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ON THE ROLE OF ANISOTROPY IN THE WEAK STABILITY OF THE

NAVIER-STOKES SYSTEM

HAJER BAHOURI, JEAN-YVES CHEMIN, AND ISABELLE GALLAGHER

Abstract. In this article, we investigate the weak stability for the three dimensional in-
compressible Navier-Stokes system. Because of the invariances of this system, a positive
answer in general to this question would imply global regularity for any data. Thus some
restrictions have to be imposed to hope to prove such a weak openness result. The result
we prove in this paper solves this issue under anisotropy assumption. To achieve our goal,
we write a new kind of profile decomposition and establish global existence results for the
Navier-Stokes system associated with new classes of arbitrarily large initial data generalizing
the examples dealt with in [14, 15, 16].
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1. Introduction and statement of results

1.1. Setting of the problem. We are interested in the Cauchy problem for the three di-
mensional, incompressible Navier-Stokes system

∂tu+ u · ∇u−∆u = −∇p in R+ × R3

div u = 0

u|t=0 = u0 ,

where u(t, x) and p(t, x) are respectively the velocity and the pressure of the fluid at time t ≥ 0
and position x ∈ R3.

Key words and phrases. Navier-Stokes equations; anisotropy; Besov spaces; profile decomposition; weak
stability.
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An important point in the study of (NS) is its scale invariance, which reads as follows: defining
the scaling operators, for any positive real number λ and any point x0 of R3,

(1.1) Λλ,x0φ(t, x)
def
=

1

λ
φ
( t

λ2
,
x− x0

λ

)
and Λλφ(t, x)

def
=

1

λ
φ
( t

λ2
,
x

λ

)
,

if u solves (NS) with data u0, then Λλ,x0u solves (NS) with data Λλ,x0u0. Note in particular

that in two space dimensions, L∞(R+;L2(R2)) is scale invariant, while in three space di-

mensions that is the case for L∞(R+;L3(R3)) or the family of spaces L∞(R+;B
−1+ 3

p
p,q (R3))1,

with 1 ≤ p <∞ and 0 < q ≤ ∞.

Let us also emphasize that the (NS) system formally conserves the energy, in the sense that
smooth enough solutions satisfy the following equality for all times t ≥ 0:

(1.2)
1

2
‖u(t)‖2

L2(R3)
+

∫ t

0
‖∇u(t′)‖2

L2(R3)
dt′ =

1

2
‖u0‖2L2(R3)

.

The energy equality (1.2) can easily be derived observing that thanks to the divergence free
condition, the nonlinear term is skew-symmetric in L2: one has indeed if u and p are smooth
enough and decaying at infinity(

u(t) · ∇u(t) +∇p(t)|u(t)
)
L2 = 0 .

The mathematical study of the Navier-Stokes system has a long history beginning with the
founding paper [37] of J. Leray in 1933. In this article, J. Leray proved that any finite
energy initial data (meaning square-integrable data) generates a (possibly non unique) global
in time weak solution; and this in any dimension d ≥ 2. He moreover proved in [38] the
uniqueness of the solution in two space dimension, but in dimension three and more, the
question of the uniqueness of Leray’s solutions is still an open problem. Actually the difference
between dimension 2 and higher dimensions is linked to the fact that ‖u(t)‖L2(R2) is both

scale invariant and bounded globally in time thanks to the energy estimate, while it is not
the case in dimension d ≥ 3 (since L2(R3) is not scale invariant).

Recall that u ∈ L2
loc([0, T ]×R3) is said a weak solution of (NS) associated with the data u0 if

for any compactly supported, divergence free vector field φ in C∞([0, T ] × R3) the following
holds for all t ≤ T :∫

R3
u · φ(t, x)dx =

∫
R3
u0(x) · φ(0, x)dx+

∫ t

0

∫
R3

(u ·∆φ+ u⊗ u : ∇φ+ u · ∂tφ)dxdt′ ,

with

u⊗ u : ∇φ def
=

∑
1≤j,k≤3

ujuk∂kφ
j .

Weak solutions satisfying the energy inequality

(1.3)
1

2
‖u(t)‖2

L2(R3)
+

∫ t

0
‖∇u(t′)‖2

L2(R3)
dt′ ≤ 1

2
‖u0‖2L2(R3)

are said to be turbulent solutions, following the terminology of J. Leray [37].

In what follows, we say that a familly (XT )T>0 of spaces of distributions over [0, T ] × R3 is
scaling invariant if for all T > 0 one has, under Notation (1.1)

∀λ > 0 , ∀x0 ∈ R3 , u ∈ XT ⇐⇒ Λλ,x0u ∈ Xλ−2T with ‖u‖XT = ‖Λλ,x0u‖Xλ−2T
.

Similarly a space X0 of distributions defined on R3 will be said scaling invariant if

∀λ > 0 ,∀x0 ∈ R3 , u0 ∈ X0 ⇐⇒ Λλ,x0u0 ∈ X0 with ‖u0‖X0 = ‖Λλ,x0u0‖X0 .

1Here B
−1+ 3

p
p,q (R3) denotes the usual homogeneous Besov space (see [2], [9] or [49] for a precise definition).
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This leads to the definition of a scaled solution, which will be the notion of solution we
consider throughout this article.

Definition 1.1. A vector field u is said a scaled solution to (NS) associated with the data u0

if it is a weak solution, belonging to a family of scaling invariant spaces.

After Leray’s results, the question of the global wellposedness of the Navier-Stokes system in
dimension d ≥ 3 was raised, and has been open ever since, although several partial answers
to the construction of a global unique solution were established since (we refer for instance
to [2] or [36] and the references therein for recent surveys on the subject). Let us simply
recall the best result known to this day on the uniqueness of solutions to (NS), which is due
to H. Koch and D. Tataru in [35] : if

‖u0‖BMO−1(R3)
def
= ‖u0‖B−1

∞,∞(R3) + sup
x∈R3

R>0

1

R
3
2

(∫
[0,R2]×B(x,R)

|(et∆u0)(t, y)|2 dydt
) 1

2

is small enough, then there is a global, unique solution to (NS), lying in BMO−1 ∩X for all
times, with X a scale invariant space to be specified – we shall not be using that space in the
sequel. Note that the space BMO−1 is invariant by the scaling operator Λλ,x0 and that the

norm in B−1
∞,∞(R3) denotes a Besov norm. Actually, the Besov space B−1

∞,∞(R3) is the largest
space in which any scale and translation invariant Banach space of tempered distributions
embeds (see [41]). However, it was proved in [10] and [23] that (NS) is illposed for initial
data in B−1

∞,∞(R3).

Our goal in this paper is to investigate the stability of global solutions. Let us recall that
strong stability results were achieved. Namely, it was proved in [1] (see [20] for the Besov
setting) that the set of initial data generating a global solution is open in BMO−1. More
precisely, denoting by VMO−1 the closure of smooth fucntions in BMO−1, it was established
in [1] that if u0 belongs to VMO−1 and generates a global, smooth solution to (NS), then
any sequence (u0,n)n∈N converging to u0 in the BMO−1 norm also generates a global smooth
solution as soon as n is large enough.

In this paper we would like to address the question of weak stability:

If (u0,n)n∈N, bounded in some scale invariant space X0, converges to u0 in the sense of
distributions, with u0 giving rise to a global smooth solution, is it the case for u0,n when n
is large enough ?

Because of the invariances of (NS) system, a positive answer in general to this question would
imply global regularity for any data and so would solve the question of the possible blow up
in finite time of solutions to (NS) which is actually one of the Millenium Prize Problems in
Mathematics. Indeed, consider for instance the sequence

(1.4) u0,n = λnΦ0(λn ·) = Λλn Φ0 with lim
n→∞

(
λn +

1

λn

)
=∞ ,

with Φ0 any smooth divergence-free vector field. If the weak stability result were true, then
since the weak limit of (u0,n)n∈N is zero (which gives rise to the unique, global solution which
is identically zero) then for n large enough u0,n would give rise to a unique, global solution.
By scale invariance then so would Φ0, and this for any Φ0, so that would solve the global
regularity problem for (NS). Another natural example is the sequence

(1.5) u0,n = Φ0(· − xn) = Λ1,xnΦ0 ,

with (xn)n∈N a sequence of R3 whose norm goes to infinity. Thus sequences built by rescaling
fixed divergence free vector fields according to the invariances of the equations have to be
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excluded from our analysis, since solving (NS) system for any smooth initial data seems out
of reach.

Thus clearly some restrictions have to be imposed to hope to prove such a weak openness
result. Let us note that a first step in that direction was achieved in [4], under two additional
assumptions to the weak convergence. The first one is an assumption on the asymptotic
separation of the horizontal and vertical spectral supports of the sequence (u0,n)n∈N, while the
second one requires that some of the profiles involved in the profile decomposition of (u0,n)n∈N
vanish at zero. In this paper, we remove the second assumption and give a positive answer
to the question of weak stability, provided that the convergence of the sequence (u0,n)n∈N
towards u0 holds ”anisotropically” in frequency space (see Definition 1.4 below). The main
ingredient which enables us to eliminate the second assumption required in [4] is a novel
form of anisotropic profile decomposition. This new profile decomposition enables us to
decompose the sequence of initial data u0,n, up to a small remainder term, into a finite sum
of orthogonal sequences of divergence-free vector fields ; these sequences are obtained from
the classical anisotropic profile decompositions by grouping together all the profiles having
the same horizontal scale. The price to pay is that the profiles are no longer fixed functions
as in the classical case, but bounded sequences. To carry out the strategy of proof developed
in [4] in this framework, we are led to establishing global existence results for (NS) associated
to new classes of arbitrarily large initial data generalizing the examples dealt in [14, 15, 16],
and where regularity is sharply estimated.

1.2. Statement of the main result. We prove in this article a weak stability result for
the (NS) system under an anisotropy assumption. This leads us naturally to introducing
anisotropic Besov spaces. These spaces generalize the more usual isotropic Besov spaces,
which are studied for instance in [2, 9, 49].

Definition 1.2. Let χ̂ (the Fourier transform of χ) be a radial function in D(R) such
that χ̂(t) = 1 for |t| ≤ 1 and χ̂(t) = 0 for |t| > 2. For (j, k) ∈ Z2, the horizontal trun-
cations are defined by

Ŝh
kf(ξ)

def
= χ̂

(
2−k|(ξ1, ξ2)|

)
f̂(ξ) and ∆h

k
def
= Sh

k+1 − Sh
k ,

and the vertical truncations by

Ŝv
j f

def
= χ̂(2−j |ξ3|)f̂(ξ) and ∆v

j
def
= Sv

j+1 − Sv
j .

For all p in [1,∞] and q in ]0,∞], and all (s, s′) in R2, with s < 2/p, s′ < 1/p (or s ≤ 2/p

and s′ ≤ 1/p if q = 1), the anisotropic homogeneous Besov space Bs,s′
p,q is defined as the space

of tempered distributions f such that

‖f‖
Bs,s

′
p,q

def
=
∥∥∥2ks+js

′‖∆h
k∆v

j f‖Lp
∥∥∥
`q
<∞ .

In all other cases of indexes s and s′, the Besov space is defined similarly, up to taking the
quotient with polynomials.

Remark 1.3. The Besov spaces Bs,s′
p,q (for s 6= s′) is anisotropic by essence, which as

pointed out above, will be an important feature of our analysis. These spaces have prop-
erties which look very much like the ones of classical Besov spaces. We refer for instance
to [2], [18], [25] and [43] for all necessary details. By construction, these spaces are defined
using an anisotropic Littlewood-Paley decomposition. It is useful to point out that the hor-
izontal and vertical truncations Sh

k , ∆h
k, Sv

j and ∆v
j introduced in Definition 1.2 map Lp

into Lp with norms independent of k, j and p. For our purpose, it is crucial to recall the
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following inequalities known as Bernstein inequalities: if 1 ≤ p1 ≤ p2 ≤ ∞, then for any
α ∈ N2 and m ∈ N

‖∂α(x1,x2)∆
h
kf‖Lp2 (R2;Lr(R)) . 2k(|α|+2(1/p1−1/p2))‖∆h

kf‖Lp1 (R2;Lr(R)) and(1.6)

‖∂mx3∆v
jf‖Lr(R2;Lp2 (R)) . 2j(m+1/p1−1/p2)‖∆v

jf‖Lr(R2;Lp1 (R)) ,(1.7)

as well as the action of the heat flow on frequency localized distributions in an anisotropic
context, namely for any p in [1,∞]

‖et∆∆h
k∆v

j f‖Lp . e−ct(2
2k+22j)‖∆h

k∆v
j f‖Lp(1.8)

Notation. To avoid heaviness, in what follows we denote by Bs,s′ the space Bs,s′

2,1 , by Bs the

space Bs,
1
2 and by Bp,q the space B

−1+ 2
p
, 1
p

p,q . In particular B2,1 = B0.

Let us point out that the scaling operators (1.1) enjoy the following invariances:

‖Λλ,x0ϕ‖Bp,q = ‖ϕ‖Bp,q and

∀r ∈ [1,∞] , ‖Λλ,x0Φ‖
Lr(R+;B

−1+ 2
p+2

r ,
1
p

p,q )
= ‖Φ‖

Lr(R+;B
−1+ 2

p+2
r ,

1
p

p,q )
,

and also the following scaling property:

(1.9) ∀r ∈ [1,∞] , ∀σ ∈ R , ‖Λλ,x0Φ‖
Lr(R+;B

−1+ 2
p+2

r−σ,
1
p

p,q )
∼ λσ‖Φ‖

Lr(R+;B
−1+ 2

p+2
r−σ,

1
p

p,q )
.

The Navier-Stokes system in anisotropic spaces has been studied in a number of frameworks.
We refer for instance, among others, to [4], [18], [25], [27] and [43]. In particular in [4] it is
proved that if u0 belongs to B0, then there is a unique solution (global in time if the data is
small enough) in L2([0, T ];B1). That norm controls the equation, in the sense that as soon as

the solution belongs to L2([0, T ];B1), then it lies in fact in Lr([0, T ];B
2
r ) for all 1 ≤ r ≤ ∞.

The space B1 is included in L∞ and since the seminal work [37] of J. Leray, it is known that
the L2([0, T ];L∞(R3)) norm controls the propagation of regularity and also ensures weak
uniqueness among turbulent solutions. Thus the space B0 is natural in this context.

As mentioned above the result we establish in this paper involves an anisotropy assumption
on the sequence (u0,n)n∈N of initial data. Let us introduce this assumption that we call notion
of anisotropically oscillating sequences, and which is a natural adaptation to our setting of
the vocabulary of P. Gérard in [22].

Definition 1.4. Let 0 < q ≤ ∞ be given. We say that a sequence (fn)n∈N, bounded in B1,q,
is anisotropically oscillating if the following property holds. There exists p ≥ 2 such that for
all sequences (kn, jn) in ZN × ZN,

(1.10) lim inf
n→∞

2
kn(−1+ 2

p
)+ jn

p ‖∆h
kn∆v

jnfn‖Lp(R3) = C > 0 =⇒ lim
n→∞

|jn − kn| =∞ .

Remark 1.5. In view of Bernstein inequalities (1.6) and (1.7), it is easy to see that any
function f in B1,q belongs also to Bp,∞ for any p ≥ 1 hence

f ∈ B1,q =⇒ sup
(k,j)∈Z2

2
k(−1+ 2

p
)+ j

p ‖∆h
k∆v

jf‖Lp <∞ .

The left-hand side of (1.10) indicates which ranges of frequencies are predominant in the se-

quence (fn): if lim inf
n→∞

2
kn(−1+ 2

p
)+ jn

p ‖∆h
kn∆v

jnfn‖Lp is zero for a couple of frequencies (2kn , 2jn),

then the sequence (fn)n∈N is “unrelated” to those frequencies, with the vocabulary of P.
Gérard in [22]. The right-hand side of (1.10) is then an anisotropy property. Indeed one sees
easily that a sequence such as (u0,n)n∈N defined in (1.4) is precisely not anisotropically oscil-
lating: for the left-hand side of (1.10) to hold for this example one would need jn ∼ kn ∼ n,
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which is precisely not the condition required on the right-hand side of (1.10). A typical
sequence satisfying Assumption (1.10) is rather (for a ∈ R3)

fn(x) := 2αnf
(
2αn(x1 − a1), 2αn(x2 − a2), 2βn(x3 − a3)

)
, (α, β) ∈ R2, α 6= β

with f smooth.

