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∂ t u + u • ∇u -∆u = -∇p in R + × R 3 div u = 0 u |t=0 = u 0 ,
where u(t, x) and p(t, x) are respectively the velocity and the pressure of the fluid at time t ≥ and position x ∈ R 3 .

An important point in the study of (NS) is its scale invariance, which reads as follows: defining the scaling operators, for any positive real number λ and any point x 0 of R 3 , (1.1) Λ λ,x 0 φ(t, x)

def = 1 λ φ t λ 2 ,
x -x 0 λ and Λ λ φ(t, x)

def = 1 λ φ t λ 2 ,
x λ , if u solves (NS) with data u 0 , then Λ λ,x 0 u solves (NS) with data Λ λ,x 0 u 0 . Note in particular that in two space dimensions, L ∞ (R + ; L 2 (R 2 )) is scale invariant, while in three space dimensions that is the case for L ∞ (R + ; L 3 (R 3 )) or the family of spaces L ∞ (R + ; B -1+ 3 p p,q (R 3 )) 1 , with 1 ≤ p < ∞ and 0 < q ≤ ∞.

Let us also emphasize that the (NS) system formally conserves the energy, in the sense that smooth enough solutions satisfy the following equality for all times t ≥ 0:

(1.2) 1 2 u(t) 2 L 2 (R 3 ) + t 0 ∇u(t ) 2 L 2 (R 3 ) dt = 1 2 u 0 2 L 2 (R 3 ) .
The energy equality (1.2) can easily be derived observing that thanks to the divergence free condition, the nonlinear term is skew-symmetric in L 2 : one has indeed if u and p are smooth enough and decaying at infinity

u(t) • ∇u(t) + ∇p(t)|u(t) L 2 = 0 .
The mathematical study of the Navier-Stokes system has a long history beginning with the founding paper [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] of J. Leray in 1933. In this article, J. Leray proved that any finite energy initial data (meaning square-integrable data) generates a (possibly non unique) global in time weak solution; and this in any dimension d ≥ 2. He moreover proved in [START_REF] Leray | Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique[END_REF] the uniqueness of the solution in two space dimension, but in dimension three and more, the question of the uniqueness of Leray's solutions is still an open problem. Actually the difference between dimension 2 and higher dimensions is linked to the fact that u(t) L 2 (R 2 ) is both scale invariant and bounded globally in time thanks to the energy estimate, while it is not the case in dimension d ≥ 3 (since L 2 (R 3 ) is not scale invariant).

Recall that u ∈ L 2 loc ([0, T ] × R 3 ) is said a weak solution of (NS) associated with the data u 0 if for any compactly supported, divergence free vector field φ in C ∞ ([0, T ] × R 3 ) the following holds for all t ≤ T :

R 3 u • φ(t, x)dx = R 3 u 0 (x) • φ(0, x)dx + t 0 R 3 (u • ∆φ + u ⊗ u : ∇φ + u • ∂ t φ)dxdt , with u ⊗ u : ∇φ def = 1≤j,k≤3 u j u k ∂ k φ j .
Weak solutions satisfying the energy inequality

(1.3) 1 2 u(t) 2 L 2 (R 3 ) + t 0 ∇u(t ) 2 L 2 (R 3 ) dt ≤ 1 2 u 0 2 L 2 (R 3 )
are said to be turbulent solutions, following the terminology of J. Leray [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF].

In what follows, we say that a familly (X T ) T >0 of spaces of distributions over [0, T ] × R 3 is scaling invariant if for all T > 0 one has, under Notation (1.1)

∀λ > 0 , ∀x 0 ∈ R 3 , u ∈ X T ⇐⇒ Λ λ,x 0 u ∈ X λ -2 T with u X T = Λ λ,x 0 u X λ -2 T .
Similarly a space X 0 of distributions defined on R 3 will be said scaling invariant if ∀λ > 0 , ∀x 0 ∈ R 3 , u 0 ∈ X 0 ⇐⇒ Λ λ,x 0 u 0 ∈ X 0 with u 0 X 0 = Λ λ,x 0 u 0 X 0 .

1 Here B -1+ 3 p p,q (R 3 ) denotes the usual homogeneous Besov space (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], [START_REF] Bourdaud | La propriété de Fatou dans les espaces de Besov homogènes[END_REF] or [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF] for a precise definition).

This leads to the definition of a scaled solution, which will be the notion of solution we consider throughout this article.

Definition 1.1. A vector field u is said a scaled solution to (NS) associated with the data u 0 if it is a weak solution, belonging to a family of scaling invariant spaces.

After Leray's results, the question of the global wellposedness of the Navier-Stokes system in dimension d ≥ 3 was raised, and has been open ever since, although several partial answers to the construction of a global unique solution were established since (we refer for instance to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] or [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] and the references therein for recent surveys on the subject). Let us simply recall the best result known to this day on the uniqueness of solutions to (NS), which is due to H. Koch and D. Tataru in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] : if

u 0 BMO -1 (R 3 ) def = u 0 B -1 ∞,∞ (R 3 ) + sup x∈R 3 R>0 1 R 3 2 [0,R 2 ]×B(x,R)
|(e t∆ u 0 )(t, y)| 2 dydt 1 2

is small enough, then there is a global, unique solution to (NS), lying in BMO -1 ∩ X for all times, with X a scale invariant space to be specified -we shall not be using that space in the sequel. Note that the space BMO -1 is invariant by the scaling operator Λ λ,x 0 and that the norm in B -1 ∞,∞ (R 3 ) denotes a Besov norm. Actually, the Besov space B -1 ∞,∞ (R 3 ) is the largest space in which any scale and translation invariant Banach space of tempered distributions embeds (see [START_REF] Meyer | Wavelets, paraproducts and Navier-Stokes equations[END_REF]). However, it was proved in [START_REF] Bourgain | Ill-posedness of the Navier-Stokes equations in a critical space in 3D[END_REF] and [START_REF] Germain | The second iterate for the Navier-Stokes equation[END_REF] that (NS) is illposed for initial data in B -1 ∞,∞ (R 3 ). Our goal in this paper is to investigate the stability of global solutions. Let us recall that strong stability results were achieved. Namely, it was proved in [START_REF] Auscher | On the stability of global solutions to Navier-Stokes equations in the space[END_REF] (see [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF] for the Besov setting) that the set of initial data generating a global solution is open in BMO -1 . More precisely, denoting by VMO -1 the closure of smooth fucntions in BMO -1 , it was established in [START_REF] Auscher | On the stability of global solutions to Navier-Stokes equations in the space[END_REF] that if u 0 belongs to VMO -1 and generates a global, smooth solution to (NS), then any sequence (u 0,n ) n∈N converging to u 0 in the BMO -1 norm also generates a global smooth solution as soon as n is large enough.

In this paper we would like to address the question of weak stability:

If (u 0,n ) n∈N , bounded in some scale invariant space X 0 , converges to u 0 in the sense of distributions, with u 0 giving rise to a global smooth solution, is it the case for u 0,n when n is large enough ?

Because of the invariances of (NS) system, a positive answer in general to this question would imply global regularity for any data and so would solve the question of the possible blow up in finite time of solutions to (NS) which is actually one of the Millenium Prize Problems in Mathematics. Indeed, consider for instance the sequence

(1.4) u 0,n = λ n Φ 0 (λ n •) = Λ λn Φ 0 with lim n→∞ λ n + 1 λ n = ∞ ,
with Φ 0 any smooth divergence-free vector field. If the weak stability result were true, then since the weak limit of (u 0,n ) n∈N is zero (which gives rise to the unique, global solution which is identically zero) then for n large enough u 0,n would give rise to a unique, global solution. By scale invariance then so would Φ 0 , and this for any Φ 0 , so that would solve the global regularity problem for (NS). Another natural example is the sequence

(1.5) u 0,n = Φ 0 (• -x n ) = Λ 1,xn Φ 0 ,
with (x n ) n∈N a sequence of R 3 whose norm goes to infinity. Thus sequences built by rescaling fixed divergence free vector fields according to the invariances of the equations have to be excluded from our analysis, since solving (NS) system for any smooth initial data seems out of reach.

Thus clearly some restrictions have to be imposed to hope to prove such a weak openness result. Let us note that a first step in that direction was achieved in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF], under two additional assumptions to the weak convergence. The first one is an assumption on the asymptotic separation of the horizontal and vertical spectral supports of the sequence (u 0,n ) n∈N , while the second one requires that some of the profiles involved in the profile decomposition of (u 0,n ) n∈N vanish at zero. In this paper, we remove the second assumption and give a positive answer to the question of weak stability, provided that the convergence of the sequence (u 0,n ) n∈N towards u 0 holds "anisotropically" in frequency space (see Definition 1.4 below). The main ingredient which enables us to eliminate the second assumption required in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF] is a novel form of anisotropic profile decomposition. This new profile decomposition enables us to decompose the sequence of initial data u 0,n , up to a small remainder term, into a finite sum of orthogonal sequences of divergence-free vector fields ; these sequences are obtained from the classical anisotropic profile decompositions by grouping together all the profiles having the same horizontal scale. The price to pay is that the profiles are no longer fixed functions as in the classical case, but bounded sequences. To carry out the strategy of proof developed in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF] in this framework, we are led to establishing global existence results for (NS) associated to new classes of arbitrarily large initial data generalizing the examples dealt in [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF][START_REF] Chemin | The role of spectral anisotropy in the resolution of the threedimensional Navier-Stokes equations[END_REF][START_REF] Chemin | Sums of large global solutions to the incompressible Navier-Stokes equations[END_REF], and where regularity is sharply estimated.

1.2. Statement of the main result. We prove in this article a weak stability result for the (NS) system under an anisotropy assumption. This leads us naturally to introducing anisotropic Besov spaces. These spaces generalize the more usual isotropic Besov spaces, which are studied for instance in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Bourdaud | La propriété de Fatou dans les espaces de Besov homogènes[END_REF][START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF].

Definition 1.2. Let χ (the Fourier transform of χ) be a radial function in D(R) such that χ(t) = 1 for |t| ≤ 1 and χ(t) = 0 for |t| > 2. For (j, k) ∈ Z 2 , the horizontal truncations are defined by

S h k f (ξ) def = χ 2 -k |(ξ 1 , ξ 2 )| f (ξ) and ∆ h k def = S h k+1 -S h
k , and the vertical truncations by

S v j f def = χ(2 -j |ξ 3 |) f (ξ) and ∆ v j def = S v j+1 -S v j .
For all p in [1, ∞] and q in ]0, ∞], and all (s, s ) in R 2 , with s < 2/p, s < 1/p (or s ≤ 2/p and s ≤ 1/p if q = 1), the anisotropic homogeneous Besov space B s,s p,q is defined as the space of tempered distributions f such that

f B s,s p,q def = 2 ks+js ∆ h k ∆ v j f L p q < ∞ .
In all other cases of indexes s and s , the Besov space is defined similarly, up to taking the quotient with polynomials.

Remark 1.3. The Besov spaces B s,s p,q (for s = s ) is anisotropic by essence, which as pointed out above, will be an important feature of our analysis. These spaces have properties which look very much like the ones of classical Besov spaces. We refer for instance to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF], [START_REF] Gui | Stability to the global large solutions of 3-D Navier-Stokes equations[END_REF] and [START_REF] Paicu | Équation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] for all necessary details. By construction, these spaces are defined using an anisotropic Littlewood-Paley decomposition. It is useful to point out that the horizontal and vertical truncations S h k , ∆ h k , S v j and ∆ v j introduced in Definition 1.2 map L p into L p with norms independent of k, j and p. For our purpose, it is crucial to recall the following inequalities known as Bernstein inequalities:

if 1 ≤ p 1 ≤ p 2 ≤ ∞, then for any α ∈ N 2 and m ∈ N ∂ α (x 1 ,x 2 ) ∆ h k f L p 2 (R 2 ;L r (R)) 2 k(|α|+2(1/p 1 -1/p 2 )) ∆ h k f L p 1 (R 2 ;L r (R)) and (1.6) ∂ m x 3 ∆ v j f L r (R 2 ;L p 2 (R)) 2 j(m+1/p 1 -1/p 2 ) ∆ v j f L r (R 2 ;L p 1 (R)) , (1.7)
as well as the action of the heat flow on frequency localized distributions in an anisotropic context, namely for any p in [1, ∞]

e t∆ ∆ h k ∆ v j f L p e -ct(2 2k +2 2j ) ∆ h k ∆ v j f L p (1.8)
Notation. To avoid heaviness, in what follows we denote by B s,s the space B s,s 2,1 , by B s the space B s, 1 2 and by B p,q the space B

-1+ 2 p , 1 p p,q
. In particular B 2,1 = B 0 .

