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Abstract: This work focuses on the effects of inclusion proximity on the elastic behavior of dilute
matrix-inclusion composites. Rigid or soft monodisperse spherical inclusions are considered with
moderate volume fractions. To conduct this study, Representative Volume Elements (RVE) with
an effective local minimum distance between inclusions varying between the sphere’s radius and
one-tenth of the radius are built. Numerical finite element calculations on the RVE are performed.
The obtained homogenized elastic properties, as well as the phase stress moments (first and second),
are compared to Mori–Tanaka estimates, which are well established for this kind of composite. The
behavior of local fields (stresses) in the microstructure with respect to inclusion proximity is also
analyzed. It follows that the effective properties and phase stress moments converge asymptotically
to the Mori–Tanaka estimates when the minimal distance between spheres increases. The asymptote
seems to be reached around a distance equal to the sphere’s radius. Effective and phase behaviors
show a deviation that can achieve and even exceed (for the second moments) ten percent when the
inclusions are close. The impact of the inclusions’ proximities is even more important on local stress
fields. The maximum stress values (hydrostatic or equivalent) can be more than twice as high locally.

Keywords: heterogeneous materials; dilute matrix inclusion; proximity effect; homogenization; first
and second moments; local behavior

MSC: 35B27; 74Q05; 74Q20; 74B05; 74A40

1. Introduction

The simulation of the mechanical behavior of heterogeneous materials is generally
based on the so-called homogenization methods. Several main types of approaches can be
distinguished. A recent review can be found in [1].

Analytical homogenization approaches [2–4] aim to build closed-form solutions of the
mechanical behavior of the equivalent homogeneous medium. These approaches have the
advantage of representing the effect of the microstructural parameters at the macroscopic
level without having to mesh the microstructure, which represents a significant gain in the
calculation time. However, these approximations are available only for specific microstruc-
tures and do not provide local information, but provide at best, average estimates (first and
second moments) by phase for the so-called “mean field” approaches [3,5]. Moreover, they
require significant (sometimes impossible) developments for certain complex nonlinear
behaviors (creep, cracking, etc.) [6].

In contrast, computational homogenization approaches [7,8] are based on obtaining
the overall macroscopic response on the fly from full-field calculations on the so-called
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Representative Volume Elements (RVE) of the heterogeneous microstructure. These ap-
proaches thus provide averaged or complete information on the local mechanical state
of the microstructure. No constitutive law at the macroscopic scale is necessary, which
is particularly useful when simulations have to be carried out on situations (geometries,
behaviors, etc.) for which no analytical homogenized law is available. These approaches are
therefore considered reference approaches. However, local calculations on the RVE must be
carried out at each integration point of the macroscopic mesh. This makes these multiscale
methods expensive in computational time, even with the current computing power.

To reduce the computational time of the computational homogenization methods
while representing local fields, hybrid approaches based on model order-reduction tech-
niques [9–11] have been developed. Local micromechanical problems of reduced order
(few degrees of freedom) are then solved at each integration point of the macroscopic
calculation. The basis functions of these local problems are obtained from preliminary
full-field numerical training on the RVE. However, these different alternatives require that
new basis functions for any new microstructure or behavior be defined.

We place ourselves in the framework of the homogenization of random two-phase com-
posites with monodisperse spherical inclusions of moderate volume fractions ( fv ∼ 10–30 %).
This contribution focuses on studying the influence of the minimum distance between non-
overlapping inclusions on the behavior of the heterogeneous material. Although studies on
inclusion overlapping [12,13] have shown an impact on homogenized behaviors, to the best
of our knowledge, only a very few recent studies [14,15] have investigated the proximity
effect (without overlap) on the effective properties. These authors analyzed the effective
behavior (obtained from the volume average of the RVE calculations) with respect to the
different mean minimum distances between the nearest-neighbor particles. A tendency
to material stiffening (resp. softening) with respect to the mean distance between rigid
(resp. soft) inclusions was observed. However, the obtained deviations remain of a few
percent on the effective properties for a range of inclusion volume fractions between 10 %
and 50 %. The authors also compared their finite element simulations with the Morphologi-
cally Representative Pattern (MRP) approach [16], an analytical homogenization method
that aims to take into account an assembly of different patterns inside the microstructure.
The mean minimum distance between spheres is used to evaluate the weights of two differ-
ent patterns. This approach qualitatively predicts the observed deviation of the effective
behaviors. However, more standard estimators (such as the generalized self-consistent or
Mori–Tanaka estimates) that stay independent of the proximity effect give quantitatively
better results. In [15], the authors initiated a look at local fields with the aim of viewing the
equivalent stress on the RVE. They observed greater local stress where the inclusions are
closer. The inclusions’ stress fields tend to be homogeneous for large distances between
the inclusions, which is in good agreement with the single-inclusion solution in an infinite
matrix [17]. However, no advanced analysis was performed on the effect of inclusion
proximity on local fields. Considering a multiscale framework, it seems important to study
the proximity effect on the local behavior of these microstructures. Indeed, some quantities
of interest can be locally strongly impacted.

