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P H Y S I C S

An empirical mean-field model of symmetry-breaking 
in a turbulent wake
Jared L. Callaham1*, Georgios Rigas2, Jean-Christophe Loiseau3, Steven L. Brunton1

Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously 
challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be dis-
entangled from small-scale fluctuations. This closure problem is emblematic of a greater challenge in complex 
systems, where coarse-graining and statistical mechanics descriptions break down. This work demonstrates an 
alternative data-driven modeling approach to learn nonlinear models of the coherent structures, approximating 
turbulent fluctuations as state-dependent stochastic forcing. We demonstrate this approach on a high–Reynolds 
number turbulent wake experiment, showing that our model reproduces empirical power spectra and probability 
distributions. The model is interpretable, providing insights into the physical mechanisms underlying the symmetry-
breaking behavior in the wake. This work suggests a path toward low-dimensional models of globally unstable 
turbulent flows from experimental measurements, with broad implications for other multiscale systems.

INTRODUCTION
Despite being nominally deterministic, turbulent flows are charac-
terized by multiscale spatiotemporal chaos. Many traditional analyses 
have therefore relied on statistical descriptions (1). However, it is 
now known that many inhomogeneous flows are dominated by 
energetic coherent structures at large scales and low frequencies 
relative to Kolmogorov’s universal equilibrium range (2–4). By 
leveraging this intrinsic structure, reduced-order models of turbulent 
flows promise to advance engineering objectives in design, optimi-
zation, and control (5–7). However, balancing accuracy and efficiency 
by simultaneously modeling the evolution of the large-scale struc-
tures while accounting for the effects of incoherent fluctuations has 
been notoriously challenging, especially in a noninvasive fashion 
that is suitable for experimental measurements.

This modeling challenge stems from the multiscale nature of 
turbulence. In contrast to systems that can be treated by classical 
statistical mechanics, there is no strict separation of scales between 
low-frequency coherent dynamics and turbulent fluctuations. 
Governing equations for filtered or averaged variables can be de-
rived, but the influence of the unresolved scales cannot be eliminated 
from the coarse-grained equations, leading to the closure problem. 
Numerous deterministic closure models have been proposed in 
the context of high-dimensional Reynolds-averaged Navier-Stokes 
(RANS) or large eddy simulation (LES) methods (8), although these 
approaches are still high dimensional and computationally expensive.

Alternatively, to take advantage of persistent, energetic coherent 
structures, semiempirical projection-based methods can be used to 
derive a compact approximation to the dynamics in the form of 
amplitude equations governing the evolution of global modes. For 
example, perhaps the most widely used reduced-order modeling 
method in fluid dynamics is Galerkin projection of the Navier-
Stokes equations onto a modal basis (2, 4, 9). However, because 
projection-based methods act as a spatial filter, they face the same 

closure problems as the RANS and LES methods. Projection methods 
also require access to both a high-fidelity numerical solver and 
information about the flow that is difficult to obtain experimentally.

To address the analytic challenges of turbulence modeling, 
data-driven methods have long played a role in modal analysis (10) 
and reduced-order modeling (5, 7). Recent advances in machine 
learning have generated increased interest in data-driven methods 
for fluid dynamics (11–14), including for turbulence modeling 
(15–17) and forecasting (18). Despite the expressive power of modern 
machine learning methods, it is challenging to develop models that 
are robust, generalizable, and interpretable. The sparse identifica-
tion of nonlinear dynamics (SINDy) framework (19) has promise for 
interpretable low-dimensional modeling, and it is able to incorpo-
rate partial physical knowledge including symmetries, conservation 
laws, and invariant manifold structure (20–22). SINDy has mainly 
been applied to laminar flows with the exception of recent work 
developing RANS closure models (23). Following these successes, 
our objective is to model coherent structure dynamics with a 
SINDy-type approach, approximating turbulent fluctuations as noise 
acting on a few global integral quantities.

RESULTS
In this work, we develop a sparse nonlinear model of a fully turbu-
lent wake experiment. Our model takes the form

	​​ x ̇ ​ =  f(x ) + (x ) w(t)​	 (1)

where x is a generalized state vector and w(t) is Gaussian white 
noise. Whereas the RANS and LES models use a relatively high-
dimensional discretization of the flow field, here we assume that 
x represents a small set of modal coefficients, order parameters, or 
other integral quantities capturing relevant large-scale structure in 
the flow. Moreover, this description in terms of deterministic drift 
dynamics f(x) forced by diffusion (x) is a fundamentally different 
approach to turbulence modeling. The RANS and LES methods 
seek a local, deterministic closure model for the effects of the un-
resolved scales in terms of resolved variables, Eq. 1 approximates the 
global, statistical influence of turbulent fluctuations on the state x.
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We learn the model in Eq. 1 using a recently developed stochas-
tic extension to SINDy, called Langevin regression (see Fig. 1), 
which is suitable for multiscale systems (24, 25). Progress in model 
discovery has advanced our ability to approximate stochastic dy-
namics from limited experimental data (24–31), even if the model 
structure is a priori unknown (24, 25, 32). These methods extend 
traditional stochastic modeling beyond near-equilibrium systems, 
providing a useful approximation despite the absence of a strict 
scale separation.

We demonstrate this approach to model the turbulent wake be-
hind an axisymmetric bluff body, as shown in the section ‘Symmetry-
breaking in the bluff body wake’. We reduce the dimension of the 
experimental measurements by modal decomposition. Traditional 
methods decompose the field into a fixed set of spatial modes with 
time-varying amplitudes. The Fourier basis is a convenient repre-
sentation for coordinates with translational or rotational symmetry. 
In the present case, the flow is rotationally symmetric, so azimuthal 
variations can be expanded with Fourier modes eim.

Analysis of the Navier-Stokes equations in the wave number 
domain reveals that the nonlinear advective term only admits triadic 
interactions in which both the forced and forcing modes have wave 
numbers that sum to zero. In particular, the axisymmetric fluctua-
tions at m = 0 are driven by the “self-interaction” of the complex-
conjugate components at m = ± 1, ± 2, etc., as shown in Fig. 2. The 
full nonlinear flow is made up of a complicated network of such 
interactions across all scales, making it notoriously difficult to con-
struct simplified models with reduced degrees of freedom.

