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Highlights
Analysis and fast modelling of microstructures in duplex stainless steel formed by directed
energy deposition additive manufacturing
Alexander Edwards, Daniel Weisz-Patrault, Éric Charkaluk

• Duplex stainless steel has been fabricated by laser metal powder directed energy deposition.

• A microstructural analysis revealed a gradient of austenite phase fraction as a function of
distance from the build platform.

• A fast numerical approach has been developed to model both temperature kinetics, grain
size during solidification and diffusion controlled phase transition as a function of process
parameters.

• Satisfying agreement with the experimental data is observed.

• Temperature control of the build platform is proposed to reach more uniform and balanced
ferrite to austenite phase ratios.
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Abstract
The properties of duplex stainless steels depend strongly on their thermal history, which can pro-
duce a wide range of austenite to ferrite ratios; whereas optimal properties generally require near
50-50 ferrite-austenite duplex microstructures. Additive manufacturing processes of duplex steels
remain challenging as it is difficult to predict and control how the phase ratio depends on process
parameters. This paper focuses on directed energy deposition additive manufacturing and presents
a fast numerical modelling of the thermal history and diffusion controlled solid-solid phase trans-
formations in the entire part. The proposed simulations strategy is sufficiently fast to optimize
the process parameters to achieve a targeted distribution of phase ratio, and a temperature control
strategy of the build platform has been proposed on this basis to reach almost uniform near 50-50
phase ratios, which was obtained by setting the temperature profile of the build platform as a linear
function decreasing from 1000 K for the first layer to 800 K for the last layer. In addition, experi-
ments are conducted to validate the proposed approach. Microstructures and phase ratio gradients
are assessed in single-bead-thickness walls of SAF 2507 superduplex stainless steel, and numerical
results are in reasonable agreement with experimental observations.

Keywords: Duplex steel, Directed Energy Deposition, Microstructure, Phase gradients

1. Introduction

Significant progress in additive manufacturing (AM) technologies, have taken place over the
last decade. However, applications are restricted by the unpredictability of the product properties,
as porosity, microstructure and residual stresses, which all depend on product geometry and pro-
cessing parameters. Therefore it is essential to develop realistic numerical models that can predict,
and so control, these properties. Directed energy deposition (DED) is a form of additive manu-
facturing (AM) in which a heat source melts extra material layer by layer onto a built platform
(i.e., substrate). In laser metal powder directed energy deposition (LMPDED), metal powder is fed
coaxially with a laser. As shown in figure 1, the powder is transported by a cover gas through the
nozzle to the build platform, where it is melted by the laser to form a melt pool. The nozzle moves
parallel with the substrate in order to form beads of metal alloy. Each bead can act as a foundation
for subsequent beads, building the final product layer by layer.
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Figure 1: a) Schematic representation of laser metal powder directed energy deposition. This figure is inspired by Lim
et al. [1], b) picture of the LMPDED process, c) thin walls in 2507 DSS.

Because of the complex thermal history non-uniform solid-state phase transitions are obtained
[2], and the application of DED to duplex stainless steels (DSS) has therefore been limited by the
inability to form a uniform and balanced ferrite/austenite microstructure in the as-printed material,
which is essential to ensure their properties [3]. For this reason, there are only a few papers on
AM of DSS [4] in the literature. Laser powder bed fusion (LPBF), wire arc additive manufacturing
(WAAM), and directed energy deposition (DED) with wire or powder have been tested, and a wide
range of phase ratios in as-printed specimens are reported: from almost fully ferritic microstructure
using LPBF [5–7] to up to 38vol% austenite microstructure for LMPDED [8], and 80vol% for
WAAM [9, 10] depending on the typical cooling rates associated with each technology. In addition,
the non-uniformity of the phase ratio in DED is pointed out in [11] where the austenite fraction
increased with distance from the substrate: from 55vol% at 5-10 mm to 70vol% at 20 mm. A
balanced and more uniform austenite/ferrite ratio could be achieved by subsequent annealing at
around 1400 K [5, 6]; however, not only is this an additional manufacturing step which can lead to
dimensional changes, but in some important applications, such as repair of existing components, it
is impossible.

Considering these difficulties, a natural idea is to simulate the AM process and phase transition
so that the process parameters can be optimized in order to reach a targeted phase fraction ratio.
Regarding numerical approaches to compute temperature fields in LMPDED, many papers focus
on very detailed simulations at the mesoscopic scale, especially powder melting, the hydrodynamic
problem, and crystallization during cooling (e.g., [12–14]). However, such numerical simulations
are often limited to a single layer, and cannot capture phase gradients in the entire part. Macroscopic
simulations have also been developed (e.g., [15–17]) but are still computationally costly. Thus,
simplified linear thermal analyses have been proposed (e.g., [18, 19]), which neglect the latent heat
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of fusion, and are limited to simple flat-wall geometries. In this paper, a fast numerical approach
[20, 21], which can deal with more complex geometry and takes account of latent heat release
during solidification, is used. This approach to temperature modelling has already been validated
experimentally by infrared measurements using a pyrometer [20] and an infrared camera [22], and
was used to predict residual stresses [22] and grain growth [23–25].