In this study, we propose to go further than the work of [14,15] in deeply studying
the effects of proximity inclusions on the phase mean fields and local stresses. Moreover,
as the mean distance parameter does not give precise information about the minimum
distance between inclusions, in this article, the minimum distance is considered the relevant
proximity parameter. To this end, RVE with an effective given minimum distance between
monodisperse inclusions are generated. Here, the term “effective minimum distance”
denotes that at least two spheres are effectively separated in the sampling by a given
minimum distance. We generate various realizations with effective minimum distances
varying between the radius of the spheres and one-tenth of this radius. In order to cover a
large range of applications, different volume fractions of inclusion (13 % and 25 %) and
sphere radii (5 and 10 µm) have also been taken into account. Several scaling ratios (2.5,
5, or 10) are considered to ensure the reliability of the results obtained. Finite-element
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elastostatic computations are performed on the various RVE. The influence of the stiffness
contrast between phases (rigid or soft inclusions) is also looked at. Contrasts varying
between 1/100 and 100 are studied. It should be noted that the cases of porous or infinite
rigid inclusions will return to exacerbate the phenomena shown in this article (see [14]).
Similarly, nonlinear behaviors will also intensify the deviation, as outlined in [18].

Estimates of the effective properties and stresses of the first- and second-order mo-
ments by phase can be obtained using Mori–Tanaka (MT)-type approaches [3,5]. For the
two-phase composite microstructure under consideration, Mori–Tanaka approaches are
widely used as they usually provide accurate estimates of the effective properties. The first-
and second-order moments by phase can also be estimated, which allows access to slightly
more local information. The MT estimates depend on the volume fractions of the inclusions
and the mechanical properties of phases but not the distribution of the inclusions and, in
particular, their proximity. Indeed, these estimates are built considering the heterogeneities
as isolated inclusions in an infinite matrix. This study allows us to determine the practical
minimum distance between inclusions from which MT estimates are valid.

The rest of the article is structured as follows. In Section 2, the generation of RVE
with effective minimal distances between spheres is introduced. In Section 3, Mori–Tanaka
estimates are briefly recalled, as well as some computational homogenized values (apparent
elastic moduli and mean field by phase) derived from the full-field calculations. In Section 4,
the numerical results are presented and analyzed. The effective properties are presented
and analyzed in Section 4.1, the phase mean fields are presented and analyzed in Section 4.2,
and the local stress fields are presented and analyzed in Section 4.3. Finally, Section 5 gives
the main conclusions of this study, as well as some prospects for future work.

2. Generation of Representative Volume Element of Matrix-Inclusion Composite with
an Effective Minimal Distance between Inclusions

This section gives some practical details about the generation of cubic RVE with
monodisperse spherical inclusions with an effective minimal distance (in the sense given in
the Introduction). For details on the notion of RVE, the reader is referred to [19,20].

Cubic RVE of side l including monodisperse spherical inclusions of radius r are under
consideration. The RVE are generated through MEROPE, a software of the PLEIADES
platform [21,22] dedicated to simulations on RVE. This software enables us to obtain a
simple random sampling of spheres with a mechanical contraction algorithm [23] based on
the Random Sequential Addition (RSA) method [24]. A minimum distance between two
spheres denoted by smin is set. Sampling is rejected if the effective minimum distance is
superior to the minimum distance imposed.

The scaling ratio SR is defined by the ratio between the size l of the RVE and the
diameter of the inclusions (SR = l

2r ). Three scaling ratios SR = 2.5, 5, and 10 are considered.
The number of inclusions is chosen to have exactly the same volume fraction of inclusion
fv between the scaling ratios. For each of these ratios, 50, 10, and 5 RVE are generated,
respectively, for each value of smin depending on fv. Indeed, the maximum value of the
packing parameter smin

r is obtained, considering that each sphere is separated by smin:

max(
smin

r
) = 2(C1/3 f−1/3

v − 1) , with C as the compactness factor. (1)

In [15], the authors give an upper bound without consideration of compactness. For the
considered geometry of the RVE, we use the compactness of the body-centered cubic system
C = π

√
3

8 . At fv = 13.4 %, the maximum value for the packing parameter is then 1.4 and RVE
with a minimum (effective) distance between inclusions of smin

r ∈ {0.1; 0.2; 0.4; 0.6; 0.8; 1; 1.2}
have been generated. Figure 1 shows examples of two RVE with extreme smin values at
SR = 10.
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(a) smin = 0.1r (b) smin = 1.2r

Figure 1. Cross-sectional views of RVE mesh for extreme smin values, with close-ups of inclusions at
smin, SR = 10, r = 10µm, fv = 13.4 %.