Our main result states as follows:

Theorem 1. Let q be given in ]0, 1[ and let u0 in B1,q generate a unique global solution
to (NS) in L2(R+;B1). Let (u0,n)n∈N be a sequence of divergence free vector fields converging
towards u0 in the sense of distributions, and such that (u0,n − u0)n∈N is anisotropically
oscillating. Then for n large enough, u0,n generates a unique, global solution to (NS) system
in the space L2(R+;B1).

Remark 1.6. One can see from the proof of Theorem 1 that the solution un(t) associated
with u0,n converges for all times, in the sense of distributions to the solution associated
with u0. In this sense the Navier-Stokes system is stable by weak convergence.

The proof of Theorem 1 enables us to infer easily the following result, which generalizes the
statement of Theorem 1 to the case when the solution to (NS) system generated by u0 is
assumed to blow up in finite time (for a strategy of proof, one can consult [4]).

Corollary 1.7. Let (u0,n)n∈N be a sequence of divergence free vector fields bounded in the
space B1,q for some 0 < q < 1, converging towards some u0 in B1,q in the sense of distribu-
tions, with u0−(u0,n)n∈N anisotropically oscillating. Let u be the solution to the Navier-Stokes
system associated with u0 and assume that the life span of u is T ∗ < ∞. Then for all pos-
itive times T < T ∗, there is a subsequence such that the life span of the solution associated
with u0,n is at least T .

Remark 1.8. As explained above, the natural space in our context would be B0. For
technical reasons, we assume in our result more smoothness on the sequence of initial data,
since obviously by Bernstein inequalities (1.6) and (1.7), we have B1,q ↪→ B0.

1.3. Layout. The proof of Theorem 1 is addressed in Section 2. In Paragraph 2.2, we provide
a new kind of “anisotropic profile decomposition” of the sequence of initial data, whose proof
can be found in Section 3. This enables us to replace the sequence of Cauchy data, up to
an arbitrarily small remainder term, by a finite (but large) sum of orthogonal sequences of
divergence-free vector fields. In Paragraph 2.3, we state that each individual element involved
in the decomposition derived in Paragraph 2.2 gives rise to a unique global solution to (NS)
system (the proof is postponed to Section 4). Paragraph 2.4 is devoted to the proof of the
fact that the sum of each individual profile does provide an approximate solution to the
Navier-Stokes system, thanks to an orthogonality argument, which completes the proof of
Theorem 1.

For all points x = (x1, x2, x3) in R3 and all vector fields u = (u1, u2, u3), we denote by

xh
def
= (x1, x2) and uh def

= (u1, u2)

their horizontal parts. We also define horizontal differentiation operators ∇h def
= (∂1, ∂2)

and divh
def
= ∇h·, as well as ∆h

def
= ∂2

1 + ∂2
2 .

We also use the following shorthand notation: XhYv := X(R2;Y (R)) where X is a function
space defined on R2 and Y is defined on R.
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As we shall be considering functions which have different types of variations in the x3 variable
and the xh variable, the following notation will be used:

(1.11)
[
f
]
β
(x)

def
= f(xh, βx3) .

Clearly, for any function f , we have the following identity which will be of constant use all
along this paper:

(1.12)
∥∥[f ]β

∥∥
B
s1,s2
p,1

∼ βs2−
1
p ‖f‖Bs1,s2p,1

.

Finally we denote by C a constant which does not depend on the various parameters appearing
in this paper, and which may change from line to line. We also denote sometimes x ≤ Cy
by x . y.

2. Proof of the main theorem

2.1. General scheme of the proof. The main arguments leading to Theorem 1 are the
following: by a profile decomposition argument, the sequence of initial data is decomposed
into the weak limit u0 and the sum of sequences of divergence-free vector fields, up to a small
remainder term. Then to prove that each individual element of the decomposition generates
a unique global solution to (NS), it is necessary to estimate sharply the regularity in scaling
invariant (anisotropic) norms. The mutual orthogonality of each term in the decomposition
of the initial data implies finally that the sum of the solutions associated to each element
is itself an approximate solution to (NS), globally in time, which concludes the proof of the
result.

2.2. Anisotropic profile decomposition. The study of the lack of compactness in critical
Sobolev embeddings has attracted a lot of attention in the last decades, both for its interesting
geometric features and for its applications to nonlinear partial differential equations. This
study originates in the works of P.-L. Lions (see [39] and [40]) by means of defect measures,
and earlier decompositions of bounded sequences into a sum of “profiles” can be found in the
studies by H. Brézis and J.-M. Coron in [11] and M. Struwe in [48]. Our source of inspiration
here is the work [22] of P. Gérard in which the defect of compactness of the critical Sobolev
embeddings (for L2-based Sobolev spaces) in Lebesgue spaces is described by means of an
asymptotic, orthogonal decomposition in terms of rescaled and translated profiles. This was
generalized to Lp-based Sobolev spaces by S. Jaffard in [28], to Besov spaces by G. Koch [34],
and finally to general critical embeddings by H. Bahouri, A. Cohen and G. Koch in [3] (see
also [6, 7, 8] for the limiting case of Sobolev embeddings in Orlicz spaces and [47] for an
abstract, functional analytic presentation of the concept in various settings).

In the pionneering works [5] (for the critical 3D wave equation) and [42] (for the critical 2D
Schrödinger equation), it was highlighted that this type of decomposition provides applica-
tions to the study of nonlinear partial differential equations. The ideas of [5] were revisited
in [33] and [19] in the context of the Schrödinger equations and Navier-Stokes system respec-
tively, with an aim at describing the structure of bounded sequences of solutions to those
equations. These profile decomposition techniques have since then been succesfully used in
order to study the possible blow-up of solutions to nonlinear partial differential equations, in
various contexts; we refer for instance to [21], [26], [29], [30], [31], [32], [45], [46].

The first step in the proof of Theorem 1 consists in writing down an anisotropic profile
decomposition of the sequence of initial data (u0,n)n∈N (see Theorem 2). To state our result
in a clear way, let us start by introducing some definitions and notations.
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Definition 2.1. We say that two sequences of positive real numbers (λ1
n)n∈N and (λ2

n)n∈N
are orthogonal if

λ1
n

λ2
n

+
λ2
n

λ1
n

→∞ , n→∞ .

A family of sequences
(
(λjn)n∈N

)
j

is said to be a family of scales if λ0
n ≡ 1 and if (λjn)n∈N

and (λkn)n∈N are orthogonal when j 6= k.

Definition 2.2. Let µ be a positive real number less than 1/2, fixed from now on.

We define Dµ
def
= [−2+µ, 1−µ]× [1/2, 7/2] and D̃µ

def
= [−1+µ, 1−µ]× [1/2, 3/2]. We denote

by Sµ the space of functions a belonging to
⋂

(s,s′)∈Dµ

Bs,s′ such that

‖a‖Sµ
def
= sup

(s,s′)∈Dµ
‖a‖Bs,s′ <∞ .

Notation. In all that follows, θ is a given function in D(BR3(0, 1)) which has value 1
near BR3(0, 1/2). For any positive real number η, we denote

(2.1) θη(x)
def
= θ(ηx) and θh,η(xh)

def
= θη(xh, 0) .

In order to make notations as light as possible, the letter v (possibly with indices) will
always denote a two-component divergence free vector field, which may depend on the vertical
variable x3.

The following result, the proof of which is postponed to Section 3, is in the spirit of the
profile decomposition theorem of P. Gérard in [22] concerning the critical Sobolev embedding
in Lebesgue spaces.

Theorem 2. Under the assumptions of Theorem 1 and up to the extraction of a subse-

quence, the following holds. There is a family of scales
(
(λjn)n∈N

)
j∈N and for all L ≥ 1

there is a family of sequences
(
(hjn)n∈N

)
j∈N going to zero such that for any real number α

in ]0, 1[, there are families of sequences of divergence-free vector fields (for j ranging from 1

to L), (vjn,α,L)n∈N, (wjn,α,L)n∈N, (v0,∞
n,α,L)n∈N, (w0,∞

0,n,α,L)n∈N, (v0,loc
0,n,α,L)n∈N and (w0,loc

0,n,α,L)n∈N
all belonging to Sµ, and a smooth, compactly supported function u0,α such that the se-
quence (u0,n)n∈N can be written under the form

u0,n ≡ u0,α +
[(
v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L

)]
h0n

+
[
(v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0n

+

L∑
j=1

Λ
λjn

[
(vjn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn

+ ρn,α,L

where u0,α approximates u0 in the sense that

(2.2) lim
α→0
‖u0,α − u0‖B1,q = 0 ,

where the remainder term satisfies

(2.3) lim
L→∞

lim
α→0

lim sup
n→∞

‖et∆ρn,α,L‖L2(R+;B1) = 0 ,
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while the following uniform bounds hold:

(2.4)

M def
= sup

L≥1
sup
α∈]0,1[

sup
n∈N

(∥∥(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L)

∥∥
B0 +

∥∥(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L)

∥∥
B0

+ ‖u0,α‖B0 +
L∑
j=1

∥∥(vjn,α,L, w
j,3
n,α,L)

∥∥
B0

)
<∞

and for all α in ]0, 1[,

(2.5)

Mα
def
= sup

L≥1
sup

1≤j≤L
n∈N

(∥∥(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L)

∥∥
Sµ

+
∥∥(v0,loc

0,n,α,L, w
0,loc,3
0,n,α,L)

∥∥
Sµ

+ ‖u0,α‖Sµ +
∥∥(vjn,α,L, w

j,3
n,α,L)

∥∥
Sµ

)
is finite. Finally, we have

lim
L→∞

lim
α→0

lim sup
n→∞

∥∥(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L

)
(·, 0)

∥∥
B0

2,1(R2)
= 0 ,(2.6)

∀ (α,L) , ∃ η(α,L) / ∀η ≤ η(α,L) ,∀n ∈ N , (1− θh,η)(v
0,loc
0,n,α,L, w

0,loc,3
0,n,α,L) = 0 and(2.7)

∀ (α,L, η) , ∃n(α,L, η) / ∀n ≥ n(α,L, η) , θh,η(v
0,∞
0,n,α,L, w

0,∞,3
0,n,α,L) = 0 .(2.8)

Theorem 2 states that the sequence u0,n is equal, up to a small remainder term, to a finite sum
of orthogonal sequences of divergence-free vector fields. These sequences are obtained from
the profile decomposition derived in [4] (see Proposition 2.4 in [4]) by grouping together all
the profiles having the same horizontal scale λn, and the form they take depends on whether
the scale λn is identically equal to one or not.

Note that in contrast with classical profile decompositions (see for instance [22]), cores of
concentration do not appear in the profile decomposition given in Theorem 2 since all the
profiles with the same horizontal scale are grouped together, and thus the decomposition
is written in terms of scales only. The price to pay is that the profiles are no longer fixed
functions, but bounded sequences. To carry out the strategy of proof developed in [4] in
this framework, we have to establish that each element involved in the decomposition of
Theorem 2 generates a global solution to (NS) system as soon as n is large enough. Since we
deal with bounded sequences, it is necessary to estimate sharply the regularity.

Let us emphasize that in the case when λn goes to 0 or infinity, these sequences are of the
type

(2.9) Λλn
[
(vh

0,n + hnw
h
0,n, w

3
0,n)
]
hn
,

where we used Notation (1.11), and with hn a sequence going to zero. It is essential (to
establish our result) that the profiles that must be considered in that case are only profiles
of type (2.9) with hn tending to zero. Actually the divergence free assumption on u0,n allows
to include the terms of type (2.9) with hn tending to infinity into the remainder term and
the anisotropically oscillating assumption for (u0 − u0,n)n∈N allows to exclude in the profile
decomposition of u0,n sequences of type (2.9) with hn ≡ 1.

In the case when λn is identically equal to one, we deal with three types of orthogonal
sequences: the first one consists in u0,α, an approximation of the weak limit u0, the second
one is of type (2.9) with λn ≡ 1 and hn tending to zero, and is uniformly localized in the
horizontal variable and vanishes at x3 = 0, while the third one is also of type (2.9) with λn ≡ 1
and hn converging to zero, and its support in the horizontal variable goes to infinity. Note
that contrary to the case when the horizontal scale λn tends to 0 or infinity, all the profiles
involved in the anisotropic decomposition of the sequence (u0 − u0,n)n∈N having the same
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horizontal scale λn ≡ 1 are not grouped together: the sum of these profiles is divided into
two parts depending on whether the horizontal cores of concentration escape to infinity or
not. This splitting plays a key role in establishing our result under the only assumption of
anisotropic oscillation, by removing the second assumption required in [4].

2.3. Propagation of profiles. The second step of the proof of Theorem 1 consists in proving
that each individual profile involved in the decomposition of Theorem 2 generates a global
solution to (NS) as soon as n is large enough. This is mainly based on the following results
concerning respectively profiles of the type

Λ
λjn

[
(vjn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn

with λjn going to 0 or infinity and hjn converging to zero, and the profiles of horizontal scale
one, see respectively Theorems 3 and 4.

In order to state these theorems, let us begin by defining the function spaces we shall be
working with.

Definition 2.3. – We define the space As,s′ = L∞(R+;Bs,s′)∩L2(R+;Bs+1,s′) equipped with
the norm

‖a‖As,s′
def
= ‖a‖L∞(R+;Bs,s′ ) + ‖a‖L2(R+;Bs+1,s′ ) ,

and we denote As = As,
1
2 .

– We denote by Fs,s′ any function space such that

‖L0f‖L2(R+;Bs+1,s′ ) . ‖f‖Fs,s′

where, for any non negative real number τ , Lτf denotes the solution of the heat equation{
∂tLτf −∆Lτf = f

Lτf|t=τ = 0 .

We denote Fs = Fs,
1
2 .

Examples. Using the smoothing effect of the heat flow, it is easy to prove that the

spaces L̃2(R+;Bs−1,s′), L̃2(R+;Bs,s′−1) are Fs,s′ spaces, as well as the spaces L1(R+;Bs,s′)

and L1(R+;Bs+1,s′−1). Actually recalling that L0f =

∫ t

0
e(t−t′)∆f(t′) dt and taking advantage

of (1.8), we get for any function in L̃2(R+;Bs−1,s′)

‖∆h
k∆v

jL0f‖L2 .
∫ t

0
e−ct

′(22k+22j)‖∆h
k∆v

j f(t′)‖L2 dt′,

where we make use of notations of Definition 1.2. We deduce that there is a sequence dj,k(t
′)

in the sphere of `1(Z× Z;L2(R+)) such that

‖∆h
k∆v

jL0f‖L2 . ‖f‖L̃2(R+;Bs−1,s′ )2
−k(s−1)2−js

′
∫ t

0
e−ct

′(22k+22j)dj,k(t
′) dt′ .

Young’s inequality in time therefore gives

‖∆h
k∆v

jL0f‖L2(R+;L2) . ‖f‖L̃2(R+;Bs−1,s′ )2
−k(s−1)−js′dj,k ,

where dj,k is a generic sequence in the sphere of `1(Z×Z), which ends the proof of the result

in the case when f belongs to L̃2(R+;Bs−1,s′). The argument is similar in the other cases.
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Notation. In the following we designate by T0(A,B) a generic constant depending only on
the quantities A and B. We denote by T1 a generic non decreasing function from R+ into R+

such that

(2.10) lim sup
r→0

T1(r)

r
<∞ ,

and by T2 a generic locally bounded function from R+ into R+. All those functions may vary
from line to line. Let us notice that for any positive sequence (an)n∈N belonging to `1, we
have

(2.11)
∑
n

T1(an) ≤ T2

(∑
n

an

)
.