In the literature, the ferrite to austenite phase transition in DSS has been modeled in different
ways. For instance, Johnson-Mehl-Avrami equation has been fitted on experiments [26, 27]. How-
ever, DED is characterized by complex thermal cycling, so a diffusion controlled growth model
is preferable to estimate austenite growth, which takes place from the grain boundaries (GB) and
depends on ferrite grain size. Diffusion controlled growth theories [28–31] usually involve to solve
a 1D diffusion problem in an infinite or a finite slab with mass conservation in the grain (i.e., no
mass exchange with other grains) under the assumption that the composition of ferrite and austenite
at their mutual interface is in local equilibrium. It should be noted that this equilibrium condition
makes sense as the interface during solid-state phase transition evolves rather slowly, and is only
assumed locally at the interface, which authorizes non-equilibrium diffusion in solid phases.

The δ ferrite to γ austenite phase transition is initially assisted by fast diffusion of N (i.e., strong
austenite stabilizer by weight), then when the temperature decreases a slower diffusive mechanism
takes place involving Cr (i.e., ferrite stabilizer), which diffuses from austenite to ferrite, and Ni (i.e.,
austenite stabilizer), which diffuses from ferrite to austenite. This diffusive mechanism limits the
phase transition rate, because both Cr and Ni are substitutionally-diffusing elements, which diffuse
orders of magnitude slower than interstitial elements such as N. Both Cr and Ni could have been
taken into account together in the diffusion problem below 1587 K, but only Ni has been considered
as Ni and Cr share similar diffusive properties. Thus, the phase transition is computed by solving
a two-species diffusion problem (i.e., N and Ni).

The diffusion controlled phase transition model directly involves the grain size, which should
therefore be estimated as a function of solidification conditions. Of course, phase-field models
[32], cellular automaton [33] or a combination of both [34] could be used to obtain the detailed
grain structure under additive manufacturing conditions. But such models are time consuming
and it would be counterproductive to estimate only the grain size of such detailed simulations. In
the literature, several other faster approaches have been proposed to determine the grain size, and
some of them have been applied to additive manufacturing conditions [35]. Common approaches
involve nucleation of dendritic equiaxed grains from preexisting impurities [36], whose distribution
is unknown, which limits their applicability within the framework of the present work. A simpler
empirical approach [37] enabling to relate the grain size and the cooling rate during solidification
in the form of a power law is preferred.

This paper aims at developing a fast numerical simulation of temperature and diffusion con-
trolled ferrite to austenite phase transition of DSS obtained by DED in order to determine process
parameters and temperature control systems enabling to reach a targeted microstructure, namely
a rather uniform and balanced ferrite/austenite ratio. The proposed model is validated on experi-
ments, which assess the microstructures and proportion of austenite to ferrite in single bead thick-
ness walls of SAF 2507 super-duplex stainless steel obtained via LMPDED.

The paper is organized as follows. The experimental study is presented in section 2. Theoretical
developments are presented in section 3. The thermal analysis proposed in [20] is used and some
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improvements are proposed. In addition, a fast diffusion-controlled growth model based on semi-
analytical developments is derived. The composition at the austenite/ferrite interface is assumed
to be at equilibrium, therefore an equilibrium computation has been carried out with Thermo-Calc
[38], which is used as inputs for the diffusion model. Results are presented in section 4, and a
comparison between experiments and numerical computation is provided. In addition, the effect
on the ferrite to austenite ratio of preheating the substrate or even control its temperature during
fabrication is investigated in section 5. Conclusive remarks are given in section 6.

2. Materials and method

Two experiments have been conducted on SAF 2507 DSS walls built via DED using a BeAM
Mobile-004 machine equipped with a Itterbium YLR fibre laser (1070 nm wavelength) and a 500 W
maximum power output. The walls were constructed using a powder feedstock of SAF 2507 DSS
made by Sandvik, with a 77.6 µm average powder particle diameter and 98.4% of particles in the
range of 45-99 µm. The composition was verified by Sandvik and corresponded to the SAF 2507 DSS
norms and a scanning electronic microscope characterization of powder is provided in figure 2. The
nominal powder composition is given in table 1.

Table 1: Nominal DSS Alloy Composition SAF 2507 DSS in wt%

Fe Ni Cr Mo Mn N C Si P Cu S
Balance 7 25 4 1.2 0.285 0.03 0.8 0.035 0.5 0.02

Figure 2: SEM observation of the powder.

The two walls were built to single bead thickness. No dwell time was applied and the printing
direction alternated between layers. The printing was carried out using the DSS powder starting
on a 316 austenitic stainless steel build platform. The length of the wall was set to 50 mm along
the print direction X . The height was controlled by the increment between layers (0.16 mm) along
the build direction Z, and the number of layers, which was adjusted to achieve around 16 mm of
wall height from the substrate (100 layers). The printing speed was 2000 mm.min⁻¹, with 7.1 g/min
powder flow, and 225 or 250 W laser power for experiment 1 and 2 respectively. All process
parameters are listed in table 2. These process parameters have been selected based on previous
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computations and experiments. In particular the fabrication is stopped after 100 layers to avoid
buckling [22], and the substrate thickness is chosen so that no significant distortions take place.
The laser speed, scanning strategy, dwell time and laser powers are chosen so that the accumulated
heat enables to transform enough austenite [20].

Table 2: Simulation parameters

Number of layers Nlay (-) 100
Substrate thickness hsub (mm) 5
Initial substrate temperature T 0

sub (K) ∼300
Length of wall L (mm) 50
Powder flow Qflow (g.min−1) 7.1
Layer height hz (µm) 160
Layer thickness hy (µm) 650
Laser beam radius Rbeam (µm) 338
Laser beam speed Vbeam (mm.min−1) 2000
Dwell time tdwell (s) 0
Laser beam power Pbeam (W) 250 (resp. 225)

The printed walls were then cut along the plane perpendicular to the print direction to extract
cross section samples. The section taken from the as-printed duplex steel wall is illustrated in
figure 3. The red highlighted area represents the surface area where the microstructure is analysed.
These samples were then set in conducting epoxy resin and polished. Polishing was carried out
using grinding paper down to P4000 (5 µm), then diamond paste polishing with 3 µm, followed by
1 µm. The final polishing step consisted of ion polishing using 6 kEV, 6 rpm and an incident angle
of 6 degrees. The microstructures of the samples were analysed in a scanning electron microscope
(SEM) using electron backscatter diffraction (EBSD) in a Quanta 600 with a detector which enables
maximum frame rate of 3000 Hz.