The COMBS tool [25] based on the SALOME platform [26] is then used to build
periodized RVE from the sphere samples in order to avoid bias in the computation of the
effective properties [27]. The finite-element discretization of the RVE is also performed
using COMBS. A periodic mesh is then obtained. A previous mesh convergence study [28]
showed that quadratic finite elements (rather than linear) have to be used, particularly in
terms of stresses obtained in the inclusionary phase. Moreover, thanks to the isoparametric
finite-element transformation, quadratic elements lead to a better discretization of spherical
shells and then to an accurate mesh approximation of the theoretical (geometric) volume
fraction of inclusions fv with much fewer elements [29]. This approximate volume fraction
is of first-order importance in the determination of effective behavior (see Section 3). The
meshes used in the following process are then composed of ten-node tetrahedral elements.

To guarantee that the mesh is non-degenerated and non-tangled, the minimum number
of elements between two boundaries nmin (between inclusion boundaries or between the
inclusion boundary and RVE boundary) is set to 2. This ensures that there is always a
node in the matrix between two boundaries. It leads to a non-uniform mesh, with greater
mesh refinement between nearby inclusions and in inclusions intersected by boundaries
of the RVE (see Figure 1). In practice, the minimum mesh size is dictated by these cut
inclusions. Thus, the total number of nodes in the mesh only slightly depends on the
minimum distance smin. The minimum mesh size is set to r/200, whereas the maximum
mesh size is chosen to be equal to r. A gradation factor g of 2 is used between elements.
These various values were chosen via a preliminary mesh convergence study, the main
results of which are shown in Table 1. In this table, the variation in the apparent bulk
modulus kapp (defined in Section 3.3) and its standard deviation with respect to the mesh
parameters and number of nodes is reported. We can easily see that this modulus value is
converged with the chosen parameter mentioned above. Other more local values show the
same convergence in the mesh parameters.

Table 1. Mesh convergence of kapp, SR = 2.5, fv = 13.4 %, contrast = 100.

nmin = 2 g = 2

g = 1.15 g = 1.5 g = 2 nmin = 3 nmin = 4

kapp (MPa) 20.916 20.918 20.920 20.914 20.919
Standard deviation of kapp (MPa) 0.461 0.462 0.463 0.468 0.460

Number of nodes 279,000 65,300 32,500 88,900 158,700
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This reliable process of mesh generation, however, leads to a large number of mesh
elements. The average value of the number of nodes obtained per SR is presented in Table 2.
It can be noted that the variation in the number of nodes is consistent with the scaling ratio.

Table 2. Average number of nodes in the mesh and number of samples with inclusion volume fraction
fv = 13.4 % for different scaling ratios SR with r = 10 µm.

SR = 2.5 SR = 5 SR = 10

Number of nodes 30,000 300,000 2,500,000
Number of samples 350 70 35

3. Elastic Properties and Homogenization
3.1. Stiffness Contrasts between Phases

The boundary value problem under consideration is an elastostatic problem, where the
composite is subjected to a macroscopic strain E. Solving this problem at the microscopic
scale consists of determining the fields satisfying the following system of equations in the
RVE denoted by V: 

div σ = 0 in V
σ = C : ε in V

ε(u) =
1
2
(

grad u + (grad u)T) in V

BCs on ∂V

(2)

where C is the fourth-order elasticity tensor and the BCs are determined in order to obtain

〈ε〉 = E (see Section 3.3), where 〈•〉 denotes the geometric mean value:

〈•〉 = 1
|V|

∫
V
• dV (3)

with |V| being the measure of V.
Each phase i is supposed to have linear elastic behavior, where index 1 (resp. 2)

represents the inclusion (resp. matrix) phase. Isotropic behavior is supposed:

σ =
Ei

1 + νi

(
ε +

νi
1− 2νi

trace(ε)Id
)

in each phase i (4)

with Ei being the phase’s Young’s modulus, νi the phase’s Poisson’s ratio, and Id the
second-order identity tensor.

The contrast between phases is adjusted by modifying the mechanical parameters of
the inclusionary phase for the following digital material:

E2 = 20 MPa
E1 = E2 × contrast
ν1 = ν2 = 0.3

(5)

By definition, the bulk modulus k = E
3(1−2ν)

and the shear modulus µ = E
2(1+ν)

have the
same contrast. In this study, soft and rigid inclusions are considered by varying the value
of the contrast parameter in {0.01; 0.1; 10; 100}.
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3.2. Analytical Homogenization—Mori–Tanaka Estimates

The Mori–Tanaka (MT) homogenization method is used to estimate the effective
properties of the matrix-inclusion materials of moderate volume fractions. The following
relationships can be derived (see [5], for example):

kMT = k2 + fv

(
k1 − k2

1 + (1− fv)
k1 − k2

4
3 µ2 + k2

)

µMT = µ2 + fv

(
µ1 − µ2

1 + (1− fv)
µ1 − µ2

µ̃ + µ2

) with µ̃ =
µ2

6
9k2 + 8µ2

k2 + 2µ2
(6)

Like any analytical estimate, this law has a range of uses. In particular, the volume
fraction of inclusions must not be too high [30], typically fv < 40%. It should be noted
that whatever the contrast parameter in Equation (5), the Mori–Tanaka estimate (6) returns
to one of the Hashin–Shtrikman bounds [31]. The Mori–Tanaka approach also makes it
possible to obtain estimates of the phase mean field (first and second moments). This
approach is hence often called the “mean-field” approach.