Let us point out that the scaling operators (1.1) enjoy the following invariances:

Λ λ,x 0 ϕ Bp,q = ϕ Bp,q and ∀r ∈ [1, ∞] , Λ λ,x 0 Φ L r (R + ;B -1+ 2 p + 2 r , 1 p p,q ) = Φ L r (R + ;B -1+ 2 p + 2 r , 1 p p,q
) , and also the following scaling property:

(1.9) ∀r ∈ [1, ∞] , ∀σ ∈ R , Λ λ,x 0 Φ L r (R + ;B -1+ 2 p + 2 r -σ, 1 p p,q ) ∼ λ σ Φ L r (R + ;B -1+ 2 p + 2 r -σ, 1 p p,q ) .
The Navier-Stokes system in anisotropic spaces has been studied in a number of frameworks. We refer for instance, among others, to [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF], [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF], [START_REF] Gui | Stability to the global large solutions of 3-D Navier-Stokes equations[END_REF], [START_REF] Iftimie | Resolution of the Navier-Stokes equations in anisotropic spaces[END_REF] and [START_REF] Paicu | Équation anisotrope de Navier-Stokes dans des espaces critiques[END_REF]. In particular in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF] it is proved that if u 0 belongs to B 0 , then there is a unique solution (global in time if the data is small enough) in L 2 ([0, T ]; B 1 ). That norm controls the equation, in the sense that as soon as the solution belongs to

L 2 ([0, T ]; B 1 ), then it lies in fact in L r ([0, T ]; B 2 r ) for all 1 ≤ r ≤ ∞.
The space B 1 is included in L ∞ and since the seminal work [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] of J. Leray, it is known that the L 2 ([0, T ]; L ∞ (R 3 )) norm controls the propagation of regularity and also ensures weak uniqueness among turbulent solutions. Thus the space B 0 is natural in this context.

As mentioned above the result we establish in this paper involves an anisotropy assumption on the sequence (u 0,n ) n∈N of initial data. Let us introduce this assumption that we call notion of anisotropically oscillating sequences, and which is a natural adaptation to our setting of the vocabulary of P. Gérard in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF]. Definition 1.4. Let 0 < q ≤ ∞ be given. We say that a sequence (f n ) n∈N , bounded in B 1,q , is anisotropically oscillating if the following property holds. There exists p ≥ 2 such that for all sequences

(k n , j n ) in Z N × Z N , (1.10) lim inf n→∞ 2 kn(-1+ 2 p )+ jn p ∆ h kn ∆ v jn f n L p (R 3 ) = C > 0 =⇒ lim n→∞ |j n -k n | = ∞ .
Remark 1.5. In view of Bernstein inequalities (1.6) and (1.7), it is easy to see that any function f in B 1,q belongs also to B p,∞ for any p ≥ 1 hence

f ∈ B 1,q =⇒ sup (k,j)∈Z 2 2 k(-1+ 2 p )+ j p ∆ h k ∆ v j f L p < ∞ .
The left-hand side of (1.10) indicates which ranges of frequencies are predominant in the se-

quence (f n ): if lim inf n→∞ 2 kn(-1+ 2 p )+ jn p ∆ h kn ∆ v jn f n L p is
zero for a couple of frequencies (2 kn , 2 jn ), then the sequence (f n ) n∈N is "unrelated" to those frequencies, with the vocabulary of P. Gérard in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF]. The right-hand side of (1.10) is then an anisotropy property. Indeed one sees easily that a sequence such as (u 0,n ) n∈N defined in (1.4) is precisely not anisotropically oscillating: for the left-hand side of (1.10) to hold for this example one would need j n ∼ k n ∼ n, which is precisely not the condition required on the right-hand side of (1.10). A typical sequence satisfying Assumption (1.10) is rather (for a ∈ R 3 )

f n (x) := 2 αn f 2 αn (x 1 -a 1 ), 2 αn (x 2 -a 2 ), 2 βn (x 3 -a 3 ) , (α, β) ∈ R 2 , α = β with f smooth.
Our main result states as follows:

Theorem 1. Let q be given in ]0, 1[ and let u 0 in B 1,q generate a unique global solution to (NS) in L 2 (R + ; B 1 ). Let (u 0,n ) n∈N be a sequence of divergence free vector fields converging towards u 0 in the sense of distributions, and such that (u 0,n -u 0 ) n∈N is anisotropically oscillating. Then for n large enough, u 0,n generates a unique, global solution to (NS) system in the space L 2 (R + ; B 1 ).

Remark 1.6. One can see from the proof of Theorem 1 that the solution u n (t) associated with u 0,n converges for all times, in the sense of distributions to the solution associated with u 0 . In this sense the Navier-Stokes system is stable by weak convergence.

The proof of Theorem 1 enables us to infer easily the following result, which generalizes the statement of Theorem 1 to the case when the solution to (NS) system generated by u 0 is assumed to blow up in finite time (for a strategy of proof, one can consult [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF]).

Corollary 1.7. Let (u 0,n ) n∈N be a sequence of divergence free vector fields bounded in the space B 1,q for some 0 < q < 1, converging towards some u 0 in B 1,q in the sense of distributions, with u 0 -(u 0,n ) n∈N anisotropically oscillating. Let u be the solution to the Navier-Stokes system associated with u 0 and assume that the life span of u is T * < ∞. Then for all positive times T < T * , there is a subsequence such that the life span of the solution associated with u 0,n is at least T .

Remark 1.8. As explained above, the natural space in our context would be B 0 . For technical reasons, we assume in our result more smoothness on the sequence of initial data, since obviously by Bernstein inequalities (1.6) and (1.7), we have B 1,q → B 0 . 1.3. Layout. The proof of Theorem 1 is addressed in Section 2. In Paragraph 2.2, we provide a new kind of "anisotropic profile decomposition" of the sequence of initial data, whose proof can be found in Section 3. This enables us to replace the sequence of Cauchy data, up to an arbitrarily small remainder term, by a finite (but large) sum of orthogonal sequences of divergence-free vector fields. In Paragraph 2.3, we state that each individual element involved in the decomposition derived in Paragraph 2.2 gives rise to a unique global solution to (NS) system (the proof is postponed to Section 4). Paragraph 2.4 is devoted to the proof of the fact that the sum of each individual profile does provide an approximate solution to the Navier-Stokes system, thanks to an orthogonality argument, which completes the proof of Theorem 1.

For all points x = (x 1 , x 2 , x 3 ) in R 3 and all vector fields u = (u 1 , u 2 , u 3 ), we denote by

x h def = (x 1 , x 2 ) and u h def = (u 1 , u 2 )
their horizontal parts. We also define horizontal differentiation operators

∇ h def = (∂ 1 , ∂ 2 )
and div

h def = ∇ h •, as well as ∆ h def = ∂ 2 1 + ∂ 2 2 .
We also use the following shorthand notation: X h Y v := X(R 2 ; Y (R)) where X is a function space defined on R 2 and Y is defined on R.

As we shall be considering functions which have different types of variations in the x 3 variable and the x h variable, the following notation will be used:

(1.11) f β (x) def = f (x h , βx 3 ) .
Clearly, for any function f , we have the following identity which will be of constant use all along this paper:

(1.12) [f ] β B s 1 ,s 2 p,1 ∼ β s 2 -1 p f B s 1 ,s 2 p,1
.

Finally we denote by C a constant which does not depend on the various parameters appearing in this paper, and which may change from line to line. We also denote sometimes x ≤ Cy by x y.

2. Proof of the main theorem 2.1. General scheme of the proof. The main arguments leading to Theorem 1 are the following: by a profile decomposition argument, the sequence of initial data is decomposed into the weak limit u 0 and the sum of sequences of divergence-free vector fields, up to a small remainder term. Then to prove that each individual element of the decomposition generates a unique global solution to (NS), it is necessary to estimate sharply the regularity in scaling invariant (anisotropic) norms. The mutual orthogonality of each term in the decomposition of the initial data implies finally that the sum of the solutions associated to each element is itself an approximate solution to (NS), globally in time, which concludes the proof of the result.

Anisotropic profile decomposition.

The study of the lack of compactness in critical Sobolev embeddings has attracted a lot of attention in the last decades, both for its interesting geometric features and for its applications to nonlinear partial differential equations. This study originates in the works of P.-L. Lions (see [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case I[END_REF] and [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case II[END_REF]) by means of defect measures, and earlier decompositions of bounded sequences into a sum of "profiles" can be found in the studies by H. Brézis and J.-M. Coron in [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] and M. Struwe in [START_REF] Struwe | A global compactness result for boundary value problems involving limiting nonlinearities[END_REF]. Our source of inspiration here is the work [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] of P. Gérard in which the defect of compactness of the critical Sobolev embeddings (for L 2 -based Sobolev spaces) in Lebesgue spaces is described by means of an asymptotic, orthogonal decomposition in terms of rescaled and translated profiles. This was generalized to L p -based Sobolev spaces by S. Jaffard in [START_REF] Jaffard | Analysis of the lack of compactness in the critical Sobolev embeddings[END_REF], to Besov spaces by G. Koch [START_REF] Koch | Profile decompositions for critical Lebesgue and Besov space embeddings[END_REF], and finally to general critical embeddings by H. Bahouri, A. Cohen and G. Koch in [START_REF] Bahouri | A general wavelet-based profile decomposition in the critical embedding of function spaces[END_REF] (see also [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF][START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF][START_REF] Bahouri | A Fourier approach to the profile decomposition in Orlicz spaces[END_REF] for the limiting case of Sobolev embeddings in Orlicz spaces and [START_REF] Schindler | An abstract version of the concentration compactness principle[END_REF] for an abstract, functional analytic presentation of the concept in various settings).

In the pionneering works [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] (for the critical 3D wave equation) and [START_REF] Merle | Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D[END_REF] (for the critical 2D Schrödinger equation), it was highlighted that this type of decomposition provides applications to the study of nonlinear partial differential equations. The ideas of [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] were revisited in [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equation[END_REF] and [START_REF] Gallagher | Profile decomposition for solutions of the Navier-Stokes equations[END_REF] in the context of the Schrödinger equations and Navier-Stokes system respectively, with an aim at describing the structure of bounded sequences of solutions to those equations. These profile decomposition techniques have since then been succesfully used in order to study the possible blow-up of solutions to nonlinear partial differential equations, in various contexts; we refer for instance to [START_REF] Gallagher | A profile decomposition approach to the L ∞ t (L 3 x ) Navier-Stokes regularity criterion[END_REF], [START_REF] Hmidi | Blowup theory for the critical nonlinear Schrödinger equations revisited[END_REF], [START_REF] Jia | Minimal L 3 -initial data for potential Navier-Stokes singularities[END_REF], [START_REF] Jia | Minimal L 3 -initial data for potential Navier-Stokes singularities[END_REF], [START_REF] Kenig | An alternative approach to the Navier-Stokes equations in critical spaces[END_REF], [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation[END_REF], [START_REF] Poulon | About the possibility of minimal blow up for Navier-Stokes solutions with data in H s (R 3 )[END_REF], [START_REF] Rusin | Minimal initial data for potential Navier-Stokes singularities[END_REF].

The first step in the proof of Theorem 1 consists in writing down an anisotropic profile decomposition of the sequence of initial data (u 0,n ) n∈N (see Theorem 2). To state our result in a clear way, let us start by introducing some definitions and notations. Definition 2.1. We say that two sequences of positive real numbers (λ

1 n ) n∈N and (λ 2 n ) n∈N are orthogonal if λ 1 n λ 2 n + λ 2 n λ 1 n → ∞ , n → ∞ .
A family of sequences (λ j n ) n∈N j is said to be a family of scales if λ 0 n ≡ 1 and if (λ j n ) n∈N and (λ k n ) n∈N are orthogonal when j = k.

Definition 2.2. Let µ be a positive real number less than 1/2, fixed from now on.

We define

D µ def = [-2 + µ, 1 -µ] × [1/2, 7/2] and D µ def = [-1 + µ, 1 -µ] × [1/2, 3/2].
We denote by S µ the space of functions a belonging to

(s,s )∈Dµ B s,s such that a Sµ def = sup (s,s )∈Dµ a B s,s < ∞ .
Notation. In all that follows, θ is a given function in D(B R 3 (0, 1)) which has value 1 near B R 3 (0, 1/2). For any positive real number η, we denote (2.1)

θ η (x) def = θ(ηx) and θ h,η (x h ) def = θ η (x h , 0) .
In order to make notations as light as possible, the letter v (possibly with indices) will always denote a two-component divergence free vector field, which may depend on the vertical variable x 3 .

The following result, the proof of which is postponed to Section 3, is in the spirit of the profile decomposition theorem of P. Gérard in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] concerning the critical Sobolev embedding in Lebesgue spaces.

Theorem 2. Under the assumptions of Theorem 1 and up to the extraction of a subsequence, the following holds. There is a family of scales (λ j n ) n∈N j∈N and for all L ≥ 1 there is a family of sequences (h j n ) n∈N j∈N going to zero such that for any real number α in ]0, 1[, there are families of sequences of divergence-free vector fields (for j ranging from 1 to L), (v j n,α,L ) n∈N , (w j n,α,L ) n∈N , (v 0,∞ n,α,L ) n∈N , (w 0,∞ 0,n,α,L ) n∈N , (v 0,loc 0,n,α,L ) n∈N and (w 0,loc 0,n,α,L ) n∈N all belonging to S µ , and a smooth, compactly supported function u 0,α such that the sequence (u 0,n ) n∈N can be written under the form u 0,n ≡ u 0,α + v 0,loc 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3

0,n,α,L h 0 n + (v 0,∞ 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L ) h 0 n + L j=1 Λ λ j n (v j n,α,L + h j n w j,h n,α,L , w j,3 n,α,L ) h j n + ρ n,α,L
where u 0,α approximates u 0 in the sense that

(2.2) lim α→0 u 0,α -u 0 B 1,q = 0 ,
where the remainder term satisfies

(2.3) lim L→∞ lim α→0 lim sup n→∞ e t∆ ρ n,α,L L 2 (R + ;B 1 ) = 0 ,
while the following uniform bounds hold:

(2.4)

M def = sup L≥1 sup α∈]0,1[ sup n∈N (v 0,∞ 0,n,α,L , w 0,∞,3 0,n,α,L ) B 0 + (v 0,loc 0,n,α,L , w 0,loc,3 0,n,α,L ) B 0 + u 0,α B 0 + L j=1 (v j n,α,L , w j,3 n,α,L ) B 0 < ∞ and for all α in ]0, 1[, (2.5) 
M α def = sup L≥1 sup 1≤j≤L n∈N (v 0,∞ 0,n,α,L , w 0,∞,3 0,n,α,L ) Sµ + (v 0,loc 0,n,α,L , w 0,loc,3 0,n,α,L ) Sµ + u 0,α Sµ + (v j n,α,L , w j,3 n,α,L ) Sµ is finite. Finally, we have lim L→∞ lim α→0 lim sup n→∞ v 0,loc 0,n,α,L , w 0,loc,3 0,n,α,L (•, 0) B 0 2,1 (R 2 ) = 0 , (2.6) 
∀ (α, L) , ∃ η(α, L) / ∀η ≤ η(α, L) , ∀n ∈ N , (1 -θ h,η )(v 0,loc 0,n,α,L , w 0,loc,3 0,n,α,L ) = 0 and (2.7) ∀ (α, L, η) , ∃ n(α, L, η) / ∀n ≥ n(α, L, η) , θ h,η (v 0,∞ 0,n,α,L , w 0,∞,3 0,n,α,L ) = 0 . (2.8)
Theorem 2 states that the sequence u 0,n is equal, up to a small remainder term, to a finite sum of orthogonal sequences of divergence-free vector fields. These sequences are obtained from the profile decomposition derived in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF] (see Proposition 2.4 in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF]) by grouping together all the profiles having the same horizontal scale λ n , and the form they take depends on whether the scale λ n is identically equal to one or not.

