate. For every

ℓ P N , the following limit exists with probability 1 under σ˚:

lim
TÑ8

1

T

T
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

Let h be a finite history of length t, denote by σℓ
˚phq the continuation strategy after

the finite history h of Player ℓ. Then for every ℓ P N and for every σℓ strategy of

Player ℓ,

γℓ
`

pσℓ, pσ˚phqq
´ℓ

q
˘

ď γℓ
pσ˚phqq. (4)

The vector pγℓpσ˚qqℓPN is then called an SPE Payoff of the infinitely repeated game.

We denote by SPE8pcq the set of SPE Payoffs.

When c “ 0, the above definitions reduce to the regular finite and infinite games

without switching costs, with the vector of utilities puℓqℓPN . The aim of this article is

to study the properties of the sets SPET pcq, SPEδpcq and SPE8pcq as a function of

the cost factor c.

2.2 The Auxiliary One-Shot Game

We present a novel method to calculate the feasible set and the set of equilibrium

payoffs in the undiscounted infinitely repeated game. We show (Theorem 1) that

when all the matrices Sℓ are symmetric, the feasible set is equal to the feasible set

of a one-shot game constructed by merging two stages of the game. This result

will extend asymptotically to the feasible sets for the infinitely repeated game with

discounted payoffs (Section 4), and for the finitely repeated game (Section 5). In this

section, we formally define this one-shot game.

Let Γ “ pN, pIℓqℓPN , puℓqℓPN , pSℓqℓPN , cq be a repeated game with switching costs.

For each Player ℓ, define the new action spaces J ℓ “ Iℓ ˆ Iℓ and J “
Ś

ℓPN

J ℓ. We

define naturally the projections of each j P J on the first and second coordinate by
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j1 and j2. The payoff of the one-shot game is then defined for every ℓ P N and for

every pjℓqℓPN P J by

gℓcpjq :“
1

2

`

uℓ
pj1q ` uℓ

pj2q
˘

´ c ¨ sℓjℓ1jℓ2
. (5)

Let us define by gc “ pgℓcqℓPN the payoff function of this one-shot game. By our

previous notation, the set of feasible payoff in this auxiliary game is denoted by

F pgcq.

Example 1. The repeated “Battle of the Sexes” game with switching costs. Consider

the standard two-player “Battle of the Sexes” game augmented with two switching

cost matrices
¨

˝

2, 1 0, 0

0, 0 1, 2

˛

‚, S1 “

¨

˝

0 2

1 0

˛

‚ and S2 “

¨

˝

0 1

1 0

˛

‚

In the corresponding one-shot game each player has 4 actions of the form jℓ1j
ℓ
2 (where

jℓi P Iℓ and the corresponding payoff matrix is

LL LR RL RR

TT 2, 1 1, 0.5 ´ c 1, 0.5 ´ c 0, 0

TB 1 ´ 2c, 0.5 1.5 ´ 2c, 1.5 ´ c ´2c,´c 0.5 ´ 2c, 1

BT 1 ´ c, 0.5 ´c,´c 1.5 ´ c, 1.5 ´ c 0.5 ´ c, 1

BB 0, 0 0.5, 1 ´ c 0.5, 1 ´ c 1, 2

The payoffs and feasible sets are shown in Figure 1 for c “ 1. △

In this paper we consider c as a variable and perform different comparative stat-

ics on the outcomes of the game for different cs. For example, we study how the

feasible set of payoffs change as a function of c. One interesting property of the

correspondences we are studying is decreasing for the order, formally defined below.

Definition 4. A correspondence Lpcq : R Ñ Rn is decreasing for the order on Rn if:

@c1 ă c2, @x P Lpc2q, Dx1
P Lpc1q, @ℓ P N, xℓ

ď x1ℓ.
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Figure 1: The feasible set of the standard one-shot “Battle of the Sexes” game (dark
grey) and the feasible set of the auxiliary one-shot game for c “ 1 (dark and light
grey), discussed in Example 1. Dots correspond to payoffs obtained by pure actions
in this one-shot game.

Roughly speaking, when this property holds, the correspondence is “decreasing”,

at least in the sense that for each element x of the mapping under the higher c2, can

be found an element x1 of the mapping under the lower c1, such that x1 is larger than

x in all coordinates. It is easy to verify that this relation holds between the light grey

area (“high c”) and the dark grey area (“low c”) of Figure 1.

3 Undiscounted Payoffs

We start with the repeated game with undiscounted payoffs. This model is slightly

simpler as player are indifferent to things happening in finite time.

Our main result in this section is the Folk Theorem for repeated games with

switching costs and undiscounted payoffs, and a full characterization of the long-run

feasible set when the switching costs are symmetric. Moreover, we show that every

vector in the feasible set can be reached by an SPE without public randomization.

The two key elements in a Folk Theorem are usually the feasible set and the

individually rational set. In the rest of the section we provide adequate definitions

for any parameter c and characterize both sets. We then prove the Folk Theorem for

any c.
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3.1 The long-run Feasible Set

For the definition of the feasible set, we follow an approach similar to Dutta [1995]

and Marlats [2015]. In order to have some flexibility, a vector of payoffs is feasible if

it is an accumulation point of the sequence of mean-average payoffs for a given profile

of strategies.

Definition 5. Let x P Rn. The payoff x is generated by the n-tuple of strategy σ if

there exists a sequence of lengths pTkqkě1 such that pγTk
pσqqkě1 converges to x. We

can then define the long-run feasible set, denoted Fpcq by

Fpcq “ tx P Rn, s.t. there exists σ that generates xu.

When considering Fpcq as a function of c, we can discuss how the long-run feasible

set changes when the relative weight between the stage payoff and the switching costs

changes. The key properties of Fpcq are summarized in the following propositions.

Proposition 1. The correspondence Fpcq is Lipschitz2 , increasing in the sense of

inclusion from Fp0q “ F puq and decreasing for the order on Rn.

Proof See Appendix A.1.

In particular, since the correspondence Fpcq is increasing in the sense of inclusion,

any long-run feasible payoff in the repeated game without switching cost can still be

attained in the repeated game with high switching cost. The intuition is that players

can change actions very rarely.

Proposition 2. For every c ě 0, Fpcq is convex and closed.

Proof See Appendix A.2.

Our next result connects the long-run feasible set, Fpcq, and the feasible set of

the one-shot auxiliary game with utilities gc, F pgcq. We show that they are equal

when all the switching costs matrices are symmetric, and the former is a subset of

the latter in the more general case.

Theorem 1. Fix a repeated game Γ with switching costs and let gc be its associated

auxiliary one-shot game for some c. Let P be the set of distributions over I ˆ I such

2A correspondence F is Lipschitz if there exists θ ą 0 such that for every c1, c2, and every
x1 P F pc1q there exists x2 P F pc2q such that |x2 ´ x1| ď θ|c2 ´ c1|.
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that the first and the second marginals are equal:

P “

#

π P ∆pI ˆ Iq, such that for all i P I,
ÿ

i1PI

πpi, i1
q “

ÿ

i1PI

πpi1, iq

+

.

Then Fpcq “ gcpP q Ď F pgcq. Moreover, if all of the cost matrices Sℓ are symmetric

then the inclusion is an equality: Fpcq “ F pgcq.

Proof See Appendix A.3.