The nth phase moment of a field, denoted by • in a generic way, is recalled in Equa-
tion (7):

〈•n〉i =
1
|Vi|

∫
Vi

•ndVi (7)

with Vi being the domain occupied by the phase i under consideration and |Vi| its measure.

3.2.1. The First Moment

By considering the infinite relaxation time in [5], the Mori–Tanaka estimate of the
average stress (or stress first moment) in the inclusionary phase is written as

〈σ〉1 = 2µMT b̃dEd + 3kMT b̃mEm Id (8)

where •d and •m denote the deviatoric and spherical part of a tensor, respectively, whereas
〈•〉i denotes the volume average in phase i (cf. Equation (7) applied to σ with n = 1). We
recall that, •m = trace(•)/3, •d = • − •m Id.

The coefficients b̃d and b̃m of the homogenization tensor required in Equation (8) are
given by

b̃d =
µ1

µ2

10
3 µ2 +

5
2 k2

3
2 (1− fv)k2 + ( 3

2 fv + 1) µ1
µ2

k2 +
4
3 (1− fv)µ2 + ( 4

3 fv + 2)µ1
(9)

b̃m = k1

4
3 µ2 + k2

4
3 µ2k̃e + k2k1

with k̃e = fv k1 + (1− fv)k2. (10)

The average stress in the matrix phase is directly deduced from Equation (8) by considering
the relationship

fv〈σ〉1 + (1− fv)〈σ〉2 = Σ, (11)

where Σ is the macroscopic stress on the RVE obtained with the classical formula

Σ = 2µMTEd + 3kMTEm Id. (12)

From the phase mean of the stress tensor, the phase mean hydrostatic (or spherical
part) stress can be directly estimated thanks to the MT model:

〈σm〉i =
1
3

trace(〈σ〉i) ∀i = 1, 2. (13)
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However, the phase mean equivalent (Von Mises) stress cannot be evaluated from the MT
estimates due to the nonlinear terms.

3.2.2. The Second Moment

The MT method offers the possibility to directly derive estimates of the second mo-
ment of the hydrostatic (spherical part) 〈σ2

m〉i and equivalent (Von Mises) stress 〈σ2
eq〉i

(see Equation (7) applied to σm and σeq with n = 2). The equivalent stress (resp. strain) is
obtained from the deviatoric part of the stress (resp. strain) tensor:

σeq =

√
3
2

σd : σd and εeq =

√
2
3

εd : εd

(
Eeq =

√
2
3

Ed : Ed

)
. (14)

The second moment of the hydrostatic and equivalent stress is determined from the corre-
sponding strain:

〈σ2
m〉i = 9k2

i 〈ε2
m〉i , 〈σ2

eq〉i = 9µ2
i 〈ε2

eq〉i (15)

where

〈ε2
eq〉1 =

E2
eq

fv

∂µMT

∂µ1
, 〈ε2

eq〉2 =
1

(1− fv)

(
E2

eq
∂µMT

∂µ2
+ 3E2

m
∂kMT

∂µ2

)
, (16)

〈ε2
m〉1 =

E2
m

fv

∂kMT

∂k1
, 〈ε2

m〉2 =
1

(1− fv)

(
1
3

E2
eq

∂µMT

∂k2
+ E2

m
∂kMT

∂k2

)
, (17)

with the derivation formulas given in Appendix A.

3.3. Computational Homogenization—Full-Field Simulations

The elastostatic problem (2) is solved with Cast3M [32] on the RVE using the following
periodic boundary conditions:

u(x) = E · x + v(x) on ∂V, (18)

with v being an l-periodic displacement.
For periodic geometries, this type of condition exhibits better accuracy and conver-

gence in the scaling ratio [19,33]. As all the local information is immediately accessible
through this approach, it is commonly named the “full-field approach”.

Whatever the microstructure, it is possible to obtain the whole effective (homogeneous)
elasticity tensor from computations (and then stress average) in the RVE with unit loadings
(6 in 3D) in macroscopic strain E. In the case studied here, the effective behavior of the
material is isotropic due to the geometry of the RVE and the sampling (spherical inclusions
randomly distributed in a periodic cubic volume). Thanks to this isotropic form of the
effective elasticity tensor, it is possible to derive the apparent effective properties via the
compressibility modulus kapp and the shear modulus µapp, with fewer but well-chosen
loadings. Although in [19] two loadings are considered, we show here that a single mixed
loading is sufficient (see Equation (19)).

E =

 1. 1. 0.
1. 0. 0.
0. 0. 0.

 ⇒


kapp =
1
3

trace(Σapp)

µapp =
1
4
(

3
2

Σapp
XX −

1
2

trace(Σapp) + Σapp
XY ),

(19)

with
Σapp = 〈σ〉. (20)

It can be noted that more terms than are used in [19] are also used for the calculation of
µapp, which ensures the better stability of this value.