Note that in contrast with classical profile decompositions (see for instance [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF]), cores of concentration do not appear in the profile decomposition given in Theorem 2 since all the profiles with the same horizontal scale are grouped together, and thus the decomposition is written in terms of scales only. The price to pay is that the profiles are no longer fixed functions, but bounded sequences. To carry out the strategy of proof developed in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF] in this framework, we have to establish that each element involved in the decomposition of Theorem 2 generates a global solution to (NS) system as soon as n is large enough. Since we deal with bounded sequences, it is necessary to estimate sharply the regularity.

Let us emphasize that in the case when λ n goes to 0 or infinity, these sequences are of the type (2.9) Λ λn (v h 0,n + h n w h 0,n , w 3 0,n ) hn , where we used Notation (1.11), and with h n a sequence going to zero. It is essential (to establish our result) that the profiles that must be considered in that case are only profiles of type (2.9) with h n tending to zero. Actually the divergence free assumption on u 0,n allows to include the terms of type (2.9) with h n tending to infinity into the remainder term and the anisotropically oscillating assumption for (u 0 -u 0,n ) n∈N allows to exclude in the profile decomposition of u 0,n sequences of type (2.9) with h n ≡ 1.

In the case when λ n is identically equal to one, we deal with three types of orthogonal sequences: the first one consists in u 0,α , an approximation of the weak limit u 0 , the second one is of type (2.9) with λ n ≡ 1 and h n tending to zero, and is uniformly localized in the horizontal variable and vanishes at x 3 = 0, while the third one is also of type (2.9) with λ n ≡ 1 and h n converging to zero, and its support in the horizontal variable goes to infinity. Note that contrary to the case when the horizontal scale λ n tends to 0 or infinity, all the profiles involved in the anisotropic decomposition of the sequence (u 0 -u 0,n ) n∈N having the same horizontal scale λ n ≡ 1 are not grouped together: the sum of these profiles is divided into two parts depending on whether the horizontal cores of concentration escape to infinity or not. This splitting plays a key role in establishing our result under the only assumption of anisotropic oscillation, by removing the second assumption required in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF].

2.3. Propagation of profiles. The second step of the proof of Theorem 1 consists in proving that each individual profile involved in the decomposition of Theorem 2 generates a global solution to (NS) as soon as n is large enough. This is mainly based on the following results concerning respectively profiles of the type

Λ λ j n (v j n,α,L + h j n w j,h n,α,L , w j,3 n,α,L ) h j n
with λ j n going to 0 or infinity and h j n converging to zero, and the profiles of horizontal scale one, see respectively Theorems 3 and 4.

In order to state these theorems, let us begin by defining the function spaces we shall be working with.

Definition 2.3. -We define the space A s,s = L ∞ (R + ; B s,s )∩L 2 (R + ; B s+1,s ) equipped with the norm a A s,s def = a L ∞ (R + ;B s,s ) + a L 2 (R + ;B s+1,s ) ,
and we denote A s = A s, 1 2 . -We denote by F s,s any function space such that

L 0 f L 2 (R + ;B s+1,s ) f F s,s
where, for any non negative real number τ , L τ f denotes the solution of the heat equation

∂ t L τ f -∆L τ f = f L τ f |t=τ = 0 . We denote F s = F s, 1 2 .
Examples. Using the smoothing effect of the heat flow, it is easy to prove that the spaces L 2 (R + ; B s-1,s ), L 2 (R + ; B s,s -1 ) are F s,s spaces, as well as the spaces L 1 (R + ; B s,s ) and L 1 (R + ; B s+1,s -1 ). Actually recalling that L 0 f = t 0 e (t-t )∆ f (t ) dt and taking advantage of (1.8), we get for any function in

L 2 (R + ; B s-1,s ) ∆ h k ∆ v j L 0 f L 2 t 0 e -ct (2 2k +2 2j ) ∆ h k ∆ v j f (t ) L 2 dt ,
where we make use of notations of Definition 1.2. We deduce that there is a sequence d j,k (t ) in the sphere of

1 (Z × Z; L 2 (R + )) such that ∆ h k ∆ v j L 0 f L 2 f L 2 (R + ;B s-1,s ) 2 -k(s-1) 2 -js t 0 e -ct (2 2k +2 2j ) d j,k (t ) dt .
Young's inequality in time therefore gives

∆ h k ∆ v j L 0 f L 2 (R + ;L 2 ) f L 2 (R + ;B s-1,s ) 2 -k(s-1)-js d j,k ,
where d j,k is a generic sequence in the sphere of 1 (Z × Z), which ends the proof of the result in the case when f belongs to L 2 (R + ; B s-1,s ). The argument is similar in the other cases.

Notation. In the following we designate by T 0 (A, B) a generic constant depending only on the quantities A and B. We denote by T 1 a generic non decreasing function from

R + into R + such that (2.10) lim sup r→0 T 1 (r) r < ∞ ,
and by T 2 a generic locally bounded function from R + into R + . All those functions may vary from line to line. Let us notice that for any positive sequence (a n ) n∈N belonging to 1 , we have

(2.11) n T 1 (a n ) ≤ T 2 n a n .
As in the isotropic case, the following space-time (quasi)-norms, first introduced by J.-Y. Chemin and N. Lerner in [START_REF] Chemin | Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes[END_REF]:

(2.12)

f L r ([0,T ];B s,s p,q ) def = 2 ks+js ∆ h k ∆ v j f L r ([0,T ];L p ) q ,
are very useful in the context of the Navier-Stokes system, and will be of constant use all along this paper. Notice that of course L r ([0, T ]; B s,s p,r ) = L r ([0, T ]; B s,s p,r ), and by Minkowski's inequality, we have the embedding L r ([0, T ]; B s,s p,q ) ⊂ L r ([0, T ]; B s,s p,q ) if r ≥ q. Our first theorem of global existence for the Navier-Stokes system, which concerns profiles with horizontal scales going to 0 or infinity, generalizes the example considered in [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF]. Theorem 3. A locally bounded function ε 1 from R + into R + exists which satisfies the following. For any (v 0 , w 3 0 ) in S µ (see Definition 2.2), for any positive real number β such that β ≤ ε 1 ( (v 0 , w 3 0 ) Sµ ), the divergence free vector field

Φ 0 def = (v 0 -β∇ h ∆ -1 h ∂ 3 w 3 0 , w 3 0 ) β
generates a global solution Φ β to (NS) which satisfies

(2.13) Φ β A 0 ≤ T 1 ( (v 0 , w 3 0 ) B 0 ) + β T 2 ( (v 0 , w 3 0 ) Sµ ) . Moreover, for any (s, s ) in [-1 + µ, 1 -µ] × [1/2, 7/2], we have, for any r in [1, ∞], (2.14) Φ β L r (R + ;B s+ 2 r ) + 1 β s -1 2 Φ β L r (R + ;B 2 r ,s ) ≤ T 2 ( (v 0 , w 3 0 ) Sµ ) .
The proof of Theorem 3 is provided in Paragraph 4.1.

The existence of a global regular solution for the set of profiles associated with the horizontal scale 1 is ensured by the following theorem which can be viewed as a generalization of Theorem 3 of [START_REF] Chemin | The role of spectral anisotropy in the resolution of the threedimensional Navier-Stokes equations[END_REF] and of Theorem 2 of [START_REF] Chemin | Sums of large global solutions to the incompressible Navier-Stokes equations[END_REF].

Theorem 4. With the notation of Theorem 2, let us consider the initial data:

Φ 0 0,n,α,L def = u 0,α + v 0,∞ 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L h 0 n + (v 0,loc 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3 0,n,α,L ) h 0 n .
There is a constant ε 0 , depending only on u 0 and on M α , such that if h 0 n ≤ ε 0 , then the initial data Φ 0 0,n,α,L generates a global smooth solution Φ 0 n,α,L which satisfies for all s in [-1+µ, 1-µ] and all r in [1, ∞],

Φ 0 n,α,L L r (R + ;B s+ 2 r ) ≤ T 0 (u 0 , M α ) . (2.15)
The proof of Theorem 4 is provided in Paragraph 4.2.

2.4.

End of the proof of the main theorem. To end the proof of Theorem 1, we need to check that the sum of the propagation of the remainder term through the transportdiffusion equation and the solutions to (NS) associated to each individual profile (provided by Theorems 3 and 4) is an approximate solution to the Navier-Stokes system. This can be achieved by proving that the nonlinear interactions of all the solutions are negligible, thanks to the orthogonality between the scales. For that purpose, let us look at the profile decomposition given by Theorem 2. For a given positive and small ε, Assertion (2.3) allows to choose α, L and N 0 (depending of course on ε) such that (2.16) ∀n ≥ N 0 , e t∆ ρ n,α,L L 2 (R + ;B 1 ) ≤ ε .

The parameters α and L are fixed so that (2.16) holds, let us consider the two functions ε 1 , T 1 and T 2 (resp. ε 0 and T 0 ) which appear in the statement of Theorem 3 (resp. Theorem 4).

Since each sequence (h j n ) n∈N , for 0 ≤ j ≤ L, goes to zero as n goes to infinity, one can choose an integer N 1 greater than or equal to N 0 such that (2.17)

∀n ≥ N 1 , ∀j ∈ {0, . . . , L} , h j n ≤ min ε 1 (M α ), ε 0 , ε LT 2 (M α ) •
Now for 1 ≤ j ≤ L (resp. j = 0), let us denote by Φ j n,ε (resp. Φ 0 n,ε ) the global solution of (NS) associated with the initial data

(v j n,α,L + h j n w j,h n,α,L , w j,3 n,α,L ) h j n resp. u 0,α + v 0,∞ 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L h 0 n + (v 0,loc 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3 0,n,α,L ) h 0 n
given by Theorem 3 (resp. Theorem 4). We look for the global solution associated with u 0,n under the form (2.18)

u n = u app n,ε + R n,ε with u app n,ε def = L j=0 Λ λ j n Φ j n,ε + e t∆ ρ n,α,L .
In view of the scaling invariance of the Navier-Stokes system, Λ λ j n Φ j n,ε solves (NS) with the initial data Λ λ j n (v j n,α,L + h j n w j,h n,α,L , w j,3 n,α,L ) h j n . This gives the following equation on R n,ε :

∂ t R n,ε -∆R n,ε + div R n,ε ⊗ R n,ε + R n,ε ⊗ u app n,ε + u app n,ε ⊗ R n,ε + ∇p n,ε = F n,ε def = F 1 n,ε + F 2 n,ε + F 3 n,ε with F 1 n,ε def = -div e t∆ ρ n,α,L ⊗ e t∆ ρ n,α,L F 2 n,ε def = - L j=0 div Λ λ j n Φ j n,ε ⊗ e t∆ ρ n,α,L + e t∆ ρ n,α,L ⊗ Λ λ j n Φ j n,ε and 
F 3 n,ε def = - 0≤j,k≤L j =k div Λ λ j n Φ j n,ε ⊗ Λ λ k n Φ k n,ε , (2.19) 
and where div(u

⊗ v) j = 3 k=1 ∂ k (u j v k ).
In order to establish that the function u n defined by (2.18) provides a global solution to (NS) system, it suffices to prove that there exist some space F 0 as in Definition 2.3 and an integer

N ≥ N 1 such that (2.20) ∀n ≥ N , F n,ε F 0 ≤ Cε ,
where C only depends on L and M α . In the next estimates we omit the dependence of all constants on α and L, which are fixed. Indeed if (2.20) holds, then R n,ε exists globally thanks to strong stability in B 0 (see [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF] for the setting of B 1,1 ).