The ability to define the long-run feasible set using the convex hull of an auxiliary

game which depends solely on the primary data of the game strongly relies on the

symmetry of the switching costs. The key difference between the characterization for

any cost and the characterization for only symmetric costs is the relaxation on the set

of distributions over I ˆI that are allowed. In the first case, we restrict to probability

distribution such that both marginals are equal whereas in the second one we allow

any probability distribution. When considering the feasible set of the auxiliary game,

we allow as a consequence histories without any constraint on the sequence of pair

of actions pi, i1q. Some sequences can be “translated” into the original game (e.g.,

playing forever a pair of the same actions pi, iq) but most of the sequences can not

be “translated” (playing forever a fixed pair of actions pi, i1q). This leads to a gap

between the long-run feasible set of the repeated game with switching cost and the

feasible set of the one-shot auxiliary game. In the symmetric case, repeating the same

profile pi, i1q is equal in the auxiliary game to alternating between pi, i1q and pi1, iq.

This latter sequence is a sequence that corresponds to a valid history in the original

game, hence closing the gap and yielding the equality.

Although the assumption of symmetric switching costs seems like a limitation, in

fact it is less restrictive than the common assumption in the literature that all the

switching costs are the same (i.e. sℓi,j “ 1 if i ‰ j and sℓi,j “ 0 otherwise). Hence, we

generalize the literature to a larger family of switching costs functions. The following

example shows that this condition is indeed necessary, and without it the long-run

feasible set is only a subset of F pgcq.

Example 2. Counterexample with not symmetric switching costs.

Consider the following two-player game where Player 1 has only one action:

p p2,1q p0,0q q, and the switching costs matrix for Player 2 is S2 “ p 0 1
0 0 q. In the cor-

responding one-shot game, Player 2 has 4 actions and the payoff matrix is
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LL LR RL RR

TT 2, 1 1, 0.5 ´ c 1, 0.5 0, 0

The payoff vector p1, 0.5 ´ cq is a feasible payoff in the auxiliary game but is not

attainable in the long run in the original game. In order for Player 1 to obtain 1,

Player 2 can at most switch half of the time from L to R inducing a mean-average

cost of maximum 0.5c. △

We can also obtain an asymptotic result when the cost goes to infinity. As c

increases, more payoff can be dissipated and in the limit c Ñ 8, any arbitrarily

negative payoff can be obtained for players in N1. Players in N0 are unaffected by c.

This limit set is therefore

F “ tx P Rn
|Dy P F puq such that for all n P N1, x ď y and for all n P N0, x “ yu,

and it includes the feasible set F puq and all the possible payoffs which are bounded

by a payoff inside the feasible set (except for players who never pay switching costs,

their payoff is always a convex combination of their one-shot payoffs). In other words,

for Players in N1, the set F is the set of all payoffs which are bounded above by the

Pareto-Efficient front.

Corollary 1. The correspondence Fpcq converges to F when c goes to 8.

The idea is demonstrated using the following example (see also Figure 2).

Example 3. “Battle of the Sexes” with large switching costs.

Consider the game in Example 1 and assume c Ñ 8. The “payoffs” of the

corresponding game are

LL LR RL RR

TT 2, 1 1,´8 1,´8 0, 0

TB ´8, 0.5 ´8,´8 ´8,´8 ´8, 1

BT ´8, 0.5 ´8,´8 ´8,´8 ´8, 1

BB 0, 0 0.5,´8 0.5,´8 1, 2

The convex hull of these payoffs is indeed F , as shown in Figure 2. △
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Figure 2: Feasible set F puq (dark grey) and F (dark and light grey) of Example 3.

Clearly, the equilibrium payoffs cannot be arbitrarily negative as players can al-

ways obtain at least their minimax value in pure strategies, independent of the value of

c or the strategy of the others. In the following section we study how the individually

rational levels change with c.

3.2 Individually Rational Payoffs

To study the individually rational level of a particular Player ℓ, we assume the rest of

the players disregard their own payoffs and only care about minimizing the payoff of

Player ℓ. We therefore define n auxiliary zero-sum-like repeated games with switching

costs. For every ℓ P N , define the game Γℓ as the zero-sum game where Player ℓ has

payoff ruℓ and is facing an imaginary Player ´ℓ. We call the the long-run individually

rational level of Player ℓ the maximum payoff that Player ℓ can defend.

Definition 6. The long-run individually rational level of Player ℓ is defined by

vℓpcq “ inf
σ´ℓPΣ´ℓ

sup
σℓ

Eσℓ,σ´ℓ

˜

lim inf
TÑ8

1
T

T
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

.

Note that the strategies of the players different from ℓ may depend on the past

hence the best-reply of Player ℓ may not be constant and therefore vℓpcq does depend

on c in general (see Example 4).

Zero-sum-like repeated games with switching cost can be reformulated as dynamic

games where the state is the previous action profile. Here, only the previous action of
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Player ℓ matters as only he pays switching costs, so this is a special type of stochastic

game called a single-controller stochastic game (see, for example, Filar [1981]) where

the long-run evaluation does not depend on the state variable.

Our first goal is to characterize the behavior of the long-run individually rational

level vℓpcq as a function of c. A similar analysis was done in Tsodikovich et al. [2022]

for the two-player case.

Proposition 3. Fix a game Γ with switching costs. For every ℓ P N , the long-run

individually rational level vℓpcq of Γℓ is a continuous, decreasing, and semialgebraic

function of c. If there are only 2 players, it is also convex and piece-wise affine.

Proof See Appendix A.4.

The following example shows that the assumption on the number of players is

needed to obtain the nicer properties of vℓpcq. Whenever there are more than two

players, convexity and piece-wise linearity are no longer guaranteed.

Example 4. A game with non-convex and non-affine vℓpcq.

Consider a 3-player game with the following payoff matrices (only the payoff of

Player 1 is written)

l :

¨

˝

´1 0

0 0

˛

‚ r :

¨

˝

0 0

0 ´1

˛

‚

And the switching costs matrix S1 “ p 0 1
1 0 q. We denote the actions of Player 2 (chooses

columns) by tL,Ru and the actions of Player 3 (chooses matrices) by tl, ru. Player 1

chooses among the two rows, top or bottom.

For a switching cost of c ď 1, the optimal action for Player 2 and Player 3 to

minimize the payoff of Player 1 is to play randomly as follows. After Player 1 played

T , Player 2 (resp. Player 3) plays L (resp. l) with probability 1`c
2

whereas After

Player 1 played B, Player 2 (resp. Player 3) plays R (resp. r) with probability
1`c
2
. For a switching cost larger than 1, one can check that the optimal strategies

of Player 2 and Player 3 to minimize the payoff of Player 1 are to best-reply to

the previous action of Player 1. For a switching cost smaller than 1, they have to

randomized. We obtain that the value is equal to v1pcq “ max
`

´1,´1
4

p1 ` cq2
˘

q and

therefore is neither piece-wise linear nor convex. The high switching costs of Player 1

restrict him and allow the other two players to coordinate to punish him. △
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We now move from the long-run individually rational level of one player to the

set of all long-run individually rational payoffs.

Definition 7. The set of long-run individually rational payoffs with switching cost c

is defined by IRpcq “
␣

pxℓqℓPN P Rn, for all ℓ P N, xℓ ě vℓpcq
(

.

When considering IRpcq as a function of c, we can discuss how the set of long-

run individually rational payoffs changes when the relative weight between the payoff

from the strategic interaction and the switching costs changes. These properties are

obtained immediately by Proposition 3.

Corollary 2. The correspondence IRpcq is semialgebraic, increasing in the sense of

inclusion, and decreasing for the order on Rn.