The phase mean fields (corresponding to the first and second moments) are obtained
directly from the local stress field (see Equation (7)).
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4. Numerical Results

The RVE described in Section 2 are used to study the effects of inclusion proximity
on the composite behavior. Unless otherwise specified, inclusions are assumed to have
a radius r = 10 µm and a volume fraction fv = 13.4 %. The mean value and standard
deviation on the mean value over the samples are determined for all quantities of interest.
In order to appreciate and compare the global trends, these numerical post-treatments are
normalized by the corresponding computational mean value obtained from calculations on
the RVE with the maximum SR (generally SR = 10 is considered as the reference due to
the low result dispersion) and the maximum smin (configurations where the inclusions are
the most equally distributed in the matrix). These normalization values are marked by an
overline symbol • .

The discussion focuses on stiffness contrasts of 0.01 and 100 between phases (cf.
Equation (5)), as similar tendencies are observed for contrasts of 0.1 and 10, respectively.
For the sake of completeness, the results for the latter contrasts are reported in Appendix B
(effective properties), Appendix C (phase mean field), and Appendix D (local stress field).

4.1. Results for the Effective Properties

In this section, the apparent moduli (bulk modulus kapp and shear modulus µapp)
obtained through the full-field simulations (see Equation (19)) are compared to the Mori–
Tanaka estimates (see Equation (6)).

The influence of the effective minimum distance smin on the effective properties is
reported in Figure 2.

The first conclusion that can be drawn is that the mean values vary slightly between
different SRs. As expected, when the scaling ratio increases, the standard deviation de-
creases to become very low at SR = 10. We also note that, whatever the SR, the standard
deviation decreases as smin increases, becoming almost negligible at smin = 1.2r. This
tendency is due to a kind of bias of the samples at a high smin. Indeed, the possibility of
distributing the inclusions decreases as smin increases. Considering the periodicity, very
similar RVE are obtained and, therefore, the numerical results remain close between the
samples. This can be confirmed by Figure 3, which shows the mean distance between
spheres smean as a function of the effective minimum distance smin for the different scal-
ing ratios. As expected, the standard deviation of smean decreases as smin increases and
becomes almost zero at smin = 1.2r for scaling ratios higher than 5. Moreover, it appears
that the curves converge asymptotically to the first bisector smean → smin as smin increases.
The higher the scaling ratio, the faster the speed of convergence. Fluctuations of the average
at SR = 5 denote a lack of samples for this ratio.

Concerning the proximity effect on the effective properties, we note in Figure 2, a
stiffening (resp. softening) of the material when the inclusions are becoming closer for rigid
(resp. soft) heterogeneities. We should underline that numerical computations confirm
that the Mori–Tanaka estimates are a Hashin–Shtrikman bound (low or high depending
on the contrast between phases). The effect of the distance between inclusions seems to
vanish when this distance becomes greater than the sphere radius. This result is in good
agreement with the distance of influence of the inclusions on the matrix mentioned in [34].
The effective properties tend toward an asymptote whose value is well predicted by the
Mori–Tanaka estimate. This is consistent with the theoretical assumption of inclusions
seeing only the matrix around, on which these estimates are built. Quantitatively speaking,
for this very moderate volume fraction ( fv = 13.4 %), the deviation only reaches a few
percent for low minimum distances between inclusions.

For the sake of completeness, the influence of the sphere radius and volume fraction
of inclusion has been studied. For both cases, simulations at SR = 10 were not performed
since the results obtained at SR = 5 were accurate enough to check for a trend (see Figure 2).
This shows that the sphere radius size (for a given volume fraction) has neither a qualitative
nor a quantitative effect on the observed behaviors with respect to the packing parameter
smin/r (see Figure A2 in Appendix B for r = 5 µm). On the contrary, the volume fraction
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of inclusion exacerbates the deviation of the effective properties with a decreasing smin/r
(see Figure 4 for fv = 25.1 % with r = 10 µm, as in Figure 2) but with max(smin/r) = 0.8
(see Equation (1)). In this case, the difference can reach around 10 % on the effective
shear modulus for rigid inclusion. The effective properties’ deviations with the packing
parameter hence appear to be proportional to the volume fraction of inclusions. These
results are in good agreement with the observations in [14]. By increasing the volume
fraction, the convergence of smean to smin is faster and more close spheres contribute to
stiffening/softening the material.
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Figure 2. Mean values and standard deviations on the mean value for the apparent moduli as a
function of the packing parameter smin/r (r = 10 µm) for a volume fraction of inclusions fv = 13.4 %.
For clarity, the error bars and dots are slightly shifted around for each studied minimum distance.
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Figure 3. Mean distance between two spheres smean as a function of smin for different scaling ratios.
For clarity, the error bars and dots are slightly shifted around for each studied minimum distance.

A tendency to soften the effective properties for porous inclusions (contrast < 1)
was also recently observed in [35] in the case of microstructures with cylindrical channels
between the pores of a spherical shape. The authors showed that the effective properties
are smaller (even for a low volume fraction of channels) than those obtained with a mi-
crostructure without channels but with the same total volume fraction. In Section 4.3, we
show that the perturbation zone between the close inclusions can indeed be assimilated to
channels, or, more generally, to a network, between inclusions.