316L build platform

Cross section
for EBSD

at mid-length

Build direction

Print direction

Thin-walled structure

Normal
direction

Figure 3: Illustration of the section of the wall, with the EBSD map area highlighted in red.
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3. Theory

3.1. Temperature field computation
The computation of the temperature field relies on the assumption that for single bead structures,

heat fluxes along the print direction are negligible with respect to the build and normal directions.
Based on this assumption a numerical strategy has been established in [20] based on analytical
solutions of successive 2D multilayer composites heat conduction problems. Three improvements
are proposed in this contribution to better capture the δ → γ phase transition. First, the deposition
temperature denoted by Tdep is a parameter corresponding to the melt pool temperature, and has
been calibrated for specific process parameters. In this contribution, since two experiments have
been performed with two different laser power, the deposition temperature is approximated as in
[22] by the following analytical form [39]:

Tdep = I η Rbeam√
2πλliq

arctan


√

8 Dliqtbeam

Rbeam

 (1)

Where Rbeam is the laser beam radius defined as two standard deviations of the Gaussian laser
distribution, λliq and Dliq are respectively the thermal conductivity and diffusivity of the liquid
metal, I = 2 Pbeam/(πR2

beam) is the laser intensity, η is the absorptivity of the powder, and tbeam =√
2 Rbeam/Vbeam with Vbeam the laser beam velocity.

The second improvement is related to the latent heat of fusion. Indeed, the latent heat of fusion
was taken into account in [20] by interpolating the liquid to solid phase transition rate on a series
of time decreasing exponential functions. However, the heat source due to the phase transition
does not start immediately after the deposition of the molten metal, but only when the temperature
reaches the liquidus temperature Tliq. This delay being difficult to capture with time decreasing
exponential functions, the heat source was applied at t = 0 directly when the molten metal was
deposited. If this approximation is acceptable to capture the temperature kinetics of the solid ma-
terial, the cooling rate during solidification cannot be estimated accurately. As detailed in the
following, the studied δ → γ phase transition depends on the grain size of the solidified δ phase,
which highly depends on the cooling rate during solidification. Therefore, the approach proposed
in [20] has been improved to correctly address the cooling rates during solidification. To do so, a
new initial condition is set at t = tliq when T = Tliq (where t denotes the time and T the computed
temperature), and the heat source due liquid to solid phase transition is applied.

The third improvement is related to the build platform temperature, which has a significant
impact on the temperature kinetics. The substrate temperature was assumed to be constant and
homogeneous during the fabrication of each layer, which is acceptable after a certain number of
layers when the laser is sufficiently far from the substrate, but rather inaccurate for the first layers.
To better capture the non-uniform distribution of phase fraction along the build direction, a better
estimation of the substrate temperature is proposed in this paper by solving the following non-
uniform 1D heat conduction problem:

∂T n
sub

∂t
(Z, t) − Dsub

∂T n
sub

∂Z2 (Z, t) = 0 (2)
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Where T n
sub is the substrate temperature during deposition of the n-th layer, t the time, Z the spatial

coordinate along the print direction, and Dsub (m2.s−1) the substrate thermal diffusivity. Boundary
conditions read as convection conditions:

−λsub
∂T n

sub
∂Z

(
hsub

2
, t

)
= Hbuild

(
T n

sub

(
hsub

2
, t

)
− T n

build

)

λsub
∂T n

sub
∂Z

(
−hsub

2
, t

)
= Hplate

(
T n

sub

(
−hsub

2
, t

)
− Tplate

) (3)

where λsub (W.m−1.K−1) is the thermal conductivity of the substrate, hsub its thickness, T n
build is

the average temperature of the bottom first layer of the part during the deposition of the n-th layer,
Tplate is the temperature of the plate beneath the substrate, and Hbuild and Hplate (W.m−2.K−1)
are the heat transfer coefficients respectively between the part and the top surface of the substrate,
and between the bottom surface of the substrate and the plate underneath. In addition the initial
condition reads:

Tsub(Z, t = 0) = T n−1
sub (Z, tn−1) (4)

where T n−1
sub (Z, tn−1) is the temperature of the substrate at the end of the previous layer deposition.

The diffusion equation (2) with boundary conditions (3) and initial condition (4) is solved analyti-
cally in Appendix A. It should be noted that this approach is only meant to capture the average heat
extracted from the part by the substrate, and crude assumptions have been made by neglecting heat
flow in the substrate plane for instance. A better way to capture the substrate temperature would
have been to add a thermocouple.