Moreover, we also know the asymptotic behavior of vℓpcq for large c in two cases:

when there are no free-switches and when there are no switching costs at all. When

there are no free-switches, there is a positive switching cost between any pair of actions

and for large enough c, the optimal strategy is to play purely and never switch. This

leads to the pure reservation payoff defined in Lipman and Wang [2009]:

wℓ
“ max

iℓPIℓ
min

y´ℓP
Ś

k‰ℓ

∆pIkq
uℓ

piℓ, y´ℓ
q “ max

iℓPIℓ
min

i´ℓP
Ś

k‰ℓ
Ik
uℓ

piℓ, i´ℓ
q.

Proposition 4. Assume that Player ℓ has no free-switching, then there exists cℓ s.t.

for every c ě cℓ, Player ℓ’s optimal strategy in the game Γℓ is the pure maximin

strategy in the game with utilities uℓ and for all c ě cℓ, vℓpcq “ wℓ.

Proof See Appendix A.5.

This result is closely related to the results of Chakrabarti [1990] in inertia supergames

when there is a high enough switching cost such that any one-period gain is offset

by the cost of changing. When there are no switching costs at all, c plays no role

and for every c, the minimax level is the same as in the one-shot game: vℓpcq “ vℓ.

In the third option, when there are switching costs but there are also free-switches,

there is no simple way to calculate the asymptotic long-run individualy rational level

(which exists, as vpcq is bounded by wℓ and decreasing). We obtain that the set of

all long-run individually rational payoffs converges to the set V , and it comprises of

all vector payoff above pure reservation payoff for player in Nnf , above the minimax
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value of the one-shot game for players in N0 and above uℓ for the rest:

V “

!

pxℓ
q P RN , for all ℓ P N, xℓ

ě lim
cÑ8

vℓpcq
)

,

where lim
cÑ8

vℓpcq is one of wℓ, uℓ, vℓ, according to the switching costs of Player ℓ, as

explained above.

3.3 The Folk Theorem For The Undiscounted Payoffs Game

With the long-run feasible and long-run individually rational sets, the statement of

our Folk Theorem is identical to the one that appears in Aumann and Shapley [1994]

for the c “ 0 case:

Theorem 2. The set of SPE is equal to

SPE8pcq “ IRpcq X Fpcq.

Moreover, these SPEs are defined without a public randomization device.

Proof See Appendix A.6.

The result is a natural one, which combines the definitions of IR and Feasibility

already defined in Dutta [1995], while relaxing his assumption of Full Dimensionality,

that is necessary to establish the Folk Theorem with discounted payoff.

Let us analyze the two extreme cases. For small c, one obtains that the limiting

set coincides with the SPE of the repeated game without switching cost. This is a

radically different conclusion than Theorem 6 in Lipman and Wang [2009] for undis-

counted repeated games with arbitrarily small switching cost. This is due to the fact

that we consider the average of the switching costs instead of their total sum.

As before, we can directly characterize the set of equilibrium payoffs when the

switching costs are large. This is a natural corollary of Theorem 2 and the previous

discussions.

Corollary 3. When c goes to infinity, the set of SPE payoffs converges to F X V

One key difference with the literature is that we allow heterogeneity of agents by al-

lowing different switching costs matrices: some pay no switching costs (N0), some pay

switching costs among part of their actions (N1zNnf ), and some pay switching costs

between all their actions (Nnf ). Hence, Corollary 3 is an extension of Chakrabarti

21



[1990] when some players have also off-diagonal zeros in their switching costs matrix.

The result is also related to Lipman and Wang [2009]. If we assume that all players

have no free-switching, i.e. N1 “ N , then F becomes the negative orthant below

the feasible payoffs and V becomes W “
␣

pxℓq P RN , for all ℓ P N, xℓ ě wℓ
(

. We

obtain that SPE8pcq is the same set as in Theorem 3 in Lipman and Wang [2009]

on discounted evaluations for large c.

Let us now investigate the consequence in terms of comparative statics for different

costs. From Proposition 1 and Corollary 2, the following regularity for the set of sub-

game perfect equilibrium payoffs.

Corollary 4. The correspondence SPE8pcq is semialgebraic, increasing in the sense

of inclusion and decreasing for the order on Rn.

Hence, a higher cost can only lead to a decrease in expected payoff. Moreover,

the set of Pareto Efficient allocations is constant in c. Let c1 ă c2 then for any payoff

vector x˚pc2q of Player ℓ in SPE8pc2q, there exists a payoff vector x˚pc1q in SPE8pc1q

such that the payoff of Player ℓ under x˚pc1q is higher than under x˚pc2q. Informally,

a higher cost can not give Player ℓ any advantage since he can be punished to a lower

level and the higher the switching costs, the lower the possible equilibrium payoffs. It

is in particular the case in the extreme case where only Player ℓ has some switching

costs.

4 Discounted Payoffs

Let us consider the discounted game with a fixed cost c. By definition, we know that

it can be reformulated as a stochastic game where the state space is I (the set of

pure action profiles) and deterministic transitions. It is therefore possible to apply

the results of Dutta [1995]. More formally, we consider a stochastic game where the

state space is K “ I Y tHu (to take into account the initial stage of the game with

switching costs where no action has been played yet) and the action set is I in every

state. The transition q kernel is defined such that for all pk, i1q in K ˆ I, qpi1|kq is

the Dirac mass at i1. The payoff function ruℓpk, i1q to be equal to u if k “ H and

uℓpi1q ´ csℓ
kℓi1ℓ otherwise. This stochastic game satisfies immediately Assumptions

(A1) and (A2) from Dutta [1995]:

Assumption 1 (A1). The set of long-run feasible payoffs is independent of the state.
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Assumption 2 (A2). The long-run individually rational level of Player ℓ P N is

independent of the original state.

In order to establish a Folk Theorem for discounted evaluation, it is usual to

assume in addition that the one-shot game has Full Dimensionality. Adapted to the

stochastic framework, we obtain the following assumption.

Assumption 3 (A3). The dimension of the long-run feasible set is equal to the

number of players, i.e., dimpFpcqq “ n.

Notice that there is a separation between the case c “ 0 where only the strategic

interactions are taken into account and the case c ą 0 where both the strategic

interactions and the switching costs are playing a role.

Proposition 5. Let c ą 0. If every player has some switching costs, i.e. N1 “ N ,

then the repeated game with switching cost c has Full Dimensionality.

Proof See Appendix A.7.

Clearly Full Dimensionality can also be obtained if some players have no switching

costs but the payoffs of the original game are sufficiently rich.

Theorem 3. Let c ě 0. If the repeated game with switching cost c has Full Di-

mensionality, then for all x P IRpcq X Fpcq, for all ε ą 0, there exists δ ă 1, s.t.

for any δ ě δ, there is a perfect equilibrium strategy whose payoff is within ε of x.

Equivalently

lim
δÑ1

SPEδpcq “ IRpcq X Fpcq,

in the sense that the Hausdorff distance goes to 0.

The proof of Theorem 3 is a direct application of Theorem 9 in Dutta [1995]. We

need to check the three assumptions of the theorem: independence of the long-run

feasible set, independence of the minmax value, and the Full Dimensionality of the

feasible set. As mentionned previously, the two firsts are by definition of games with

switching cost whereas the third one is by assumption.