As in the isotropic case, the following space-time (quasi)-norms, first introduced by J.-Y.
Chemin and N. Lerner in [17]:

(2.12) ‖f‖
L̃r([0,T ];Bs,s

′
p,q )

def
=
∥∥2ks+js

′‖∆h
k∆v

j f‖Lr([0,T ];Lp)

∥∥
`q
,

are very useful in the context of the Navier-Stokes system, and will be of constant use all

along this paper. Notice that of course L̃r([0, T ];Bs,s′
p,r ) = Lr([0, T ];Bs,s′

p,r ), and by Minkowski’s

inequality, we have the embedding L̃r([0, T ];Bs,s′
p,q ) ⊂ Lr([0, T ];Bs,s′

p,q ) if r ≥ q.

Our first theorem of global existence for the Navier-Stokes system, which concerns profiles
with horizontal scales going to 0 or infinity, generalizes the example considered in [14].

Theorem 3. A locally bounded function ε1 from R+ into R+ exists which satisfies the
following. For any (v0, w

3
0) in Sµ (see Definition 2.2), for any positive real number β such

that β ≤ ε1(‖(v0, w
3
0)‖Sµ), the divergence free vector field

Φ0
def
=
[
(v0 − β∇h∆−1

h ∂3w
3
0, w

3
0)
]
β

generates a global solution Φβ to (NS) which satisfies

(2.13) ‖Φβ‖A0 ≤ T1(‖(v0, w
3
0)‖B0) + β T2(‖(v0, w

3
0)‖Sµ) .

Moreover, for any (s, s′) in [−1 + µ, 1− µ]× [1/2, 7/2], we have, for any r in [1,∞],

(2.14) ‖Φβ‖
Lr(R+;Bs+

2
r )

+
1

βs
′− 1

2

‖Φβ‖
Lr(R+;B

2
r ,s
′
)
≤ T2(‖(v0, w

3
0)‖Sµ) .

The proof of Theorem 3 is provided in Paragraph 4.1.

The existence of a global regular solution for the set of profiles associated with the horizon-
tal scale 1 is ensured by the following theorem which can be viewed as a generalization of
Theorem 3 of [15] and of Theorem 2 of [16].

Theorem 4. With the notation of Theorem 2, let us consider the initial data:

Φ0
0,n,α,L

def
= u0,α +

[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0n

+
[
(v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0n
.

There is a constant ε0, depending only on u0 and onMα, such that if h0
n ≤ ε0, then the initial

data Φ0
0,n,α,L generates a global smooth solution Φ0

n,α,L which satisfies for all s in [−1+µ, 1−µ]

and all r in [1,∞],

‖Φ0
n,α,L‖Lr(R+;Bs+

2
r )
≤ T0(u0,Mα) .(2.15)

The proof of Theorem 4 is provided in Paragraph 4.2.
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2.4. End of the proof of the main theorem. To end the proof of Theorem 1, we need
to check that the sum of the propagation of the remainder term through the transport-
diffusion equation and the solutions to (NS) associated to each individual profile (provided
by Theorems 3 and 4) is an approximate solution to the Navier-Stokes system. This can
be achieved by proving that the nonlinear interactions of all the solutions are negligible,
thanks to the orthogonality between the scales. For that purpose, let us look at the profile
decomposition given by Theorem 2. For a given positive and small ε, Assertion (2.3) allows
to choose α, L and N0 (depending of course on ε) such that

(2.16) ∀n ≥ N0 , ‖et∆ρn,α,L‖L2(R+;B1) ≤ ε .

The parameters α and L are fixed so that (2.16) holds, let us consider the two functions ε1, T1

and T2 (resp. ε0 and T0) which appear in the statement of Theorem 3 (resp. Theorem 4).

Since each sequence (hjn)n∈N, for 0 ≤ j ≤ L, goes to zero as n goes to infinity, one can choose
an integer N1 greater than or equal to N0 such that

(2.17) ∀n ≥ N1 , ∀j ∈ {0, . . . , L} , hjn ≤ min
{
ε1(Mα), ε0,

ε

LT2(Mα)

}
·

Now for 1 ≤ j ≤ L (resp. j = 0), let us denote by Φj
n,ε (resp. Φ0

n,ε) the global solution of (NS)
associated with the initial data[

(vjn,α,L + hjnw
j,h
n,α,L, w

j,3
n,α,L)

]
hjn(

resp. u0,α +
[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0n

+
[
(v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0n

)
given by Theorem 3 (resp. Theorem 4). We look for the global solution associated with u0,n

under the form

(2.18) un = uapp
n,ε +Rn,ε with uapp

n,ε
def
=

L∑
j=0

Λ
λjn

Φj
n,ε + et∆ρn,α,L .

In view of the scaling invariance of the Navier-Stokes system, Λ
λjn

Φj
n,ε solves (NS) with the

initial data Λ
λjn

[
(vjn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn

. This gives the following equation on Rn,ε:

∂tRn,ε −∆Rn,ε + div
(
Rn,ε ⊗Rn,ε +Rn,ε ⊗ uapp

n,ε + uapp
n,ε ⊗Rn,ε

)
+∇pn,ε

= Fn,ε
def
= F 1

n,ε + F 2
n,ε + F 3

n,ε with

F 1
n,ε

def
= −div

(
et∆ρn,α,L ⊗ et∆ρn,α,L

)
F 2
n,ε

def
= −

L∑
j=0

div
(
Λ
λjn

Φj
n,ε ⊗ et∆ρn,α,L + et∆ρn,α,L ⊗ Λ

λjn
Φj
n,ε

)
and

F 3
n,ε

def
= −

∑
0≤j,k≤L
j 6=k

div
(
Λ
λjn

Φj
n,ε ⊗ ΛλknΦk

n,ε

)
,

(2.19)

and where
(
div(u⊗ v)

)j
=

3∑
k=1

∂k(u
jvk).

In order to establish that the function un defined by (2.18) provides a global solution to
(NS) system, it suffices to prove that there exist some space F0 as in Definition 2.3 and an
integer N ≥ N1 such that

(2.20) ∀n ≥ N , ‖Fn,ε‖F0 ≤ Cε ,
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where C only depends on L and Mα. In the next estimates we omit the dependence of all
constants on α and L, which are fixed. Indeed if (2.20) holds, then Rn,ε exists globally thanks
to strong stability in B0 (see [4] for the setting of B1,1).

Let us start with the estimate of F 1
n,ε. Using the fact that B1 is an algebra, we have∥∥et∆ρh

n,α,L ⊗ et∆ρn,α,L
∥∥
L1(R+;B1)

. ‖et∆ρn,α,L
∥∥2

L2(R+;B1)
,

so

‖ divh

(
et∆ρh

n,α,L ⊗ et∆ρn,α,L
)
‖L1(R+;B0) . ‖e

t∆ρn,α,L
∥∥2

L2(R+;B1)

and

‖∂3

(
et∆ρ3

n,α,Le
t∆ρn,α,L

)
‖
L1(R+;B1,−

1
2 )
. ‖et∆ρn,α,L

∥∥2

L2(R+;B1)
.

According to Inequality (2.16), this gives rise to

(2.21) ∀n ≥ N1 , ‖F 1
n,ε‖F0 . ε2.

Now let us consider F 2
n,ε. By the scaling invariance of the operators Λ

λjn
in L2(R+;B1) and

again the fact that B1 is an algebra, we get

(2.22)

∥∥Λ
λjn

Φj
n,ε ⊗ et∆ρn,α,L + et∆ρn,α,L ⊗ Λ

λjn
Φj
n,ε

∥∥
L1(R+;B1)

. ‖Φj
n,ε‖L2(R+;B1)‖e

t∆ρn,α,L‖L2(R+;B1) .

Making use of Estimates (2.13) and (2.15), we infer that

L∑
j=0

∥∥Φj
n,ε

∥∥
L2(R+;B1)

≤ T0(u0,Mα) + T2(M) +
L∑
j=1

hjnT2(Mα) ,

which in view of Condition (2.17) on the sequences (hjn)n∈N implies that∥∥∥ L∑
j=0

Φj
n,ε

∥∥∥
L2(R+;B1)

≤ T0(u0,Mα) + T2(M) + ε .

It follows (of course up to a change of T2) that for small enough ε

(2.23)
∥∥∥ L∑
j=0

Φj
n,ε

∥∥∥
L2(R+;B1)

≤ T0(u0,Mα) + T2(M) .

Thanks to (2.16) and (2.22), this gives rise to

(2.24) ∀n ≥ N1 , ‖F 2
n,ε‖F0 ≤ ε

(
T0(u0,Mα) + T2(M)

)
.

Finally let us consider F 3
n,ε. Using the fact that B1 is an algebra along with the Hölder

inequality, we infer that for a small enough γ in ]0, 1[,∥∥Λ
λjn

Φj
n,ε ⊗ ΛλknΦk

n,ε

∥∥
L1(R+;B1)

≤ ‖Λ
λjn

Φj
n,ε‖

L
2

1+γ (R+;B1)
‖ΛλknΦk

n,ε‖
L

2
1−γ (R+;B1)

.

The scaling invariance (1.9) gives

‖Λ
λjn

Φj
n,ε‖

L
2

1+γ (R+;B1)
∼ (λjn)γ‖Φj

n,ε‖
L

2
1+γ (R+;B1)

and

‖ΛλknΦk
n,ε‖

L
2

1−γ (R+;B1)
∼ 1

(λkn)γ
‖Φk

n,ε‖
L

2
1−γ (R+;B1)

.

For small enough γ, Theorems 3 and 4 imply that∥∥Λ
λjn

Φj
n,ε ⊗ ΛλknΦk

n,ε

∥∥
L1(R+;B1)

.
(λjn
λkn

)γ
·
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We deduce that

‖F 3
n,ε‖F0 .

∑
0≤j,k≤L
j 6=k

min
{λjn
λkn

,λ
k
n

λjn

}γ
.

As the sequences (λjn)n∈N and (λkn)n∈N are orthogonal (see Definition 2.1), we have for any j
and k such that j 6= k

lim
n→∞

min
{λjn
λkn

,λ
k
n

λjn

}
= 0 .

Thus an integer N2 greater than or equal to N1 exists such that

∀n ≥ N2 , ‖F 3
n,ε‖F0 . ε .

Together with (2.21) and (2.24), this implies that

n ≥ N2 =⇒ ‖Fn,ε‖F0 . ε ,

which proves (2.20) and thus concludes the proof of Theorem 1. �

3. Profile decomposition of the sequence of initial data: proof of Theorem 2

The proof of Theorem 2 is structured as follows. First, in Section 3.1 we write down the
profile decomposition of any bounded sequence of anisotropically oscillating divergence free
vector fields, following the results of [4]. Next we reorganize the profile decomposition by
grouping together all profiles having the same horizontal scale and we check that all the
conclusions of Theorem 2 hold: that is performed in Section 3.2.

3.1. Profile decomposition of anisotropically oscillating, divergence free vector
fields. In this section we start by recalling the result of [4], where an anisotropic profile
decomposition of sequences of B1,q anisotropically oscillating is achieved. Let us first define
anisotropic scaling operators, similar to the operators defined in (1.1): for any two sequences
of positive real numbers (εn)n∈N and (γn)n∈N, and for any sequence (xn)n∈N of points in R3,
we denote

Λεn,γn,xnφ(x)
def
=

1

εn
φ

(
xh − xn,h

εn
,x3 − xn,3

γn

)
·

Let us also introduce the definition of orthogonal triplets of sequences, analogous to Defini-
tion 2.1.

Definition 3.1. We say that two triplets of sequences (ε`n, γ
`
n, x

`
n)n∈N with ` belonging

to {1, 2}, where (ε`n, γ
`
n)n∈N are two sequences of positive real numbers and x`n are sequences

in R3, are orthogonal if, when n tends to infinity,

either
ε1
n

ε2
n

+
ε2
n

ε1
n

+
γ1
n

γ2
n

+
γ2
n

γ1
n

→∞

or (ε1
n, γ

1
n) ≡ (ε2

n, γ
2
n) and |(x1

n)ε
1
n,γ

1
n − (x2

n)ε
1
n,γ

1
n | → ∞ ,

where we have denoted (x`n)ε
k
n,γ

k
n
def
=
(x`n,h
εkn

,
x`n,3
γkn

)
· A family of sequences

(
(εjn, γ

j
n, x

j
n)n∈N

)
j≥0

is said to be a family of scales and cores if ε0
n ≡ γ0

n ≡ 1, x0
n ≡ 0, and if (ε`n, γ

`
n, x

`
n)n∈N

and (εkn, γ
k
n, x

k
n)n∈N are orthogonal when ` 6= k.

Now, let us recall without proof the following result.
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Proposition 3.2 ([4]). Under the assumptions of Theorem 1, the following holds. For all
integers ` ≥ 0 there is a triplet of scales and cores in the sense of Definition 3.1, denoted
by (ε`n, γ

`
n, x

`
n)n∈N and for all α in ]0, 1[ there are arbitrarily smooth divergence free vector

fields (φ̃h,`α , 0) and (−∇h∆−1
h ∂3φ

`
α, φ

`
α) with φ̃h,`α and φ`α compactly supported, and such that

up to extracting a subsequence, one can write the sequence (u0,n)n∈N under the following
form, for each L ≥ 1:

(3.1)
u0,n = u0 +

L∑
`=1

Λε`n,γ`n,x`n

(
φ̃h,`
α + r̃h,`

α −
ε`n
γ`n
∇h∆−1

h ∂3(φ`α + r`α), φ`α + r`α

)
+
(
ψ̃h,L
n −∇h∆−1

h ∂3ψ
L
n , ψ

L
n

)
,

where ψ̃h,L
n and ψLn are independent of α and satisfy

(3.2) lim sup
n→∞

(
‖ψ̃h,L

n ‖B0 + ‖ψLn‖B0
)
→ 0 , L→∞ ,

while r̃h,`
α and r`α are independent of n and L and satisfy for each ` ∈ N

(3.3) ‖r̃h,`
α ‖B1,q + ‖r`α‖B1,q ≤ α .

Moreover the following properties hold:

(3.4)
∀` ≥ 1 , lim

n→∞
(γ`n)−1ε`n ∈ {0,∞} ,

and lim
n→∞

(γ`n)−1ε`n =∞ =⇒ φ`α ≡ r`α ≡ 0 ,

as well as the following stability result, which is uniform in α:

(3.5)
∑
`≥1

(
‖φ̃h,`

α ‖B1,q + ‖r̃h,`
α ‖B1,q + ‖φ`α‖B1,q + ‖r`α‖B1,q

)
. sup

n
‖u0,n‖B1,q + ‖u0‖B1,q .

Remark 3.3. As pointed out in [4, Section 2], if two scales appearing in the above decom-
position are not orthogonal, then they can be chosen to be equal. We shall therefore assume
from now on that is the case: two sequences of scales are either orthogonal, or equal.

3.2. Regrouping of profiles according to horizontal scales. In order to proceed with
the re-organization of the profile decomposition provided in Proposition 3.2, we introduce
some more definitions, keeping the notation of Proposition 3.2. For a given L ≥ 1 we define
recursively an increasing (finite) sequence of indexes `k ∈ {1, . . . , L} by

(3.6) `0
def
= 0 , `k+1

def
= min

{
` ∈ {`k + 1, . . . , L} / ε

`
n

γ`n
→ 0 and ` /∈

k⋃
k′=0

ΓL(ε
`k′
n )
}
,

where for 0 ≤ ` ≤ L, we define (recalling that by Remark 3.3 if two scales are not orthogonal,
then they are equal),

(3.7) ΓL(ε`n)
def
=
{
`′ ∈ {1, . . . , L} / ε`′n ≡ ε`n and ε`

′
n (γ`

′
n )−1 → 0 , n→∞

}
.