Concerning the behavior as a function of smin/r, in the case of rigid inclusions
(contrast > 1), the authors of [14] drew similar conclusions in relation to material stiffening
when smean/r (precisely smean/2r in their article) decreases.

Given the possibly marked deviation between the analytical estimates and the com-
putational homogenized values, an analytical approach considering the packing effect
within the RVE would be interesting. With regard to the application of the MRP approach
conducted in [14], by taking into account the mean distance between spheres smean/2r but
leading only to a qualitative (and not quantitative) prediction of the effective behavior,
Figure 3 may indicate that it is better to focus on the relative minimum distance smin/r
between inclusions.

4.2. Results for Phase Mean Fields

One of the novelties of this contribution is studying the effect of the inclusion proximity
on the (volume) phase mean fields. As the Mori–Tanaka approach enables us to obtain
estimates for such kinds of quantities of interest (see Section 3.2), a comparison of the
analytical and computation mean stresses can be performed. The first and second moments
of hydrostatic and equivalent stresses by phase are analyzed hereafter.

4.2.1. The First Moment

Hydrostatic Stress
In Figure 5, the evolution of the phase first moment of hydrostatic stress (namely 〈σm〉i,

i = 1, 2) is plotted as a function of smin/r for different contrasts and scale ratios.
First, identical conclusions to those in Section 4.1 can be drawn on the weak influence

of the SR on the trend in the results on average. On the other hand, we observe here that
the shape of the curves does not depend on the contrast. When the spheres come closer
together, the mean hydrostatic stress tends to increase (resp. decrease) in the inclusionary
(resp. matrix) phase, regardless of the contrast between the phases. We see that the rigid
phase dictates the effective properties, with curves very similar to those of the effective
properties plotted in Figure 2.
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For rigid inclusions, the mean hydrostatic stress in the inclusionary phase is most
impacted by the closeness of the inclusions, the matrix having globally a more stable
average behavior (deviations < 1 %). In this case, the deviation of the inclusion means
that the stress can exceed 10 % (see Figure A4 for fv = 25 %). Similarities can be found
with [36], where the influence of the shape of rigid inclusions (polyhedra and spheres) on
the phase mean field was studied. They observed that the mean stress in the inclusionary
(resp. matrix) phase in the case of polyhedra was higher (resp. lower) than that in the case
of spheres. The behavior of nearby spherical inclusions (smin < 0.5r) studied here is similar
to that of polyhedral inclusions, which seems geometrically consistent.
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Figure 4. Mean values and standard deviations on the mean value for the apparent moduli as a
function of the packing parameter smin/r (r = 10 µm) for a volume fraction of inclusions fv = 25.1 %.
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Figure 5. Mean values and standard deviations on the mean value for the first moment of hydrostatic
stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume fraction of
inclusions fv = 13.4 %. For clarity, the error bars and dots are slightly shifted around for each studied
minimum distance.

For soft inclusions, the inclusionary phase is less impacted and has a moderate devia-
tion. The matrix is more impacted than that of rigid inclusions. A deviation of the same
order of magnitude is observed for the matrix and the inclusions.

Equivalent Stress
Figure 6 shows the evolution of the phase first moment of the equivalent stress (namely

〈σeq〉i, i = 1, 2) as a function of smin/r for different contrasts and scale ratios. As previously
underlined in Section 3.2, no MT estimates can be deduced for this quantity.
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Figure 6. Mean values and standard deviations on the mean value for the first moment of equivalent
stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume fraction of
inclusions fv = 13.4 %. For clarity, the error bars and dots are slightly shifted around for each studied
minimum distance.

Globally speaking, the results are close to those obtained for the hydrostatic stress.
However, the values of the deviation at the minimum smin/r, especially for the inclusionary
phase, are doubled and can reach more than a 15 % difference. We can see that for
(very) rigid inclusions, the tendency looks different for the matrix phase. For example,
for contrast = 100, the equivalent stress decreases as the inclusions become further away.
It can be supposed that as the contrast increases, the influence of the shear stress becomes
locally important. It should be noted that these conclusions are in good agreement with the
results of [36], considering the same analogy as previously (i.e., low smin/r→ polyhedral
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inclusions, large smin/r → spherical inclusions): the hydrostatic stress in the matrix is
greater with spherical inclusions than with polyhedral ones, whereas the equivalent stress
is lower for the same comparison.

4.2.2. The Second Moment

The evolution of the second moment of hydrostatic and equivalent stresses by phase
(〈σ2

m〉i and 〈σ2
eq〉i, respectively) with respect to the distance parameter smin/r are plotted in

Figures 7 and 8, respectively.
The trends observed are similar for both types of stresses. To understand them, it is

useful to consider the following definition of the second moment:

〈•2〉i = Vi(•) + 〈•〉2i , (21)

with Vi being the variance (square of the standard deviation) in phase i = 1, 2.
In the inclusionary phase, the standard deviation varies with the packing parameter in

the same way as the first moments. Indeed, the stress tensor tends to be homogeneous (low
standard deviation) when the inclusions are far apart but very perturbed (high standard
deviation) when the inclusions are close. These observations are confirmed by the analysis
of local fields in Section 4.3. As a result, the second moments tend to increase when smin/r
decreases. The differences are exacerbated compared to the first moments, as the deviation
can reach 30 % (hydrostatic stress) or 50 % (equivalent stress) for the rigid inclusions that
are the most impacted. The deviation reaches around 10 % for soft inclusions.