Let us comment on this result. First, the proof of Theorem 9 in Dutta [1995]

relies on the use of public correlation devices in order to prevent some deviations of

the players.It is an open question whether it is possible to prove the result without

public randomization in the general framework of stochastic games or in our special
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framework of games with switching cost. Second, the assumption of Full Dimension-

ality is necessary. Since we considered a general model of games with switching costs

where players may have different switching costs or even have no switching costs, the

model contains in particular classical repeated games without switching cost. It was

shown by Fudenberg and Maskin [1986] that the Folk Theorem may fail without Full

Dimensionality. One can notice that if the original repeated game does not satisfy

Full dimensionality (as a one-shot game) but every player has some switching cost,

then Full dimensionality is not satisfied for c “ 0 but is for every strictly positive

cost.

Let us now investigate the consequence in terms of comparative statics for different

costs. Under the assumptions of Theorem 3, we know by Theorem 2 and Theorem

3 that SPEδpcq is arbitrarly close from IRpcq X Fpcq. It follows by Corollary 4 that

a higher cost can only have (asymptotically) negative impact in terms of equilibrium

payoff. More precisely, let ε ą 0 and take two switching costs c1 ă c2. There exists

δ˚ ă 1 such that for every δ ą δ˚ and for any payoff vector x˚
δ pc2q in SPEδpc2q,

there exists a payoff vector x˚
δ pc1q in SPEδpc1q such that the payoff of Player ℓ under

x˚
δ pc2q is higher than under x˚

δ pc2q up to an error ε. Informally, a higher cost can only

give Player ℓ a smaller than ε benefit. This happens in the extreme case where only

Player ℓ has some switching costs.

This result is obtained asymptotically and under the condition of Full dimension-

ality. We now present a counter-example showing that the result fails for a fixed

discount factor. It is an open question what is the impact on arbitrarily patient play-

ers without the Full Dimensionality assumption. As seen in the proof of Proposition

5, failure of Full Dimensionality is closely related to the absence of switching costs.

Hence, assuming that the game does not satisfy the Full Dimensionality condition

imposes some restrictions on the structure of the switching costs.

Example 5. Positive benefit of switching costs for fixed discount factor.

Consider the two-player game

pu1, u2
q “

¨

˚

˚

˚

˝

1, 1 0, 0

0, 1 4, 0

0, 1 2, 1

˛

‹

‹

‹

‚

, S1
“

¨

˚

˚

˚

˝

0 1 1

1 0 1

1 1 0

˛

‹

‹

‹

‚

and S2
“

¨

˝

0 0

0 0

˛

‚.

In this example, Player 1 can guarantee a payoff of 2 with a switching cost of
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c1 “ 2 whereas it is impossible with a switching cost of c2 “ 0 (without switching

cost). The intuition is the following. First along any SPE, Player 2 needs to obtain

a payoff of 1. It follows that the only possibility along an SPE to obtain a payoff of

2 for Player 1 is to play almost surely the pair of actions pB,Rq. It is not possible

without switching cost since Player 1 has an incentive to deviate to play Middle.

With switching costs, Player 1 can commit to play Bottom. Indeed, the following

profile of strategies is a SPE generating the payoffs vector p2, 1q: If nothing has been

played or Bottom was played at the previous stage, Player 1 plays Bottom whereas

Player 2 plays Right. If Middle or Top was played at the previous stage, Player 1

plays Top whereas Player 2 plays Left. △

5 Finite Games

The formalization of a game with switching costs as a stochastic game allows us

to study games with finite horizon too. For finite horizon repeated games without

switching cost, the Folk Theorem was established by Benoit and Krishna [1985].

They introduced new weak conditions such that any feasible and individually rational

payoff vector of the one-shot game can be approximated by the average payoff in a

sub-game perfect equilibrium of a repeated game with a sufficiently long horizon. The

idea behind this condition relies on the fact that in the last stage of the game, the

players always play a Nash Equilibrium of the one-shot game. The authors assume

the existence of a good Equilibrium and of a bad Equilibrium for each player (good

and bad in terms of payoff to the player), and choose the equilibrium according to the

history. The SPE in the T -stage game is intuitively the following: play a cooperative

profile for the main part of the game, and, approaching the end, finish the game

depending on the past. If all players cooperated, then the good equilibrium is played

in the last stages whereas if an agent deviated he is punished by everybody playing his

bad Equilibrium. The result of Benoit and Krishna [1985] was extended in Marlats

[2015] to stochastic games. Marlats [2015] uses the same idea to assume the existence

of a good SPE for every player from every state (that can then be used to finish the

T -stage game and to reward a player for having cooperated) and the existence of

bad end-of-game for each player and each state (that can then be used to finish the

T -stage game and to punish one player for having deviated). We adopt this approach

to our model.
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Definition 8. Let k P K “ I Y tHu. We say that a payoff vector xpkq P RN is a

limiting SPE payoff vector at k for the repeated game with switching cost c if there

exists a sequence of SPE whose payoffs converges to xpkq, i.e. there exists pσT qTě1

such that:

� σT is an SPE in the T -stage game,

� γT pσT , kq converges to xpkq.

The set of limiting SPE payoff at k is denoted by Πcpkq.

Each limiting SPE payoff is a payoff that can be approximately sustained and

used for the last stages of a T -stage games since they are themselves obtained by a

Sub-game Perfect Equilibrium. The next assumption states that there is a good one

and bad ones for every player and every state.

Assumption 4 (A4). There exist pn`1q2 payoff vectors denoted xpkq, xr1spkq, ¨ ¨ ¨ , xrnspkq

for k P K such that

� xpkq P Πcpkq and for every ℓ P N and k P K, xrℓs P Πcpkq,

� xℓ
rℓspkq ă xℓpk1q for all ℓ P N and k, k1 P K.

� xpkq “ xpk1q for all k, k1,

When this assumption holds, we obtain the Folk Theorem for these settings:

Theorem 4. Let c ě 0. If the repeated game with switching costs c has Full Dimen-

sionality and satisfies Assumption A4, then for every x P IRpcq XFpcq, for all ε ą 0,

there exists T ˚ ă 8 s.t. for any T ě T ˚, there is a sub-game perfect equilibrium such

that the payoff is within ε of x. Equivalently,

lim
TÑ8

SPET pcq “ IRpcq X Fpcq.

in the sense that the Hausdorff distance goes to 0.

It is tempting to weaken the richness Assumption A4 to the weaker assumption

of Benoit and Krishna [1985] that there exists in the one-shot game a good Nash

equilibrium and a family of bad equilibria (one for each player). This is possible

when the equilibria are strict and the costs are small.
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Definition 9. A profile of strategies pyℓqℓPN is a strict Nash equilibrium in the one-

shot game if

@zℓ ‰ yℓ P ∆pIℓq, uℓ
pzℓ, y´ℓ

q ă uℓ
pyℓ, y´ℓ

q.

By definition, a strict Nash-equilibrium is necessarily pure. Repeating a strict

equilibrium independently of the past yields an SPE of the T stage game for small

costs. Assumption A4 becomes:

Assumption 5 (A5). There exists pn ` 1q payoffs vectors denoted x, xr1s, ¨ ¨ ¨ , xrns

such that

� for every ℓ P N , xrℓs and x are the Nash equilibrium payoffs in the one-shot

game obtained by a strict Nash equilibrium,

� xℓ
rℓs ă xℓ for all ℓ P N .

We obtain the following result for finitely repeated games and small costs.

Proposition 6. Assume that the one-shot game satisfies Assumption A5. Then there

exists c0 ą 0 such that for all 0 ď c ă c0, the repeated game with switching cost c

satisfies Assumption A4.

Proof See Appendix A.8.