3.2. Diffusion controlled growth of austenite
The phase transition is computed by solving a two-species diffusion problem. First the phase

transition is controlled by the fast diffusion of N between 1602-1587 K, and then the phase transition
is controlled by slower diffusion of Ni for lower temperatures. However, it should be noted that the
diffusion of both N and Ni should be computed simultaneously so that the Ni concentration profile
is estimated at 1587 K when Ni diffusion starts to control the phase transition. Since there is a
large number of different layers subjected to thermal cycling, short computation time is obtained
by developing a numerical strategy relying on analytical solutions of the diffusion equation. The
proposed approach consists in solving the same diffusion problem as in [29–31] (i.e., mass balance
in the grain and equilibrium at the δ/γ interface) in a 1D finite domain (i.e., sphere, cylinder or
slab). However, the diffusion equation is highly non-linear due to the mobile δ/γ interface, and
temperature dependant diffusivity and equilibrium phase fractions. To overcome this difficulty, a
general analytical solution is derived for fixed δ/γ interface at constant temperature. Therefore, to
correctly follow the phase transition evolution, a time discretization is introduced and the analytical
solution is successively applied only during short time increments, which is consistent with the
proposed assumptions (i.e., fixed δ/γ interface at constant temperature). In addition to temperature,
the δ/γ interface is updated at the end of each time step based on the mass balance equation.
Moreover, at each time step, a new initial condition is prescribed based on the solution concentration
profile at the end of the previous time step. Of course, since between two successive time steps
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the δ/γ interface is updated, the solution concentration profile is adapted to define the new initial
condition in order 1) to be consistent with the new interface position and 2) to ensure that the total
mass of the alloying element is unchanged.

The temperature dependant equilibrium concentrations of the alloying element in the δ and γ
phases are respectively denoted by cδ

eq(T ) and cγ
eq(T ) (where T (K) is the time dependent tem-

perature). Moreover w(t) (m) is the time dependant austenite thickness. The proposed strategy
involves solving the following problem at each time step (indexed by k). The second Fick’s law
reads for 1D domains, ∀t ∈ [tk, tk+1] (where tk is the time at the beginning of the k-th time step
and tk+1 = tk + ∆tk where ∆tk is the time increment):

∂cδ
k

∂t
(x, t) − Dδ

k

xq

∂

∂x

(
xq ∂cδ

k

∂x
(x, t)

)
= 0 if 0 ≤ x ≤ R − wk

∂cγ
k

∂t
(x, t) − Dγ

k

xq

∂

∂x

(
xq ∂cγ

k

∂x k
(x, t)

)
= 0 if R − wk ≤ x ≤ R

(5)

Where for the time step k, cδ
k(x, t) and cγ

k(x, t) are the concentration profiles of the considered
alloying element (i.e., N and Ni) in the δ and γ phases respectively, Dδ

k and Dγ
k (m2.s−1) denote the

diffusivity in the δ and γ phases respectively, wk = w(tk) (m) is the austenite thickness, x denotes
the spatial coordinate, and q = 0, 1, 2 for slab, cylinder and sphere respectively.

Boundary conditions read, ∀t ∈ [tk, tk+1]:

(a)


∂cδ

k

∂x
(x = 0, t) = 0

∂cγ
k

∂x
(x = R, t) = 0

(b)
{

cδ
k(x = R − wk, t) = cδ

eq,k

cγ
k(x = R − wk, t) = cγ

eq,k

(6)

It should be noted that wk, Dδ
k, Dγ

k , cδ
eq,k, and cγ

eq,k are assumed to be constant in [tk, tk+1], and are
only updated at the end of the time step. Equation (6) (a) corresponds to mass conservation in the
grain (i.e., no mass transfer outside the grain), and (6) (b) corresponds to the equilibrium of the
δ/γ interface.

The initial concentration profiles in the δ and γ phases are respectively denoted by cδ
ini,k(x) and

cγ
ini,k(x), hence: {

cδ
k(x, t = tk) = cδ

ini,k(x) if 0 ≤ x ≤ R − wk

cγ
k(x, t = tk) = cγ

ini,k(x) if R − wk ≤ x ≤ R
(7)

At the beginning of diffusion (i.e., for the first time step k = 1 at T = 1602 K according to
the ThermoCalc computation), the initial concentration profile of N is assumed to be uniform and
equal to the bulk concentration in the δ phase, i.e., cδ

ini,1(x) = 0.29wt% according to table 1. In
addition, a nucleation thickness of the γ layer is postulated and denoted by wγ

ini, hence w1 = wγ
ini.

The dimensionless normalized mass of N outside the ferrite bulk at 1602 K is extracted from the
ThermoCalc computation and reads mγ

eq,N = 1.598 × 10−3 (g of N per g of compound), which is
entirely affected to the nucleated layer of austenite, which reads cγ

ini,1(x) = mγ
eq,N R/wγ

ini, where R
is the average equivalent grain radius. Furthermore, since Ni diffuses much slower, it is assumed
that the initial concentration profile of Ni is uniform and equal to the bulk concentration in both
the δ and γ phases, i.e., cδ

ini,1(x) = cδ
ini,1(x) = 7wt% according to table 1.
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For following time steps (i.e., k ≥ 2) the initial concentration profile is based on the concen-
tration at the end of the previous time step, which reads:

cδ
ini,k(x) =

cδ
k−1

(
Λδ

k x, t = tk

)
Λδ

k

if 0 ≤ x ≤ R − wk

cγ
ini,k(x) =

cγ
k−1 (Λγ

k x + Γγ
k, t = tk)

Λγ
k

if R − wk ≤ x ≤ R

(8)

where: 
Λδ

k = R − wk−1

R − wk

Λγ
k = wk−1

wk

and Γγ
k = R

(
wk − wk−1

wk

) (9)

Where coefficients Λδ
k, Λγ

k and Γγ
k have been introduced to accommodate the update of the austenite

thickness wk−1 → wk, and to ensure that the total mass of the alloying element in the grain is
conserved. The analytical solution of (5) with boundary conditions (6) and initial condition (7)
is derived in details in Appendix B. Even though grains or sub-structures from which austenite is
forming are close to spheres or cylinders, the analytical solution has been found to be much faster
for slabs. Thus, the solution for slabs has been used in practise and the slab size has been adjusted
to correspond to an equivalent sphere as detailed in Appendix B.