We call L(L) the largest index of the sequence (`k) and we may then introduce the following
partition:

(3.8)
{
` ∈ {1, . . . , L} / ε`n(γ`n)−1 → 0

}
=

L(L)⋃
k=0

ΓL(ε`kn ) .

We shall now regroup profiles in the decomposition (3.1) of u0,n according to the value of
their horizontal scale. We fix from now on an integer L ≥ 1.
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3.2.1. Construction of the profiles for ` = 0. Before going into the technical details of the con-
struction, let us discuss an example explaining the computations of this paragraph. Consider
the particular case when u0,n is given by

u0,n(x) = u0(x) +
(
v0

0(xh, 2
−nx3) + w0,h

0 (xh, 2
−2nx3), 0

)
+
(
v0

0(x1 + 2n, x2, 2
−nx3), 0

)
,

with v0
0 and w0,h

0 smooth (say in Bs,s′

1,q for all s, s′ in R) and compactly supported. Let us

assume that u0,n converges towards u0 in the sense of distributions, and that (u0,n − u0)n∈N
is anisotropically oscillating. Then we can write

u0,n(x) = u0(x) +
(
v0,loc

0,n (xh, 2
−nx3), 0

)
+
(
v0,∞

0,n (xh, 2
−nx3), 0

)
,

with v0,loc
0,n (y) := v0

0(y)+w0,h
0 (yh, 2

−ny3) and v0,∞
0,n (y) = v0

0(y1+2n, y2, y3). Now since u0,n ⇀ u0

as n goes to infinity, we have that v0
0(xh, 0) + wh

0(xh, 0) ≡ 0, hence v0,loc
0,n (xh, 0) = 0. The

initial data u0,n has therefore been re-written as

u0,n(x) = u0(x) +
(
v0,loc

0,n (xh, 2
−nx3), 0

)
+
(
v0,∞

0,n (xh, 2
−nx3), 0

)
with v0,loc

0,n (xh, 0) = 0

and where the support in xh of v0,loc
0,n (xh, 2

−nx3) is in a fixed compact set whereas the support

in xh of v0,∞
0,n (xh, 2

−nx3) escapes to infinity. This is of the same form as in the statement of
Theorem 2.

When considering all the profiles having the same horizontal scale (1 here), the point is
therefore to choose the smallest vertical scale (2n here) and to write the decomposition in
terms of that scale only. Of course that implies that contrary to usual profile decompositions,
the profiles are no longer fixed functions in B1,q, but sequences of functions, bounded in B1,q.

In view of the above example, let `−0 be an integer such that γ
`−0
n is the smallest vertical scale

going to infinity, associated with profiles for 1 ≤ ` ≤ L, having 1 for horizontal scale. More
precisely we ask that

γ
`−0
n = min

`∈ΓL(1)
γ`n ,

where according to (3.7),

ΓL(1) =
{
`′ ∈ {1, . . . , L} / ε`′n ≡ 1 and γ`

′
n →∞ , n→∞

}
.

Notice that the minimum of the sequences γ`n is well defined in our context thanks to the fact
that due to Remark 3.3, either two sequences are orthogonal in the sense of Definition 3.1,
or they are equal. Observe also that `−0 is by no means unique, as several profiles may have
the same horizontal scale as well as the same vertical scale (in which case the concentration
cores must be orthogonal). Now we denote

(3.9) h0
n

def
= (γ

`−0
n )−1 ,

and we notice that h0
n goes to zero as n goes to infinity for each L. Note also that h0

n depends
on L through the choice of `−0 , since if L increases then `−0 may also increase; this dependence
is omitted in the notation for simplicity. Let us define (up to a subsequence extraction)

(3.10) a`
def
= lim

n→∞

(
x`n,h,

x`n,3
γ`n

)
·
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We then define the divergence-free vector fields

(3.11) v0,loc
0,n,α,L(y)

def
=

∑
`∈ΓL(1)

a`h∈R
2

φ̃h,`α

(
yh − x`n,h ,

y3

h0
nγ

`
n

−
x`n,3
γ`n

)

and

(3.12)
w0,loc

0,n,α,L(y)
def
=

∑
`∈ΓL(1)

a`h∈R
2

(
− 1

h0
nγ

`
n

∇h∆−1
h ∂3φ

`
α, φ

`
α

)(
yh − x`n,h ,

y3

h0
nγ

`
n

−
x`n,3
γ`n

)
.

By construction we have

w0,loc,h
0,n,α,L = −∇h∆−1

h ∂3w
0,loc,3
0,n,α,L .

Similarly we define

(3.13) v0,∞
0,n,α,L(y)

def
=

∑
`∈ΓL(1)

|a`h|=∞

φ̃h,`α

(
yh − x`n,h ,

y3

h0
nγ

`
n

−
x`n,3
γ`n

)

and

(3.14)
w0,∞

0,n,α,L(y)
def
=

∑
`∈ΓL(1)

|a`h|=∞

(
− 1

h0
nγ

`
n

∇h∆−1
h ∂3φ

`
α, φ

`
α

)(
yh − x`n,h ,

y3

h0
nγ

`
n

−
x`n,3
γ`n

)
.

By construction we have again

w0,∞,h
0,n,α,L = −∇h∆−1

h ∂3w
0,∞,3
0,n,α,L .

Moreover recalling the notation [
f ]h0n(x)

def
= f(xh, h

0
nx3)

and

Λεn,γn,xnφ(x)
def
=

1

εn
φ

(
xh − xn,h

εn
,
x3 − xn,3

γn

)
,

one can compute that

(3.15)
∑

`∈ΓL(1)

a`h∈R
2

Λ1,γ`n,x
`
n

(
φ̃h,`α −

1

γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
=
[
(v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0n

and

(3.16)
∑

`∈ΓL(1)

|a`h|=∞

Λ1,γ`n,x
`
n

(
φ̃h,`α −

1

γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
=
[
(v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0n
.

Let us now check that v0,loc
0,n,α,L, w0,loc

0,n,α,L, v0,∞
0,n,α,L and w0,∞

0,n,α,L satisfy the bounds given in the

statement of Theorem 2. We shall only study v0,loc
0,n,α,L and w0,loc

0,n,α,L as the other study is very

similar. On the one hand, by translation and scale invariance of B0 and using definitions (3.11)
and (3.12), we get

(3.17) ‖v0,loc,h
0,n,α,L‖B0 ≤

∑
`≥1

‖φ̃h,`α ‖B0 and ‖w0,loc,3
0,n,α,L‖B0 ≤

∑
`≥1

‖φ`α‖B0 .
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According to (3.5) and the Sobolev embedding B1,q ↪→ B0, this gives rise to

(3.18) ‖v0
0,n,α,L‖B0 + ‖w0,loc,3

0,n,α,L‖B0 ≤ C uniformly in α ,L , n .

Moreover for each given α, the profiles are as smooth as needed, and since in the above sums

by construction γ
`−0
n,L ≤ γ`n, one gets also after an easy computation

(3.19) ∀s ∈ R , ∀s′ ≥ 1/2 , ‖v0,loc
0,n,α,L‖Bs,s′ + ‖w0,loc,3

0,n,α,L‖Bs,s′ ≤ C(α) uniformly in n ,L .

Estimates (3.18) and (3.19) give easily (2.4) and (2.5).

Finally let us estimate v0,loc,h
0,n,α,L(·, 0) and w0,loc,3

0,n,α,L(·, 0) in B0
2,1(R2) and prove (2.6). On the one

hand by assumption we know that u0,n ⇀ u0 in the sense of distributions. On the other hand
we can take weak limits in the decomposition of u0,n provided by Proposition 3.2. We recall

that by (3.4), if ε`n/γ
`
n →∞ then φ`α ≡ r`α ≡ 0. Then we notice that clearly

ε`n → 0 or ε`n →∞ =⇒ Λε`n,γ`n,x`nf ⇀ 0

for any value of the sequences γ`n, x
`
n and any function f . Moreover

γ`n → 0 =⇒ Λ1,γ`n,x
`
n
f ⇀ 0

for any sequence of cores x`n and any function f , so we are left with the study of profiles such
that ε`n ≡ 1 and γ`n →∞. Then we also notice that if γ`n →∞, then with Notation (3.10),

(3.20) |a`h| =∞ =⇒ Λ1,γ`n,x
`
n
f ⇀ 0 .

In that case, in view of (3.2) and (3.5)

L∑
`=1

Λε`n,γ`n,x`n
ε`n
γ`n
∇h∆−1

h ∂3(φ`α + r`α) +∇h∆−1
h ∂3ψ

L
n ⇀ 0 .

Consequently for each L ≥ 1 and each α in ]0, 1[, we have in view of (3.1), as n goes to
infinity

(3.21)

−ψLn −
∑

`∈ΓL(1)

r`α(· − x`n,h,
· − x`n,3
γ`n

) ⇀
∑

`∈ΓL(1)

s.t. a`h∈R
2

φ`α(· − a`h, 0)

−ψ̃h,Ln −
∑

`∈ΓL(1)

r̃h,`α (· − x`n,h,
· − x`n,3
γ`n

) ⇀
∑

`∈ΓL(1)

s.t. a`h∈R
2

φ̃h,`α (· − a`h, 0) .

Now let η > 0 be given. Then thanks to (3.2) and (3.3), there is L0 ≥ 1 such that for
all L ≥ L0 there is α0 ≤ 1 (depending on L) such that for all L ≥ L0 and α ≤ α0, uniformly
in n ≥ n(L0, η) ∥∥∥(ψ̃h,L

n , ψLn
)∥∥∥
B0

+
∥∥∥ ∑
`∈ΓL(1)

(r̃h,`α , r`α)(· − x`n,h,
· − x`n,3
γ`n

)
∥∥∥
B0
≤ η .

Using the fact that B0 is embedded in L∞(R;B0
2,1(R2)), we infer from (3.21) that for L ≥ L0

and α ≤ α0

(3.22)
∥∥∥ ∑

`∈ΓL(1)

s.t. a`h∈R
2

φ̃h,`α (· − a`h, 0)
∥∥∥
B0

2,1(R2)
≤ η
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and

(3.23)
∥∥∥ ∑

`∈ΓL(1)

s.t. a`h∈R
2

φ`α(· − a`h, 0)
∥∥∥
B0

2,1(R2)
≤ η .

But by (3.11), we have

v0,loc,h
0,n,α,L(·, 0) =

∑
`∈ΓL(1)

a`h∈R
2

φ̃h,`α

(
· −x`n,h,−

x`n,3
γ`n

)

and by (3.12) we have also

w0,loc,3
0,n,α,L(·, 0) =

∑
`∈ΓL(1)

a`h∈R
2

φ`α

(
· −x`n,h,−

x`n,3
γ`n

)
.

It follows that we can write for all L ≥ L0 and α ≤ α0,

lim sup
n→∞

‖v0,loc,h
0,n,α,L(·, 0)‖B0

2,1(R2) ≤
∥∥ ∑
`∈ΓL(1)

a`h∈R
2

φ̃h,`α (· − a`h, 0)
∥∥
B0

2,1(R2)

≤ η

thanks to (3.22). A similar estimate for w0,loc,3
0,n,α,L(·, 0) using (3.23) gives finally

(3.24) lim
L→∞

lim
α→0

lim sup
n→∞

(
‖v0,loc,h

0,n,α,L(·, 0)‖B0
2,1(R2) + ‖w0,loc,3

0,n,α,L(·, 0)‖B0
2,1(R2)

)
= 0 .

The results (2.7) and (2.8) involving the cut-off function θ are simply due to the fact that
the profiles are compactly supported.

3.2.2. Construction of the profiles for ` ≥ 1. The construction is very similar to the previous
one. We start by considering a fixed integer j ∈ {1, . . . ,L(L)}. Then we define an integer `−j

so that, up to a sequence extraction,

γ
`−j
n = min

`∈ΓL(ε
`j
n )

γ`n ,

where as in (3.7)

ΓL(ε`n)
def
=
{
`′ ∈ {1, . . . , L} / ε`′n ≡ ε`n and ε`

′
n (γ`

′
n )−1 → 0 , n→∞

}
.

Notice that necessarily ε`
−
j 6≡ 1. Finally we define

hjn
def
= ε

`j
n (γ

`−j
n )−1 .

By construction we have that hjn → 0 as n → ∞ (recall that ε
`j
n ≡ ε

`−j
n ). Then we define

for j ≤ L(L)

(3.25) vj,hn,α,L(y)
def
=

∑
`∈ΓL(ε

`j
n )

φ̃h,`α

(
yh −

x`n,h

ε
`j
n

,
ε
`j
n

hjnγ`n
y3 −

x`n,3
γ`n

)
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and

wjn,α,L(y)
def
=

∑
`∈ΓL(ε

`j
n )

(
− ε

`j
n

hjnγ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)(
yh −

x`n,h

ε
`j
n

,
ε
`j
n

hjnγ`n
y3 −

x`n,3
γ`n

)
and we choose

(3.26) L(L) < j ≤ L ⇒ vj,hn,α,L ≡ 0 and wjn,α,L ≡ 0 .

We notice that
wj,hn,α,L = −∇h∆−1

h ∂3w
j,3
n,α,L .

Defining

λjn
def
= ε

`j
n ,

a computation, similar to that giving (3.15) implies directly that

(3.27)

∑
`∈ΓL(ε

`j
n )

Λ
ε
`j
n ,γ`n,x

`
n

(
φ̃h,`α −

λjn
γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
= Λ

λjn

[
(vj,hn,α,L + hjnw

j,h
n,α,L, w

j,3
n,α,L)

]
hjn
.

Notice that since ε
`j
n 6≡ 1 as recalled above, we have that λjn → 0 or ∞ as n→∞.

The a priori bounds for the profiles (vj,hn,α,L, w
j,3
n,α,L)1≤j≤L are obtained exactly as in the pre-

vious paragraph: let us prove that

(3.28)

∑
j≥1

(
‖vj,hn,α,L‖B0 + ‖wj,3n,α,L‖B0

)
≤ C , and

∀s ∈ R , ∀s′ ≥ 1/2 ,
∑
j≥1

(
‖vj,hn,α,L‖Bs,s′ + ‖wj,3n,α,L‖Bs,s′

)
≤ C(α) .

We shall detail the argument for the first inequality only, and in the case of vj,hn,α,L as the

study of wj,3n,α,L is similar. We write, using the definition of vj,hn,α,L in (3.25),

L∑
j=1

‖vj,hn,α,L‖B0 =

L(L)∑
j=1

∥∥∥ ∑
`∈ΓL(ε

`j
n )

φ̃h,`α

(
yh −

x`n,h

ε
`j
n

,
ε
`j
n

hjnγ`n
y3 −

x`n,3
γ`n

)∥∥∥
B0
,

so by definition of the partition (3.8) and by scale and translation invariance of B0 we find
thanks to (3.5), that there is a constant C independent of L such that

L∑
j=1

‖vj,hn,α,L‖B0 ≤
L∑
`=1

‖φ̃h,`α ‖B0 ≤ C .

The result is proved.

3.2.3. Construction of the remainder term. With the notation of Proposition 3.2, let us first
define the remainder terms

(3.29) ρ̃
(1),h
n,α,L

def
= −

L∑
`=1

ε`n
γ`n

Λε`n,γ`n,x`n∇
h∆−1

h ∂3r
`
α −∇h∆−1

h ∂3ψ
L
n

and

(3.30) ρ
(2)
n,α,L

def
=

L∑
`=1

Λε`n,γ`n,x`n
(
r̃h,`α , 0

)
+

L∑
`=1

Λε`n,γ`n,x`n(0, r`α) +
(
ψ̃h,Ln , ψLn

)
.
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Observe that by construction, thanks to (3.2) and (3.3) and to the fact that if r`α 6≡ 0,
then ε`n/γ

`
n goes to zero as n goes to infinity, we have

(3.31)

lim
L→∞

lim
α→0

lim sup
n→∞

‖ρ̃(1),h
α,n,L‖B1,− 1

2
= 0 ,

and lim
L→∞

lim
α→0

lim sup
n→∞

‖ρ(2)
α,n,L‖B0 = 0 .