For the matrix phase, there is clearly a different tendency whether the inclusions
are soft or rigid. For rigid inclusions, the second moment increases when the inclusions
become closer, whereas the opposite behavior is observed for soft inclusions. As the first
moments are almost constant for rigid inclusions, the observed behavior returns to that
of the standard deviation in the matrix. For soft inclusions, the standard deviation varies
less with respect to the packing parameter; thus, the behavior roughly remains coherent
with that of the first moments. In any case, the deviation remains reasonable in the matrix,
with a maximum value of 3 %. However, this deviation becomes more important with
higher volume fractions of inclusion. For example, for fv = 25.1 %, the difference in the
second moment of the hydrostatic stress in the matrix can reach 10 % (see Figure A7).

Concerning the comparison with the MT estimates, we still observe a well-marked
asymptotic convergence of the computational values to the MT estimates when smin/r
increases. In the inclusionary phase, the deviations are far too large to consider MT a good
estimator when smin/r < 0.5. Hence, thanks to Equation (1), correct estimations thanks to
the MT approach cannot be obtained for volume fractions of inclusion greater than 35 %.
This maximal volume fraction is in good agreement with what is stated in the literature
(see, for example, [30]).

4.3. Results for the Local Fields

Frequency histograms of the equivalent stress within each phase are plotted in Figure 9
for extreme minimum distances (smin = 0.1r and smin = 1.2r). The first conclusion that
can be drawn is that the further apart the inclusions, the more homogeneous the behavior
within them. This is in good agreement with the uniform solution of a single inclusion
in an infinite matrix [17]. The inclusionary phase is clearly the most impacted by the
variation in the packing parameter smin/r. The standard deviation can be up to 5 times
larger. Globally speaking, the matrix is slightly affected by the proximity of inclusions.
However, we can observe at smin/r = 1.2 (cf. Figure 9d) a second little peak that does not
appear at smin/r = 0.1. This peak is also mentioned in [36] and explained by the authors by
a concentric matrix region of high equivalent stress surrounding each spherical inclusion.
We have already noticed this disturbance in the matrix by the inclusions in Section 4.1,
which is consistent with the work of [34]. The authors of [36] observed that this peak is less
pronounced with polyhedral inclusions than with spherical inclusions, which is consistent
with our results, considering the same analogy as in Section 4.2: the behavior of nearby
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spherical inclusions is similar to that of polyhedral inclusions. In fact, we can observe
that the stress values at smin = 0.1r are higher and hence move further to the right of the
histogram. Indeed, the histogram is wider (cf. Figure 9c).
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Figure 7. Mean values and standard deviations on the mean value for the second moment of
hydrostatic stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume
fraction of inclusions fv = 13.4 %. For clarity, the error bars and dots are slightly shifted around for
each studied minimum distance.
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Figure 8. Mean values and standard deviations on the mean value for the second moment of
equivalent stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume
fraction of inclusions fv = 13.4 %. For clarity, the error bars and dots are slightly shifted around for
each studied minimum distance.
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Figure 9. Frequency histograms of equivalent stress by phase at SR = 10, fv = 13.4 %, and the
extreme smin values (smin = 0.1r and smin = 1.2r) for contrasts of 0.01 and 100.
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These localized effects are not sufficiently visible on the histograms as they only
concern a very small region of the microstructure. Thus, the cross-sectional views of the
RVE at SR = 10 are presented in Figure 10 for the extreme smin. For the sake of comparison,
the same scale has been used for each contrast. Figure 10a confirms that the higher stress
values are located in the disturbance area of the matrix between two close inclusions. We
can clearly see that the matrix perturbation zones near an inclusion/matrix interface are
of the order of the radius of the spheres (cf. [34]), as already mentioned in Section 4.1.
In agreement with the observations made in [36], this perturbation zone clearly follows the
load direction (see Equation (19)). These stress values can be twice as important as those
between distant inclusions. These exacerbated perturbation phenomena between close
inclusions are less marked when the inclusions are soft, which is in good agreement with
all our previous conclusions.

Moreover, when the inclusions are close, a network clearly appears between the
spheres, which corroborates our parallel with the channel network (cf. [35]). Finally,
by looking at the closest spheres, the parallel with a polyhedral shape of inclusions (cf. [36])
is more easily understood.

(a) contrast = 100, at left: smin = 0.1r, at right: smin = 1.2r

(b) contrast = 0.01, at left: smin = 0.1r, at right: smin = 1.2r
Figure 10. Local equivalent stress at SR = 10, fv = 13.4 % for extreme smin values and contrasts of
100 and 0.01—the cross-sectional views of RVE.