The update of the austenite thickness is obtained from mass balance, which reads:

ẇ(t) = Dδ(T (t))∂cδ

∂x
(R − w(t), t) − Dγ(T (t))∂cγ

∂x
(R − w(t), t) (10)

Thus, the update is approximated as follows:

wk = wk−1 + Dδ
k−1

∫ tk

tk−1

∂cδ
k−1

∂x
(R − wk−1, t)dt − Dγ

k−1

∫ tk

tk−1

∂cγ
k−1

∂x
(R − wk−1, t)dt (11)

Where integrals are calculated analytically as detailed in Appendix B.

4. Results and discussion

4.1. Equilibrium computation
Phase equilibria for 2507 duplex steel as a function of temperature were calculated using Thermo-

Calc TCFE9 database using system conditions: pressure 10⁵ Pa, system size 1 mole, alloy compo-
sition according to table 1. The results of this equilibrium calculations are shown in figure 4. It
provides the equilibrium concentration of alloying elements at different temperatures for the nu-
merical simulation of solid-solid phase transformations. Starting from 1602 K, the top of the δ + γ
phase region, as the temperature falls the equilibrium fraction of austenite increases and eventually
becomes the majority phase (the 50-50 inflexion point is near 1400 K).
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Figure 4: Diagram of phase fractions vs temperature for equilibria calculations using Thermo-Calc [38].

4.2. Experimental results
The cross section taken from the as-printed duplex steel wall is illustrated in figure 3. The red

highlighted area represents the surface area analysed by EBSD. In figure 5 (a) one can observe the
distribution and form of austenite (red) and ferrite (blue) phases. Since super DSS is expected to
solidify initially as ferrite, the distribution of austenite is mostly located along prior ferrite-ferrite
GBs. Subsequent austenite growth also occurs into the existing grains of the ferrite matrix. The
ferrite only EBSD inverse pole figure map of figure 5 (b) illustrates the morphology of the ferrite
grains. The texture of these ferrite grains is analysed using pole figures in figure 6 which shows
that in DSS the epitaxial ferrite grain growth follows predominantly the [100] direction [40]. The
EBSD map can be broken down into 5 areas from left to right. One can observe that the 1-st and
5-th areas near the surface of the wall present negligible texture with equiaxed grains. In the second
and fourth sections the epitaxial grains grow at an angle of approximately 35-45 degrees towards
the centre following the [100] direction. Right in the middle the grain growth is no longer inclined
with respect to the surface to the left or right, but rather towards the build direction (out of the
page).

The grain size of the equiaxed grains within the first 100 µm of the wall surface is of the order
of 10 µm. One expects to observe relatively small grains in duplex steel because austenite formed
at the ferrite GBs inhibits the usual coarsening of ferrite grains by ferrite-ferrite GB mobility. The
longer epitaxial grains that grow in from the wall surface show a wider range of sizes: they can grow
even to 100 µm in length, but are on average 50 µm long, and 20 µm wide. An accurate measure of
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Figure 5: Microstructure of the cross-section for 250 W laser power: a) EBSD phase map b) inverse pole figure map.

the original ferrite grain size is relatively difficult due to the presence of a high fraction of austenite.
The phase map in figure 5 (a) shows how the austenite grows in the matrix of ferrite mostly along
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Figure 6: [100] Pole figures of ferrite phase giving the textures of AM wall as a function of depth from the wall surface,
250 W

the prior ferrite GBs. For the small equiaxed ferrite grains near the surface, the austenite forms
exclusively along the GBs. For larger epitaxial grains, where less grain boundary area is available,
the austenite grows also partly into the grains as parallel dendrites.These vary in their spacing, but
are generally of the order of 10 µm.

An analysis of austenite phase fraction as a function of distance from the substrate was made
in figure 7 by extracting row by row the data from the phase map in figure 5. On this scatter plot,
in the initial stages of fabrication, heat can escape quickly through the proximity of the relatively
large substrate. This means cooling rates are faster, and less time is spent at high temperatures,
limiting austenite growth in these initial DSS layers. As the fabrication progresses, and the layers
are printed further from the substrate, the fraction of austenite increases (relatively more red phase
is visible in figure 5). Finally, the last few layers at the end of the printing process contain less
austenite (dip in the curve). There is a lack of subsequent layers reheating the structure, meaning
less austenite formed.

4.3. Numerical results and comparison with experiments
Material parameters used in the simulation are detailed. Heat transfer coefficients (HTC) have

been estimated in [20] by comparing numerical results and infrared pyrometer measurements.
12
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Figure 7: Graph of austenite phase fraction of the duplex printed wall as a function of distance from the substrate

However, the HTC between the build platform and the machine plate underneath has been de-
creased as the build platform was not clamped to the machine plate therefore decreasing the HTC.