Then we notice that for each ` ∈ N and each α ∈]0, 1[, we have by a direct computation∥∥∥Λε`n,γ`n,x`n(φ̃h,`α , 0)
∥∥∥
B1,−

1
2
∼ γ`n
ε`n

∥∥∥φ̃h,`α ∥∥∥B1,− 1
2
.

We deduce that if ε`n/γ
`
n → ∞, then Λε`n,γ`n,x̃`n(φ̃h,`α , 0) goes to zero in B1,− 1

2 as n goes to

infinity, hence so does the sum over ` ∈ {1, . . . , L}. It follows that for each given α in ]0, 1[
and L ≥ 1 we may define

ρ
(1)
n,α,L

def
= ρ̃

(1),h
n,α,L +

L∑
`=1

ε`n/γ
`
n→∞

Λε`n,γ`n,x`n(φ̃h,`α , 0)

and we have

(3.32) lim
L→∞

lim
α→0

lim sup
n→∞

‖ρ(1)
n,α,L‖B1,− 1

2
= 0 .

Finally, as D(R3) is dense in B1,q, let us choose a family (u0,α)α of functions in D(R3) such
that ‖u0 − u0,α‖B1,q ≤ α and let us define

(3.33) ρn,α,L
def
= ρ

(1)
α,n,L + ρ

(2)
n,α,L + u0 − u0,α .

Inequalities (3.31) and (3.32) give

(3.34) lim
L→∞

lim
α→0

lim sup
n→∞

‖et∆ρn,α,L‖L2(R+;B1) = 0 .

3.2.4. End of the proof of Theorem 2. Let us return to the decomposition given in Proposi-
tion 3.2, and use definitions (3.29), (3.30) and (3.33) which imply that

u0,n = u0,α +
L∑
`=1

ε`n/γ
`
n→0

Λε`n,γ`n,x`n

(
φ̃h,`α −

ε`n
γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
+ ρn,α,L .

We recall that for all ` in N, we have limn→∞ (γ`n)−1ε`n ∈ {0,∞} and in the case where the
ratio ε`n/γ

`
n goes to infinity then φ`α ≡ 0. Next we separate the case when the horizontal scale

is one, from the others: with the notation (3.7) we write

u0,n = u0,α +
∑

`∈ΓL(1)

Λ1,γ`n,x
`
n

(
φ̃h,`α −

1

γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)

+

L∑
`=1
ε`n 6≡1

ε`n/γ
`
n→0

Λε`n,γ`n,x`n

(
φ̃h,`α −

ε`n
γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
+ ρn,α,L .
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With (3.15) this can be written

u0,n = u0,α +
[
(v0,loc,h

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0n

+
[
(v0,∞,h

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0n

+
∑
`=1
ε`n 6≡1

ε`n/γ
`
n→0

Λε`n,γ`n,x`n

(
φ̃h,`α −

ε`n
γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
+ ρn,α,L .

Next we use the partition (3.8), so that with notation (3.6) and (3.7),

u0,n = u0,α +
[
(v0,loc,h

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0n

+
[
(v0,∞,h

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0n

+

L(L)∑
j=1

∑
`∈ΓL(ε

`j
n )

ε
`j
n 6≡1

Λ
ε
`j
n ,γ`n,x

`
n

(
φ̃h,`α −

ε
`j
n

γ`n
∇h∆−1

h ∂3φ
`
α, φ

`
α

)
+ ρn,α,L .

Then we finally use the identity (3.27) which gives

u0,n = u0,α +
[
(v0,loc,h

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0n

+
[
(v0,∞,h

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L)

]
h0n

+

L∑
j=1

Λ
λjn

[(vj,hn,α,L + hjnw
j,h
n,α,L, w

j,3
n,α,L)]

hjn
+ ρn,α,L .

The end of the proof follows from the estimates (3.18), (3.19), (3.24), (3.28), along with (3.34).
Theorem 2 is proved.

4. Proof of Theorems 3 and 4

4.1. Proof of Theorem 3. In order to prove that the initial data defined by

Φ0
def
=
[
(v0 − β∇h∆−1

h ∂3w
3
0, w

3
0)
]
β
,

with (v0, w
3
0) satisfying the assumptions of Theorem 3, gives rise to a global smooth solution

for small enough β, we look for the solution under the form

(4.1) Φβ = Φapp + ψ with Φapp def
=
[
(v + βwh, w3)

]
β

where v solves the two-dimensional Navier-Stokes equations

(NS2D)x3

 ∂tv + v · ∇hv −∆hv = −∇hp in R+ × R2

divhv = 0
v|t=0 = v0(·, x3) ,

while w3 solves the transport-diffusion equation

(Tβ)

{
∂tw

3 + v · ∇hw3 −∆hw
3 − β2∂2

3w
3 = 0 in R+ × R3

w3
|t=0 = w3

0

and wh is determined by the divergence free condition on w.

In Paragraph 4.1.1 (resp. 4.1.2), we establish a priori estimates on v (resp. w), and in
Paragraph 4.1.3, we achieve the proof of Theorem 3 by studying the perturbed Navier-Stokes
equation satisfied by ψ.
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4.1.1. Two dimensional flows with parameter. The goal of this section is to prove the following
proposition on v, the solution of (NS2D)x3 . It is a general result on the regularity of the
solution of (NS2D) when the initial data depends on a real parameter x3, measured in terms
of Besov spaces with respect to the variable x3.

Proposition 4.1. Let v0 be a two-component divergence free vector field depending on the
vertical variable x3, and belonging to Sµ. Then the unique, global solution v to (NS2D)x3
belongs to A0 and satisfies the following estimate:

(4.2) ‖v‖A0 ≤ T1(‖v0‖B0) .

Moreover, for all (s, s′) in Dµ, we have

(4.3) ∀r ∈ [1,∞] , ‖v‖
L̃r(R+;Bs+

2
r ,s
′
)
≤ T2(‖v0‖Sµ).

Proof. The proof of Proposition 4.1 is done in three steps. First, we deduce from the clas-
sical energy estimate for the two dimensional Navier-Stokes system, a stability result in the

spaces Lr(R+;Hs+ 2
r (R2))2 with r in [2,∞] and s in ]−1, 1[. This is the purpose of Lemma 4.2,

the proof of which uses essentially energy estimates together with paraproduct laws. Then
we have to translate the stability result of Lemma 4.2 in terms of Besov spaces with respect
to the third variable, seen before simply as a parameter. This is the object of Lemma 4.3,
the proof of which relies on the equivalence of two definitions of Besov spaces with regular-
ity index in ]0, 1[: the first one involving the dyadic decomposition of the frequency space,
and the other one consisting in estimating integrals in physical space. Finally, invoking the
Gronwall lemma and product laws we conclude the proof of the proposition.

Step 1: 2D-stability result. Let us start by proving the following lemma.

Lemma 4.2. For any compact set I included in ]− 1, 1[, a constant C exists such that, for
any r in [2,∞] and any s in I, we have for any two solutions v1 and v2 of the two-dimensional
Navier-Stokes equations

(4.4) ‖v1 − v2‖
Lr(R+;Hs+2

r (R2))
. ‖v1(0)− v2(0)‖Hs(R2)E12(0) ,

where we define

E12(0)
def
= expC

(
‖v1(0)‖2L2 + ‖v2(0)‖2L2

)
.

Proof. Defining v12(t)
def
= v1(t)− v2(t), we find that

∂tv12 + v2 · ∇hv12 −∆hv12 = −v12 · ∇hv1 −∇hp .(4.5)

Thus taking the Hs scalar product with v12, we get thanks to the divergence free condition

1

2

d

dt
‖v12(t)‖2Hs + ‖∇hv12(t)‖2Hs = −

(
v2(t) · ∇hv12(t)|v12(t)

)
Hs −

(
v12(t) · ∇hv1(t)|v12(t)

)
Hs .

Whence, by time integration we get

‖v12(t)‖2Hs + 2

∫ t

0
‖∇hv12(t′)‖2Hsdt′ = ‖v12(0)‖2Hs − 2

∫ t

0

(
v2(t′) · ∇hv12(t′)|v12(t′)

)
Hs dt

′

−2

∫ t

0

(
v12(t′) · ∇hv1(t′)|v12(t′)

)
Hs dt

′ .

Now making use of the following estimate proved in [12, Lemma 1.1]:

(4.6)
(
v · ∇ha|a

)
Hs . ‖∇hv‖L2‖a‖Hs‖∇ha‖Hs ,

2Here Hs+ 2
r (R2) denotes the usual homogeneous Sobolev space.
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available uniformly with respect to s in any compact set of ]− 2, 1[, we deduce that there is
a positive constant C such that for any s in I, we have

(4.7)

2
∣∣∣ ∫ t

0

(
v2(t′) · ∇hv12(t′)|v12(t′)

)
Hsdt

′
∣∣∣

≤ 1

2

∫ t

0
‖∇hv12(t′)‖2Hs dt′ +

C2

2

∫ t

0
‖v12(t′)‖2Hs‖∇hv2(t′)‖2L2 dt

′ .

Noticing that∫ t

0

(
v12(t′) · ∇hv1(t′)|v12(t′)

)
Hsdt

′ ≤
∫ t

0
‖∇hv12(t′)‖Hs‖v12(t′) · ∇hv1(t′)‖Hs−1 dt′ ,

we deduce by Cauchy-Schwarz inequality and product laws in Sobolev spaces on R2 that for s
in I,

(4.8)

2
∣∣∣ ∫ t

0

(
v12(t′) · ∇hv1(t′)|v12(t′)

)
Hsdt

′
∣∣∣

≤ 1

2

∫ t

0
‖∇hv12(t′)‖2Hs dt′ +

C2

2

∫ t

0
‖v12(t′)‖2Hs‖∇hv1(t′)‖2L2 dt

′ .

Combining (4.7) and (4.8), we get for s in I,

‖v12(t)‖2Hs +

∫ t

0
‖∇hv12(t′)‖2Hsdt′ . ‖v12(0)‖2Hs

+

∫ t

0
‖v12(t′)‖2Hs

(
‖∇hv1(t′)‖2L2 + ‖∇hv2(t′)‖2L2

)
dt′ .

Gronwall’s lemma implies that there exists a positive constant C such that

‖v12(t)‖2Hs +

∫ t

0
‖∇hv12(t′)‖2Hsdt′ . ‖v12(0)‖2Hs expC

∫ t

0

(
‖∇hv1(t′)‖2L2 + ‖∇hv2(t′)‖2L2

)
dt′ .

But for any i in {1, 2}, we have by the L2 energy estimate (1.2)

(4.9)

∫ t

0
‖∇hvi(t

′)‖2L2dt
′ ≤ 1

2
‖vi(0)‖2L2 .

Consequently for s in I,

‖v12(t)‖2Hs +

∫ t

0
‖∇hv12(t′)‖2Hsdt′ . ‖v12(0)‖2Hs E12(0) ,

which leads to the result by interpolation. �

Step 2: propagation of vertical regularity. Thanks to Lemma 4.2, we can propagate
vertical regularity as stated in the following result.

Lemma 4.3. For any compact set I included in ]− 1, 1[, a constant C exists such that, for
any r in [2,∞] and any s in I, we have for any solution v to (NS2D)x3 ,

‖v‖
Lr(R+;L∞v (H

s+2
r

h ))
. ‖v0‖BsE(0) with E(0)

def
= exp

(
C‖v(0)‖2L∞v L2

h

)
.

Proof. As mentioned above, the proof of Lemma 4.3 uses crucially the characterization of
Besov spaces via differences in physical space, namely that for any Banach space X of dis-
tributions one has (see for instance Theorem 2.36 of [2])

(4.10)
∥∥(2 j2 ‖∆v

ju‖L2
v(X)

)
j

∥∥
`1(Z)

∼
∫
R

‖u− (τ−zu)‖L2
v(X)

|z|
1
2

dz

|z|
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where the translation operator τ−z is defined by

(τ−zu)(t, xh, x3)
def
= u(t, xh, x3 + z) .

Lemma 4.2 asserts that, for any r in [2,∞], any s in I and any couple (x3, z) in R2, the
solution v to (NS2D)x3 satisfies

‖v − τ−zv‖Y sr . ‖v0 − τ−zv0‖Hs
h
E(0) with Y s

r
def
= Lr(R+;H

s+ 2
r

h ) .

Taking the L2 norm of the above inequality with respect to the x3 variable and then the L1

norm with respect to the measure |z|−
3
2dz gives

(4.11)

∫
R

‖v − τ−zv‖L2
v(Y sr )

|z|
1
2

dz

|z|
.
∫
R

‖v0 − τ−zv0‖L2
v(Hs

h)

|z|
1
2

dz

|z|
E(0) .

Now, making use of the characterization (4.10) with X = Y s
r , we find that∫

R

‖v − τ−zv‖L2
v(Y sr )

|z|
1
2

dz

|z|
∼
∑
j∈Z

2
j
2

∥∥∥∥∥(2k(s+ 2
r

)∆v
j∆

h
kv(t, ·, z)

)
k

∥∥
Lr(R+;`2(Z;L2

h))

∥∥∥
L2
v

.

Similarly we have∫
R

‖v0 − τ−zv0‖L2
v(Hs

h)

|z|
1
2

dz

|z|
∼
∑
j∈Z

2
j
2

∥∥(2ks‖∆v
j∆

h
kv0‖L2

h

)
k

∥∥
`2(Z;L2

v)
.

Thus by the embedding from `1(Z) to `2(Z), we get∫
R

‖v0 − τ−zv0‖L2
v(Hs

h)

|z|
1
2

dz

|z|
.

∑
(j,k)∈Z2

2
j
2 2ks‖∆v

j∆
h
kv0‖L2(R3) .

This implies that Estimate (4.11) also writes∑
j∈Z

2
j
2

∥∥∥∥∥(2k(s+ 2
r

)∆v
j∆

h
kv(t, ·, z)

)
k

∥∥
Lr(R+;`2(Z;L2

h))

∥∥∥
L2
v

. ‖v0‖Bs E(0) .

As r ≥ 2, Minkowski’s inequality implies that∑
j∈Z

2
j
2

∥∥∥∥∥(2k(s+ 2
r

)∆v
j∆

h
kv(t, ·)

)
k

∥∥
`2(Z;L2(R3))

∥∥∥
Lr(R+)

. ‖v0‖Bs E(0) .

Bernstein inequalities (1.6) and (1.7) ensure that

‖∆v
j∆

h
kv(t, ·)‖L∞v (L2

h) . 2
j
2 ‖∆h

kv(t, ·)‖L2(R3) ,

which gives rise to ∥∥∥∥∥(2k(s+ 2
r

)‖∆h
kv‖L∞v (L2

h)

)
k

∥∥
`2(Z)

∥∥∥
Lr(R+)

. ‖v0‖Bs E(0) .

Permuting the `2 norm and the L∞v norm thanks to Minkowski’s inequality again, achieves
the proof of the lemma. �

Step 3: end of the proof of Proposition 4.1. Our aim is to establish (4.3) for all (s, s′)
in Dµ. Let us start by proving the following inequality: for any v solving (NS2D)x3 , for any r

in [4,∞], any s in
]
−1

2 ,
1
2

[
and any positive s′,

(4.12) ‖v‖
L̃r(R+;Bs+

2
r ,s
′
)
. ‖v0‖Bs,s′ exp

(∫ ∞
0

C
(
‖v(t)‖4L∞v (L4

h)) + ‖v(t)‖2L∞v (H1
h)

)
dt
)
.
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For that purpose, let us introduce, for any nonnegative λ, the following notation: for any
function F we define

Fλ(t)
def
= F (t) exp

(
−λ
∫ t

0
φ(t′)dt′

)
with φ(t)

def
= ‖v(t)‖4L∞v (L4

h) + ‖v(t)‖2L∞v (H1
h) .