One approach to circumventing this problem, typically near the 
threshold of some instability, is to perform an asymptotic multiscale 
expansion and assume that higher-order nonlinear interactions 
may be neglected. This approximation can resolve the leading-
order mean flow deformation because of the self-interaction of the 
instability mode, a central feature of the Stuart-Landau nonlinear 
stability mechanism (33, 34). The triadic interactions are truncated 
at leading order (Fig. 2). In this weakly nonlinear regime, the mean 
flow deformation can be treated as another fixed spatial mode 
with an amplitude that depends on the strength of the instability 
(9, 35, 36).

However, these tools are largely theoretical and numerical; here, 
the flow is fully turbulent and thus strongly nonlinear. To avoid the 
assumption of weak nonlinearity and explore the spatial structure 
of the mean flow deformation, we estimate the modes from mea-
surements of the base pressure distribution by reducing the symme-
try via phase alignment and averaging conditioned on the center of 
pressure. The amplitude dependence of the symmetric mode devi-
ates significantly from the polynomial scaling predicted by weakly 
nonlinear analysis, confirming the need for a parametric basis to 
capture the effect of strongly nonlinear interactions.

Following the conditional average, the method proceeds as 
shown schematically in Fig. 1. The modal expansion yields physically 
meaningful order parameters A(t) and B(t) related to symmetry-
breaking and mean-field deformation in the wake, respectively. We 
apply Langevin regression to identify an interpretable dynamical 
system that models the broadband turbulence as stochastic forcing 

Fig. 1. Overview of the model development. Beginning with an order parameter A(t) computed from the base pressure measurements, the spatial modes m are computed 
at each wave number m by conditional averaging. These modes define an approximate slow manifold (A) that captures the dominant antisymmetric behavior. To fully 
resolve the symmetric fluctuations, we introduce a generalized shift mode with amplitude B(t), defined by projection onto the tangent space of this manifold. Last, we 
identify a nonlinear stochastic dynamical system model with Langevin regression. We can compare the statistics, including the empirical probability distribution , of the 
model to the experiment with Monte Carlo evaluation of the stochastic system. Because the proposed model (bottom row) is random in nature, it can only reproduce the 
experimental data (top row) in a statistical sense; in general, neither the time series nor the pressure distributions will match on a point-by-point basis.
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of the low-dimensional symmetry-breaking dynamics. The result-
ing model is a stochastic Stuart-Landau equation similar to those 
proposed in previous studies of similar configurations (28, 37–39), 
but with the addition of state-dependent forcing and an additional 
degree of freedom. Monte Carlo evaluation of the Langevin system 
compares favorably to the experimental statistics, and the model 
provides physical insights into low-frequency fluctuations of the 
axisymmetric recirculation bubble. Each of these will be investi-
gated below.

Symmetry-breaking in the bluff body wake
The turbulent wake in Fig. 3 provides a rich test system for model 
discovery. Flow with free-stream velocity U∞ and kinematic viscosity 
 is deflected around a cylindrical blunt-nosed body with diameter 
D. The spatiotemporal dynamics of the wake are determined by 
the Reynolds number Re = DU∞/. Flows past bluff bodies at low 
Reynolds number often exhibit stereotypical global instabilities 
such as von Kàrmàn vortex streets or steady symmetry-breaking 
wake deflection (3, 9, 36, 40, 41). In the laminar regime, nonlinear 
saturation of the exponential growth of these instabilities can often 
be described by Stuart-Landau theory, in which the fluctuations 
deform the mean flow in a stabilizing feedback loop (33, 34).

The amplitude A(t) of the instability mode is governed by the 
cubic Stuart-Landau equation

	​​  dA ─ dt ​ =  ( −  ​∣A∣​​ 2​ ) A​	 (2)

The term in parentheses is the effective eigenvalue of the insta-
bility mode, as modified by the mean flow deformation. When 

the real part of  is positive, small perturbations grow exponentially 
until the instantaneous growth rate reaches a balance with ∣A∣2.

Global modes that are qualitatively similar to the laminar insta-
bilities appear to dominate these flows well into the turbulent re-
gime (42–44). Although the Stuart-Landau mechanism is typically 
derived via an asymptotic weakly nonlinear analysis, the resulting 
amplitude equations are often assumed to approximately describe 
the evolution of turbulent coherent structures as well (28, 29, 37–39).

At very low Reynolds number, the wake is steady, axisymmetric, 
and laminar. The flow undergoes two bifurcations, becoming linearly 
unstable to a steady symmetry-breaking mode (​​Re​c​ 

1​ ≈  424​) and a 
second pair of unsteady vortex-shedding modes (​​Re​c​ 

2​ ≈  605​), both 
with azimuthal wave number m = ± 1 (44). By approximating these 
as a single codimension-2 bifurcation, the weakly supercritical flow 
can be approximated with an asymptotic expansion and normal 
form dynamics (36). These instability modes continue to dominate 
the coherent part of the flow even in fully developed turbulence, as 
has been shown for the present experimental data at Re ≈ 2 × 105 
(43). The base pressure distribution is measured from a set of 64 
equally spaced pressure taps from which a time series of 8.9 × 106 
measurements are sampled at 225 Hz; further details are given in 
(43). Equally spacing the pressure taps allows us to take advantage 
of the geometric symmetry with a Fourier series representation of 
the pressure field. Hence, the sensor distribution determines the 
wave number resolution of the analysis. In particular, eight sensor 
stations restrict the Fourier representation to wave numbers m = ± 3, 
although we find that only m = 0, ± 1, ± 2 are strongly correlated 
with the symmetry breaking.

Although the time series of measurements appears stochastic 
at this Reynolds number, the flow is characterized by semiregular 
energetic structures, including vortex shedding and a symmetry-
breaking wake deflection (3, 42, 43). These structures can be directly 
linked to the instability modes and weakly nonlinear dynamics of 

Fig. 3. Experimental configuration for the axisymmetric wake. The signature of 
the dominant symmetry-breaking instability is captured by the complex order 
parameter defined in Eq. 5. The coherent fluctuations in the pressure distribu-
tion can be approximated with the mean-field model (bottom). The proposed 
model substantially improves the reconstruction over a traditional fixed-mode 
decomposition. Although not used for the analysis in this work, a particle image 
velocimetry (PIV) estimate of the velocity magnitude is also shown to visualize the 
asymmetry and vortex shedding in the wake.