The grain size after solidification should also be estimated. The grain size is computed as a
function of the cooling rate (instead of using a single measured value for all the layers) to take into
account these opposite effects on phase transition kinetics for heterogeneous cooling rates along
the height of the structure. Within the framework of fast simulation a simple empirical approach
[37] enables to relate the grain size and the cooling rate during solidification in the form of a power
law:

R = R0

(
χ

Ṫsol

)n

(12)

Where χ and n are calibration coefficients, and Ṫsol is the average cooling rate during solidification.
This empirical formula has been calibrated for ferritic solidification in [41] for cooling rates ranging
from 50 to 104 K.s−1. Since for the 2507 duplex steel, the primary solidification is fully ferritic,
the estimate reported in [41] (i.e., R0=1 µm, χ = 3.2 × 106 K.s−1 and n = 0.4) has been used as
a basis for the present study. From the EBSD map in figure 5, the average grain radius is roughly
estimated to around 10 µm so that the estimate is slightly modified to χ = 2.6 × 106 K.s−1.

In addition, thermal properties of 2507 DSS can be estimated as a function of temperature
from experimental data as reported in [42]. However, to the best of our knowledge there is no mea-
surement of thermal properties of liquid 2507 DSS. These properties are needed in (1) to estimate
the deposition temperature.Thermal conductivity and diffusivity of the liquid phase are chosen as
twice the values of the solid state. The resulting value for the thermal diffusivity of the liquid is

13



consistent with very low specific heat measured at high temperature in [42].
Furthermore, diffusivity coefficients of alloying elements are classically given in the form of

Arrhenius laws:
D = D0 exp

(
− Q

R T

)
(13)

Where R (J.mol−1.K−1) is the gas constant, D0 (m2.s−1) the pre-factor and Q (J.mol−1) the ac-
tivation energy. Pre-exponential factors and activation energies are extracted from the literature.
Diffusion properties of N in the δ and γ phases of a DSS have been measured between 350 to
500 ◦C in [43] and at 1200 ◦C in [44]. A fit of (13) on these data gives D0 = 2 × 10−6 m2.s−1

and Q = 117000 J.mol−1, and are assumed to be identical in both δ and γ phases. Furthermore,
diffusion properties of Ni have been collected in [45] for various Cr-Fe-Ni alloys, and a para-
metric formula has been fitted on the experimental data. Using this fitted formula and chemical
composition in table 1 one obtains for Ni diffusion parameters: D0 = 420 × 10−6 m2.s−1 and
Q = 218000 J.mol−1 assumed to be identical for both δ and γ phases. All material properties used
in the proposed simulation are listed in table 3.

Table 3: Material parameters

Liquidus temperature Tliq (K) 1738
Solidus temperature Tsol (K) 1677
Powder absorptivity η (-) 0.3
Thermal conductivity of the liquid metal λliq (W.m−1.K−1) 30
Thermal diffusivity of the liquid metal Dliq (m2.s−1) 13×10−6

Specific heat of liquid cp,liq (J.kg−1.K−1) 290
Thermal conductivity of the solid metal λsol (W.m−1.K−1) 15
Thermal diffusivity of the solid metal Dsol (m2.s−1) 6.5×10−6

Specific heat of solid cp,sol (J.kg−1.K−1) 406
Density ρ (kg.m−3) 7830
Latent heat of fusion Lf (J.g−1) 300
Pre-exponential factor for N in (13) D0 (m2.s−1) 2×10−6

Activation energy for N in (13) Q (J.mol−1) 11700
Pre-exponential factor for Ni in (13) D0 (m2.s−1) 420×10−6

Activation energy for Ni in (13) Q (J.mol−1) 21800
Reference grain size in (12) R0 (µm) 1
Reference cooling rate in (12) χ (K.s−1) 2.6 × 106

Exponent in (12) n (-) 0.4
HTC part/air Hair (W.m−2.K−1) 15
HTC part/build platform Hbuild (W.m−2.K−1) 20000
HTC build platform/machine plate Hplate (W.m−2.K−1) 500

The Thermo-Calc computation provides the equilibrium concentrations of the different alloying
elements involved in the diffusion problem, which are presented in figure 8.

14
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Figure 8: Equilibrium concentration of Ni and N in mol%.

The proposed thermal analysis and phase transition model are applied and compared to the
tested experimental conditions. The temperature history can be extracted at any location in each
layer. In this study to avoid to deal with large amounts of data, only the middle of each layer is
considered at the location where the samples have been extracted. The temperature kinetics of
the 1-st layer is presented in figure 9 for both tested conditions (i.e., 225 and 250 W laser power).
Temperature cycles clearly show that the temperature range where the δ → γ phase transition
occur is reached several times. Diffusion profiles of Ni are presented in figure 10 for the first layer
at different times in order to understand the diffusion mechanisms. The initial γ layer is fixed to 5%
of the total cell size R in order to avoid extremely thin time discretization if nearly zero thickness
were chosen. (Several computations with different initial thicknesses show that 5% leads to similar
results with much coarser time discretization than smaller initial austenite thicknesses). As already
mentioned, the initial Ni concentration is uniform and equal to the bulk concentration 6.61mol%
(i.e., 7wt%) as listed in table 1. When the phase transition is assisted by N diffusion (i.e., red dot
lines in figure 10), Ni atoms diffuse from ferrite to austenite as the equilibrium concentration in the
γ side cγ

eq is larger than the initial bulk concentration. As a result, when the phase transition starts
to be limited by Ni diffusion (i.e., red solid lines in figure 10), the Ni concentration in the austenite
layer is around 8 to 8.5mol%, although the equilibrium concentration cγ

eq decreases. This results
in an additional driving force to move the δ/γ interface in the direction of austenite thickening,
as detailed in (10). In the δ side, when the phase transition is assisted either by N diffusion or by
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Ni diffusion (i.e., blue dot and solid lines in figure 10), the equilibrium concentration of Ni cδ
eq is

lower than the initial bulk concentration, resulting in a driving force to move the δ/γ interface in
the direction of the austenite thickening.
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Figure 9: Computed temperature cycles (left) and magnification (right) (1st layer, 250 W and 225 W).