Let us start with the estimate of F 1 n,ε . Using the fact that B 1 is an algebra, we have

e t∆ ρ h n,α,L ⊗ e t∆ ρ n,α,L L 1 (R + ;B 1 ) e t∆ ρ n,α,L 2 
L 2 (R + ;B 1 ) , so div h e t∆ ρ h n,α,L ⊗ e t∆ ρ n,α,L L 1 (R + ;B 0 ) e t∆ ρ n,α,L 2 L 2 (R + ;B 1 )
and

∂ 3 e t∆ ρ 3 n,α,L e t∆ ρ n,α,L L 1 (R + ;B 1,- 1 
2 )

e t∆ ρ n,α,L 2 
L 2 (R + ;B 1 )
. According to Inequality (2.16), this gives rise to

(2.21) ∀n ≥ N 1 , F 1 n,ε F 0 ε 2 .
Now let us consider F 2 n,ε . By the scaling invariance of the operators Λ λ j n in L 2 (R + ; B 1 ) and again the fact that B 1 is an algebra, we get

(2.22) Λ λ j n Φ j n,ε ⊗ e t∆ ρ n,α,L + e t∆ ρ n,α,L ⊗ Λ λ j n Φ j n,ε L 1 (R + ;B 1 ) Φ j n,ε L 2 (R + ;B 1 ) e t∆ ρ n,α,L L 2 (R + ;B 1 )
. Making use of Estimates (2.13) and (2.15), we infer that

L j=0 Φ j n,ε L 2 (R + ;B 1 ) ≤ T 0 (u 0 , M α ) + T 2 (M) + L j=1 h j n T 2 (M α ) ,
which in view of Condition (2.17) on the sequences (h j n ) n∈N implies that

L j=0 Φ j n,ε L 2 (R + ;B 1 ) ≤ T 0 (u 0 , M α ) + T 2 (M) + ε .
It follows (of course up to a change of T 2 ) that for small enough ε

(2.23) L j=0 Φ j n,ε L 2 (R + ;B 1 ) ≤ T 0 (u 0 , M α ) + T 2 (M) .
Thanks to (2.16) and (2.22), this gives rise to

(2.24) ∀n ≥ N 1 , F 2 n,ε F 0 ≤ ε T 0 (u 0 , M α ) + T 2 (M) . Finally let us consider F 3 n,ε .
Using the fact that B 1 is an algebra along with the Hölder inequality, we infer that for a small enough γ in ]0, 1[,

Λ λ j n Φ j n,ε ⊗ Λ λ k n Φ k n,ε L 1 (R + ;B 1 ) ≤ Λ λ j n Φ j n,ε L 2 1+γ (R + ;B 1 ) Λ λ k n Φ k n,ε L 2 1-γ (R + ;B 1 )
.

The scaling invariance (1.9) gives

Λ λ j n Φ j n,ε L 2 1+γ (R + ;B 1 ) ∼ (λ j n ) γ Φ j n,ε L 2 1+γ (R + ;B 1 )
and

Λ λ k n Φ k n,ε L 2 1-γ (R + ;B 1 ) ∼ 1 (λ k n ) γ Φ k n,ε L 2 1-γ (R + ;B 1 )
.

For small enough γ, Theorems 3 and 4 imply that

Λ λ j n Φ j n,ε ⊗ Λ λ k n Φ k n,ε L 1 (R + ;B 1 ) λ j n λ k n γ •
We deduce that

F 3 n,ε F 0 0≤j,k≤L j =k min λ j n λ k n , λ k n λ j n γ .
As the sequences (λ j n ) n∈N and (λ k n ) n∈N are orthogonal (see Definition 2.1), we have for any j and k such that j = k

lim n→∞ min λ j n λ k n , λ k n λ j n = 0 .
Thus an integer N 2 greater than or equal to N 1 exists such that

∀n ≥ N 2 , F 3 n,ε F 0 ε .
Together with (2.21) and (2.24), this implies that

n ≥ N 2 =⇒ F n,ε F 0 ε ,
which proves (2.20) and thus concludes the proof of Theorem 1.

Profile decomposition of the sequence of initial data: proof of Theorem 2

The proof of Theorem 2 is structured as follows. First, in Section 3.1 we write down the profile decomposition of any bounded sequence of anisotropically oscillating divergence free vector fields, following the results of [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF]. Next we reorganize the profile decomposition by grouping together all profiles having the same horizontal scale and we check that all the conclusions of Theorem 2 hold: that is performed in Section 3.2.

3.1.

Profile decomposition of anisotropically oscillating, divergence free vector fields. In this section we start by recalling the result of [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF], where an anisotropic profile decomposition of sequences of B 1,q anisotropically oscillating is achieved. Let us first define anisotropic scaling operators, similar to the operators defined in (1.1): for any two sequences of positive real numbers (ε n ) n∈N and (γ n ) n∈N , and for any sequence (x n ) n∈N of points in R 3 , we denote

Λ εn,γn,xn φ(x) def = 1 ε n φ x h -x n,h ε n , x 3 -x n,3 γ n •
Let us also introduce the definition of orthogonal triplets of sequences, analogous to Definition 2.1.

Definition 3.1. We say that two triplets of sequences (ε n , γ n , x n ) n∈N with belonging to {1, 2}, where (ε n , γ n ) n∈N are two sequences of positive real numbers and x n are sequences in R 3 , are orthogonal if, when n tends to infinity,

either ε 1 n ε 2 n + ε 2 n ε 1 n + γ 1 n γ 2 n + γ 2 n γ 1 n → ∞ or (ε 1 n , γ 1 n ) ≡ (ε 2 n , γ 2 n ) and |(x 1 n ) ε 1 n ,γ 1 n -(x 2 n ) ε 1 n ,γ 1 n | → ∞ ,
where we have denoted

(x n ) ε k n ,γ k n def = x n,h ε k n , x n,3 γ k n • A family of sequences (ε j n , γ j n , x j n ) n∈N j≥0
is said to be a family of scales and cores if ε 0 n ≡ γ 0 n ≡ 1, x 0 n ≡ 0, and if (ε n , γ n , x n ) n∈N and (ε k n , γ k n , x k n ) n∈N are orthogonal when = k. Now, let us recall without proof the following result.

Proposition 3.2 ([4]

). Under the assumptions of Theorem 1, the following holds. For all integers ≥ 0 there is a triplet of scales and cores in the sense of Definition 3.1, denoted by (ε n , γ n , x n ) n∈N and for all α in ]0, 1[ there are arbitrarily smooth divergence free vector fields ( φ h, α , 0) and (-∇ h ∆ -1 h ∂ 3 φ α , φ α ) with φ h, α and φ α compactly supported, and such that up to extracting a subsequence, one can write the sequence (u 0,n ) n∈N under the following form, for each L ≥ 1:

(3.1) u 0,n = u 0 + L =1 Λ ε n ,γ n ,x n φ h, α + r h, α - ε n γ n ∇ h ∆ -1 h ∂ 3 (φ α + r α ), φ α + r α + ψ h,L n -∇ h ∆ -1 h ∂ 3 ψ L n , ψ L n ,
where ψ h,L n and ψ L n are independent of α and satisfy

(3.2) lim sup n→∞ ψ h,L n B 0 + ψ L n B 0 → 0 , L → ∞ ,
while r h, α and r α are independent of n and L and satisfy for each

∈ N (3.3) r h, α B 1,q + r α B 1,q ≤ α .
Moreover the following properties hold:

(3.4) ∀ ≥ 1 , lim n→∞ (γ n ) -1 ε n ∈ {0, ∞} ,
and

lim n→∞ (γ n ) -1 ε n = ∞ =⇒ φ α ≡ r α ≡ 0 ,
as well as the following stability result, which is uniform in α:

(3.5) ≥1 φ h, α B 1,q + r h, α B 1,q + φ α B 1,q + r α B 1,q sup n u 0,n B 1,q + u 0 B 1,q .
Remark 3.3. As pointed out in [4, Section 2], if two scales appearing in the above decomposition are not orthogonal, then they can be chosen to be equal. We shall therefore assume from now on that is the case: two sequences of scales are either orthogonal, or equal.

3.2.

Regrouping of profiles according to horizontal scales. In order to proceed with the re-organization of the profile decomposition provided in Proposition 3.2, we introduce some more definitions, keeping the notation of Proposition 3.2. For a given L ≥ 1 we define recursively an increasing (finite) sequence of indexes k ∈ {1, . . . , L} by (3.6)

0 def = 0 , k+1 def = min ∈ { k + 1, . . . , L} / ε n γ n → 0 and / ∈ k k =0 Γ L (ε k n ) ,
where for 0 ≤ ≤ L, we define (recalling that by Remark 3.3 if two scales are not orthogonal, then they are equal),

(3.7) Γ L (ε n ) def = ∈ {1, . . . , L} / ε n ≡ ε n and ε n (γ n ) -1 → 0 , n → ∞ .
We call L(L) the largest index of the sequence ( k ) and we may then introduce the following partition:

(3.8) ∈ {1, . . . , L} / ε n (γ n ) -1 → 0 = L(L) k=0 Γ L (ε k n ) .
We shall now regroup profiles in the decomposition (3.1) of u 0,n according to the value of their horizontal scale. We fix from now on an integer L ≥ 1.

3.2.1.

Construction of the profiles for = 0. Before going into the technical details of the construction, let us discuss an example explaining the computations of this paragraph. Consider the particular case when u 0,n is given by

u 0,n (x) = u 0 (x) + v 0 0 (x h , 2 -n x 3 ) + w 0,h 0 (x h , 2 -2n x 3 ), 0 + v 0 0 (x 1 + 2 n , x 2 , 2 -n x 3 ), 0 ,
with v 0 0 and w 0,h 0 smooth (say in B s,s 1,q for all s, s in R) and compactly supported. Let us assume that u 0,n converges towards u 0 in the sense of distributions, and that (u 0,n -u 0 ) n∈N is anisotropically oscillating. Then we can write

u 0,n (x) = u 0 (x) + v 0,loc 0,n (x h , 2 -n x 3 ), 0 + v 0,∞ 0,n (x h , 2 -n x 3 ), 0 ,
with v 0,loc 0,n (y) := v 0 0 (y)+w 0,h 0 (y h , 2 -n y 3 ) and v 0,∞ 0,n (y) = v 0 0 (y 1 +2 n , y 2 , y 3 ). Now since u 0,n u 0

as n goes to infinity, we have that v 0 0 (x h , 0) + w h 0 (x h , 0) ≡ 0, hence v 0,loc 0,n (x h , 0) = 0. The initial data u 0,n has therefore been re-written as

u 0,n (x) = u 0 (x) + v 0,loc 0,n (x h , 2 -n x 3 ), 0 + v 0,∞ 0,n (x h , 2 -n x 3 ), 0 with v 0,loc 0,n (x h , 0) = 0
and where the support in x h of v 0,loc 0,n (x h , 2 -n x 3 ) is in a fixed compact set whereas the support in x h of v 0,∞ 0,n (x h , 2 -n x 3 ) escapes to infinity. This is of the same form as in the statement of Theorem 2.

When considering all the profiles having the same horizontal scale (1 here), the point is therefore to choose the smallest vertical scale (2 n here) and to write the decomposition in terms of that scale only. Of course that implies that contrary to usual profile decompositions, the profiles are no longer fixed functions in B 1,q , but sequences of functions, bounded in B 1,q .

In view of the above example, let - 0 be an integer such that γ -0 n is the smallest vertical scale going to infinity, associated with profiles for 1 ≤ ≤ L, having 1 for horizontal scale. More precisely we ask that

γ - 0 n = min ∈Γ L (1)
γ n , where according to (3.7),

Γ L (1) = ∈ {1, . . . , L} / ε n ≡ 1 and γ n → ∞ , n → ∞ .
Notice that the minimum of the sequences γ n is well defined in our context thanks to the fact that due to Remark 3.3, either two sequences are orthogonal in the sense of Definition 3.1, or they are equal. Observe also that - 0 is by no means unique, as several profiles may have the same horizontal scale as well as the same vertical scale (in which case the concentration cores must be orthogonal). Now we denote (3.9)

h 0 n def = (γ - 0 n ) -1 ,
and we notice that h 0 n goes to zero as n goes to infinity for each L. Note also that h 0 n depends on L through the choice of - 0 , since if L increases then - 0 may also increase; this dependence is omitted in the notation for simplicity. Let us define (up to a subsequence extraction)

(3.10) a def = lim n→∞ x n,h , x n,3 γ n •
We then define the divergence-free vector fields

(3.11) v 0,loc 0,n,α,L (y) def = ∈Γ L (1) a h ∈R 2 φ h, α y h -x n,h , y 3 h 0 n γ n - x n,3 γ n and
(3.12) w 0,loc 0,n,α,L (y)

def = ∈Γ L (1) a h ∈R 2 - 1 h 0 n γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α y h -x n,h , y 3 h 0 n γ n - x n,3 γ n .
By construction we have w 0,loc,h 0,n,α,L = -∇ h ∆ -1 h ∂ 3 w 0,loc,3 0,n,α,L . Similarly we define

(3.13) v 0,∞ 0,n,α,L (y) def = ∈Γ L (1) |a h |=∞ φ h, α y h -x n,h , y 3 h 0 n γ n - x n,3 γ n and (3.14) w 0,∞ 0,n,α,L (y) def = ∈Γ L (1) |a h |=∞ - 1 h 0 n γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α y h -x n,h , y 3 h 0 n γ n - x n,3 γ n .
By construction we have again

w 0,∞,h 0,n,α,L = -∇ h ∆ -1 h ∂ 3 w 0,∞,3 0,n,α,L .