One can deduce from Theorem 4 and Proposition 6 the following corollary:

Corollary 5. If the repeated game with switching costs has Full Dimensionality and

satisfies Assumption A5, then for every x P IRpcq X Fpcq, for all ε ą 0, there exists

T ˚ ă 8 and c0 ą 0 s.t. for any T ě T ˚ and for any c ă c0, there is a sub-game

perfect equilibrium such that the payoff is within ε of x. Equivalently,

lim
TÑ8

SPET pcq “ IRpcq X Fpcq,

in the sense that the Hausdorff distance goes to 0.

This result is quite different from the conclusion in Lipman and Wang [2000]

and in particular of Theorem 6. The authors proved there the possibility to change

completely the set of SPE with finite horizon with small costs. The key difference

is the ratio between the cost and the weight of each period. They assume that the

weight of the strategic interraction is the inverse of the number of periods whereas

the switching cost has a constant weight of 1. This is not the case in our formulation.
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Proposition 6 fails as shown by the following example if some of the equilibrium

payoffs are obtained by a non-strict Nash equilibrium.

Example 6. Counterexample for games with a non-strict Nash Equilibrium.

Consider the following example with two players. Player 1 has three actions

tT,M,Bu and pays some asymmetric cost given by the matrix

S1
“

¨

˚

˚

˚

˝

0 1 0

1 0 0

1 1 0

˛

‹

‹

‹

‚

Informally, switching to B is always costless whereas switching to T (resp. M) from

another action has a unitary cost. Player 2 has three actions tL,C,Ru and pays no

costs for switching. The payoff is given by

¨

˚

˚

˚

˝

0, 2 2, 0 0, 0

2, 0 0, 2 0, 0

1, 0 1, 0 3, 4

˛

‹

‹

‹

‚

This one-shot game admits two Nash equilibria: a mixed equilibrium that yields a

payoff of p1, 1q (both players play uniformly respectively on T,M and on L,C) and

a pure equilibrium pB,Rq that yields a payoff of p3, 4q. In particular, it satisfies

the condition of Benoit and Krishna [1985]. Nevertheless, as soon as some costs

are introduced the mixed equilibrium disappears. Indeed, in order to keep Player 2

indifferent between his actions, Player 1 has to mix his actions with strictly positive

weight on T and M hence ensuring a cost c. This diminishes his payoff to a payoff

strictly below 1 and therefore B becomes a profitable deviation. We obtain that any

T -stage game only admits pB, T q as an SPE. △

Let us now investigate the consequence in terms of comparative statics for different

costs. Under the assumptions of Theorem 4, we know by Theorem 2 and Theorem 4

that

lim
TÑ8

SPET pcq “ SPE8pcq.

It follows by Corollary 4 that a higher cost can only have asymptotically a negative

impact in terms of equilibrium payoff like for discounted SPE.
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More precisely, let ε ą 0 and take two switching costs c1 ă c2. There exists T
˚ P N

such that for every T ą T ˚ for any payoff vector x˚
T pc2q in SPET pc2q, there exists

a payoff vector x˚
T pc1q in SPET pc1q such that the payoff of Player ℓ under x˚

T pc2q is

higher than under x˚
T pc2q up to an error ε. Informally, a higher cost can only give

Player ℓ a benefit up to ε. It is in particular the case where only Player ℓ has some

switching costs.

This result is obtained asymptotically and under the assumptions of Full-dimensionality

and Assumption A4. We now present a counter-example showing that the result fails

for a fixed length and even asymptotically without Assumption A4.

Example 7. Counterexample when Assumption A4 is not fulfilled.

Consider the two-player game

pu1, u2
q “

¨

˝

3, 3 6, 1

2, 1 5, 2

˛

‚, S1
“

¨

˝

0 1

1 0

˛

‚ and S2
“

¨

˝

0 0

0 0

˛

‚.

Here, Player 2 does not pay any switching costs. We will compare two values for c:

c1 “ 2 and c2 “ 0. Notice that the one-shot game admits only one Nash equilibrium

which is pT, Lq due to strict dominance. For c2 “ 0, the unique SPE vector payoff

for every length is p3, 3q. For c1 “ 2, the unique SPE vector payoff is
`

5 ´ 4
T
, 2 ` 1

T

˘

if T “ 3k ` 1, and p5, 2q otherwise. Let us describe the subgame perfect equilibrium

in a game where the number of stages is a multiple of 3:

� If Player 1 played Top at the previous stage and the remaining number of stages

is not a multiple of 3: Player 1 plays Top and Player 2 plays Left.

� In all other cases: Player 1 plays Bottom and Player 2 plays Right.

One can check that this profile of strategies is indeed a SPE. When the length of the

game is not a multiple of 3, the reasoning is similar apart from one variation when

the game has 3k ` 1 stages. In this case, the players have an incentive to play in the

first stage the one-shot Nash equilibrium before using the previous strategies. Hence,

Player 1 incurs a one time loss of 4 (2 due to the switching cost and 2 “ 5´ 3 due to

the difference in stage payoffs at the first stage) whereas Player 2 incurs a one time

gain of 1 “ 3 ´ 2. △
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6 Final Remarks

In this paper we study finite and infinite horizon repeated games with switching

costs. In each of the models we prove a version of the Folk Theorem and provide a

characterization of the set of equilibrium payoffs. Our work departs from previous

papers by assuming a general structure for the switching cost and that the stage

payoff is the weighted sum of the payoff coming from the strategic interraction and

the switching cost. Thus, we are able to study how the equilibrium payoffs change

with a possible change of the relative weights between the two types of payoffs. To

the best of our knowledge, this is the most extensive study and most general study

of repeated games with switching costs.

As it is customary in the literature, to prove the Folk Theorem for the discounted

and finite case, we assumed the existence of a public correlation device (as well as

assumption A4 in the finite case). At the same time, when every player has some

strictly positive switching cost, we do not need to assume the Full Dimensionality of

the stage game.

We conjecture that the existence of a public correlation device and Assumption

A4 can both be relaxed by using the structure of the game and possibly a weaker

assumptions (see for example, Assumption A5 and Proposition 6), and leave this

matter for future study.

We provide a characteriation of the feasible set for patient players through an

auxiliary one-shot game. When the switching costs are symmetric, the feasible payoff

of this one-shot game is equal to the feasible set in the undiscounted repeated game

with swicthing cost. Although this limits the applicability of our result, in fact it

generalizes previous works which assumed constant switching cost. We postulate that

it is possible to obtain an alternative characterization in the assymetric approach the

set by considering bigger one-shot games than the one presented in Section 2.2. The

idea is that as our auxiliary game considers all possible average payoffs and switching

costs of a combination of two stages of the game, we can consider combining three

stages, or four stages and so forth. The more stages we combine, the closer the

resulting set to the one of the repeated game with asymmetric switching costs. Such

characterization is not practical therefore we did not purse this path in this paper

and left for future research the search for a better approximation of the feasible set

in this case.
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A Proofs

A.1 Proof of Proposition 1

Decreasing for the order on Rn: Let c1 ă c2. Consider a long-term feasible payoff in

x2 P Fpc2q. By definition, there exists a profile of strategies σ that generates x2.

Consider the same profile of strategies in the game with cost c1. We have for every

T ě 1,

Eσ

˜

1
T

T
ÿ

t“1

uℓ
piptqq ´ c2 ¨ sℓiℓpt´1qiℓptq

¸

ď Eσ

˜

1
T

T
ÿ

t“1

uℓ
piptqq ´ c1 ¨ sℓiℓpt´1qiℓptq

¸

.