Combining Lemma 4.3 with the Sobolev embedding of H
1
2 (R2) into L4(R2), we find that

(4.13)

∫ t

0
φ(t′) dt′ . E(0)(‖v0‖2B0 + ‖v0‖4B0) .

Now making use of the Duhamel formula and the action of the heat flow (see for instance
Proposition B.2 in [4]), we infer that

‖∆v
j∆

h
kvλ(t)‖L2 ≤ Ce−c22kt‖∆v

j∆
h
kv0‖L2

+ C2k
∫ t

0
exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′)dt′′

)
‖∆v

j∆
h
k(v ⊗ v)λ(t′)‖L2dt′ .

(4.14)

Recall that (v⊗ v)λ = v⊗ vλ. Now to estimate the term ‖∆v
j∆

h
k(v⊗ v)λ(t′)‖L2 , we make use

of the anisotropic version of Bony’s paraproduct decomposition (one can consult [2] and [43]
for an introduction to anisotropic Littlewood-Paley theory), writing

ab =
4∑
`=1

T `(a, b) with

T 1(a, b) =
∑
j,k

Sv
j S

h
ka∆v

j∆
h
kb ,(4.15)

T 2(a, b) =
∑
j,k

Sv
j ∆h

ka∆v
jS

h
k+1b ,

T 3(a, b) =
∑
j,k

∆v
jS

h
kaS

v
j+1∆h

kb ,

T 4(a, b) =
∑
j,k

∆v
j∆

h
kaS

v
j+1S

h
k+1b .

In light of Bernstein inequality (1.6), we have

‖∆v
j∆

h
kT

1(v(t), vλ(t))‖L2 . 2
k
2 ‖∆v

j∆
h
kT

1(v(t), vλ(t))‖
L2
v(L

4
3
h )
,

which, in view of (4.15), Hölder’s inequalities and the action of the horizontal and vertical
truncations on Lebesgue spaces, ensures the existence of some fixed nonzero integer N0 such
that

‖∆v
j∆

h
kT

1(v(t), vλ(t))‖L2 . 2
k
2

∑
j′≥j−N0

k′≥k−N0

‖Sv
j′S

h
k′v(t)‖L∞v (L4

h)‖∆v
j′∆

h
k′vλ(t)‖L2

. 2
k
2 ‖v(t)‖L∞v (L4

h)

∑
j′≥j−N0

k′≥k−N0

‖∆v
j′∆

h
k′vλ(t)‖L2 .

According to the definition of L̃4(R+;Bs+
1
2
,s′), we get

2js
′
2ks‖∆v

j∆
h
kT

1(v(t), vλ(t))‖L2

. ‖vλ‖
L̃4(R+;Bs+

1
2 ,s
′
)
‖v(t)‖L∞v (L4

h)

∑
j′≥j−N0

k′≥k−N0

2−(j′−j)s′2−(k′−k)(s+ 1
2

)f̃j′,k′(t) .
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where f̃j′,k′(t), defined by

f̃j′,k′(t)
def
= ‖vλ‖−1

L̃4(R+;Bs+
1
2 ,s
′
)
2k
′(s+ 1

2
)2j
′s′‖∆v

j′∆
h
k′vλ(t)‖L2 ,

is on the sphere of `1(Z2;L4(R+)).

Since s > −1

2
and s′ > 0, it follows by Young’s inequality on series, that

2js
′
2ks‖∆v

j∆
h
kT

1(v(t), vλ(t))‖L2 . ‖vλ‖
L̃4(R+;Bs+

1
2 ,s
′
)
‖v(t)‖L∞v (L4

h)fj,k(t)

where fj,k(t) is on the sphere of `1(Z2;L4(R+)).

As by definition φ(t) is greater than ‖v(t)‖4
L∞v (L4

h)
, we infer that

T 1
j,k,λ(t)

def
= 2k2js

′
2ks
∫ t

0
exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′)dt′′

)
× ‖∆v

j∆
h
kT

1(v(t′), vλ(t′))‖L2dt′

. ‖vλ‖
L̃4(R+;Bs+

1
2 ,s
′
)

× 2k
∫ t

0
exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′)dt′′

)
φ

1
4 (t′)fj,k(t

′)dt′ .

(4.16)

By Hölder’s inequality, this leads to

T 1
j,k,λ(t) . ‖vλ‖

L̃4(R+;Bs+
1
2 ,s
′
)

(∫ t

0
e−c(t−t

′)22kf4
j,k(t

′)dt′
) 1

4

× 2k
(∫ t

0
exp
(
−c(t− t′)22k − 4

3
λ

∫ t

t′
φ(t′′)dt′′

)
φ(t′)

1
3dt′

) 3
4

.

Finally applying Hölder’s inequality in the last term of the above inequality, we get

(4.17) T 1
j,k,λ(t) .

1

λ
1
4

(∫ t

0
e−c(t−t

′)22kf4
j,k(t

′)dt′
) 1

4

‖vλ‖
L̃4(R+;Bs+

1
2 ,s
′
)
.

Now let us study the term with T 2. Using again that the support of the Fourier transform
of the product of two functions is included in the sum of the two supports, let us write that

‖∆v
j∆

h
kT

2(v(t), vλ(t))‖L2 .
∑

j′≥j−N0

k′≥k−N0

‖Sv
j′∆

h
k′v(t)‖L∞v (L2

h)‖∆v
j′S

h
k′+1vλ(t)‖L2

v(L∞h ) .

Combining Bernstein inequality (1.6) with the definition of the function φ, we get

(4.18) ‖Sv
j′∆

h
k′v(t)‖L∞v (L2

h) . 2−k
′‖v(t)‖L∞v (H1

h) . 2−k
′
φ

1
2 (t) .

Now let us observe that using again the Bernstein inequality, we have

‖∆v
j′S

h
k′+1vλ(t)‖L2

v(L∞h ) .
∑
k′′≤k′

‖∆v
j′∆

h
k′′vλ(t)‖L2

v(L∞h )

.
∑
k′′≤k′

2k
′′‖∆v

j′∆
h
k′′vλ(t)‖L2 .

By definition of the L̃4(R+;Bs+
1
2
,s′) norm, we have

2j
′s′2k

′(s− 1
2

) ‖∆v
j′S

h
k′+1vλ(t)‖L2

v(L∞h ) . ‖vλ‖L̃4(R+;Bs+
1
2 ,s
′
)

∑
k′′≤k′

2(k′−k′′)(s− 1
2

)f
j′,k′′

(t)
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where f
j′,k′′

(t), on the sphere of `1(Z2;L4(R+)), is defined by

f
j′,k′′

(t)
def
= ‖vλ‖−1

L̃4(R+;Bs+
1
2 ,s
′
)
2j
′s′2k

′′(s+ 1
2

)‖∆v
j′∆

h
k′′vλ(t)‖L2 .

Since s < 1
2 , this ensures by Young’s inequality that

‖∆v
j′S

h
k′+1vλ(t)‖L2

v(L∞h ) . 2−j
′s′2−k

′(s− 1
2

) ‖vλ‖
L̃4(R+;Bs+

1
2 ,s
′
)
f̃j′,k′(t)

where f̃j′,k′(t) is on the sphere of `1(Z2;L4(R+)). Together with Inequality (4.18), this gives

2js
′
2k(s+ 1

2
) ‖∆v

j∆
h
kT

2(v(t), vλ(t))‖L2 . φ(t)
1
2 ‖vλ‖

L̃4(R+;Bs+
1
2 ,s
′
)
fj,k(t) ,

where fj,k(t) is on the sphere of `1(Z2;L4(R+)). We deduce that

(4.19)

T 2
j,k,λ(t)

def
= 2k2js

′
2ks

∫ t

0
exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′)dt′′

)
× ‖∆v

j∆
h
kT

2(v(t′), vλ(t′))‖L2 dt′

. ‖vλ‖
L̃4(R+;Bs+

1
2 ,s
′
)

× 2
k
2

∫ t

0
exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′)dt′′

)
φ(t′)

1
2 fj,k(t

′)dt′ .

Using Hölder’s inequality twice, we get

T 2
j,k,λ(t) . ‖vλ‖

L̃4(R+;Bs+
1
2 ,s
′
)

(∫ t

0
e−c(t−t

′)22kf4
j,k(t

′)dt′
) 1

4

× 2
k
2

(∫ t

0
exp
(
−c(t− t′)22k − λ

∫ t

t′
φ(t′′)dt′′

)
φ(t′)

2
3dt′

) 3
4

.
1

λ
1
2

‖vλ‖
L̃4(R+;Bs+

1
2 ,s
′
)

(∫ t

0
e−c(t−t

′)22kf4
j,k(t

′)dt′
) 1

4

.(4.20)

As T 3 is estimated like T 1 and T 4 is estimated like T 2, this implies finally that

2js
′
2ks‖∆v

j∆
h
kvλ(t)‖L2 . 2js

′
2kse−c2

2kt‖∆v
j∆

h
kv0‖L2

+
(∫ t

0
e−c(t−t

′)22kf4
j,k(t

′)dt′
) 1

4
( 1

λ
1
4

+
1

λ
1
2

)
‖vλ‖

L̃4(R+;Bs+
1
2 ,s
′
)
.

As we have(∫ ∞
0

(∫ t

0
e−c(t−t

′)22kf4
j,k(t

′)dt′
) 1

4
×4
dt

) 1
4

= c−1dj,k2
− k

2

and sup
t∈R+

(∫ t

0
e−c(t−t

′)22kf4
j,k(t

′)dt′
) 1

4
= dj,k , with dj,k ∈ `1(Z2) ,

we infer that

2js
′
2ks
(
‖∆v

j∆
h
kvλ‖L∞(R+;L2) + 2

k
2 ‖∆v

j∆
h
kvλ‖L4(R+;L2)

)
. 2js

′
2ks‖∆v

j∆
h
kv0‖L2 + dj,k

( 1

λ
1
4

+
1

λ
1
2

)
‖vλ‖

L̃4(R+;Bs+
1
2 ,s
′
)
.

This ends the proof of (4.12) by taking the sum over j and k and choosing λ large enough.
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Now to show that Estimate (4.12) remains available for r = 2, we start from Formula (4.14)
with λ = 0. Applying again anisotropic paraproduct decomposition, we find by arguments
similar to those conducted above

2js
′
2k(s+1)‖∆v

j∆
h
kv(t)‖L2 . 2js

′
2k(s+1)e−c2

2kt‖∆v
j∆

h
kv0‖L2

+ 22k ‖v‖
L̃4(R+;Bs+

1
2 ,s
′
)

∫ t

0
e−c(t−t

′)22k
(
(gj,k(t

′) + 2−
k
2 hj,k(t

′)
)
dt′ ,

where gj,k (resp. hj,k) are in `1(Z2;L2(R+)) (resp. `1(Z2;L
4
3 (R+))), with∑

(j,k)∈Z2

‖gj,k‖L2(R+) . ‖φ‖
1
4

L1 and
∑

(j,k)∈Z2

‖hj,k‖
L

4
3 (R+)

. ‖φ‖
1
2

L1 .

Laws of convolution in the time variable, summation over j and k and (4.12) imply that

‖v‖
L̃2(R+;Bs+1,s′ ) . ‖v0‖Bs,s′ exp

(
C

∫ ∞
0

φ(t)dt
)
.

This implies by interpolation in view of (4.12) that for all r in [2,∞], all s in ]− 1
2 ,

1
2 [ and all

positive s′

(4.21) ‖v‖
L̃r(R+;Bs+

2
r ,s
′
)
. ‖v0‖Bs,s′ exp

(
C

∫ ∞
0

φ(t)dt
)
,

which in view of (4.13) ensures Inequality (4.2) and achieves the proof of Estimate (4.3) in
the case when s belongs to ]− 1

2 ,
1
2 [·

To conclude the proof of the proposition, it remains to complete the range of indexes. Let
us first double the interval on the index s, by proving that for any s in ]− 1, 1[, any s′ ≥ 1/2
and any r in [2,∞] we have

(4.22) ‖v‖
L̃r(R+;Bs+

2
r ,s
′
)
. ‖v0‖Bs,s′ + ‖v0‖B s2 ,s′‖v0‖B s2 exp(C‖v0‖B0E0) .

Anisotropic product laws (see for instance Appendix B in [4]) ensure that for any s in ]−1, 1[
and any s′ ≥ 1/2, we have

‖v(t)⊗ v(t)‖Bs,s′ . ‖v(t)‖
B
s+1
2
‖v(t)‖

B
s+1
2 ,s′ .

According to Formula (4.14) and the smoothing effect of the horizontal heat flow, we find
that, for any s belonging to ]− 1, 1[, any s′ ≥ 1/2 and any r in [2,∞],

‖v‖
L̃r(R+;Bs+

2
r ,s
′
)
. ‖v0‖Bs,s′ + ‖v ⊗ v‖

L̃2(R+;Bs,s′ )

. ‖v0‖Bs,s′ + ‖v‖
L̃4(R+;B

s+1
2 )
‖v‖

L̃4(R+;B
s+1
2 ,s′ )

.

Finally Inequality (4.12) ensures that for any s in ]− 1, 1[, any s′ ≥ 1/2 and any r in [2,∞],

(4.23) ‖v‖
L̃r(R+;Bs+

2
r ,s
′
)
. ‖v0‖Bs,s′ + ‖v0‖B s2 ‖v0‖B s2 ,s′ exp(C‖v0‖B0E(0)) ,

which ends the proof of Inequality (4.22), and thus for (4.3) when r in [2,∞] and s in ]−1, 1[.

Let us now treat the case when s belongs ]−2, 0] and s′ ≥ 1/2. Again by anisotropic product
laws, we have

‖v(t)⊗ v(t)‖Bs+1,s′ . ‖v(t)‖B s2+1‖v(t)‖B s2+1,s′ ,

which implies that

‖v ⊗ v‖L1(R+;Bs+1,s′ ) . ‖v‖L2(R+;B
s
2+1)
‖v‖

L2(R+;B
s
2+1,s′ )

.
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The smoothing effect of the heat flow gives then, for any r in [1,∞], any s in ] − 2, 0] and
any s′ ≥ 1/2

‖v‖
L̃r(R+;Bs+

2
r ,s
′
)
. ‖v0‖Bs,s′ + ‖v‖

L2(R+;B
s
2+1)
‖v‖

L2(R+;B
s
2+1,s′ )

.

Inequality (4.23) implies that, for any r in [1,∞], any s in ]− 2, 0] and any s′ ≥ 1/2

‖v‖
L̃r(R+;Bs+

2
r ,s
′
)
. ‖v0‖Bs,s′ + ‖v0‖B s2

(
‖v0‖B s2 ,s′ + ‖v0‖B s4 ‖v0‖B s4 ,s′ exp(C‖v0‖B0E0)

)
+ ‖v0‖2B s4

(
‖v0‖B s2 ,s′ + ‖v0‖B s4 ‖v0‖B s4 ,s′ exp(C‖v0‖B0E0)

)
.

This concludes the proof of Estimate (4.3), and thus achieves the proof of Proposition 4.1. �

4.1.2. Propagation of regularity by a transport diffusion equation. Now let us estimate the
norm of the function w3 defined as the solution of (Tβ) defined page 22. This is described in
the following proposition.

Proposition 4.4. Let v0 and v be as in Proposition 4.1. For any non negative real number β,
let us consider w3 the solution of

(Tβ)

{
∂tw

3 + v · ∇hw3 −∆hw
3 − β2∂2

3w
3 = 0 in R+ × R3

w3
|t=0 = w3

0 .

Then w3 satisfies the following estimates where all the constants are independent of β:

(4.24) ‖w3‖A0 . ‖w3
0‖B0 exp

(
T1(‖v0‖B0)

)
,

and for any s in [−2 + µ, 0] and any s′ ≥ 1/2, we have

(4.25) ‖w3‖As,s′ .
(
‖w3

0‖Bs,s′ + ‖w3
0‖B0T2(‖v0‖Sµ)

)
exp
(
T1(‖v0‖B0)

)
.