Moreover recalling the notation

f ] h 0 n (x) def = f (x h , h 0 n x 3 ) and Λ εn,γn,xn φ(x) def = 1 ε n φ x h -x n,h ε n , x 3 -x n,3 γ n , one can compute that (3.15) ∈Γ L (1) a h ∈R 2 Λ 1,γ n ,x n φ h, α - 1 γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α = (v 0,loc 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3 0,n,α,L ) h 0 n and (3.16) ∈Γ L (1) |a h |=∞ Λ 1,γ n ,x n φ h, α - 1 γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α = (v 0,∞ 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L ) h 0 n .
Let us now check that v 0,loc 0,n,α,L , w 0,loc 0,n,α,L , v 0,∞ 0,n,α,L and w 0,∞ 0,n,α,L satisfy the bounds given in the statement of Theorem 2. We shall only study v 0,loc 0,n,α,L and w 0,loc 0,n,α,L as the other study is very similar. On the one hand, by translation and scale invariance of B 0 and using definitions (3.11) and (3.12), we get

(3.17) v 0,loc,h 0,n,α,L B 0 ≤ ≥1 φ h, α B 0 and w 0,loc,3 0,n,α,L B 0 ≤ ≥1 φ α B 0 .
According to (3.5) and the Sobolev embedding B 1,q → B 0 , this gives rise to (3.18) v 0 0,n,α,L B 0 + w 0,loc,3 0,n,α,L B 0 ≤ C uniformly in α , L , n . Moreover for each given α, the profiles are as smooth as needed, and since in the above sums by construction γ -0 n,L ≤ γ n , one gets also after an easy computation (3.19) ∀s ∈ R , ∀s ≥ 1/2 , v 0,loc 0,n,α,L B s,s + w 0,loc,3 0,n,α,L B s,s ≤ C(α) uniformly in n , L . Estimates (3.18) and (3.19) give easily (2.4) and (2.5).

Finally let us estimate v 0,loc,h 0,n,α,L (•, 0) and w 0,loc,3 0,n,α,L (•, 0) in B 0 2,1 (R 2 ) and prove (2.6). On the one hand by assumption we know that u 0,n u 0 in the sense of distributions. On the other hand we can take weak limits in the decomposition of u 0,n provided by Proposition 3.2. We recall that by (3.4), if ε n /γ n → ∞ then φ α ≡ r α ≡ 0. Then we notice that clearly

ε n → 0 or ε n → ∞ =⇒ Λ ε n ,γ n ,x n f 0
for any value of the sequences γ n , x n and any function f . Moreover

γ n → 0 =⇒ Λ 1,γ n ,x n f 0
for any sequence of cores x n and any function f , so we are left with the study of profiles such that ε n ≡ 1 and γ n → ∞. Then we also notice that if γ n → ∞, then with Notation (3.10),

(3.20) |a h | = ∞ =⇒ Λ 1,γ n ,x n f 0 .
In that case, in view of (3.2) and (3.5)

L =1 Λ ε n ,γ n ,x n ε n γ n ∇ h ∆ -1 h ∂ 3 (φ α + r α ) + ∇ h ∆ -1 h ∂ 3 ψ L n 0 .
Consequently for each L ≥ 1 and each α in ]0, 1[, we have in view of (3.1), as n goes to infinity

(3.21) -ψ L n - ∈Γ L (1) r α (• -x n,h , • -x n,3 γ n ) ∈Γ L (1) s.t. a h ∈R 2 φ α (• -a h , 0) -ψh,L n - ∈Γ L (1) r h, α (• -x n,h , • -x n,3 γ n ) ∈Γ L (1) s.t. a h ∈R 2 φ h, α (• -a h , 0) .
Now let η > 0 be given. Then thanks to (3.2) and (3.3), there is L 0 ≥ 1 such that for all L ≥ L 0 there is α 0 ≤ 1 (depending on L) such that for all L ≥ L 0 and α ≤ α 0 , uniformly in n ≥ n(L 0 , η)

ψ h,L n , ψ L n B 0 + ∈Γ L (1) ( r h, α , r α )(• -x n,h , • -x n,3 γ n ) B 0 ≤ η .
Using the fact that B 0 is embedded in L ∞ (R; B 0 2,1 (R 2 )), we infer from (3.21) that for L ≥ L 0 and α ≤ α 0 

(3.22) ∈Γ L (1) s.t. a h ∈R 2 φ h, α (• -a h , 0) B 0 2,1 (R
∈Γ L (1) s.t. a h ∈R 2 φ α (• -a h , 0) B 0 2,1 (R 2 ) ≤ η .
But by (3.11), we have

v 0,loc,h 0,n,α,L (•, 0) = ∈Γ L (1) a h ∈R 2 φ h, α • -x n,h , - x n,3 γ n
and by (3.12) we have also

w 0,loc,3 0,n,α,L (•, 0) = ∈Γ L (1) a h ∈R 2 φ α • -x n,h , - x n,3 γ n .
It follows that we can write for all L ≥ L 0 and α ≤ α 0 , lim sup

n→∞ v 0,loc,h 0,n,α,L (•, 0) B 0 2,1 (R 2 ) ≤ ∈Γ L (1) a h ∈R 2 φ h, α (• -a h , 0) B 0 2,1 (R 2 )
≤ η thanks to (3.22). A similar estimate for w 0,loc,3 0,n,α,L (•, 0) using (3.23) gives finally

(3.24) lim L→∞ lim α→0 lim sup n→∞ v 0,loc,h 0,n,α,L (•, 0) B 0 2,1 (R 2 ) + w 0,loc,3 0,n,α,L (•, 0) B 0 2,1 (R 2 ) = 0 .
The results (2.7) and (2.8) involving the cut-off function θ are simply due to the fact that the profiles are compactly supported.

3.2.2.

Construction of the profiles for ≥ 1. The construction is very similar to the previous one. We start by considering a fixed integer j ∈ {1, . . . , L(L)}. Then we define an integer - j so that, up to a sequence extraction,

γ - j n = min ∈Γ L (ε j n ) γ n ,
where as in (3.7)

Γ L (ε n ) def = ∈ {1, . . . , L} / ε n ≡ ε n and ε n (γ n ) -1 → 0 , n → ∞ .
Notice that necessarily ε j ≡ 1. Finally we define

h j n def = ε j n (γ - j n ) -1 .
By construction we have that h j n → 0 as n → ∞ (recall that ε j n ≡ ε j n ). Then we define for j ≤ L(L)

(3.25) v j,h n,α,L (y) def = ∈Γ L (ε j n ) φ h, α y h - x n,h ε j n , ε j n h j n γ n y 3 - x n,3 γ n and w j n,α,L (y) def = ∈Γ L (ε j n ) - ε j n h j n γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α y h - x n,h ε j n , ε j n h j n γ n y 3 - x n,3
γ n and we choose (3.26) L(L) < j ≤ L ⇒ v j,h n,α,L ≡ 0 and w j n,α,L ≡ 0 . We notice that w j,h n,α,L = -∇ h ∆ -1 h ∂ 3 w j,3 n,α,L . Defining

λ j n def = ε j
n , a computation, similar to that giving (3.15) implies directly that (3.27)

∈Γ L (ε j n ) Λ ε j n ,γ n ,x n φ h, α - λ j n γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α = Λ λ j n (v j,h n,α,L + h j n w j,h n,α,L , w j,3 n,α,L ) h j n .
Notice that since ε j n ≡ 1 as recalled above, we have that λ j n → 0 or ∞ as n → ∞. The a priori bounds for the profiles (v j,h n,α,L , w j,3 n,α,L ) 1≤j≤L are obtained exactly as in the previous paragraph: let us prove that (3.28)

j≥1 v j,h n,α,L B 0 + w j,3 n,α,L B 0 ≤ C , and 
∀s ∈ R , ∀s ≥ 1/2 , j≥1 v j,h n,α,L B s,s + w j,3 n,α,L B s,s ≤ C(α) .
We shall detail the argument for the first inequality only, and in the case of v j,h n,α,L as the study of w j,3 n,α,L is similar. We write, using the definition of v j,h n,α,L in (3.25),

L j=1 v j,h n,α,L B 0 = L(L) j=1 ∈Γ L (ε j n ) φ h, α y h - x n,h ε j n , ε j n h j n γ n y 3 - x n,3 γ n B 0 ,
so by definition of the partition (3.8) and by scale and translation invariance of B 0 we find thanks to (3.5), that there is a constant C independent of L such that

L j=1 v j,h n,α,L B 0 ≤ L =1 φ h, α B 0 ≤ C .
The result is proved. 

= - L =1 ε n γ n Λ ε n ,γ n ,x n ∇ h ∆ -1 h ∂ 3 r α -∇ h ∆ -1 h ∂ 3 ψ L n and (3.30) ρ (2) n,α,L def = L =1 Λ ε n ,γ n ,x n rh, α , 0 + L =1 Λ ε n ,γ n ,x n (0, r α ) + ψ h,L n , ψ L n .
Observe that by construction, thanks to (3.2) and (3.3) and to the fact that if r α ≡ 0, then ε n /γ n goes to zero as n goes to infinity, we have Then we notice that for each ∈ N and each α ∈]0, 1[, we have by a direct computation

Λ ε n ,γ n ,x n ( φ h, α , 0) B 1,-1 2 ∼ γ n ε n φ h, α B 1,-1 2 .
We deduce that if

ε n /γ n → ∞, then Λ ε n ,γ n ,x n ( φ h, α , 0) goes to zero in B 1,-1 2
as n goes to infinity, hence so does the sum over ∈ {1, . . . , L}. It follows that for each given α in ]0, 1[ and L ≥ 1 we may define

ρ (1) n,α,L def = ρ(1),h n,α,L + L =1 ε n /γ n →∞ Λ ε n ,γ n ,x n ( φ h, α , 0) 
and we have

(3.32) lim L→∞ lim α→0 lim sup n→∞ ρ (1) n,α,L B 1,-1 2 = 0 .
Finally, as D(R 3 ) is dense in B 1,q , let us choose a family (u 0,α ) α of functions in D(R 3 ) such that u 0 -u 0,α B 1,q ≤ α and let us define 

u 0,n = u 0,α + L =1 ε n /γ n →0 Λ ε n ,γ n ,x n φ h, α - ε n γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α + ρ n,α,L .
We recall that for all in N, we have lim n→∞ (γ n ) -1 ε n ∈ {0, ∞} and in the case where the ratio ε n /γ n goes to infinity then φ α ≡ 0. Next we separate the case when the horizontal scale is one, from the others: with the notation (3.7) we write

u 0,n = u 0,α + ∈Γ L (1) Λ 1,γ n ,x n φ h, α - 1 γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α + L =1 ε n ≡1 ε n /γ n →0 Λ ε n ,γ n ,x n φ h, α - ε n γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α + ρ n,α,L .
With (3.15) this can be written u 0,n = u 0,α + (v 0,loc,h 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3 0,n,α,L )

h 0 n + (v 0,∞,h 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L ) h 0 n + =1 ε n ≡1 ε n /γ n →0 Λ ε n ,γ n ,x n φ h, α - ε n γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α + ρ n,α,L .
Next we use the partition (3.8), so that with notation (3.6) and (3.7), u 0,n = u 0,α + (v 0,loc,h 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3 0,n,α,L )

h 0 n + (v 0,∞,h 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L ) h 0 n + L(L) j=1 ∈Γ L (ε j n ) ε j n ≡1 Λ ε j n ,γ n ,x n φ h, α - ε j n γ n ∇ h ∆ -1 h ∂ 3 φ α , φ α + ρ n,α,L .
Then we finally use the identity (3.27) which gives u 0,n = u 0,α + (v 0,loc,h 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3 0,n,α,L )

h 0 n + (v 0,∞,h 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L ) h 0 n + L j=1 Λ λ j n [(v j,h n,α,L + h j n w j,h n,α,L , w j,3 n,α,L )] h j n + ρ n,α,L .
The end of the proof follows from the estimates (3.18), (3.19), (3.24), (3.28), along with (3.34). Theorem 2 is proved.

Proof of Theorems 3 and 4

4.1. Proof of Theorem 3. In order to prove that the initial data defined by

Φ 0 def = (v 0 -β∇ h ∆ -1 h ∂ 3 w 3 0 , w 3 0 ) β ,
with (v 0 , w 3 0 ) satisfying the assumptions of Theorem 3, gives rise to a global smooth solution for small enough β, we look for the solution under the form (4.1)

Φ β = Φ app + ψ with Φ app def = (v + βw h , w 3 ) β
where v solves the two-dimensional Navier-Stokes equations

(NS2D) x 3    ∂ t v + v • ∇ h v -∆ h v = -∇ h p in R + × R 2 div h v = 0 v |t=0 = v 0 (•, x 3 ) ,
while w 3 solves the transport-diffusion equation 4.1.1. Two dimensional flows with parameter. The goal of this section is to prove the following proposition on v, the solution of (NS2D) x 3 . It is a general result on the regularity of the solution of (NS2D) when the initial data depends on a real parameter x 3 , measured in terms of Besov spaces with respect to the variable x 3 .

(T β ) ∂ t w 3 + v • ∇ h w 3 -∆ h w 3 -β 2 ∂ 2 3 w 3 = 0 in R + × R 3 w 3 |t=0 = w 3
Proposition 4.1. Let v 0 be a two-component divergence free vector field depending on the vertical variable x 3 , and belonging to S µ . Then the unique, global solution v to (NS2D) x 3 belongs to A 0 and satisfies the following estimate:

(4.2) v A 0 ≤ T 1 ( v 0 B 0 ) .
Moreover, for all (s, s ) in D µ , we have

(4.3) ∀r ∈ [1, ∞] , v L r (R + ;B s+ 2 r ,s ) ≤ T 2 ( v 0 Sµ ).
Proof. The proof of Proposition 4.1 is done in three steps. First, we deduce from the classical energy estimate for the two dimensional Navier-Stokes system, a stability result in the spaces L r (R + ; H s+2 r (R 2 )) 2 with r in [2, ∞] and s in ]-1, 1[. This is the purpose of Lemma 4.2, the proof of which uses essentially energy estimates together with paraproduct laws. Then we have to translate the stability result of Lemma 4.2 in terms of Besov spaces with respect to the third variable, seen before simply as a parameter. This is the object of Lemma 4.3, the proof of which relies on the equivalence of two definitions of Besov spaces with regularity index in ]0, 1[: the first one involving the dyadic decomposition of the frequency space, and the other one consisting in estimating integrals in physical space. Finally, invoking the Gronwall lemma and product laws we conclude the proof of the proposition.