The payoff of every player in this new game is higher since switching cost are smaller

whereas the payoff from strategic interactions are equal. It follows by considering

the subsequence pTkqkě1 that generates x2 that x2 is smaller than the liminf on a

subsequence on the right hence there is an accumulation point and hence a feasible

payoff x1 P Fpc1q such that for all ℓ P N , xℓ
2 ď xℓ

1.

Lipschitz: The correspondence is Lipschitz in the sense that for every c1, c2 P R,
and for every x1 P Fpc1q there exists x2 P Fpc2q such that |x2 ´ x1| ď }S}8|c2 ´ c1|.

Indeed, by definition, there exists a profile of strategies that generates x1. Consider

the same profile of strategies in the game with cost c1. The stage payoffs are bounded

above by |S}8|c2´c1| and, as a consequence also the T -stage average payoffs. Consider

a subsequence of length such that the Tk-average payoffs converges to x1 for the cost

c1. One can consider a subsequence such that the average payoff for the cost c2

converges to some x2. We obtain by construction the correct inequality.

Increasing for inclusion: Let c1 ă c2 and x1 P Fpc1q. By construction, there exists

a profile of strategies generating x1 in the repeated game with switching cost c1.

Let us first notice the following: for every p natural number x1 P Fppc1q. It can

be obtained by simply considering the actions induced by the profile of strategies

generating x1 and repeat p times each profile of pure actions before switching. When

repeating, switching costs appear once every p stages. Thus, we obtained the same

switching cost as this strategy profile induces for the coefficient c1.

One can also alternate blocks where each action is repeated a different number of

times. For example, for 1 ă p ă q natural numbers, by alternating between p blocks

of size m and q ´ p blocks of size m ` 1, we obtain that x1 P F
´´

m `
p
q

¯

c1

¯

. One
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can reach like that any multiple of c1 by a rational number greater than 1. It is then

possible to approach any cost c2 larger than c1 since F is Lipschitz.

A.2 Proof of Proposition 2

Convex: Consider c ě 0, and two distinct payoffs x1, x2 P Fpcq. It implies that one

player has at least two actions. Without loss of generality, let us assume that it is

Player 1 and let us denote his action by 1 and 2. By definition, there exists two

strategy profiles σ1 and σ2 such that the payoff under σ1 is x1 and the payoff under

σ2 is x2. Let λ P p0, 1q and consider the following profile of strategies where at stage

1, Player 1 plays randomly his two actions with probabilities λ and 1 ´ λ . Then

depending on the action played, the players play for the rest of the game the profile

of strategies σ1 or the profile of strategies σ2.

Closed:Let c ě 0, and pxnqnPN be a sequence of feasible payoffs in Fpcq converging

to x. By definition, there exists for every n P N, a profile of strategies σn that

generates xn. One can concatenate these profile of strqtegies to obtain a strategy

generating x by successively playing each of them with proper length.

A.3 Proof of Theorem 1

The proof is decomposed into four parts. We first prove the two inclustions and then

we proceed with the two other results.

Let x be a feasible payoff. By definition, there exists a profile of strategies σ and

a sequence of times pTkqkě1 such that the sequence of payoffs in the Tk-stage game

converges to x. Let us prove that x can be expressed as the expected value of gc for

a well-chosen probability distribution in P . For every T ě 1 and for every profile

of strategies σ, one can define a probability distribution πT in ∆pI ˆ Iq such that

the expected payoff under σ until stage T is approximately equal to the expectation

of gc under πT . Formally, for every T ě 1 and every play pi1, ..., iT q, we define the

occupation measure along the play as

fT pi1, ...., iT q “
1

T

T´1
ÿ

t“1

∆it,it`1 `
1

T
∆iT ,iT ,

where ∆i,i1 is the Dirac mass at the pair pi, i1q. Given a profile of strategies of the
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players σ, define zT to be the image of the probability distribution over histories

generated under σ by the mapping fT . By construction zT is a probability distribution

over probability distributions (zT P ∆p∆pI ˆ Iqq). Define πT as the barycenter of the

measure zT on ∆pI ˆ Iq formally defined as πT ppi, i1qq “
ş

πP∆pIˆIq
πppi, i1qqdzT pπq. By

construction of πT , one obtains that

gℓcpπT q :“ EπT

`

gℓc
˘

“ Eσ

˜

1

T

T´1
ÿ

t“1

gℓcppit, it`1qq `
1

T
gℓcppiT , iT qq

¸

,

“ Eσ

˜

1

T

T
ÿ

t“1

ˆ

1

2
uℓ

pitq `
1

2
uℓ

pit`1q ´ csℓiℓtiℓt`1

˙

`
1

T
uℓ

piT q

¸

,

“ Eσ

˜

1

T

T
ÿ

t“1

ruℓ
pit´1, itq ´

1

2T
uℓ

pi1q `
1

2T
uℓ

piT q

¸

.

By definition of x and considering the subsequence pTkqkě1, one obtains that the

sequence pgℓcpπTk
qqkPN converges to xℓ for all ℓ P N . Moreover, for every play p “

ppi1, i2q, ..., piT´1, iT q, piT , iT qq, denote by f 1
T ppq (resp. f 2

T ppq) the first (resp. the sec-

ond) marginal of fppq. By definition

z1ppq ´ z2ppq “
1

T

T
ÿ

t“1

∆it ´
1

T

˜

T´1
ÿ

t“1

∆it`1 ` ∆iT

¸

“
1

T
∆i1 ´

1

T
∆iT .

Hence, the norm between the two marginals is smaller than 2{T. Denote by π1
T (resp.

π2
T ), the first (resp. second) marginal of πT . It is also the barycenter of the im-

age of the probability distribution over histories by f 1
T (resp. f 2

T ). It follows that

norm between the two probability distributions is also smaller than 2{T. Consider a

converging subsequence of pπTk
qkě1 to a probability distribution π˚. We obtain that

pπ1
T qTě1 and pπ2

T qTě1 both converge (along the subsequence) to the same limit hence

π1
˚ “ π2

˚ and π˚ is in P . By continuity of the payoff vector function on ∆pI ˆ Iq,

the payoff generated by σ is equal to the expected payoff of gc under a probability

distribution in P .

Reciprocally, given a distribution π P P . Let us consider the Markov chain induced

on I by the initial distribution π1 and the transition for all i, i1 P I ˆ I, qpi1|iq “

πpi, i1q{ p
ř

i1 πpi, i1qq . Clearly the distribution π1 is an invariant measure of the Markov

chain q. If the Markov chain is irreducible and aperiodic, then it is well known that

with probability one the time average is equal to the invariant measure. In particular,
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there exists one such play pi˚
1 , ..., i

1
N , ...q. Define the joint profile of strategies where

the players follows this specific play (deterministically). This generates the correct

payoff under gc and therefore in the repeated game with switching payoffs. If the

Markov chain is not irreducible, one can decompose the state space in ergodic classes

pCkq, apply the previous reasoning on each class and use the convexity of the set of

feasible payoffs.

The second statement is an immediate consequence of the first one since P is a

subset of the set of all probability distribution ∆pI ˆ Iq and gcp∆pI ˆ Iqq “ F pgcq.

We now prove the third statement. Let x P F pgcq. We want to prove that it is

possible to generate this payoff in the original game whenever all the Sℓ are symmetric.