Fig. 2. Visualization of approximate slow manifolds and the nonlinear inter-
actions responsible for generating them. Weakly nonlinear analyses of laminar 
flows typically neglect higher-order interactions for small fluctuations, leading to a 
parabolic manifold for the low-dimensional dynamics (left). Using conditional 
averaging, we show that these interactions are necessary to explain observations 
of the turbulent wake (right). Pairs of lines with similar styles indicate the structure 
of the leading-order triadic interactions. The physical interactions are between 
velocity components, but here we use the base pressure field as a proxy for coherent 
structures in the wake. D
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the corresponding laminar flow (36,  45). Although the vortex 
shedding is dynamically important in the wake, it is only weakly 
observable from the pressure signal on the bluff body itself. This 
also suggests that the vortex shedding is potentially less important 
to practical drag reduction than the symmetry-breaking wake de-
flection. In this work, we therefore restrict our attention to the 
steady symmetry-breaking instability.

This wake deflection is particularly important as it represents 
generic spatial symmetry-breaking behavior that occurs in a wide 
variety of three-dimensional bluff body wakes (28, 36, 40). More-
over, this symmetry breaking is associated with increased pressure 
drag, making it the target of a variety of active flow control investi-
gations (38, 39, 41, 45, 46). In several of these studies, reduced-order 
models have played a key role in designing and understanding the 
actuated system.

Mean-field theory of symmetry-breaking transitions
The Stuart-Landau nonlinear stability theory is typically derived as 
an asymptotic expansion in multiple time scales. It therefore falls 
into the category of weakly nonlinear analysis and is only strictly 
applicable near the threshold of instability, although the effect is 
generally understood to persist much beyond the asymptotic re-
gime in many cases (9, 47, 48). However, Landau also considered 
another limiting case of dynamics: symmetry-breaking phase tran-
sitions of systems in thermodynamic equilibrium. Turbulence is 
both strongly nonlinear and far from thermodynamic equilibrium, 
but the observation that both limiting regimes can be described 
with similar equations motivates the development of phenomeno-
logical Stuart-Landau–type models for symmetry-breaking behavior 
in the turbulent axisymmetric wake.

A generic system in thermodynamic equilibrium that undergoes 
a continuous symmetry-breaking phase transition at critical tem-
perature Tc (or temperature analog such as Reynolds number) has 
an effective potential V(T, A), which we assume can be expanded in the 
magnitude of a (generally complex) order parameter A. A canonical 
example of this is the Ising model, in which the statistically symmetric 
disorder of the high-temperature system is broken in a phase 
transition to a ferromagnetic state below a critical temperature. On 
the basis of physical symmetries, the effective potential can be 
expanded as

	​ V(T ) = ​V​ 0​​(T ) + ​V​ 1​​(T ) ​∣A∣​​ 2​ + ​V​ 2​​(T ) ​∣A∣​​ 4​ + …​	 (3)

This order parameter, which here we assume to be small when suitably 
nondimensionalized, quantifies the degree of symmetry breaking in 
the system. The equilibrium condition A* at a given temperature is 
determined by the minimum free energy with respect to ∣A∣. To 
leading order, ​​A​ *​​(T ) = ​√ 

______________
  − ​V​ 1​​(T ) / 2 ​V​ 2​​(T) ​.​

For the high–Reynolds number axisymmetric wake studied in 
this work, the unsteady aerodynamic center of pressure serves as an 
order parameter capturing the symmetry-breaking wake deflection. 
When nondimensionalized by the body diameter, its value is small 
even far from the bifurcation with mean value ​​ 

_
 A ​ ≈  0.032​.

The system is unsteady but statistically stationary. In the thermo-
dynamic perspective, the instantaneous field is disturbed from the 
minimum potential state by broadband turbulence. We model this 
as near-equilibrium thermal fluctuations in overdamped Langevin 
dynamics (49)

	​​  dA ─ dt ​ =  − ∇ V(A ) + Σ(A ) w(t)​	 (4)

where w(t) is a white noise process and Σ is the diffusion function. 
Expanding V(A) in ∣A∣ to third order, the Langevin model would 
take the form of the Stuart-Landau equation (2) forced by white 
noise. Although this qualitative symmetry-based argument suggests 
the expected structure of the dynamics, we use the recently proposed 
Langevin regression method for identifying nonlinear stochastic 
models (25) to identify the drift and diffusion functions rather than 
presuppose this form, as described below.

Parametric modal expansion
Reduced-order models such as Eq. 1 rely on dominant low-dimensional 
structure to approximate salient features of the flow with a small set 
of variables; such low dimensionality in fluid flows often arises as a 
consequence of global instability. The instability mode responsible 
for the steady wake deflection in the laminar flow stabilizes at finite 
amplitude because of mean flow deformation, with temporal evolu-
tion given by compact normal form dynamics (36). The turbulent 
wake exhibits qualitatively similar behavior; recent studies have 
modeled the aerodynamic center of pressure with stochastic Stuart-
Landau equations (28, 37). However, while the relationship between 
the amplitude equations and spatial mean flow deformation is clear 
for the weakly nonlinear laminar case, it has been unexplored in the 
phenomenological models developed for turbulent flows.

Standard model reduction methods decompose the field into a 
set of spatial modes (10) with coefficients whose time evolution is 
governed by the amplitude equations. Within this framework, one 
way to resolve mean flow deformation is with the addition of a 
spatial mode parameterizing the difference between the unstable 
steady state and the mean flow. This additional shift mode can 
either be derived empirically (9) or as a natural product of an asymp-
totic expansion (35). In either case, the assumption of weakly 
nonlinear interactions implies polynomial scaling of the deformation 
amplitude with respect to the amplitude of the dominant instability. 
This approach has proven successful in low-dimensional models 
of a variety of laminar flows (20, 22, 36, 47). However, in strongly 
nonlinear turbulent flows, this fixed modal basis cannot generally 
be expected to resolve the mean flow deformation.