Proof. Proposition 4.4 follows easily from the following lemma which is a general result about
the propagation of anisotropic regularity by a transport-diffusion equation.

Lemma 4.5. Let us consider (s, s′) a couple of real numbers, and Q a bilinear operator

which maps continuously B1 × Bs+1,s′ into Bs,s′ . A constant C exists such that for any two-
component vector field v in L2(R+;B1), any f in L1(R+;Bs,s′), any a0 in Bs,s′ and for any

non negative β, if ∆β
def
= ∆h + β2∂2

z and a is the solution of

∂ta−∆βa+Q(v, a) = f and a|t=0 = a0 ,

then a satisfies

∀r ∈ [1,∞] , ‖a‖
L̃r(R+;Bs+

2
r ,s
′
)
≤ C

(
‖a0‖Bs,s′ + ‖f‖L1(R+;Bs,s′ )

)
exp
(
C

∫ ∞
0
‖v(t)‖2B1dt

)
.

The fact that the third index of the Besov spaces is one, induces some technical difficulties
which lead us to work first on subintervals I of R+ on which ‖v‖L2(I;B1) is small.

Let us then start by considering any subinterval I = [τ0, τ1] of R+. The Duhamel formula
and the smoothing effect of the heat flow imply that

‖∆h
k∆v

ja(t)‖L2 ≤ e−c22k(t−τ0)‖∆h
k∆v

ja(τ0)‖L2

+ C

∫ t

τ0

e−c2
2k(t−t′)∥∥∆h

k∆v
j

(
Q(v(t′), a(t′)) + f(t′)

)∥∥
L2dt

′ .

After multiplication by 2ks+js
′

and using Young’s inequality in the time integral, we deduce
that

2ks+js
′(‖∆h

k∆v
ja‖L∞(I;L2) + 22k‖∆h

k∆v
ja‖L1(I;L2)

)
≤ C2ks+js

′‖∆h
k∆v

ja(τ0)‖L2

+ C

∫
I
dk,j(t

′)
(
‖v(t′)‖B1‖a(t′)‖Bs+1,s′ + ‖f(t′)‖Bs,s′

)
dt′ ,
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where for any t, dk,j(t) is an element of the sphere of `1(Z2). By summation over (k, j) and
using the Cauchy-Schwarz inequality, we infer that

‖a‖
L̃∞(I;Bs,s′ ) + ‖a‖L1(I;Bs+2,s′ ) ≤ C‖a(τ0)‖Bs,s′ + C‖f‖L1(I;Bs,s′ )

+ C‖v‖L2(I;B1)‖a‖L2(I;Bs+1,s′ ) .
(4.26)

Let us define an increasing sequence (Tm)0≤m≤M+1 by induction such that T0 = 0, TM+1 =∞
and

∀m < M ,

∫ Tm+1

Tm

‖v(t)‖2B1dt = c0 and

∫ ∞
TM

‖v(t)‖2B1dt ≤ c0 ,

for some given c0 which will be chosen later on. Obviously, we have

(4.27)

∫ ∞
0
‖v(t)‖2B1dt ≥

∫ TM

0
‖v(t)‖2B1dt = Mc0 .

Thus the number M of T ′ms such that Tm is finite is less than c−1
0 ‖v‖2L2(R+;B1)

.

Applying Estimate (4.26) to the interval [Tm, Tm+1], we get

‖a‖L∞([Tm,Tm+1];Bs,s′ ) + ‖a‖L1([Tm,Tm+1];Bs+2,s′ ) ≤ ‖a‖L2([Tm,Tm+1];Bs+1,s′ )

+ C
(
‖a(Tm)‖Bs,s′ + C‖f‖L1([Tm,Tm+1];Bs,s′ )

)
,

if c0 is chosen such that C
√
c0 ≤ 1.

Since

‖a‖L2([Tm,Tm+1];Bs+1,s′ ) ≤ ‖a‖
1
2

L∞([Tm,Tm+1];Bs,s′ )‖a‖
1
2

L1([Tm,Tm+1];Bs+2,s′ )
,

we infer that

(4.28)
‖a‖L∞([Tm,Tm+1];Bs,s′ ) + ‖a‖L1([Tm,Tm+1];Bs+2,s′ )

≤ 2C
(
‖a(Tm)‖Bs,s′ + ‖f‖L1([Tm,Tm+1];Bs,s′ )

)
.

Now let us us prove by induction that

‖a‖L∞([0,Tm];Bs,s′ ) ≤ (2C)m
(
‖a0‖Bs,s′ + ‖f‖L1([0,Tm],Bs,s′ )

)
.

Using (4.28) and the induction hypothesis we get

‖a‖L∞([Tm,Tm+1];Bs,s′ ) ≤ 2C
(
‖a‖L∞([0,Tm];Bs,s′ ) + ‖f‖L1([Tm,Tm+1];Bs,s′ )

)
≤ (2C)m+1

(
‖a0‖Bs,s′ + ‖f‖L1([0,Tm+1],Bs,s′ )

)
,

provided that 2C ≥ 1, which ensures in view of (4.27) that

‖a‖L∞(R+;Bs,s′ ) ≤ C
(
‖a0‖Bs,s′ + ‖f‖L1(R+;Bs,s′ )

)
exp
(
C

∫ ∞
0
‖v(t)‖2B1dt

)
.

We deduce from (4.28) that

‖a‖L1([Tm,Tm+1];Bs+2,s′ ) ≤ C
(
‖a0‖Bs,s′ + ‖f‖L1(R+;Bs,s′ )

)
exp
(
C

∫ ∞
0
‖v(t)‖2B1dt

)
+ C‖f‖L1([Tm,Tm+1];Bs,s′ ) .

Once noticed that xeCx
2 ≤ eC

′x2 , the result comes by summation over m and the fact that
the total number of m’s is less than or equal to c−1

0 ‖v‖2L2(R+;B1)
. This ends the proof of the

lemma and thus of Proposition 4.4. �

As wh is defined by wh = −∇h∆−1
h ∂3w

3, we deduce from Proposition 4.4 the following
corollary.
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Corollary 4.6. For any s in [−2 + µ, 0] and any s′ ≥ 1/2,

‖wh‖As+1,s′−1 .
(
‖w3

0‖Bs,s′ + ‖w3
0‖B0T2(‖v0‖Sµ)

)
exp
(
T1(‖v0‖B0)

)
.

4.1.3. Conclusion of the proof of Theorem 3. Using the definition of the approximate solu-
tion Φapp given in (4.1), we infer from Propositions 4.1 and 4.4 and Corollary 4.6 that

(4.29) ‖Φapp‖L2(R+;B1) ≤ T1(‖(v0, w
3
0)‖B0) + βT2(‖(v0, w

3
0)‖Sµ) .

Moreover, the error term ψ satisfies the following modified Navier-Stokes system, with null
Cauchy data:

∂tψ + div
(
ψ ⊗ ψ + Φapp ⊗ ψ + ψ ⊗ Φapp

)
−∆ψ = −∇qβ +

4∑
`=1

E`β with

E1
β

def
= ∂2

3 [(v, 0)]β + β(0, [∂3p]β) ,

E2
β

def
= β

[(
w3∂3(v, w3) +

(
∇h∆−1

h divh∂3(vw3), 0
))]

β
,

E3
β

def
= β

[(
wh · ∇h(v, w3) + v · ∇h(wh, 0)

)]
β

and

E4
β

def
= β2

[(
wh · ∇h(wh, 0) + w3∂3(wh, 0)

)]
β
.

(4.30)

If we prove that

(4.31)
∥∥∥ 4∑
`=1

E`β

∥∥∥
F0
≤ βT2

(
‖(v0, w

3
0)‖Sµ

)
,

then according to the fact ψ|t=0 = 0, ψ exists globally and satisfies

(4.32) ‖ψ‖L2(R+;B1) . β T2

(
‖(v0, w

3
0)‖Sµ

)
.

This in turn implies that Φ0 generates a global regular solution Φβ in L2(R+;B1) which
satisfies

(4.33) ‖Φβ‖L2(R+;B1) ≤ T1

(
‖(v0, w

3
0)‖B0

)
+ β T2

(
‖(v0, w

3
0)‖Sµ

)
.

Once this bound in L2(R+;B1) is obtained, the bound in A0 follows by heat flow estimates,

and in As,s′ by propagation of regularity for the Navier-Stokes system.

So all we need to do is to prove Inequality (4.31). Let us first estimate the term ∂2
3 [(v, 0)]β.

This requires the use of some L̃2(R+;Bs,s′) norms. Clearly, we have

‖∂2
3 [v]β‖

L̃2(R+;B0,−
1
2 )
. ‖[v]β‖

L̃2(R+;B0,
3
2 )
,

which implies in view of the vertical scaling property (1.12) of the space B0, 3
2

‖∂2
3 [v]β‖

L̃2(R+;B0,−
1
2 )
. β ‖v‖

L̃2(R+;B0,
3
2 )
.

Therefore Proposition 4.1 ensures that

(4.34) ‖∂2
3 [v]β‖

L̃2(R+;B0,−
1
2 )
≤ β T2(‖v0‖Sµ) .

Now let us study the pressure term. By applying the horizontal divergence to the equation
satisfied by v we get, thanks to the fact that divhv = 0,

∂3p = −∂3∆−1
h

2∑
`,m=1

∂`∂m(v`vm) .
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Since ` and m belong to {1, 2}, the operator ∆−1
h ∂`∂m is a zero-order horizontal Fourier

multiplier, which implies that∥∥[∂3p]β
∥∥
L1(R+;B0)

= ‖∂3p‖L1(R+;B0)

. ‖v∂3v‖L1(R+;B0) .

According to laws of product in anisotropic Besov spaces, we obtain

‖v(t)∂3v(t)‖B0 . ‖v(t)‖B1‖∂3v(t)‖B0 ,

which gives rise to ∥∥[∂3p]β
∥∥
L1(R+;B0)

. ‖v‖L2(R+;B1)‖∂3v‖L2(R+;B0)

. ‖v‖L2(R+;B1)‖v‖L2(R+;B0,
3
2 )
.(4.35)

Combining (4.34) and (4.35), we get by virtue of Proposition 4.1

(4.36) ‖E1
β‖F0 ≤ β T2

(
‖v0‖Sµ

)
.

In the same way, we treat the terms E2
β, E3

β and E4
β, acheving the proof of Estimate (4.31).

This ends the proof of the fact that the solution Φβ of (NS) with intial data

Φ0 =
[
(v0 − β∇h∆−1

h ∂3w
3
0, w

3
0)
]
β

is global and belongs to L2(R+;B1).

The proof of the whole Theorem 3 is then achieved. �

4.2. Proof of Theorem 4. The proof of Theorem 4 is done in three steps. First we define
an approximate solution, using results proved in the previous section, and then we prove
useful localization results on the different parts entering in the definition of the approximate
solution. In the last step, we conclude the proof of the theorem, using those localization
results.

4.2.1. The approximate solution. With the notation of Theorem 2, let us consider the diver-
gence free vector field:

Φ0
0,n,α,L

def
= u0,α +

[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0n

+
[
(v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L)

]
h0n
.

Our purpose is to establish that for h0
n small enough, depending only on the weak limit u0 and

on
∥∥(v0,∞

0,n,α,L, w
0,∞,3
0,n,α,L)

∥∥
Sµ

as well as
∥∥(v0,loc

0,n,α,L, w
0,loc,3
0,n,α,L)

∥∥
Sµ

, there is a unique, global smooth

solution to (NS) with data Φ0
0,n,α,L.

Let us start by solving globally (NS) with the data u0,α. By using the global strong stabil-
ity of (NS) in B1,1 (see [4], Corollary 3) and the convergence result (2.2), we deduce that,
for α small enough, u0,α generates a unique, global solution uα to (NS) system belonging

to L2(R+;B
2, 1

2
1,1 ). Actually in view of the Sobolev embedding of B

2, 1
2

1,1 into B1, uα ∈ L2(R+;B1).

Next let us define

Φ0,∞
0,n,α,L

def
=
[(
v0,∞

0,n,α,L + h0
nw

0,∞,h
0,n,α,L, w

0,∞,3
0,n,α,L

)]
h0n
.

Thanks to Theorem 3, we know that for h0
n smaller than ε1

(∥∥(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L)

∥∥
Sµ

)
there is

a unique global smooth solution Φ0,∞
n,α,L associated with Φ0,∞

0,n,α,L, which belongs to A0, and
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using the notation and results of Section 2.3, in particular (4.1) and (4.32), we can write

(4.37)

Φ0,∞
n,α,L

def
= Φ0,∞,app

n,α,L + ψ0,∞
n,α,L with

Φ0,∞,app
n,α,L

def
=
[
v0,∞
n,α,L + h0

nw
0,∞,h
n,α,L , w

0,∞,3
n,α,L

]
h0n

and for all r in [2,∞]

‖ψ0,∞
n,α,L‖L̃r(R+;B

2
r
. h0

nT2

(∥∥(v0,∞
0,n,α,L, w

0,∞,3
0,n,α,L)

∥∥
Sµ

)
,

for all r in [2,∞],

(4.38) lim
L→∞

lim
α→0

lim sup
n→∞

‖Φ0,loc
n,α,L(·, 0)‖

L̃r(R+;B
2
r
2,1(R2))

= 0 ,

where v0,∞
n,α,L solves (NS2D)x3 with data v0,∞

0,n,α,L, w0,∞,3
n,α,L solves the transport-diffusion equa-

tion (Th0n) defined page 22 with data w0,∞,3
0,n,α,L and where

w0,∞,h
n,α,L = −∇h∆−1

h ∂3w
0,∞,3
n,α,L .

Similarly defining

Φ0,loc
0,n,α,L

def
=
[(
v0,loc

0,n,α,L + h0
nw

0,loc,h
0,n,α,L, w

0,loc,3
0,n,α,L

)]
h0n
,

then for h0
n smaller than ε1

(∥∥(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L)

∥∥
Sµ

)
there is a unique global smooth solu-

tion Φ0,loc
n,α,L associated with Φ0,loc

0,n,α,L, which belongs to A0, and

(4.39)

Φ0,loc
n,α,L

def
= Φ0,loc,app

n,α,L + ψ0,loc
n,α,L with

Φ0,loc,app
n,α,L

def
=
[
v0,loc
n,α,L + h0

nw
0,loc,h
n,α,L , w

0,loc,3
n,α,L

]
h0n

and for all r in [2,∞]

‖ψ0,loc
n,α,L‖L̃r(R+;B

2
r
. h0

nT2

(∥∥(v0,loc
0,n,α,L, w

0,loc,3
0,n,α,L)

∥∥
Sµ

)
,

where v0,loc
n,α,L solves (NS2D)x3 with data v0,loc

0,n,α,L and w0,loc,3
n,α,L solves (Th0n) with data w0,loc,3

0,n,α,L.

Finally we recall that w0,loc,h
n,α,L = −∇h∆−1

h ∂3w
0,loc,3
n,α,L .

In the next step, we establish localization properties on Φ0,∞
n,α,L and Φ0,loc

n,α,L. Those localization

properties will enable us to prove that the function uα + Φ0,∞
n,α,L + Φ0,loc

n,α,L approximate the

solution to (NS) system associated to the Cauchy data Φ0
0,n,α,L.

4.2.2. Localization properties of the approximate solution. In this step, we prove localization

properties on Φ0,∞
n,α,L and Φ0,loc

n,α,L, namely the fact that Φ0,∞,app
n,α,L escapes to infinity in the space

variable, while Φ0,loc,app
n,α,L remains localized (approximately), and we also prove that Φ0,loc,app

n,α,L

remains small near x3 = 0. Let us recall that as claimed by (2.6), (2.7) and (2.8), those
properties are true for their respective initial data. A first part of these localization properties
derives from the following result.