Step 1: 2D-stability result. Let us start by proving the following lemma. 

(4.4) v 1 -v 2 L r (R + ;H s+ 2 r (R 2 )) v 1 (0) -v 2 (0) H s (R 2 ) E 12 (0) ,
where we define

E 12 (0) def = exp C v 1 (0) 2 L 2 + v 2 (0) 2 L 2 . Proof. Defining v 12 (t) def = v 1 (t) -v 2 (t)
, we find that

∂ t v 12 + v 2 • ∇ h v 12 -∆ h v 12 = -v 12 • ∇ h v 1 -∇ h p . (4.5)
Thus taking the H s scalar product with v 12 , we get thanks to the divergence free condition 1 2

d dt v 12 (t) 2 H s + ∇ h v 12 (t) 2 H s = -v 2 (t) • ∇ h v 12 (t)|v 12 (t) H s -v 12 (t) • ∇ h v 1 (t)|v 12 (t) H s .
Whence, by time integration we get

v 12 (t) 2 H s + 2 t 0 ∇ h v 12 (t ) 2 H s dt = v 12 (0) 2 H s -2 t 0 v 2 (t ) • ∇ h v 12 (t )|v 12 (t ) H s dt -2 t 0 v 12 (t ) • ∇ h v 1 (t )|v 12 (t ) H s dt .
Now making use of the following estimate proved in [12, Lemma 1.1]:

(4.6) v • ∇ h a|a H s ∇ h v L 2 a H s ∇ h a H s ,
available uniformly with respect to s in any compact set of ] -2, 1[, we deduce that there is a positive constant C such that for any s in I, we have (4.7)

2 t 0 v 2 (t ) • ∇ h v 12 (t )|v 12 (t ) H s dt ≤ 1 2 t 0 ∇ h v 12 (t ) 2 H s dt + C 2 2 t 0 v 12 (t ) 2 H s ∇ h v 2 (t ) 2 L 2 dt .
Noticing that

t 0 v 12 (t ) • ∇ h v 1 (t )|v 12 (t ) H s dt ≤ t 0 ∇ h v 12 (t ) H s v 12 (t ) • ∇ h v 1 (t ) H s-1 dt ,
we deduce by Cauchy-Schwarz inequality and product laws in Sobolev spaces on R 2 that for s in I,

(4.8) 2 t 0 v 12 (t ) • ∇ h v 1 (t )|v 12 (t ) H s dt ≤ 1 2 t 0 ∇ h v 12 (t ) 2 H s dt + C 2 2 t 0 v 12 (t ) 2 H s ∇ h v 1 (t ) 2 L 2 dt .
Combining (4.7) and (4.8), we get for s in I,

v 12 (t) 2 H s + t 0 ∇ h v 12 (t ) 2 H s dt v 12 (0) 2 H s + t 0 v 12 (t ) 2 H s ∇ h v 1 (t ) 2 L 2 + ∇ h v 2 (t ) 2 L 2 dt .
Gronwall's lemma implies that there exists a positive constant C such that

v 12 (t) 2 H s + t 0 ∇ h v 12 (t ) 2 H s dt v 12 (0) 2 H s exp C t 0 ∇ h v 1 (t ) 2 L 2 + ∇ h v 2 (t ) 2 L 2 dt .
But for any i in {1, 2}, we have by the L 2 energy estimate (1.2) (4.9)

t 0 ∇ h v i (t ) 2 L 2 dt ≤ 1 2 v i (0) 2 L 2 .
Consequently for s in I,

v 12 (t) 2 H s + t 0 ∇ h v 12 (t ) 2 H s dt v 12 (0) 2 H s E 12 (0) ,
which leads to the result by interpolation.

Step 2: propagation of vertical regularity. Thanks to Lemma 4.2, we can propagate vertical regularity as stated in the following result. 

v L r (R + ;L ∞ v (H s+ 2 r h )) v 0 B s E(0) with E(0) def = exp C v(0) 2 L ∞ v L 2 h .
Proof. As mentioned above, the proof of Lemma 4.3 uses crucially the characterization of Besov spaces via differences in physical space, namely that for any Banach space X of distributions one has (see for instance Theorem 2.36 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF])

(4.10) 2 j 2 ∆ v j u L 2 v (X) j 1 (Z) ∼ R u -(τ -z u) L 2 v (X) |z| 1 2 dz |z|
where the translation operator τ -z is defined by

(τ -z u)(t, x h , x 3 ) def = u(t, x h , x 3 + z) .
Lemma 4.2 asserts that, for any r in [2, ∞], any s in I and any couple (x 3 , z) in R 2 , the solution v to (NS2D)

x 3 satisfies v -τ -z v Y s r v 0 -τ -z v 0 H s h E(0) with Y s r def = L r (R + ; H s+ 2 r h
) .

Taking the L 2 norm of the above inequality with respect to the x 3 variable and then the L 1 norm with respect to the measure |z| -3 2 dz gives

(4.11) R v -τ -z v L 2 v (Y s r ) |z| 1 2 dz |z| R v 0 -τ -z v 0 L 2 v (H s h ) |z| 1 2 dz |z| E(0) .
Now, making use of the characterization (4.10) with X = Y s r , we find that

R v -τ -z v L 2 v (Y s r ) |z| 1 2 dz |z| ∼ j∈Z 2 j 2 2 k(s+ 2 r ) ∆ v j ∆ h k v(t, •, z) k L r (R + ; 2 (Z;L 2 h )) L 2 v .
Similarly we have

R v 0 -τ -z v 0 L 2 v (H s h ) |z| 1 2 dz |z| ∼ j∈Z 2 j 2 2 ks ∆ v j ∆ h k v 0 L 2 h k 2 (Z;L 2 v ) .
Thus by the embedding from 1 (Z) to 2 (Z), we get

R v 0 -τ -z v 0 L 2 v (H s h ) |z| 1 2 dz |z| (j,k)∈Z 2 2 j 2 2 ks ∆ v j ∆ h k v 0 L 2 (R 3 ) .
This implies that Estimate (4.11) also writes

j∈Z 2 j 2 2 k(s+ 2 r ) ∆ v j ∆ h k v(t, •, z) k L r (R + ; 2 (Z;L 2 h )) L 2 v v 0 B s E(0) .
As r ≥ 2, Minkowski's inequality implies that

j∈Z 2 j 2 2 k(s+ 2 r ) ∆ v j ∆ h k v(t, •) k 2 (Z;L 2 (R 3 )) L r (R + ) v 0 B s E(0) .
Bernstein inequalities (1.6) and (1.7) ensure that

∆ v j ∆ h k v(t, •) L ∞ v (L 2 h ) 2 j 2 ∆ h k v(t, •) L 2 (R 3 ) , which gives rise to 2 k(s+ 2 r ) ∆ h k v L ∞ v (L 2 h ) k 2 (Z) L r (R + ) v 0 B s E(0) .
Permuting the 2 norm and the L ∞ v norm thanks to Minkowski's inequality again, achieves the proof of the lemma.

Step 3: end of the proof of Proposition 4.1. Our aim is to establish (4.3) for all (s, s ) in D µ . Let us start by proving the following inequality: for any v solving (NS2D) x 3 , for any r in [4, ∞], any s in -1 2 , 1 2 and any positive s , (4.12)

v L r (R + ;B s+ 2 r ,s ) v 0 B s,s exp ∞ 0 C v(t) 4 L ∞ v (L 4 h )) + v(t) 2 L ∞ v (H 1 h ) dt .
For that purpose, let us introduce, for any nonnegative λ, the following notation: for any function F we define

F λ (t) def = F (t) exp -λ t 0 φ(t )dt with φ(t) def = v(t) 4 L ∞ v (L 4 h ) + v(t) 2 L ∞ v (H 1 h ) .
Combining Lemma 4.3 with the Sobolev embedding of H

1 2 (R 2 ) into L 4 (R 2 ), we find that (4.13) t 0 φ(t ) dt E(0)( v 0 2 B 0 + v 0 4 B 0 ) .
Now making use of the Duhamel formula and the action of the heat flow (see for instance Proposition B.2 in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF]), we infer that

∆ v j ∆ h k v λ (t) L 2 ≤ Ce -c2 2k t ∆ v j ∆ h k v 0 L 2 + C2 k t 0 exp -c(t -t )2 2k -λ t t φ(t )dt ∆ v j ∆ h k (v ⊗ v) λ (t ) L 2 dt . (4.14) Recall that (v ⊗ v) λ = v ⊗ v λ . Now to estimate the term ∆ v j ∆ h k (v ⊗ v) λ (t ) L 2
, we make use of the anisotropic version of Bony's paraproduct decomposition (one can consult [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] and [START_REF] Paicu | Équation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] for an introduction to anisotropic Littlewood-Paley theory), writing

ab = 4 =1 T (a, b) with T 1 (a, b) = j,k S v j S h k a∆ v j ∆ h k b , (4.15) 
T 2 (a, b) = j,k S v j ∆ h k a∆ v j S h k+1 b , T 3 (a, b) = j,k ∆ v j S h k aS v j+1 ∆ h k b , T 4 (a, b) = j,k ∆ v j ∆ h k aS v j+1 S h k+1 b .
In light of Bernstein inequality (1.6), we have

∆ v j ∆ h k T 1 (v(t), v λ (t)) L 2 2 k 2 ∆ v j ∆ h k T 1 (v(t), v λ (t)) L 2 v (L 4 3 h ) 
, which, in view of (4.15), Hölder's inequalities and the action of the horizontal and vertical truncations on Lebesgue spaces, ensures the existence of some fixed nonzero integer N 0 such that

∆ v j ∆ h k T 1 (v(t), v λ (t)) L 2 2 k 2 j ≥j-N 0 k ≥k-N 0 S v j S h k v(t) L ∞ v (L 4 h ) ∆ v j ∆ h k v λ (t) L 2 2 k 2 v(t) L ∞ v (L 4 h ) j ≥j-N 0 k ≥k-N 0 ∆ v j ∆ h k v λ (t) L 2 .
According to the definition of L 4 (R + ; B s+ 1 2 ,s ), we get

2 js 2 ks ∆ v j ∆ h k T 1 (v(t), v λ (t)) L 2 v λ L 4 (R + ;B s+ 1 2 ,s ) v(t) L ∞ v (L 4 h ) j ≥j-N 0 k ≥k-N 0 2 -(j -j)s 2 -(k -k)(s+ 1 2 ) f j ,k (t) .
where f j ,k (t), defined by

f j ,k (t) def = v λ -1 L 4 (R + ;B s+ 1 2 ,s ) 2 k (s+ 1 2 ) 2 j s ∆ v j ∆ h k v λ (t) L 2 ,
is on the sphere of 1 (Z2 ; L 4 (R + )).

Since s > -1 2 and s > 0, it follows by Young's inequality on series, that

2 js 2 ks ∆ v j ∆ h k T 1 (v(t), v λ (t)) L 2 v λ L 4 (R + ;B s+ 1 2 ,s ) v(t) L ∞ v (L 4 h ) f j,k (t 
) where f j,k (t) is on the sphere of 1 (Z 2 ; L 4 (R + )).

As by definition φ(t) is greater than v(t) 4

L ∞ v (L 4 
h ) , we infer that

T 1 j,k,λ (t) def = 2 k 2 js 2 ks t 0 exp -c(t -t )2 2k -λ t t φ(t )dt × ∆ v j ∆ h k T 1 (v(t ), v λ (t )) L 2 dt v λ L 4 (R + ;B s+ 1 2 ,s ) × 2 k t 0 exp -c(t -t )2 2k -λ t t φ(t )dt φ 1 4 (t )f j,k (t )dt . (4.16)
By Hölder's inequality, this leads to

T 1 j,k,λ (t) v λ L 4 (R + ;B s+ 1 2 ,s ) t 0 e -c(t-t )2 2k f 4 j,k (t )dt 1 4 × 2 k t 0 exp -c(t -t )2 2k - 4 3 λ t t φ(t )dt φ(t ) 1 3 dt 3 4 
.