To describe the symmetry breaking and associated mean-field 
deformation, we model the evolution of the base pressure distribu-
tion p(r, , t), where r and  are polar coordinates on the circular 
bluff body base. Although the pressure is not a dynamic variable in 
incompressible flow, the base pressure can be used as a convenient 
and experimentally accessible proxy for the energetic coherent 
structures in the wake, because these limited observations can be 
connected to previously observed wake structures based on symme-
tries and spectral energy content (43). The radial coordinate of the 
unsteady aerodynamic center of pressure is also a natural order 
parameter for the degree of symmetry breaking.

Let p0(r) be the pressure associated with the unstable axisymmetric 
steady state, which is unknown and experimentally inaccessible, 
and ​​p ̄ ​(r)​ be the temporal mean field estimated from the pressure 
taps. The self-interaction of the velocity fluctuations associated 
with p′ deforms the unstable steady state to the mean flow via the 
Reynolds stresses (8).

We define the unsteady aerodynamic center of pressure on the 
bluff body base as a complex-valued order parameter A(t)
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	​ A(t ) = ​  1 ─  
∫ p(r, , t ) rdrd

 ​∫ p(r, , t ) r ​e​​ i​ drd​	 (5)

The amplitude ∣A(t)∣ is a measure of the degree of asymmetry 
in the wake, while its phase gives the azimuthal orientation of the 
wake deflection. We approximate this integral with a Riemann sum 
over the 64 pressure sensor locations.

The instantaneous strength of the coherent antisymmetric fluc-
tuations associated with ∣A(t)∣ is responsible for the axisymmetric 
mean flow deformation and nonlinear equilibrium of the instability 
mode (36). The mean-field ​​p ̄ ​​ and steady-state p0 are therefore asso-
ciated with the mean amplitude ​​A  ̄​ ≡ ​ ‾ ∣A(t ) ∣​​ and A = 0, respectively, 
although both fields are themselves axisymmetric. Similarly, an in-
stantaneous amplitude ∣A(t)∣ between 0 and ​​A ̄ ​​ is associated with 
an axisymmetric field interpolating between p0(r) and ​​p ̄ ​(r)​, al-
though the amplitude itself only directly represents antisymmetric 
fluctuations. In other words, the part of the instantaneous m = 0 
field that resolves the Stuart-Landau deformation mechanism is a 
direct function of the order parameter. More broadly, we expect 
that the part of the field that is coherent with the order parameter 
can be revealed with an average conditioned on its amplitude.

Coherent fields via conditional averaging
On the basis of the symmetry of the flow, we expand the pressure 
field with a Fourier series ​p(r, , t ) = ​∑ m​ ​​ ​​   p ​​ m​​(r, t ) ​e​​ im​.​ The preceding 
discussion suggests that the part of the field that is coherent with the 
symmetry breaking might be approximated with a parametric modal 
decomposition ​​​   p ​​ m​​(r, t ) ≈ ​​ m​​(r, A(t )) .​ In contrast to a fixed space-
time separation of variables, such as is used in proper orthogonal 
decomposition or dynamic mode decomposition, this approach 
allows the modes to naturally deform with the instantaneous order 
parameter amplitude. Once the modes m(r, A) are known, such a 
representation reduces the field to a function of this single complex 
degree of freedom.

For example, if the self-interaction of the fluctuations are assumed 
to be weakly nonlinear and higher-order nonlinearity is neglected, 
then the axisymmetric component can be approximated with the 
leading term in a polynomial expansion, i.e., 0(r, A) = p0(r) + 
∣A∣2p(r) + O(∣A∣4). In a numerical setting, the “shift mode” p(r) 
can be determined either through an asymptotic expansion about 
the unstable base flow (35, 36) or from the difference between the 
base and mean flows (9).

Experimentally, neither of these approaches is viable, because 
the unstable steady state is typically unavailable. Instead, we pro-
pose identifying the parametric modes with a phase-aligned condi-
tional average on the order parameter, visualized in Fig.  4. This 
procedure, described in detail in Materials and Methods, estimates 
the part of the field at each wave number that is correlated with the 
order parameter amplitude ∣A(t)∣. A continuous estimate of the 
modes can then be constructed with a spline interpolation of 
the conditional averages m(r,∣Ai∣).

Figure 5 shows the radially integrated modes, along with the 
axisymmetric mode at each radial sensor location. The conditional 
average is compared to a fixed mode approximation where the spa-
tial structure is fixed at its value at the mean amplitude ​​A ̄ ​​. We draw 
several conclusions from the amplitude scaling of these modes. 
First, the axisymmetric field at m = 0 cannot be described by a fixed 
mode. The weakly nonlinear scaling 0 ∼ ∣A∣2 does not hold for 
typical amplitudes in this case. Figure 5C also shows the value of the 

m = 0 field at each of the eight radial sensor locations as a function 
of ∣A∣2; a single fixed mode cannot explain this behavior even if its 
integrated amplitude is a complicated function of ∣A∣. This indi-
cates that the nonlinear axisymmetric self-interaction and higher 
antisymmetric harmonics play an important role in altering the spa-
tial structure of the axisymmetric deformation as the fluctuation 
amplitude changes. However, for a good approximation, both the 
m = ±1 and m = ±2 Fourier components can be reasonably well 
described by a single fixed mode with linear dependence on ∣A∣. 
This is consistent with the typical assumption of the Stuart-Landau 
theory that the instability is a fixed eigenmode of the linear operator 
with variable eigenvalue. Higher wave numbers show weak coherence 
with the order parameter; we therefore truncate the reconstruction 
at ∣m∣ = 2.

The conditional average can be viewed as an empirical approxi-
mation of the slow manifold related to the symmetry-breaking be-
havior. Figure 2 visualizes this manifold by revolving the radially 
integrated axisymmetric deformation about the ​​​‖​​ ​​   p ​​ 0​​​‖​​​​ axis, while the 
parabolic “theoretical” manifold is generated from the weakly non-
linear ∣A∣2 scaling.

This conditional averaging approach can be viewed as an empiri-
cal approximation to the self-consistent mean-field model (48), 
because it gives the fields at arbitrary fluctuation amplitudes with-
out assuming a fixed spatial structure as in standard modal analyses. 
In contrast to the self-consistent model, however, we do not neglect 
the influence of higher harmonics on the base flow. Because the 
modes are derived directly from experimental data, they naturally 
account for nonlinear interactions at all orders and can resolve 
arbitrary deformations of the axisymmetric component.