A comparison between measured and computed γ phase fraction is presented in figure 11 as a
function of the position with respect to the build platform, where raw data presented in figure 7 have
been averaged to obtain a single value by layer as for the computation. A reasonable agreement is
observed for both the experiments corresponding to different laser powers (i.e., 225 and 250 W).
Lower power results in lower melt pool temperature and higher cooling rates, which tend to reduce
the amount of the product γ phase. However, this effect is mitigated by the fact that higher cooling
rates leads to finer grain structure, which promote faster phase transition. This explains the fact
that the difference between the measured phase fractions of both experiments is relatively small.

Heterogeneous phase fraction profiles are obtained according to the history of the temperature
field. The first layers cool down faster because of the influence of the build platform acting as
heat sink and resulting in lower γ phase fractions. Cooling rates decrease with the distance to the
build platform because the melt pool is further and further from the heat sink whose temperature
increases with time. This structural effect tends to a nearly steady state after more than half of the
total number of layers in the tested conditions.

Furthermore, the last few layers undergo less thermal cycling than previous layers due to the
interruption of fabrication, which results in a significant decrease of the transformed phase fraction.
Indeed, thermal cycling plays a significant role as shown in figure 12.

5. Numerical investigation for controlling phase distribution

In section 4.3 the influence of laser power, other things being equal, has been demonstrated. In
this section, the effect of controlling the substrate temperature on the phase transition distribution is
numerically investigated in order to reach a more uniform and balanced δ/γ phase ratio. Excepted
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for the tested parameter all process parameters are identical to those listed in table 2 (with laser
power Pbeam set to 250 W).

First the effect of preheating the build platform is investigated. That is to say that the initial
temperature of the build platform is prescribed, and then when the fabrication starts, the heating
device is shut down so that the build platform temperature naturally evolves with the laser input.

Three different initial build platform temperatures have been tested (300 K, which is the ref-
erence computation without preheating, 600 K and 800 K). Resulting γ phase fraction profiles
are presented in figure 13. Increasing the pre-heating of the build platform, from 300 K (refer-
ence), to 600 K or 800 K results in a corresponding relative increase in austenite phase fraction.
This preheating of the build platform slows cooling rates in the part, this is especially important
in the temperature range where N and Ni diffuse fastest, which explains the observed increases in
austenite phase fraction. In the second half of the part, as the number of layers increases, the local
temperature around the melt pool is less affected by the build platform temperature. This leads to a
stabilising of the austenite phase fraction which approaches the fraction of the reference unheated

17



0 102 4 6 8 12 14 161 3 5 7 9 11 13 15

20

40

10

30

50

15

25

35

45

55

median of measurements
in one layer

computation

+ standard deviation

225 W 250 W

phase fraction (vol%)

Distance from substrate (mm)

- standard deviation

Figure 11: Comparison of measured and computed γ phase fraction for 225 and 250 W.

sample (i.e., 300 K). The principal purpose of preheating the substrate is therefore to try to create
a more uniform phase fraction in order to match the initial phase fraction with the steady state con-
dition towards the end of the part. In order to reach even more uniform phase fraction distribution
in the part, closer to a 50/50 phase ratio, one could imagine a control of the substrate temperature
during fabrication using a heating/cooling device with a control loop. The proposed temperature
control profile here linearly decreases from 1000 K from the first layer to 800 K by the last layer.
This example, as presented in figure 13, shows the most uniform phase fraction distribution of
austenite to ferrite across the whole part and nearest to the targeted 50/50 ratio.

Of course this simple analysis does not replace a proper parametric study for each specific
part. Indeed there is a complex interweaving between process parameters such as laser power and
speed, scanning strategy, dwell time, build platform temperature control etc., and properties of the
build such as the deposition temperature (see. equation (1)), layer height and thickness (as reported
for instance in [46]), grain size, all having a significant influence on the phase transition kinetics.
However, the tools proposed in this contribution enables to reach sufficiently short computation
time to be able to optimize the phase fraction ratio in DSS parts.

6. Conclusion

In this paper an experimental study enabled to characterise the microstructure (grain morphol-
ogy and austenite to ferrite ratio) in a super duplex stainless steel (i.e., SAF-2507) obtained by
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directed energy deposition additive manufacturing. The thermal history in this fabrication process
being rather complex, heterogeneous phase fraction distributions have been observed, and higher
power is associated with higher austenite phase fraction. After around 50 layers phase fraction
profiles tend to stabilize to a ferrite to austenite phase ratio near 55/45 for 250 W and 60/40 for
225 W.

Since such duplex stainless steel alloys necessitate ferrite to austenite phase ratio near 50/50 in
the entire part, a fast numerical approach (temperature and diffusion controlled phase transition)
has been developed to optimize process parameters in order to reach a more uniform phase frac-
tion distribution, which necessitated to impose a temperature profile to the build platform linearly
decreasing from 1000 K for the first layer to 800 K for the last layer. Numerical results have been
compared to the experiments and a reasonable agreement has been observed. In addition, the model
has then been tested to determine suitable temperature control of the build platform in order to reach
the desired phase fraction distribution. In addition, the proposed simulation tool is sufficiently fast
to consider parametric studies or optimization loops in order to facilitate additive manufacturing
of super duplex stainless steels and other alloys undergoing diffusion controlled solid state phase
transitions.
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Appendix A. Analytical solution of the substrate temperature

In this section the 1D heat conduction problem (2) with boundary conditions (3) and initial
condition (4) is solved analytically. Separation of variables enables to write the solution in the
form:

T n
sub(Z, t) =

N∑
j=1

(
T n

j cos
(

Z

Zj

)
+ T̃ n

j sin
(

Z

Zj

))
exp

(
−Dsub

Z2
j

t

)
+ T n

1
Z

hsub
+ T n

0 (A.1)

where T n
j , T n

1 , T n
0 are unknown coefficients to be determined. The boundary conditions (3) com-

bined with (A.1) lead to:

(
T n

1
T n

0

)
= −

 −
(

λsub
hsub

+ Hbuild
2

)
−Hbuild(

λsub
hsub

+ Hplate
2

)
−Hplate

−1

.