Finally applying Hölder's inequality in the last term of the above inequality, we get (4.17)

T 1 j,k,λ (t) 1 λ 1 4 t 0 e -c(t-t )2 2k f 4 j,k (t )dt 1 4 v λ L 4 (R + ;B s+ 1 2 ,s )
. Now let us study the term with T 2 . Using again that the support of the Fourier transform of the product of two functions is included in the sum of the two supports, let us write that

∆ v j ∆ h k T 2 (v(t), v λ (t)) L 2 j ≥j-N 0 k ≥k-N 0 S v j ∆ h k v(t) L ∞ v (L 2 h ) ∆ v j S h k +1 v λ (t) L 2 v (L ∞ h ) .
Combining Bernstein inequality (1.6) with the definition of the function φ, we get

(4.18) S v j ∆ h k v(t) L ∞ v (L 2 h ) 2 -k v(t) L ∞ v (H 1 h ) 2 -k φ 1 2 (t) .
Now let us observe that using again the Bernstein inequality, we have

∆ v j S h k +1 v λ (t) L 2 v (L ∞ h ) k ≤k ∆ v j ∆ h k v λ (t) L 2 v (L ∞ h ) k ≤k 2 k ∆ v j ∆ h k v λ (t) L 2 .
By definition of the L 4 (R + ; B s+ 1 2 ,s ) norm, we have

2 j s 2 k (s-1 2 ) ∆ v j S h k +1 v λ (t) L 2 v (L ∞ h ) v λ L 4 (R + ;B s+ 1
where f j ,k (t), on the sphere of 1 (Z 2 ; L 4 (R + )), is defined by

f j ,k (t) def = v λ -1 L 4 (R + ;B s+ 1 2 ,s ) 2 j s 2 k (s+ 1 2 ) ∆ v j ∆ h k v λ (t) L 2 .
Since s < 1 2 , this ensures by Young's inequality that

∆ v j S h k +1 v λ (t) L 2 v (L ∞ h ) 2 -j s 2 -k (s-1 2 ) v λ L 4 (R + ;B s+ 1 2 ,s ) f j ,k (t) 
where f j ,k (t) is on the sphere of 1 (Z 2 ; L 4 (R + )). Together with Inequality (4.18), this gives

2 js 2 k(s+ 1 2 ) ∆ v j ∆ h k T 2 (v(t), v λ (t)) L 2 φ(t) 1 2 v λ L 4 (R + ;B s+ 1 2 ,s ) f j,k (t) ,
where f j,k (t) is on the sphere of 1 (Z 2 ; L 4 (R + )). We deduce that (4.19)

T 2 j,k,λ (t) def = 2 k 2 js 2 ks t 0 exp -c(t -t )2 2k -λ t t φ(t )dt × ∆ v j ∆ h k T 2 (v(t ), v λ (t )) L 2 dt v λ L 4 (R + ;B s+ 1 2 ,s ) × 2 k 2 t 0 exp -c(t -t )2 2k -λ t t φ(t )dt φ(t ) 1 2 f j,k (t )dt .
Using Hölder's inequality twice, we get

T 2 j,k,λ (t) v λ L 4 (R + ;B s+ 1 2 ,s ) t 0 e -c(t-t )2 2k f 4 j,k (t )dt 1 4 × 2 k 2 t 0 exp -c(t -t )2 2k -λ t t φ(t )dt φ(t ) 2 3 dt 3 4 1 λ 1 2 v λ L 4 (R + ;B s+ 1 2 ,s ) t 0 e -c(t-t )2 2k f 4 j,k (t )dt 1 4 . (4.20)
As T 3 is estimated like T 1 and T 4 is estimated like T 2 , this implies finally that

2 js 2 ks ∆ v j ∆ h k v λ (t) L 2 2 js 2 ks e -c2 2k t ∆ v j ∆ h k v 0 L 2 + t 0 e -c(t-t )2 2k f 4 j,k (t )dt 1 4 1 λ 1 4 + 1 λ 1 2 v λ L 4 (R + ;B s+ 1 2 ,s )
.

As we have

∞ 0 t 0 e -c(t-t )2 2k f 4 j,k (t )dt 1 4 ×4 dt 1 4 = c -1 d j,k 2 -k 2 and sup t∈R + t 0 e -c(t-t )2 2k f 4 j,k (t )dt 1 4 = d j,k , with d j,k ∈ 1 (Z 2 ) ,
we infer that

2 js 2 ks ∆ v j ∆ h k v λ L ∞ (R + ;L 2 ) + 2 k 2 ∆ v j ∆ h k v λ L 4 (R + ;L 2 ) 2 js 2 ks ∆ v j ∆ h k v 0 L 2 + d j,k 1 λ 1 4 + 1 λ 1 2 v λ L 4 (R + ;B s+ 1 2 ,s )
.

This ends the proof of (4.12) by taking the sum over j and k and choosing λ large enough. Now to show that Estimate (4.12) remains available for r = 2, we start from Formula (4.14) with λ = 0. Applying again anisotropic paraproduct decomposition, we find by arguments similar to those conducted above

2 js 2 k(s+1) ∆ v j ∆ h k v(t) L 2 2 js 2 k(s+1) e -c2 2k t ∆ v j ∆ h k v 0 L 2 + 2 2k v L 4 (R + ;B s+ 1 2 ,s ) t 0 e -c(t-t )2 2k (g j,k (t ) + 2 -k 2 h j,k (t ) dt ,
where g j,k (resp. h j,k ) are in 1 (Z 2 ; L 2 (R + )) (resp. 1 (Z 2 ; L

4 3 (R + ))), with (j,k)∈Z 2 g j,k L 2 (R + ) φ 1 4
L 1 and

(j,k)∈Z 2 h j,k L 4 3 (R + ) φ 1 2 L 1 .
Laws of convolution in the time variable, summation over j and k and (4.12) imply that

v L 2 (R + ;B s+1,s ) v 0 B s,s exp C ∞ 0 φ(t)dt .
This implies by interpolation in view of (4.12) that for all r in [2, ∞], all s in ] -1 2 , 1 2 [ and all positive s

(4.21) v L r (R + ;B s+ 2 r ,s ) v 0 B s,s exp C ∞ 0 φ(t)dt ,
which in view of (4.13) ensures Inequality (4.2) and achieves the proof of Estimate (4.3) in the case when s belongs to ] -1 2 , 1 2 [• To conclude the proof of the proposition, it remains to complete the range of indexes. Let us first double the interval on the index s, by proving that for any s in ] -1, 1[, any s ≥ 1/2 and any r in [2, ∞] we have (4.22) v

L r (R + ;B s+ 2 r ,s ) v 0 B s,s + v 0 B s 2 ,s v 0 B s 2 exp(C v 0 B 0 E 0 ) .
Anisotropic product laws (see for instance Appendix B in [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF]) ensure that for any s in ] -1, 1[ and any s ≥ 1/2, we have

v(t) ⊗ v(t) B s,s v(t) B s+1 2 v(t) B s+1
2 ,s . According to Formula (4.14) and the smoothing effect of the horizontal heat flow, we find that, for any s belonging to ] -1, 1[, any s ≥ 1/2 and any r in [2, ∞],

v L r (R + ;B s+ 2 r ,s ) v 0 B s,s + v ⊗ v L 2 (R + ;B s,s ) v 0 B s,s + v L 4 (R + ;B s+1 2 ) v L 4 (R + ;B s+1 2 ,s )
.

Finally Inequality (4.12) ensures that for any s in ] -1, 1[, any s ≥ 1/2 and any r in [2, ∞], Let us now treat the case when s belongs ] -2, 0] and s ≥ 1/2. Again by anisotropic product laws, we have

(4.23) v L r (R + ;B s+ 2 r ,s ) v 0 B s,s + v 0 B s 2 v 0 B
v(t) ⊗ v(t) B s+1,s v(t) B s 2 +1 v(t) B s 2 +1,s , which implies that v ⊗ v L 1 (R + ;B s+1,s ) v L 2 (R + ;B s 2 +1 ) v L 2 (R + ;B s 2 +1,s ) .
The smoothing effect of the heat flow gives then, for any r in [1, ∞], any s in ] -2, 0] and any s ≥ 1/2

v L r (R + ;B s+ 2 r ,s ) v 0 B s,s + v L 2 (R + ;B s 2 +1 ) v L 2 (R + ;B s 2 +1,s
) . Inequality (4.23) implies that, for any r in [1, ∞], any s in ] -2, 0] and any s ≥ 1/2

v L r (R + ;B s+ 2 r ,s ) v 0 B s,s + v 0 B s 2 v 0 B s 2 ,s + v 0 B s 4 v 0 B s 4 ,s exp(C v 0 B 0 E 0 ) + v 0 2 B s 4 v 0 B s 2 ,s + v 0 B s 4 v 0 B s 4 ,s exp(C v 0 B 0 E 0 ) .
This concludes the proof of Estimate (4.3), and thus achieves the proof of Proposition 4.1.

4.1.2. Propagation of regularity by a transport diffusion equation. Now let us estimate the norm of the function w 3 defined as the solution of (T β ) defined page 22. This is described in the following proposition. 

(T β ) ∂ t w 3 + v • ∇ h w 3 -∆ h w 3 -β 2 ∂ 2 3 w 3 = 0 in R + × R 3 w 3 |t=0 = w 3 0 .
Then w 3 satisfies the following estimates where all the constants are independent of β:

(4.24) w 3 A 0 w 3 0 B 0 exp T 1 ( v 0 B 0 )
, and for any s in [-2 + µ, 0] and any s ≥ 1/2, we have

(4.25) w 3 A s,s w 3 0 B s,s + w 3 0 B 0 T 2 ( v 0 Sµ ) exp T 1 ( v 0 B 0 )
. Proof. Proposition 4.4 follows easily from the following lemma which is a general result about the propagation of anisotropic regularity by a transport-diffusion equation. Lemma 4.5. Let us consider (s, s ) a couple of real numbers, and Q a bilinear operator which maps continuously B 1 × B s+1,s into B s,s . A constant C exists such that for any twocomponent vector field v in L 2 (R + ; B 1 ), any f in L 1 (R + ; B s,s ), any a 0 in B s,s and for any

non negative β, if ∆ β def = ∆ h + β 2 ∂ 2
z and a is the solution of

∂ t a -∆ β a + Q(v, a) = f and a |t=0 = a 0 , then a satisfies ∀r ∈ [1, ∞] , a L r (R + ;B s+ 2 r ,s ) ≤ C a 0 B s,s + f L 1 (R + ;B s,s ) exp C ∞ 0 v(t) 2 B 1 dt .
The fact that the third index of the Besov spaces is one, induces some technical difficulties which lead us to work first on subintervals I of R + on which v L 2 (I;B 1 ) is small.

Let us then start by considering any subinterval I = [τ 0 , τ 1 ] of R + . The Duhamel formula and the smoothing effect of the heat flow imply that

∆ h k ∆ v j a(t) L 2 ≤ e -c2 2k (t-τ 0 ) ∆ h k ∆ v j a(τ 0 ) L 2 + C t τ 0 e -c2 2k (t-t ) ∆ h k ∆ v j Q(v(t ), a(t )) + f (t ) L 2 dt .
After multiplication by 2 ks+js and using Young's inequality in the time integral, we deduce that

2 ks+js ∆ h k ∆ v j a L ∞ (I;L 2 ) + 2 2k ∆ h k ∆ v j a L 1 (I;L 2 ) ≤ C2 ks+js ∆ h k ∆ v j a(τ 0 ) L 2 + C I d k,j (t ) v(t ) B 1 a(t ) B s+1,s + f (t ) B s,s dt ,
where for any t, d k,j (t) is an element of the sphere of 1 (Z 2 ). By summation over (k, j) and using the Cauchy-Schwarz inequality, we infer that

a L ∞ (I;B s,s ) + a L 1 (I;B s+2,s ) ≤ C a(τ 0 ) B s,s + C f L 1 (I;B s,s ) + C v L 2 (I;B 1 ) a L 2 (I;B s+1,s ) . (4.26)
Let us define an increasing sequence (T m ) 0≤m≤M +1 by induction such that T 0 = 0, T M +1 = ∞ and ∀m < M ,

T m+1 Tm v(t) 2 B 1 dt = c 0 and ∞ T M v(t) 2 B 1 dt ≤ c 0 ,
for some given c 0 which will be chosen later on. Obviously, we have

(4.27) ∞ 0 v(t) 2 B 1 dt ≥ T M 0 v(t) 2 B 1 dt = M c 0 .
Thus the number M of T m s such that T m is finite is less than c -1

0 v 2 L 2 (R + ;B 1 ) . Applying Estimate (4.26) to the interval [T m , T m+1 ], we get a L ∞ ([Tm,T m+1 ];B s,s ) + a L 1 ([Tm,T m+1 ];B s+2,s ) ≤ a L 2 ([Tm,T m+1 ];B s+1,s ) + C a(T m ) B s,s + C f L 1 ([Tm,T m+1 ];B s,s ) , if c 0 is chosen such that C √ c 0 ≤ 1. Since a L 2 ([Tm,T m+1 ];B s+1,s ) ≤ a 1 2 L ∞ ([Tm,T m+1 ];B s,s ) a 1 2
L 1 ([Tm,T m+1 ];B s+2,s ) , we infer that Using (4.28) and the induction hypothesis we get

a L ∞ ([Tm,T m+1 ];B s,s ) ≤ 2C a L ∞ ([0,Tm];B s,s ) + f L 1 ([Tm,T m+1 ];B s,s ) ≤ (2C) m+1 a 0 B s,s + f L 1 ([0,T m+1 ],B s,s ) ,
provided that 2C ≥ 1, which ensures in view of (4.27) that

a L ∞ (R + ;B s,s ) ≤ C a 0 B s,s + f L 1 (R + ;B s,s ) exp C ∞ 0 v(t) 2 B 1 dt .
We deduce from (4.28) that

a L 1 ([Tm,T m+1 ];B s+2,s ) ≤ C a 0 B s,s + f L 1 (R + ;B s,s ) exp C ∞ 0 v(t) 2 B 1 dt + C f L 1 ([Tm,T m+1 ];B s,s ) .
Once noticed that xe Cx 2 ≤ e C x 2 , the result comes by summation over m and the fact that the total number of m's is less than or equal to c -1

0 v 2 L 2 (R + ;B 1 )
. This ends the proof of the lemma and thus of Proposition 4.4.

As w h is defined by w h = -∇ h ∆ -1 h ∂ 3 w 3 , we deduce from Proposition 4.4 the following corollary.