Mathematics 2022, 10, 4437 19 of 31

5. Conclusions

The proximity effect of moderately dilute monodisperse spherical inclusions in a
matrix-inclusion composite has been studied in this paper. Beyond the effective properties,
we analyze the behavior of the stress moments (first and second) per phase and the local
full fields, which have been never before been performed in the literature. Comparisons
with the widely used Mori–Tanaka estimates are also proposed, which is of great interest,
especially for the phase first and second moments.

A stiffening (resp. softening) of the composite for the rigid (resp. soft) heterogeneities
is observed when inclusions become closer, in particular, at a distance below the radius of
the spheres. However, the deviation of the effective moduli remains acceptable (less than
5 %) and the Mori–Tanaka estimates are shown to be reliable.

The effect of the packing parameter, proven to be smin/r with smin the minimal effective
distance between spheres in the sampling and r the sphere radius, appears more important
on the phase moments, especially in the inclusion phase (minority phase). For the second
moment, the deviation can reach 50 %. It is shown that the Mori–Tanaka estimates are valid
for a packing parameter of smin/r > 0.5, which is in good agreement with the assumption of
isolated inclusions behind this analytical approach. These conclusions can be extrapolated
to the case of polydisperse inclusions, considering the radius of the largest sphere by
packing zone. In further works, it could also be interesting to confirm the proximity effects
on other shapes of inclusions.

Increasing the volume fraction of inclusion has been shown to exacerbate the deviation
effect with respect to the packing parameter. In further works, it would be interesting
to conduct a deep numerical study for a concentrate composite in comparison with the
appropriate analytical estimates. The variation range of the packing parameter may, in this
case, concern very low values.

Given the possibly marked deviation between the analytical estimates and the compu-
tational values, an analytical approach that considers the packing effect within the RVE
would be useful. Some attempts have been made in the literature but without satisfactory
quantitative results and especially without estimators of the moments per phase.

Finally, it is on the local fields that the effect of the proximity of the inclusions is the greatest
and as expected, between and within the closest spheres. In particular, the maximum stress
can be locally doubled. Composites with rigid inclusions are the most impacted by this local
perturbation zone in the matrix. As these local fields are of the first importance regarding the
initiation of local phenomena in the microstructure, it seems important in a multiscale numerical
coupling to look for not only the accurate effective properties but also the precise local fields.
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Appendix A. Derivation Formulas for Second-Moment Calculation
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∂µ2
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Appendix B. Complementary Results for the Effective Properties
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Figure A1. Mean values and standard deviations on the mean value for the apparent moduli as a
function of the packing parameter smin/r (r = 10 µm) for a volume fraction of inclusions fv = 13.4 %.
For clarity, the error bars and dots are slightly shifted around for each studied minimum distance.
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Figure A2. Mean values and standard deviations on the mean value for the apparent moduli as a
function of the packing parameter smin/r (r = 5 µm) for a volume fraction of inclusions fv = 13.4 %.
For clarity, the error bars and dots are slightly shifted around for each studied minimum distance.
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Appendix C. Complementary Results for Mean Fields

Appendix C.1. First Moment
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Figure A3. Mean values and standard deviations on the mean value for the first moment of hydro-
static stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume fraction
of inclusions fv = 13.4 %. For clarity, the error bars and dots are slightly shifted around for each
studied minimum distance.
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Figure A4. Mean values and standard deviations on the mean value for the first moment of hydro-
static stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume fraction
of inclusions fv = 25.1 %.
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Figure A5. Mean values and standard deviations on the mean value for the first moment of equivalent
stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume fraction of
inclusions fv = 13.4 %. For clarity, the error bars and dots are slightly shifted around for each studied
minimum distance.
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Appendix C.2. Second Moment
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Figure A6. Mean values and standard deviations on the mean value for the second moment of
hydrostatic stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume
fraction of inclusions fv = 13.4 %. For clarity, the error bars and dots are slightly shifted around for
each studied minimum distance.
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Figure A7. Mean values and standard deviations on the mean value for the second moment of
hydrostatic stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume
fraction of inclusions fv = 25.1 %.
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Figure A8. Mean values and standard deviations on the mean value for the second moment of
equivalent stress by phase as a function of the packing parameter smin/r (r = 10 µm) for a volume
fraction of inclusions fv = 13.4 %. For clarity, the error bars and dots are slightly shifted around for
each studied minimum distance.
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Appendix D. Complementary Results for Local Fields
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Figure A9. Frequency histograms of equivalent stress by phase at SR = 10, fv = 13.4 %, and the
extreme smin values (smin = 0.1r and smin = 1.2r) for contrasts of 10 and 0.1.
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(a) contrast = 10, at left: smin = 0.1r, at right: smin = 1.2r

(b) contrast = 0.1, at left: smin = 0.1r, at right: smin = 1.2r
Figure A10. Local equivalent stress at SR = 10, fv = 13.4 % for extreme smin values and contrasts of
10 and 0.1—the cross-sectional views of an RVE.
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