By definition, there exists a vector of pair of actions pjdqlPt1,...,Du P pI ˆ IqD and a

vector of weights pαdqdPt1,...,Du P r0, 1sD such that

ÿ

d

αd “ 1 and for all ℓ P N, xℓ
“
ÿ

d

αdg
ℓ
pjdq.

Let us assume first that for every d P t1, . . . , Du, αd is a rational number pd
Q

with

pd and Q two natural numbers. Then, one can generate the payoff vector x in the

repeated game with payoff gℓ by fixing θ a natural number and playing successively:

θp1 times the action profile j1 “ pi1, i
1
1q, θp2 times the action profile j2 “ pi2, i

1
2q, ¨ ¨ ¨ ,

θpD times the action profile jD “ piD, i
1
Dq, repeat from the top. By symmetry of s, one

has for every j “ pi, i1q P I ˆ I, gℓcppi, i1qq “ gℓcppi1, iqq for all ℓ P N. Hence, repeating

j1 or alternating between j1 “ pi1, i
1
1q and j1

1 “ pi1
1, i1q where the two coordinates

are interverted yield the same payoff. This allows us to turn back to the original

game, by considering the following profile of strategies in the switching cost game:

start with i1 and then alternate between i1 and i1
1 for θp1 periods, switch to i2 and

then alternate between i2 and i1
2 for θp2 periods, ¨ ¨ ¨ , switch to iD and then alternate

between iD and i1
D for θpD periods, repeat from the top. The payoff generated by

this profile of strategies in the switching cost game is equal to x up to an error }S}`}u}

θ

(a mistake each time there is a change from an alternating pattern to the next one).

By considering larger and larger θ, the limits are equal and x is indeed a feasible

payoff in the repeated game with switching cost. The case where the weights are

not rational numbers is obtained similarly by approximating the weights by rational

numbers closer and closer along the game.
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A.4 Proof of Proposition 3

The function vℓpcq is continuous and decreasing: The proofs for this results are stan-

dard. Both relies on extending properties satisfied on the initial utilities to the

minmax values. Fix a pair of profile of actions ipt´1q and iptq. For every ℓ P N , and

for every c1 ď c2 ě 0:

|uℓ
pipt ´ 1q, iptqq ´ c1siℓpt´1qiℓptq ´ uℓ

pipt ´ 1q, iptqq ` c2siℓpt´1qiℓptq| ď }S}8|c2 ´ c1|.

and

uℓ
pipt ´ 1q, iptqq ´ c2siℓpt´1qiℓptq ď uℓ

pipt ´ 1q, iptqq ` c1siℓpt´1qiℓptq

This two inequalities can be extended to the expected T stage payoff the limit and

then to the minmax values with standard arguments.

The function vℓpcq is semialgebraic: The proof will rely on the link between the

minmax value with undiscounted payoff and its equivalent for discounted payoff. This

is a standard approach since the discounted evaluation is more simple to characterize.

By Mertens and Neyman [1981], it is known that the first one is the limit of the second

one when the players become patient. Let δ be a fixed discount factor. We consider

the minmax discounted value associated to Player ℓ as a function of the previous

action (or no action) of Player ℓ. It satisfies the following fixed point equation

vℓδpi, cq “ min
y´ℓPΣ´ℓ

max
iℓPIℓ

p1 ´ δq
`

uℓ
py´ℓ, iℓq ´ c ˚ si,iℓ

˘

` δvℓδpi
ℓ, cq.

Let m “ pmℓq ` 1 be the number of profiles of pure actions of Player ℓ plus one

(for the initialization where no player has played yet). Denote by T ℓ the operator

from R ˆ Rm to Rm defined by

@pc, xq P R ˆ Rm, T ℓ
pc, xq “ min

y´ℓPΣ´ℓ
max
iℓPIℓ

`

uℓ
py´ℓ, iℓq ´ c ˚ si,iℓ

˘

` x.

Then vℓδp¨, cq “ p1 ´ δq ¨ fpδ, cq where fpδ, cq is the unique solution of f “ T ℓpc, δ ¨ fq.

The operator T ℓ is a semialgebraic function since its graph is a semialgebraic set. It

follows that fpδ, cq and vℓδp¨, cq are semialgebraic. As a semiagebraic and bounded

function in δ, we know that the limit when δ goes to 1 exits. Moreover, by Mertens

and Neyman [1981], it is equal to the undiscounted minmax. The function vℓpcq

can be expressed as a first order formula from semialgebraic functions, it is therefore

semialgebraic.
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A.5 Proof of Proposition 4

Let us consider that Player ℓ is the one punished and we want to show that there

exists cℓ s.t. for every c ě cℓ, vℓpcq “ wℓ. First, it is clear that Player ℓ can always

guarantee wℓ by playing his pure maximin action. Second, let us define the joint

strategy of the other players that plays as a function of the last action played by ℓ:

if Player ℓ played iℓ, at the next stage Players ´ℓ play the best-reply y´ℓpi
ℓq to the

pure action iℓ. We now obtain a decision problem controlled by Player ℓ. When the

cost to switch becomes high, then at state iℓ, Player ℓ can either repeat iℓ and obtain

a payoff larger than wℓ with no cost or change to i1ℓ, obtain some bounded profit

(according to uℓ) and pay a huge cost making the global payoff arbitrary negative.

A.6 Proof of Theorem 2

First, we check that the set of equilibrium payoffs is a subset of Fpcq X IRpcq. Let

σ˚ be an SPE, then the T -stage average of stage payoffs converges with probability

one. By dominated convergence, we therefore have

Eσ˚

˜

lim inf
TÑ8

1
T

T
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

“ lim
TÑ8

Eσ˚

˜

1
T

T
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

. (A.1)

Therefore, the undiscounted payoff under σ˚ is indeed in Fpcq. Moreover, let pσ1qℓ a

deviation of Player ℓ which plays a best reply to σ´ℓ
˚ . By definition of an SPE and

of the individually rational level, one has γℓpσ˚q ě γℓppσ1qℓ, σ´ℓ
˚ q ě vℓpcq. Hence, the

vector payoff is in Fpcq X IRpcq.

Let us now prove that any vector x P Fpcq X IRpcq can be obtained as an SPE

payoff of the infinitely repeated game with switching cost. First, let us prove that x

can be generated by a profile of pure strategies. By Theorem 1, we know that there

exists a probability distribution π over pairs of actions such that x “ gcpπq “ rupπq.

π generates a finite Markov chain on ∆pI ˆ Iq where the second coordinate becomes

the first one and a new state is chosen alon the Markov chain q.

Assume for the moment that this Markov chain is irreducible, the time-average

evaluation converges almost-surely to x, hence, there exists at least one play pitqtě1

such that the payoff converges to x along this play. If the Markov chain is not

irreducible, then there exists a partition of I ˆ I in sets Ck, some real numbers

µk P r0, 1s and some payoffs vector xk P RN that satisfies the following. First, x
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is the convex combination of pxkqk with weight pµkqk. Second, for every k, there

exists a play pitqtě1 such that i1 P Ck and the payoffs along the play converges to

xk. It is possible to reconstruct a play generating x by combining adequately these

individual plays.

We only defined a path of the strategy that we will call the main path and de-

note by σm. Since players are playing pure, any deviation is immediately observed.

Moreover, for every ℓ P N and every ε ą 0, there exists a profile of strategies of other

players than ℓ, σ´ℓ
ℓ,ε , such that

sup
σℓ

Eσℓ,σ´ℓ
ℓ,ε

˜

lim inf
TÑ8

1
T

T
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

ď vℓpcq ` ε.