Residual projection for mean flow modification
Because the symmetry breaking is linked to an instability mode, we 
expect that antisymmetric modes will not significantly deform with 
amplitude, so m(r,∣A(t)∣) ≈ ∣A(t)∣m(r) for m ≠ 0. This is con-
firmed by the conditional averaging analysis above. However, the 
coherent part of the axisymmetric component is dominated by 
nonlinear deformations induced by Reynolds stresses, so it may 
have a complicated amplitude dependence.

For weakly nonlinear laminar flows, an asymptotic analysis indicates 
that axisymmetric deformations can be expressed as a function of 

Fig. 4. Illustration of phase-aligned conditional averaging. We assume that the 
average at small amplitudes is representative of the pressure distribution associated 
with the unstable steady state qB. The field at any other point can be approximated 
with spline interpolation, allowing us to explore the amplitude dependence of the 
coherent fields. Also shown for reference are the unconditional phase-aligned mean 
field and the estimated two-dimensional log-probability density function (PDF), 
which is roughly analogous to a potential field.
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the instability amplitude ∣A(t)∣2, pinning the state to the slow 
manifold (35,  36). However, the structure of models based on 
Galerkin projection onto a set of fixed spatial modes suggests that 
there may be some finite relaxation time to the equilibrium state 
determined by ∣A(t)∣ (9).

In other words, the conditional average defines an approximate 
slow manifold (illustrated in Fig.  2), although we would like to 
avoid assuming the state always resides on this surface. We address 
this by introducing an additional (real) degree of freedom B(t) 
representing the difference between the axisymmetric field ​​​   p ​​ 0​​(r, t)​ 
and the manifold field 0(r, ∣A(t)∣2). If this difference is typically 
small, then the axisymmetric field can be expressed as a lineariza-
tion about ∣A(t)∣ by defining a new m = 0 mode B(r, ∣A(t)∣2) 
from the gradient of the manifold

	​​ ​   p ​​ 0​​(r, A, B ) ≈ ​p​​ 0​(r ) + ​​ 0​​(r, ​∣A∣​​ 2​ ) + 2∣A∣B ​​ B​​(r, ​∣A∣​​ 2​)​	 (6A)

	​​ ​ B​​(r, ​∣A∣​​ 2​ ) = ​​  ∂ ​​ 0​​ ─ 
∂ ​∣A∣​​ 2​

 ​∣​ 
​∣A(t)∣​​ 2​

​​​	 (6B)

This model for the axisymmetric part of the field is a gener-
alization of the fixed shift mode model proposed by (9). In particu-
lar, if the axisymmetric field does have the weakly nonlinear scaling 
0(r, ∣A(t)∣2) = ∣A(t)∣20(r) and the linearization is about the un-
stable fixed point A = 0, then the tangent field in Eq. 6 is just 0(r). 
For models based on Galerkin projection, it is more natural to define a 
single coefficient for each mode. That is, in the models introduced 
by (9) and (29), B is defined so that ​​​   p ​​ 0​​(r, B(t ) ) ≈  B(t ) ​​ 0​​(r)​. How-
ever, the proposed parametric expansion in the present work allows 
the model more flexibility to capture the natural variations of the 
flow, without assuming any scaling behavior. Further details and 
intuition for the proposed model of axisymmetric fluctuations are 
given in the Supplementary Materials, including a visualization of 
the residual projection.

The instantaneous value of this secondary order parameter B(t) 
can be estimated by projecting the part of the axisymmetric field not 
correlated with ∣A∣ onto the tangent space of the slow manifold

	​ B(t ) ≈  ​ 
∫ (​​   p ​​ 0​​(t ) − ​​ 0​​(t ) ) ​​ B​​(t ) rdr

  ──────────────  
∫ ​​ B​​(t ) ​​ B​​(t ) rdr

  ​​	 (7)

where the explicit dependence on r and ∣A(t)∣ has been omitted 
everywhere for notational clarity. In practice, if the axisymmetric 
mode 0(r, ∣A(t)∣2) is interpolated in ∣A∣2 with a spline, then the 
tangent field B(r, ∣A(t)∣2) can be computed with a derivative of 
the spline at each radial position r.

We emphasize that the conditional averaging has already resolved 
the axisymmetric deformations associated with the Stuart-Landau 
nonlinear stability mechanism. This secondary order parameter 
B(t) is therefore not strictly necessary to describe the symmetry-
breaking behavior, but it significantly improves the resolution of 
the model for the axisymmetric fluctuations, reducing the error in 
the modal approximation by 37%. Moreover, as shown below, the 
new degree of freedom B(t) that allows for deviations from the 
slow manifold introduces the a finite relaxation time scale that can 
account for a previously unexplained peak in the symmetric power 
spectrum.

With this modal expansion, the base pressure field can be recon-
structed with

​            p(r, , t ) = ​​​p​​ 0​(r ) + ​​ 0​​(r, ​∣A∣​​ 2​ ) + 2∣A∣B ​​ B​​(r, ​∣A∣​​ 2​)   ​​   

​ 
axisymmetric

​  +​​∣A∣​∑ m​ ​​​​ m​​(r)​e​​ im(+(t))​  ​​  
antisymmetric

​ ​ ​

​ ​​	  (8)

where the time dependence of A(t) and B(t) has been omitted for brevity. 
The full model consists of seven modes: the unstable steady state p0, 
the symmetric deformation 0, the linearization of the manifold 
B, and the instability mode at each wave number m = ± 1, ± 2. 

Fig. 5. Field deformation in the conditional average. The phase-aligned average gives the coherent fields as a function of instability amplitude ∣A∣ for various azimuthal 
wave numbers m. The deformation of the axisymmetric part of the field cannot be explained by a single fixed mode or weakly nonlinear scaling (A), although the deformation 
has a smooth dependence on the amplitude (C). We approximate this amplitude dependence with a spline fit (C, dashed lines). On the other hand, the symmetry-breaking 
fields at m = ± 1, ± 2 are consistent with the fixed-mode assumption of Stuart-Landau theory (B and D).
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However, the model only has three degrees of freedom: the real and 
imaginary parts of the complex instability amplitude A(t) and the real 
axisymmetric deviation from the manifold B(t). The modal expansion 
(8) has a straightforward dependence on these degrees of freedom, 
so it will behave predictably even when evaluated for a state not in 
the original dataset. All of the modes, along with their parametric 
variation in A, can be directly computed from experimental observa-
tions. An example reconstructed field is shown in Fig. 3.