(
Hbuild T n

build
Hplate Tplate

)
(A.2)

and for all 1 ≤ j ≤ N : (
A+

j −B+
j

A−
j B−

j

)
.

(
T n

j

T̃ n
j

)
=
(

0
0

)
(A.3)
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where: 

A+
j = λsub

Zj

sin
(
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2Zj
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(
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2Zj
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Zj

cos
(

hsub

2Zj

)
+ Hplate sin
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hsub
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(A.4)

Therefore, Zj are defined as successive positive roots of A+
j B−

j + A−
j B+

j = 0, and the following
relation holds: T̃ n

j = (A+
j /B+

j )T n
j . Thus the last coefficients to determine are T n

j . The initial
condition (4) involves the substrate temperature at the end of the previous layer deposition, which
reads:

T n−1
sub (Z, tn−1) =

N∑
j=1

T n−1
j fj

(
Z

Zj

)
exp

(
−Dsub

Z2
j

tn−1
)

+ T n−1
1

Z

hsub
+ T n−1

0 (A.5)

where following eigenfunctions have been defined:

fj : y 7→
(

cos(y) +
A+

j

B+
j

sin(y)
)

(A.6)

Because of orthogonality of the eigenfunctions fj with respect to the inner product (A.8) one ob-
tains:

Tj = T n−1
j exp

(
−Dsub

Z2
j

tn−1
)

+ T n−1
1 − T n

1
hsub

〈Z, fj〉
〈fj, fj〉

+ (T n−1
0 − T n

0 ) 〈1, fj〉
〈fj, fj〉

(A.7)

where the usual inner product has been defined:

〈f, g〉 =
∫ hsub

2

− hsub
2

f(Z) g(Z)dZ (A.8)

Appendix B. Analytical solution of the diffusion problem

In this section the analytical solution of (5) subjected to boundary conditions (6) and initial
condition (7) is derived for slabs, cylinders and sphere (i.e., for q = 0, 1, 2). The equation is solved
by separation of variables and the solution reads:

cδ
k(x, t) =

N∑
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cδ
j,k f
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x

xδ
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(B.1)
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where cδ
j,k, cγ

j,k, c̃γ
j,k are unknown coefficients, xδ

j,k, xγ
j,k are the eigenvalues to be determined, and f

and g are the following eigenfunctions:

q = 0 q = 1 q = 2

f(x) cos(x) J0(x) sin(x)
x

g(x) sin(x) Y0(x) cos(x)
x

(B.2)

where Jp and Yp denote the p-th order Bessel functions of the first and second kind respectively.
Eigenvalues xδ

j,k, xγ
j,k are determined by using boundary conditions (6), which lead to:

f

(
R − wk

xδ
j,k

)
= 0 and


f

(
R − wk

xγ
j,k

)
g

(
R − wk

xγ
j,k

)

f ′
(

R

xγ
j,k

)
g′
(

R

xγ
j,k

)
 .

 cγ
j,k

c̃γ
j,k

 =

 0

0

 (B.3)

hence non trivial solution are obtained by computing the roots of the matrix determinant in (B.3):
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R
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and:

c̃γ
j,k = −

f
(

R−wk

xγ
j,k

)
g
(

R−wk

xγ
j,k

) cγ
j,k (B.5)

Therefore the eigenvalues read:

q = 0 q = 1 q = 2

xδ
j,k

R − wk
π
2 + j π

R − wk

ζj

R − wk

j π

xγ
j,k

wk
π
2 + j π

wk

ξj

wk

χj,k

(B.6)

where ζj (1 ≤ j ≤ N ) are the positive successive zero of the 0-order Bessel function of the first
kind J0, which are known, χj,k are the positive successive roots of χ 7→ (χ − (wk/R)tan(χ)), and
ξj,k are the positive successive roots of ξ 7→ T1(R/wk ξ) − T0((R/wk − 1) ξ) (where Tp = Jp/Yp).
Therefore, it is clear from (B.6) that the eigenvalues xδ

j,k are fairly easy to compute for each time step
k as explicit formulae have been obtained. However, for q = 1, 2 the eigenvalues xγ

j,k necessitate
to numerically solve non-linear equations that depend on the time step k. Thus, the computation
cost is much higher if there is a large number of time steps. Fortunately for slabs (i.e., q = 0) the
eigenvalues xγ

j,k are also given explicitly, which enables to reach very short computation times.
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Unknown coefficients cδ
j,k, cγ

j,k, c̃γ
j,k are determined by applying the initial condition (7). Con-

sidering the following orthogonality relations:
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where the inner products are defined as follows:
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(B.8)

the coefficients read: 
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(B.9)

Using (8) along with (B.1) it is clear that cδ
ini,k, cγ

ini,k are given analytically and involves the same
eigenfunctions f and g, which enables to compute analytically the inner products in (B.9).

The update of the austenite thickness given in (11) reads:
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