Contrary to the strategy σm that is playing only pure, these strategies may be mixed.

Notice that by the special structure of the transition function, the strategy σm (resp.

σ´ℓ
ℓ,ε for every ℓ P N) guarantees the same payoffs in the long-run after any history.

In the previous formula, we control the liminf evaluation. In order to construct

our strategies, we need to replace the liminf evaluation by an explicit finite stage

evaluation. We show more precisely that for every ε ą 0 and for every minimal time

Tmin, there exists a common time T pε, Tminq such that all the players can be punished

in the T pε, Tminq-stage game down to their longrun individually rational level (with an

approximation of 2ε). The precise lemma (Lemma 1) and its proof are delayed after

the end of this proof. Define for every n ě 1, εn “ 1
n
. We can construct a sequence

of times pTnqně1 has follows: T1 “ 1, for every n ě 2, Tn`1 “ min
´

T pεnq, 2pM`cqTn

εn

¯

.

Let us call the block of stage Tn `1, ..., Tn`1 as block Bn. We decompose the strategy

by defining it by block as follows:

� Inside the block B1, every player follow σm,

� Inside the block Bn, there are three possibilities depending on Bn´1:

– Players were supposed to play the main path and nobody deviated: Con-

tinue the cooperative play σm (from where it was stopped).

– Players were supposed to play the main path and a set of agents A has

deviated: punish the player with lower index in A in Bn.

– Players were supposed to punish someone: Return to the main path (in-

dependently of the existence of a deviator or not inside the block Bn´1).
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By construction of the sizes of the blocks, we know that the average payoff at the

end of block Bn is approximately equal to the average payoff inside the last block.

We now show that this profile of strategies is an SPE. First, if nobody deviates then

by construction the undisscounted payoff under the profile of strategies is equal to x.

Let us now consider an off-path trajectory. After any path, we need only to consider

two cases:

� If Player i only deviates a finite number of times, then his payoff in the long

run is the one defined by σm and he has no gain.

� If Player i deviates an infinite number of times, then there is an infinite number

of stages n such that its payoff is smaller than vℓpcq ` 3εn. He obtained his

minmax payoff in the long run, hence the deviation is not profitable.

We can now state and prove Lemma 1.

Lemma 1. Let ε ą 0 and Tmin ě 1. There exists T pε, Tminq such that for all ℓ P N ,

� T pε, Tminq ě Tmin,

� for all σℓ strategy of Player ℓ P N ,

Eσℓ,σ´ℓ
ℓ,ε

˜

1
T pε,Tminq

T pε,Tminq
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

ď vℓpcq ` 2ε.

Proof Denote by M a bound on the stage payoff and }S}8 the maximal switching

cost (before multiplication by c). Let us prove the result by contradiction. Assume

that there exists ε ą 0 and Tmin ě 1 such that for all T , there exists ℓpT q P N such

that either T ă Tmin, or there exists σℓpT qpT q a strategy of Player ℓpT q such that

Eσℓ,σ´ℓ
ℓ,ε

˜

1
T

T
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

ą vℓpcq ` 2ε.

The dependence of σℓ in T was ignored in the previous equation for readibility. Con-

sider T ě
2pM`c}S}8q

ε
and ℓ˚ “ ℓpT q. Consider the following strategy of Player ℓ˚:

repeat on block of T stages, the strategy σℓpT qpT q. We denote this strategy as σℓ˚

˚ .

By definition, the only difference between the payoff on two blocks is the first

stage where the players pay a different cost at stage 1 and at stage kT ` 1, but since
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stage payoffs are bounded by M ` c}S}8 and the weight of one stage is 1
T
, we have

for every history,

E
σℓ˚

˚ ,σ´ℓ˚

ℓ˚,ε

˜

1
T

T pk`1q
ÿ

t“kT`1

ruℓ
pipt ´ 1q, iptqq

¸

ą vℓpcq ` 2ε ´
M ` c}S}8

T
,

ą vℓpcq ` 3{2ε.

For every t1 P R, let n “ tt1{T u, then the mean average between 1 and t1 is bounded

below by the mean average between 1 and nT minus a possible loss of maximum

T pM ` c}S}8q on the last block. Hence,

E
σℓ˚

˚ ,σ´ℓ˚

ℓ˚,ε

˜

1
t1

t1
ÿ

t“1

ruℓ
pipt ´ 1q, iptqq

¸

ą vℓpcq ` 3{2ε ´
T pM ` c}S}8q

t1
,

ą vℓpcq ` ε.

Hence, we obtained a strategy of Player ℓ˚ that guarantees strictly more than his

minmax value contradicting the definition of vℓpcq.

A.7 Proof of Proposition 5

Assume that every player has a switching cost. Formally, for every ℓ P N , there exists

iℓ1, i
ℓ
2 P I such that sℓ

iℓ1,i
ℓ
2

ą 0. Let us prove that the game has Full Dimensionality.

Denote by x the vector payoff obtained by playing each profile of pure strategies with

equal weight. For every ℓ P N , there exists ε ą 0 such that the payoff vector x´εeℓ is

a feasible payoff, where eℓ is the unitary vector with coordinate ℓ. Let us recall that

it is possible to obtain x by playing large blocks of each action profile in a cycling

way and switching more and more rarely. Let ℓ P N and a profile of strategy i´ℓ for

the other players. Consider a cycle such that the profile piℓ2, i
´ℓq is the successor in

the cycle of the profile piℓ1, i
´ℓq generating x. We can now define the alternative play

where instead of playing these two profiles successively, all players except ℓ follows

i´ℓ and Player ℓ alternates between iℓ1 and iℓ2. By construction, the payoff of Player ℓ1

is xℓ1

for every ℓ1 ‰ ℓ and the payoff of Player ℓ is xℓ ´ 1
7I!
sℓ
iℓ1,i

ℓ
2
. Since this is true for

every Player ℓ P N , the game with switching cost has Full Dimensionality.
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A.8 Proof of Proposition 6

By Assumption A5, each payoff is attained by a strict Nash-equilibrium. Let m be

the minimal loss obtained by a player by deviating from one of these Nash-equilibria

to a pure strategy. Since they are strict Nash-equilibria, m is strictly positive. Let

}S}8 be the maximal switching cost, let c0 ď m
}S}8

and c ď c0. Let us pick one

of the payoff vectors, x and the strict Nash-equilibrium generating it denoted by

piℓ˚qℓPN (pure since it is a strict Nash equilibrium). Let us show that repeating piℓ˚qℓPN

independently of the past is an SPE of the T -stage game with cost c0. By the one-

shot deviation principle, it is sufficient to check that after any history there is not a

profitable deviation. Let ℓ P N and iℓ1 be the previous action played by Player ℓ. We

compare the stage payoff today to play iℓ2 instead of iℓ˚:

uℓ
piℓ˚, i

´ℓ
˚ q ´ c ¨ sℓiℓ1,iℓ˚

ě uℓ
piℓ˚, i

´ℓ
˚ q ´ c ¨ }S}8 ě uℓ

piℓ2, i
´ℓ
˚ q ` m ´ c ¨ }S}8,

ě uℓ
piℓ2, i

´ℓ
˚ q ě uℓ

piℓ2, i
´ℓ
˚ q ´ csℓiℓ1,iℓ2

.

Hence, there is a loss in payoff today. Moreover, there is an additional potential

loss tomorrow since Player ℓ has to pay the cost from iℓ2 to iℓ˚. There is no one-shot

profitable deviation. We have indeed an SPE.
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