Reduced-order model of symmetry breaking
We identify a stochastic model of the form of Eq. 1 by applying 
Langevin regression to the generalized modal coefficients A(t) and 
B(t), approximating the incoherent turbulent fluctuations as Gaussian 
white noise. This method optimizes unknown parameters of a 
proposed nonlinear stochastic model using forward and adjoint 
Fokker-Planck equations to enforce consistency with experimental 
statistics. If the form of the model is unknown, then a simple 
reverse-greedy model selection procedure can identify the simplest 
model that explains the observed data (25). This method explicitly 
treats inherent fluctuations of the system as process noise. We 
explore its sensitivity to measurement noise in the Supplementary 
Materials and find that it is robust to well-behaved noise up to a 
signal-to-noise ratio of around 1.

Reduced-order models of turbulent flows are generally challenging 
to construct for the same reason that the statistical perspective was 
so successful historically; signals are dominated by apparently ran-
dom turbulent fluctuations. The most common approach to dealing 
with the fluctuations is to introduce a closure model that approxi-
mately captures their effects, for instance, via an eddy viscosity term 
to achieve the correct dissipation, without explicitly treating the fast 
scales (2, 4, 50).

A major difficulty in treating the fast fluctuations directly is that 
there is not a strict enough separation of scales to apply the machinery 
of near-equilibrium statistical mechanics. Although they cannot be 
formally justified, in practice some approximations based on statis-
tical mechanics have been successful. For example, while Eulerian 
statistics are usually non-Gaussian, central limit theorem arguments 
suggest that both Lagrangian variables and integral quantities have 
near-normal distributions (1, 51). Similarly, although the turbulent 
fluctuations are correlated in time, various modeling methods have, 
nevertheless, been successful by approximating them as white noise 
(37, 52, 53). Alternatively, recent work has investigated the use of 
colored noise in linearized flow models (54, 55), although classical 
statistical physics tools such as the Fokker-Planck equation, which 
is integral to our system identification method, cannot be applied in 
this case.

In previous work, the evolution of the order parameter magni-
tude ∣A(t)∣ has been successfully modeled by a stochastic cubic 
amplitude equation, inspired by the weakly nonlinear normal form 
(37). However, the weakly nonlinear analysis is predicated on a 
fixed-mode decomposition, which is at odds with the proposed 
amplitude-dependent spatial modes. Nevertheless, as described above, 
a dynamical model with similar structure can also arise from the 
mean-field theory of symmetry-breaking phase transitions, which 
does not rely on fixed spatial modes or weak nonlinearity.

Model analysis and evaluation
Langevin regression identifies clear Pareto-optimal models for both 
the A and B dynamics, as shown in Fig. 6. That is, we can select a 

model with minimal complexity in the sense that neglecting any 
more terms would cause the optimization loss function to signifi-
cantly increase. The full identified model is

	​​ A ̇ ​ =  A − A ​∣A∣​​ 2​ + (​​ A​​ + ​​ A​​ ​∣A∣​​ 2​ ) ​w​ 1​​(t)​	 (9A)

	​​ B ̇ ​  =  − B + (​​ B​​ + ​​ B​​ ​B​​ 2​ ) ​w​ 2​​(t)​	 (9B)

with coefficients given in Table 1.
The drift function for the order parameter A identified by the 

model selection has the form of a Langevin-Stuart-Landau equation, 
while the drift of the axisymmetric deformation B is linear relax-
ation. Physically, because B is defined as the difference between the 
instantaneous axisymmetric component of the field and that given 
by the conditional average on ∣A∣, this models noisy relaxation 
toward the location on the slow manifold defined by the instanta-
neous value of A. This is consistent with the Fourier-decomposed 
Navier-Stokes equations; the axisymmetric field does not instanta-
neously reach the equilibrium corresponding to the amplitude of the 
antisymmetric instability, although the relaxation time scale is 
often considered negligible in weakly nonlinear laminar flows (9, 36).

The method also identifies quadratic state-dependent diffusion 
for both A and B. This is perhaps unexpected, because the turbulent 
fluctuations are expected to be locally isotropic and therefore ap-
proximately independent of the large-scale motions (8). However, 
similar state-dependent diffusion arises in the case that slow macro-
scopic dynamics are averaged over fast degrees of freedom that are 
excited by stochastic forcing due to nonlinear coupling across scales 
(52, 56). In particular, the diffusion functions in Eq. 9 have the same 
form as a Taylor expansion of the diffusion derived by (56) for an 
unstable mode with quadratic coupling to stable modes driven 
by additive white noise. The state-dependent diffusion also allows 
the Langevin model to better resolve the long tails of the probability 
distributions, as previously observed by (25).

A

B

Fig. 6. Model selection with Langevin regression. The drift and diffusion 
functions are sparse linear combinations from a library of candidates. We select 
the simplest models that are statistically consistent (small cost function). The 
vertical axes are scaled by the value of the cost function with an identically zero 
coefficient vector.
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To evaluate the model, we simulate the Langevin models and 
construct approximate pressure fields using the parametric modal 
expansion (6). This reconstruction returns from the three-dimensional 
state space of the Langevin model to the 64-dimensional space of 
the pressure measurements. We compare the full base pressure 
distributions to test the ability of the entire model, including both 
Eqs. 8 and 9, to capture the physical behavior.

The results are compared to both the experimental data and 
the reconstruction based on the modal expansion and experimental 
values of A and B in Fig. 7 using both the empirical probability 
distribution and the radially averaged premultiplied power spectra. 
We compare the premultiplied spectra St · m(St), where m(St) is 
the estimated power spectral density of the radially integrated mth 
Fourier component, rather than the power spectral density itself 
because the area under the premultiplied spectrum directly corre-
sponds to signal energy. This makes it better suited for comparison 
of the dominant energy scales. Although the model is too simplified 
to capture the full power spectrum, it does reproduce the dominant 
peak for the leading wave numbers and accurately approximates the 
probability distributions.