Proposition 4.7. Under the assumptions of Proposition 4.1, the control of the value of v at
the point x3 = 0 is given by

(4.40) ∀r ∈ [1,∞] , ‖v(·, 0)‖
L̃r(R+;B

2
r
2,1(R2))

. ‖v0(·, 0)‖B0
2,1(R2) + ‖v0(·, 0)‖2

L2(R2)
.

Moreover we have for all η in ]0, 1[ and γ in {0, 1},

(4.41) ‖(γ − θh,η)v‖A0 ≤
∥∥(γ − θh,η)v0

∥∥
B0 exp T1(‖v0‖B0) + ηT2(‖v0‖Sµ) ,

with θh,η is the truncation function defined by (2.1).
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Proof. In order to establish Proposition 4.7, let us start by pointing out that the proof of
Lemma 1.1 of [12] claims that for all x3 in R,

(4.42)

(
∆h
k(v(t, ·, x3) · ∇hv(t, ·, x3))

∣∣∆h
kv(t, ·, x3)

)
L2

. dk(t, x3)‖∇hv(t, ·, x3)‖2L2‖∆h
kv(t, ·, x3)‖L2 ,

where (dk(t, x3))k∈Z is a generic element of the sphere of `1(Z).

Taking x3 = 0, we deduce by an L2 energy estimate in R2

1

2

d

dt
‖∆h

kv(t, ·, 0)‖2L2 + c22k‖∆h
kv(t, ·, 0)‖2L2 . dk(t)‖∇hv(t, ·, 0)‖2L2‖∆h

kv(t, ·, 0)‖L2 ,

where (dk(t))k∈Z belongs to the sphere of `1(Z), which after division by ‖∆h
kv(t, ·, 0)‖L2 and

time integration leads to

(4.43)

‖∆h
kv(·, 0)‖L∞(R+;L2) + c22k‖∆h

kv(·, 0)‖L1(R+;L2)

≤ ‖∆kv0(·, 0)‖L2 + C

∫ ∞
0

dk(t)‖∇hv(t, ·, 0)‖2L2dt .

By summation over k and in view of (4.9), we obtain Inequality (4.40) of Proposition 4.7.

Now to go to the proof of Inequality (4.41), let us define vγ,η
def
= (γ − θh,η)v and write that

∂tvγ,η −∆hvγ,η + divh

(
v ⊗ vγ,η

)
= Eη(v) =

3∑
i=1

Eiη(v) with

E1
η(v)

def
= −2η(∇hθ)h,η∇hv − η2(∆hθ)h,ηv ,

E2
η(v)

def
= η v · (∇hθ)h,ηv and

E3
η(v)

def
= −(γ − θh,η)∇h∆−1

h

∑
1≤`,m≤2

∂`∂m
(
v`vm

)
.

(4.44)

Lemma 4.5 applied with s = 0, s′ = 1/2, a = vγ,η, Q(v, a) = divh(v⊗a), f = Eη(v) and β = 0
reduces the problem to the proof of the following estimate

(4.45) ‖Eη(v)‖L1(R+;B0) . η T2(‖v0‖Sµ) .

Actually, in view of Inequality (4.3) applied with r = 1 and s = −1 (resp. with r = 2
and s = −1/2) this will follow from

(4.46) ‖Eη(v)‖L1(R+;B0) . η
(
‖v‖L1(R+;B1) + ‖v‖2

L2(R+;B
1
2 )

)
.

Product laws in anisotropic Besov spaces and the scaling properties of homogeneous Besov
spaces give

‖(∇hθ)h,η∇hv(t)‖B0 . ‖(∇hθ)h,η‖B1
2,1(R2)‖∇

hv(t)‖B0

. ‖∇hθ‖B1
2,1(R2)‖v(t)‖B1 .

Along the same lines, we get

‖(∆hθ)h,ηv(t)‖B0 . ‖(∆hθ)h,η‖B0
2,1(R2)‖v(t)‖B1

.
1

η
‖∆hθ‖B0

2,1(R2)‖v(t)‖B1 .

Consequently

(4.47) ‖E1
η(v)‖L1(R+;B0) . η‖v‖L1(R+;B1) .
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The same arguments enable us to deal with the term E2
η(v) and to prove that

(4.48) ‖E2
η(v)‖L1(R+;B0) . η‖v‖

2

L2(R+;B
1
2 )
.

Let us finally study the term E3
η(v) which is most challenging. To this end, we make use of

the horizontal paraproduct decomposition:

av = T h
v a+ T h

a v +Rh(a, b) with T h
a b

def
=
∑
k

Sh
k−1a∆h

kb and Rh(a, b)
def
=
∑
k

∆̃h
ka∆h

kb ,

where ∆̃h
k

def
= ϕ̃(2−kξh) with ϕ̃ is a smooth compactly supported (in R2 \ {0}) function which

has value 1 near B(0, 2−N0) + C, where C is an adequate annulus. This allows us to write

E3
η(v) =

3∑
`=1

E3,`
η (v) with

E3,1
η (v)

def
= T̃ h

∇hpθh,η with ∇hp = ∇h∆−1
h

∑
1≤`,m≤2

∂`∂m(v`vm) ,

E3,2
η (v)

def
= −

∑
1≤`,m≤2

[
T h
γ−θh,η ,∇

h∆−1
h ∂`∂m

]
v`vm and

E3,3
η (v)

def
=

∑
1≤`,m≤2

∇h∆−1
h ∂`∂mT̃

h
v`vmθh,η,

(4.49)

where T̃ h
a b = T h

a b + Rh(a, b). Combining laws of product with scaling properties of Besov
spaces, we obtain

‖T̃ h
∇hp(t)θh,η‖B0 . ‖∇hp(t)‖B−1‖θh,η‖B2

2,1(R2)

. η sup
1≤`,m≤2

‖v`(t)vm(t)‖B0‖θ‖B2
2,1(R2)

. η ‖v(t)‖2
B

1
2
‖θ‖B2

2,1(R2) .

Along the same lines we get

‖∇h∆−1
h ∂`∂mT̃

h
v`(t)vm(t)θh,η‖B0 . ‖T̃ h

v`(t)vm(t)θh,η‖B1

. ‖v`(t)vm(t)‖B0‖θh,η‖B2
2,1(R2)

. η ‖v(t)‖2
B

1
2
‖θ‖B2

2,1(R2) .

We deduce that

(4.50) ‖E3,1
η (v) + E3,3

η (v)‖L1(R+;B0) . η ‖v‖
2

L2(R+;B
1
2 )
.

Now let us estimate E3,2
η (v). By definition, we have[
T h
γ−θh,η ,∇

h∆−1
h ∂`∂m

]
v`vm =

∑
k

Ek,η(v) with

Ek,η(v)
def
=
[
Sh
k−N0

(γ − θh,η), ∆̃
h
k∇h∆−1

h ∂`∂m
]
∆h
k(v`vm) .

Then by commutator estimates (see for instance Lemma 2.97 in [2])

‖∆v
jEk,η(v(t))‖L2 . ‖∇θh,η‖L∞‖∆h

k∆v
j (v

`(t)vm(t))‖L2 .

Noticing that ‖∇θh,η‖L∞ = η‖∇θ‖L∞ , we get by virtue of laws of product

‖E3,2
η (v)‖L1(R+;B0) . η‖v‖

2

L2(R+;B
1
2 )
,
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which ends the proof of Estimate (4.45) and thus of of Proposition 4.7. �

A similar result holds for the solution w3 of

(Tβ) ∂tw
3 + v · ∇hw3 −∆hw

3 − β2∂2
3w

3 = 0 and w3
|t=0 = w3

0 ,

where β is any non negative real number. In the following statement, all the constants are
independent of β.

Proposition 4.8. Let v and w3 be as in Proposition 4.4. The control of the value of w3 at
the point x3 = 0 states as follows: For any r in [2,∞],

(4.51) ‖w3(·, 0)‖
L̃r(R+;B

2
r
2,1(R2))

≤ T2(‖(v0, w
3
0)‖Sµ)

(
‖w3

0(·, 0)‖
1−2µ
4(1−µ)
B0

2,1(R2)
+ β

)
.

Moreover, with the notations of Theorem 3, we have for all η in ]0, 1[ and γ in {0, 1},

(4.52) ‖(γ − θh,η)w
3‖A0 ≤

∥∥(γ − θh,η)w
3
0

∥∥
B0 exp T1(‖v0‖B0) + ηT2(‖(v0, w

3
0)‖Sµ) .

The proof of Proposition 4.8 is very similar to that of Proposition 4.7 and is left to the reader.

Propositions 4.7 and 4.8 imply easily the following result, using the special form of Φ0,∞
n,α,L

and Φ0,loc
n,α,L recalled in (4.37) and (4.39), and thanks to (2.6), (2.7) and (2.8).

Corollary 4.9. The vector fields Φ0,loc
n,α,L and Φ0,∞

n,α,L satisfy the following: Φ0,loc
n,α,L vanishes

at x3 = 0, in the sense that for all r in [2,∞],

(4.53) lim
L→∞

lim
α→0

lim sup
n→∞

‖Φ0,loc
n,α,L(·, 0)‖

L̃r(R+;B
2
r
2,1(R2))

= 0 ,

and there is a constant C(α,L) such that for all η in ]0, 1[,

lim sup
n→∞

(
‖(1− θh,η)Φ

0,loc
n,α,L‖A0 + ‖θh,ηΦ

0,∞
n,α,L‖A0

)
≤ C(α,L)η .

Proof. In view of (4.39) and under Notation (1.11)

Φ0,loc
n,α,L = Φ0,loc,app

n,α,L + ψ0,loc
n,α,L with

Φ0,loc,app
n,α,L =

[
v0,loc
n,α,L + h0

nw
0,loc,h
n,α,L , w

0,loc,3
n,α,L

]
h0n
,

where v0,loc
n,α,L solves (NS2D)x3 with data v0,loc

0,n,α,L, w0,loc,3
n,α,L solves the transport-diffusion equa-

tion (Th0n) defined page 22 with data w0,loc,3
0,n,α,L and w0,loc,h

n,α,L = −∇h∆−1
h ∂3w

0,loc,3
n,α,L . Combining

Property (2.6) togeter with Propositions 4.7 and 4.8, we infer that

lim
L→∞

lim
α→0

lim sup
n→∞

‖Φ0,loc,app
n,α,L (·, 0)‖

L̃r(R+;B
2
r
2,1(R2))

= 0 ,

which ends the proof of (4.53) invoking (2.5) and (4.39). The argument is similar for the

other estimates. �

4.2.3. Conclusion of the proof of Theorem 4. Now, with the above notations, we look for the
solution to (NS) system associated to the Cauchy data Φ0

0,n,α,L under the form:

Φ0
n,α,L

def
= uα + Φ0,∞

n,α,L + Φ0,loc
n,α,L + ψn,α,L .

In particular the two vector fields Φ0,loc
n,α,L and Φ0,∞

n,α,L satisfy Corollary 4.9, and furthermore
thanks to the Lebesgue theorem,

(4.54) lim
η→0
‖(1− θη)uα‖L2(R+;B1) = 0 .
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Given a small number ε > 0, to be selected later on, we choose L, α and η = η(α,L, u0) so
that thanks to Corollary 4.9 and (4.54), for all r in [2,∞], and for n large enough,

(4.55)
‖Φ0,loc

n,α,L(·, 0)‖
Lr(R+;B

2
r
2,1(R2))

+ ‖(1− θh,η)Φ
0,loc
n,α,L‖A0 + ‖(1− θη)uα‖L2(R+;B1)

+‖θh,ηΦ
0,∞
n,α,L‖A0 ≤ ε .

For sake of simplicity, denote in the sequel

(Φ0,∞
ε ,Φ0,loc

ε , ψε)
def
= (Φ0,∞

n,α,L,Φ
0,loc
n,α,L, ψn,α,L) and Φapp

ε
def
= uα + Φ0,∞

ε + Φ0,loc
ε .

By straightforward computations, one can verify that the vector field ψε satisfies the following
equation, with null Cauchy data:

∂tψε −∆ψε + div
(
ψε ⊗ ψε + Φapp

ε ⊗ ψε + ψε ⊗ Φapp
ε

)
= −∇qε + Eε ,

with Eε = E1
ε + E2

ε and

E1
ε

def
= div

(
Φ0,∞
ε ⊗ (Φ0,loc

ε + uα) + (Φ0,loc
ε + uα)⊗ Φ0,∞

ε

+ Φ0,loc ⊗ (1− θη)uα + (1− θη)uα ⊗ Φ0,loc
)
,

E2
ε

def
= div

(
Φ0,loc
ε ⊗ θηuα + θηuα ⊗ Φ0,loc

ε

)
.

(4.56)

The heart of the matter consists in proving that

(4.57) lim
ε→0
‖Eε‖F0 = 0 .

Indeed, exactly as in the proof of Theorem 3, this ensures that ψε belongs to L2(R+;B1),
with

lim
ε→0
‖ψε‖L2(R+;B1) = 0 ,

and allows to conclude the proof of Theorem 4.

So let us focus on (4.57). The term E1
ε is the easiest, thanks to the separation of the spatial

supports. Let us first write E1
ε = E1

ε,h + E1
ε,3 with

E1
ε,h

def
= divh

(
(Φ0,loc

ε + uα)⊗ Φ0,∞,h
ε + Φ0,∞

ε ⊗ (Φ0,loc,h
ε + uh

α)

+ (1− θη)uα ⊗ Φ0,loc,h + Φ0,loc ⊗ (1− θη)uh
α

)
and

E1
ε,3

def
= ∂3

(
(Φ0,loc

ε + uα)Φ0,∞,3
ε + Φ0,∞

ε (Φ0,loc,3
ε + u3

α)

+ (1− θη)uαΦ0,loc,3 + Φ0,loc(1− θη)u3
α

)
.

Now using as usual the action of derivatives and the fact that B1 is an algebra, we infer that

‖E1
ε,h‖L1(R+;B0) + ‖E1

ε,3‖
L1(R+;B

1,− 1
2

2,1 )
≤ ‖θh,ηΦ

0,∞
ε ‖L2(R+;B1)‖Φ

0,loc
ε + uα‖L2(R+;B1)

+ ‖(1− θh,η)(Φ
0,loc
ε + uα)‖L2(R+;B1)‖Φ

0,∞
ε ‖L2(R+;B1)

+ ‖Φ0,loc
ε ‖L2(R+;B1)‖u

∞
ε ‖L2(R+;B1) ,

where we denote by u∞ε the function (1− θη)uα. Thanks to (4.55) and to the a priori bounds

on Φ0,∞
ε , Φ0,loc

ε and uα, we easily get

lim
ε→0
‖E1

ε‖F0 = 0 .



ON THE ROLE OF ANISOTROPY IN THE WEAK STABILITY OF THE NAVIER-STOKES SYSTEM 39

Next let us turn to E2
ε . To this end, we use the following estimate (see for instance, Lemma 3.3

of [16]):

(4.58) ‖ab‖B1 . ‖a‖B1‖b(·, 0)‖B1
2,1(R2) + ‖x3a‖B1‖∂3b‖B1 .

Defining uloc
ε

def
= θηuα, we get applying Estimate (4.58)

‖E2
ε‖F0 . ‖uloc

ε ‖L2(R+;B1)‖Φ
0,loc
ε (·, 0)‖L2(R+;B1

2,1(R2))

+‖x3u
loc
ε ‖L2(R+;B1)‖∂3Φ0,loc

ε ‖L2(R+;B1) .

Thanks to (4.55) as well as Inequality (2.14) of Theorem 3, we obtain

lim
ε→0
‖E2

ε‖F0 = 0 .

This proves (4.57), hence Theorem 4. �
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Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 28, 2011, Pages 159-187.
[32] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing

non-linear wave equation, Acta Mathematica, 201, 2008, pages 147-212.
[33] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation, Journal

of Differential equations, 175, 2001, pages 353-392.
[34] G. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana University

Mathematical Journal, 59, 2010, pages 1801-1830.
[35] H. Koch and D. Tataru, Well–posedness for the Navier–Stokes equations, Advances in Mathematics, 157,

2001, pages 22-35.
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