The compact empirical model (Eq.  9) therefore resolves the 
dominant physical mechanisms associated with symmetry breaking 
in the turbulent wake, including linear instability, mean-field de-
formation, and the influence of higher harmonics. Because Eq. 9 
gives the drift and diffusion in terms of simple analytic expressions, 
the behavior of the model can be fully characterized throughout the 
low-dimensional state space. For example, the Fokker-Planck equa-
tion can be used to either numerically compute the steady-state 
probability density or predict the evolution of an uncertain distri-
bution of states. Thus, although the model is fit to a finite dataset, its 
behavior in “unseen” regions (e.g., ​∣A∣≫ ​ A ̄ ​​) can be completely 
quantified.

Critically, the model also reproduces the dominant frequency 
peak in the axisymmetric power spectrum, previously described as 
a “bubble-pumping mode” (3, 28, 43), although it does not appear 
in any stability analysis (44). This model suggests that this spectral 
peak may instead be viewed as the result of a finite relaxation time 
scale toward the axisymmetric deformation induced by the ampli-
tude of the instability mode. The spatial field associated with these 
dynamics is the gradient of the manifold defined by the conditional 
average. These relaxation dynamics are consistent with the underly-
ing Navier-Stokes equations, but this time scale is often considered 
negligible for weakly nonlinear laminar flows.

DISCUSSION
We have demonstrated a data-driven modeling approach to learning 
interpretable nonlinear models for fluid coherent structures, where 
multiscale turbulence is treated as state-dependent stochastic forcing. 
This approach has been used to develop a simplified mean-field model 
of the symmetry-breaking behavior in a turbulent axisymmetric 

wake. The empirical model comprises seven parametrically varying 
spatial modes and three dynamical degrees of freedom and was 
constructed entirely from experimental observations. Using a 
phase-aligned conditional average with respect to the center of 
pressure, we have shown that the fixed-mode ansatz of standard 
modal decompositions cannot explain the mean-field deforma-
tion related to the symmetry-breaking instability of the turbulent 
axisymmetric wake.

This reflects the higher-order influences and nonlinear self-
interaction of the axisymmetric part of the flow, both of which are 
typically negligible for weakly supercritical laminar flows.

Modeling approaches based on weakly nonlinear approximations 
have proven highly successful in laminar flows. However, in this 
work, we have shown that the extension of this perspective to 
turbulent flows is more subtle than adding stochastic forcing to the 
weakly nonlinear model. The amplitude scaling and structure of the 
axisymmetric deformation are inconsistent with the quadratic 
dependence implied by such an approach, although the proposed 
conditional averaging procedure can capture the natural behavior 
of the mean flow deformation.

Langevin regression identifies a simple Stuart-Landau–type model 
for the modal coefficients and a quadratic nonlinear state-dependent 
noise model. This form of diffusion is consistent with analysis of 
fast-slow systems with quadratic nonlinearities where only the fast 
scales are stochastically forced (52, 56). Monte Carlo evaluation of 
the model matches the stationary probability distributions of the 
experimental data and resolves the dominant peak in the power 
spectrum at the leading azimuthal wave numbers. Moreover, the 
model is simple and interpretable, yielding physical insights into 
physical mechanisms including the mean flow deformation and 
low-frequency modulation of the recirculation bubble.

Beyond the context of the axisymmetric wake, these results 
support the parameterization of turbulent fluctuations as stochastic 
forcing of the quasi-deterministic coherent structures evolving near 
a slow manifold, at least as an approximation for empirical models. 
We emphasize that this description relies on a strict separation of 
scales, which is known to be absent in turbulent flows. Even with 
this caveat, this simplification is appealing enough for engineering 
applications such as closed-loop flow control that it may be useful 
even if it only holds in an approximate sense. For example, a feedback 
controller based on a nonlinear Langevin model has been shown to 
produce power-efficient drag reduction on an Ahmed body with a 
similar symmetry-breaking instability (38).

More broadly, we hope that this work illustrates a principled 
approach to constructing stochastic reduced-order models from 
limited experimental observations of a turbulent flow. Although 
much progress has recently been made in developing stochastic 
models of turbulent flows using the linearized governing equations 
(54, 55) and with empirical models of experimental data (29, 37, 39), 
there are many open questions about how the heuristics of low-
dimensional models of weakly nonlinear flows will translate to fully 
developed turbulence. In this work, we have chiefly focused on the 
mean-field deformation associated with the symmetry-breaking 
bifurcation, but recent studies have highlighted the role of higher-
order triadic nonlinear interactions in capturing the dynamics of 
both natural (57) and actuated (39) turbulent wakes. Capturing 
the interactions between instability modes (for instance, symmetry 
breaking and vortex shedding) may also prove critical in developing 
models suitable for active flow control.

Table 1. Identified coefficients for the Langevin models (9).  

  A A  B B

1.9 −1.9 0.8 + 0.7i 0.3 + 0.3i −26.7 6.7 0.2
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As fully empirical data-driven methods continue to grow in 
popularity and utility, ensuring consistency with the underlying 
physics remains a central challenge. The model proposed in 
this work captures many of the essential statistical features of the 
data and leads to previously unknown hypotheses about the behavior 
of the axisymmetric wake in particular and globally unstable turbulent 
flows in general.

MATERIALS AND METHODS
Phase-aligned conditional average
We expect that the higher-order nonlinear interactions in the tur-
bulent wake may lead to more complicated amplitude dependence 
compared to the weakly nonlinear laminar regime. We therefore 
propose identifying parametric modes with a phase-aligned condi-
tional average on the order parameter. The phase alignment reduces 
the symmetry of the fields; without this step, all asymmetry would 
vanish on averaging. On the other hand, the conditional average 
captures the natural variation of the field with the order parameter 
amplitude without any assumptions on the functional form of the 
A dependence.

Beginning with the Fourier decomposition into modes ​​​   p ​​ m​​(r, t)​, 
we compute the order parameter with Eq. 5 in amplitude-phase 
representation A = ∣ A ∣ ei. The phase of the order parameter can 
then be removed from each field

	​​ p ′ ​(r, , t ) = ​∑ 
m

​ ​​ ​​   p ​​ m​​(r, t ) ​e​​ im(−(t))​  = ​ ∑ 
m

​ ​​ ​​   p ​​ m​ ′ ​(r, t ) ​e​​ im​​	 (10)

We divide the space of observed order parameter amplitudes 
∣A∣ into histogram bins centered on Ai with width 2A. For 
each wave number m and histogram bin i, the radial component of 
m(r, Ai) is approximated with

	​​ ​ m​​(r, ∣​A​ i​​∣) = ⟨​​   p ​​ m​ ′ ​(r, t ) ∣‖A(t ) ∣− ∣​A​ i​​‖<  A⟩​	 (11)

We also estimate the base field p0(r) as the conditional mean 
at m = 0 for the smallest histogram, i.e., over fields for which 
∣A(t) ∣ < A.

Nonlinear stochastic system identification
We use the recently proposed Langevin regression method for iden-
tifying nonlinear stochastic models (25) to identify the drift and 
diffusion functions rather than presuppose a form based on qualita-
tive arguments. Although we opt for this method because it enables 
identification of a statistically consistent low-dimensional non-
linear generalized Langevin equation of the form (1), other system 
identification methods could also be used for this step. For example, 
in the Supplementary Materials, we compare Langevin regression 
to a model constructed with vector autoregression, a popular method 
in time series forecasting.

Langevin regression, a stochastic variant of the SINDy approach 
(19), optimizes free parameters of a Langevin model via solutions of 
both the forward and adjoint Fokker-Planck equations. The steady-
state solution of the forward equation gives the steady-state proba-
bility distribution, while the adjoint solution gives the finite-time 
propagation statistics of the Langevin model (49, 58). Langevin 
regression simultaneously minimizes the discrepancy between the 
Fokker-Planck solutions and statistics computed from the experi-
mental data. This system identification approach does not require 
access to the governing equations and can be applied to arbitrary 
quantities of interest. Details about the algorithm and numerical 
methods for solving the Fokker-Planck equations are given in (59) 
and the Supplementary Materials.

Moreover, this approach can be combined with the simple 
reverse-greedy stepwise sparse regression procedure for selecting a 
parsimonious but maximally descriptive model from a set of candi-
dates (24, 25). This algorithm sequentially discards functions whose 
exclusion is associated with the smallest increase in cost function. 
The Pareto-optimal model can then be chosen as the simplest 

Fig. 7. Statistical evaluation of the model. The mean-field modal expansion accurately captures most features of the radially averaged premultiplied power spectrum 
based only on the order parameters A(t) and B(t) (gray). Monte Carlo evaluation of the Langevin model (blue) shows that it reproduces the empirical probability distribu-
tions and dominant frequency content at the leading azimuthal wave numbers.

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 03, 2022



Callaham et al., Sci. Adv. 8, eabm4786 (2022)     11 May 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 11

model with a small cost function, as shown in Fig. 6. We use a 
library of polynomials consistent with the expected symmetries as 
candidate functions. The drift and diffusion functions are approxi-
mated by sparse linear combinations of these functions. For 
instance, the drift and diffusion libraries for A are

	​​ ​f​ 
A​(A ) = [A A ​∣A∣​​ 2​ A ​∣A∣​​ 4​ A ​∣A∣​​ 6​]​	 (12A)

	​​ ​​ 
A​(A ) = [​1​  ∣A∣​  ​∣A∣​​ 2​​]​	 (12B)

Then, the approximate drift function is ​​f​ A​​(A ) = ​​f​ 
A​(A ) ​​f​ 

A​​, where 
​​​f​ 

A​​ is a relatively sparse coefficient vector that identifies the library 
terms that are active in the dynamics. We do not include the 
axisymmetric deviation amplitude B because it is not associated 
with any symmetry breaking in the flow and therefore would not 
appear in the effective potential for A. The rotational symmetry of 
the physical system implies that ​​​f​ 

A​​ should be purely real, but be-
cause Langevin regression is based on a least-squares method, a 
small imaginary part will generally be retained. For the sake of a 
minimum-complexity model, we enforce that ​​​f​ 

A​​ is real, although 
allowing complex-valued coefficients does not noticeably change 
the results.

Likewise, the libraries for B are

	​​ ​f​ 
B​(B ) = [​B​  ​B​​ 2​​  ​B​​ 3​​]​	 (13A)

	​​ ​​ 
B​(B ) = [​1​  B​  ​B​​ 2​​]​	 (13B)

Again, we do not expect strong coupling between the order 
parameters A and B, because B was defined primarily to capture 
fluctuations that were uncorrelated with A.

Decoupling the dynamics also reduces the maximum dimen-
sionality of the regression problems from three to two dimensions, 
because the real and imaginary parts of A must be treated separately. 
Because Langevin regression is a histogram-based method where 
the Fokker-Planck equation is solved and evaluated on a grid, it 
does not scale well to higher dimensions. For problems with multi-
ple coupled instability modes, histogram-free approaches such as 
Langevin inference (30, 60) may be more appropriate, although this 
does not enforce consistency with the steady-state probability 
distribution.

The two key parameters in this method are the finite sampling 
rate, which allows the fast turbulent fluctuations to appear approxi-
mately uncorrelated in the time series, and the weight of the 
Kullback-Leibler (KL) divergence between the empirical probability 
distribution and the steady-state solution of the Fokker-Planck 
equation. The sensitivity of the results to these choices and some 
criteria for making this selection are given in the Supplementary 
Materials. The latter controls the relative weight factor of the for-
ward and adjoint Fokker-Planck solutions in the objective function. 
We choose sampling rates 200 times slower than the experimental 
sampling rate for A and 50 times slower for B and select the KL 
divergence weight so that the forward and adjoint Fokker-Planck 
solutions have approximately equal contributions in the optimiza-
tion. The values are 10−1 and 102 for the A and B optimizations, 
respectively.

Because Langevin regression identifies by fitting the statistics of 
the experimental data, it depends fundamentally on statistical 
convergence of the dataset. We verify this in the Supplementary 

Materials and show that the variation in the mean and root mean 
square of the pressure measurements converge to∼1% with around 
1% of the data, while the model coefficients reach 1% convergence 
with 50% of the data.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm4786
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