Corollary 4.6. For any s in [-2 + µ, 0] and any s ≥ 1/2, Φ app L 2 (R + ;B 1 ) ≤ T 1 ( (v 0 , w 3 0 ) B 0 ) + βT 2 ( (v 0 , w 3 0 ) Sµ ) . Moreover, the error term ψ satisfies the following modified Navier-Stokes system, with null Cauchy data:

w h A s+1,s -1 w 3 0 B s,s + w 3 0 B 0 T 2 ( v 0 Sµ ) exp T 1 ( v 0 B 0 ) . 4.
∂ t ψ + div ψ ⊗ ψ + Φ app ⊗ ψ + ψ ⊗ Φ app -∆ψ = -∇q β + 4 =1 E β with E 1 β def = ∂ 2 3 [(v, 0)] β + β(0, [∂ 3 p] β ) , E 2 β def = β w 3 ∂ 3 (v, w 3 ) + ∇ h ∆ -1 h div h ∂ 3 (vw 3 ), 0 β , E 3 
β def = β w h • ∇ h (v, w 3 ) + v • ∇ h (w h , 0) β and E 4 β def = β 2 w h • ∇ h (w h , 0) + w 3 ∂ 3 (w h , 0) β . (4.30) 
If we prove that (4.31)

4 =1 E β F 0 ≤ βT 2 (v 0 , w 3 0 ) Sµ ,
then according to the fact ψ |t=0 = 0, ψ exists globally and satisfies (4.32) ψ L 2 (R + ;B 1 ) β T 2 (v 0 , w 3 0 ) Sµ . This in turn implies that Φ 0 generates a global regular solution Φ β in L 2 (R + ; B 1 ) which satisfies (4.33) Φ β L 2 (R + ;B 1 ) ≤ T 1 (v 0 , w 3 0 ) B 0 + β T 2 (v 0 , w 3 0 ) Sµ . Once this bound in L 2 (R + ; B 1 ) is obtained, the bound in A 0 follows by heat flow estimates, and in A s,s by propagation of regularity for the Navier-Stokes system. So all we need to do is to prove Inequality (4.31). Let us first estimate the term ∂ 2 3 [(v, 0)] β . This requires the use of some L 2 (R + ; B s,s ) norms. Clearly, we have

∂ 2 3 [v] β L 2 (R + ;B 0,-1 2 ) [v] β L 2 (R + ;B 0, 3 2 ) 
, which implies in view of the vertical scaling property (1.12) of the space B 0, 3 2

∂ 2 3 [v] β L 2 (R + ;B 0,-1 2 ) β v L 2 (R + ;B 0, 3 2 ) 
.

Therefore Proposition 4.1 ensures that (4.34)

∂ 2 3 [v] β L 2 (R + ;B 0,- 1 2 ) 
≤ β T 2 ( v 0 Sµ ) . Now let us study the pressure term. By applying the horizontal divergence to the equation satisfied by v we get, thanks to the fact that div h v = 0,

∂ 3 p = -∂ 3 ∆ -1 h 2 ,m=1 ∂ ∂ m (v v m ) .
Since and m belong to {1, 2}, the operator ∆ -1 h ∂ ∂ m is a zero-order horizontal Fourier multiplier, which implies that

[∂ 3 p] β L 1 (R + ;B 0 ) = ∂ 3 p L 1 (R + ;B 0 ) v∂ 3 v L 1 (R + ;B 0 ) .
According to laws of product in anisotropic Besov spaces, we obtain 

v(t)∂ 3 v(t) B 0 v(t) B 1 ∂ 3 v(t) B 0 , which gives rise to [∂ 3 p] β L 1 (R + ;B 0 ) v L 2 (R + ;B 1 ) ∂ 3 v L 2 (R + ;B 0 ) v L 2 (R + ;B 1 ) v L 2 (R + ;B 0, 3 2 ) . ( 4 
E 1 β F 0 ≤ β T 2 v 0 Sµ .
In the same way, we treat the terms E 2 β , E 3 β and E 4 β , acheving the proof of Estimate (4.31). This ends the proof of the fact that the solution Φ β of (NS) with intial data

Φ 0 = (v 0 -β∇ h ∆ -1 h ∂ 3 w 3 0 , w 3 0 ) β is global and belongs to L 2 (R + ; B 1 ).
The proof of the whole Theorem 3 is then achieved.

4.2.

Proof of Theorem 4. The proof of Theorem 4 is done in three steps. First we define an approximate solution, using results proved in the previous section, and then we prove useful localization results on the different parts entering in the definition of the approximate solution. In the last step, we conclude the proof of the theorem, using those localization results.

4.2.1. The approximate solution. With the notation of Theorem 2, let us consider the divergence free vector field:

Φ 0 0,n,α,L def = u 0,α + v 0,∞ 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L h 0 n + (v 0,loc 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3 0,n,α,L ) h 0 n .
Our purpose is to establish that for h 0 n small enough, depending only on the weak limit u 0 and on (v 0,∞ 0,n,α,L , w 0,∞,3 0,n,α,L ) Sµ as well as (v 0,loc 0,n,α,L , w 0,loc,3 0,n,α,L ) Sµ , there is a unique, global smooth solution to (NS) with data Φ 0 0,n,α,L . Let us start by solving globally (NS) with the data u 0,α . By using the global strong stability of (NS) in B 1,1 (see [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF], Corollary 3) and the convergence result (2.2), we deduce that, for α small enough, u 0,α generates a unique, global solution u α to (NS) system belonging to

L 2 (R + ; B 2, 1 2 1,1 ). Actually in view of the Sobolev embedding of B 2, 1 2 1,1 into B 1 , u α ∈ L 2 (R + ; B 1 ). Next let us define Φ 0,∞ 0,n,α,L def = v 0,∞ 0,n,α,L + h 0 n w 0,∞,h 0,n,α,L , w 0,∞,3 0,n,α,L h 0 n .
Thanks to Theorem 3, we know that for h 0 n smaller than ε 1 (v 0,∞ 0,n,α,L , w 0,∞,3 0,n,α,L ) Sµ there is a unique global smooth solution Φ 0,∞ n,α,L associated with Φ 0,∞ 0,n,α,L , which belongs to A 0 , and using the notation and results of Section 2.3, in particular (4.1) and (4.32), we can write

(4.37) Φ 0,∞ n,α,L def = Φ 0,∞,app n,α,L + ψ 0,∞ n,α,L with Φ 0,∞,app n,α,L def = v 0,∞ n,α,L + h 0 n w 0,∞,h n,α,L , w 0,∞,3 n,α,L h 0 n and for all r in [2, ∞] ψ 0,∞ n,α,L L r (R + ;B 2 r h 0 n T 2 (v 0,∞ 0,n,α,L , w 0,∞,3 0,n,α,L ) Sµ , for all r in [2, ∞], (4.38) lim L→∞ lim α→0 lim sup n→∞ Φ 0,loc n,α,L (•, 0) L r (R + ;B 2 r 2,1 (R 2 )) = 0 ,
where v 0,∞ n,α,L solves (NS2D) x 3 with data v 0,∞ 0,n,α,L , w 0,∞,3 n,α,L solves the transport-diffusion equation (T h 0 n ) defined page 22 with data w 0,∞,3 0,n,α,L and where

w 0,∞,h n,α,L = -∇ h ∆ -1 h ∂ 3 w 0,∞,3 n,α,L . Similarly defining Φ 0,loc 0,n,α,L def = v 0,loc 0,n,α,L + h 0 n w 0,loc,h 0,n,α,L , w 0,loc,3 0,n,α,L h 0 n ,
then for h 0 n smaller than ε 1 (v 0,loc 0,n,α,L , w 0,loc,3 0,n,α,L ) Sµ there is a unique global smooth solution Φ 0,loc n,α,L associated with Φ 0,loc 0,n,α,L , which belongs to A 0 , and

Φ 0,loc n,α,L def = Φ 0,loc,app n,α,L + ψ 0,loc n,α,L with Φ 0,loc,app n,α,L def = v 0,loc n,α,L + h 0 n w 0,loc,h n,α,L , w 0,loc,3 n,α,L h 0 n and for all r in [2, ∞] ψ 0,loc n,α,L L r (R + ;B 2 r (4.39) 
h 0 n T 2 (v 0,loc 0,n,α,L , w 0,loc,3 0,n,α,L ) Sµ , where v 0,loc n,α,L solves (NS2D) x 3 with data v 0,loc 0,n,α,L and w 0,loc,3 n,α,L solves (T h 0 n ) with data w 0,loc,3 0,n,α,L . Finally we recall that w 0,loc,h n,α,L = -∇ h ∆ -1 h ∂ 3 w 0,loc,3 n,α,L .

In the next step, we establish localization properties on Φ 0,∞ n,α,L and Φ 0,loc n,α,L . Those localization properties will enable us to prove that the function u α + Φ 0,∞ n,α,L + Φ 0,loc n,α,L approximate the solution to (NS) system associated to the Cauchy data Φ 0 0,n,α,L .

4.2.2.

Localization properties of the approximate solution. In this step, we prove localization properties on Φ 0,∞ n,α,L and Φ 0,loc n,α,L , namely the fact that Φ 0,∞,app n,α,L escapes to infinity in the space variable, while Φ 0,loc,app n,α,L remains localized (approximately), and we also prove that Φ 0,loc,app n,α,L remains small near x 3 = 0. Let us recall that as claimed by (2.6), (2.7) and (2.8), those properties are true for their respective initial data. A first part of these localization properties derives from the following result.

Proposition 4.7. Under the assumptions of Proposition 4.1, the control of the value of v at the point x 3 = 0 is given by

(4.40) ∀r ∈ [1, ∞] , v(•, 0) L r (R + ;B 2 r 2,1 (R 2 )) v 0 (•, 0) B 0 2,1 (R 2 ) + v 0 (•, 0) 2 L 2 (R 2 ) .
Moreover we have for all η in ]0, 1[ and γ in {0, 1},

(4.41) (γ -θ h,η )v A 0 ≤ (γ -θ h,η )v 0 B 0 exp T 1 ( v 0 B 0 ) + ηT 2 ( v 0 Sµ ) ,
with θ h,η is the truncation function defined by (2.1).

Proof. In order to establish Proposition 4.7, let us start by pointing out that the proof of Lemma 1.1 of [START_REF] Chemin | Remarques sur l'existence globale pour le système de Navier-Stokes incompressible[END_REF] claims that for all x 3 in R,

(4.42) ∆ h k (v(t, •, x 3 ) • ∇ h v(t, •, x 3 )) ∆ h k v(t, •, x 3 ) L 2 d k (t, x 3 ) ∇ h v(t, •, x 3 ) 2 L 2 ∆ h k v(t, •, x 3 ) L 2
, where (d k (t, x 3 )) k∈Z is a generic element of the sphere of 1 (Z).

Taking x 3 = 0, we deduce by an L 2 energy estimate in R 2 1 2

d dt ∆ h k v(t, •, 0) 2 L 2 + c2 2k ∆ h k v(t, •, 0) 2 L 2 d k (t) ∇ h v(t, •, 0) 2 L 2 ∆ h k v(t, •, 0) L 2 ,
where (d k (t)) k∈Z belongs to the sphere of 1 (Z), which after division by ∆ h k v(t, •, 0) L 2 and time integration leads to (4.43)

∆ h k v(•, 0) L ∞ (R + ;L 2 ) + c2 2k ∆ h k v(•, 0) L 1 (R + ;L 2 ) ≤ ∆ k v 0 (•, 0) L 2 + C ∞ 0 d k (t) ∇ h v(t, •, 0) 2 L 2 dt .
By summation over k and in view of (4.9), we obtain Inequality (4.40) of Proposition 4.7.

Now to go to the proof of Inequality (4.41), let us define v γ,η def = (γ -θ h,η )v and write that

∂ t v γ,η -∆ h v γ,η + div h v ⊗ v γ,η = E η (v) = 3 i=1 E i η (v) with E 1 η (v) def = -2η(∇ h θ) h,η ∇ h v -η 2 (∆ h θ) h,η v , E 2 η (v) def = η v • (∇ h θ) h,η v and E 3 η (v) def = -(γ -θ h,η )∇ h ∆ -1 h 1≤ ,m≤2 ∂ ∂ m v v m . (4.44) 
Lemma 4.5 applied with s = 0, s = 1/2, a = v γ,η , Q(v, a) = div h (v ⊗a), f = E η (v) and β = 0 reduces the problem to the proof of the following estimate

(4.45) E η (v) L 1 (R + ;B 0 ) η T 2 ( v 0 Sµ ) .
Actually, in view of Inequality (4.3) applied with r = 1 and s = -1 (resp. with r = 2 and s = -1/2) this will follow from

(4.46) E η (v) L 1 (R + ;B 0 ) η v L 1 (R + ;B 1 ) + v 2 L 2 (R + ;B 1 2 ) 
.

Product laws in anisotropic Besov spaces and the scaling properties of homogeneous Besov spaces give

(∇ h θ) h,η ∇ h v(t) B 0 (∇ h θ) h,η B 1 2,1 (R 2 ) ∇ h v(t) B 0 ∇ h θ B 1 2,1 (R 2 ) v(t) B 1 .
Along the same lines, we get

(∆ h θ) h,η v(t) B 0 (∆ h θ) h,η B 0 2,1 (R 2 ) v(t) B 1 1 η ∆ h θ B 0 2,1 (R 2 ) v(t) B 1 . Consequently (4.47) E 1 η (v) L 1 (R + ;B 0 ) η v L 1 (R + ;B 1 ) .
The same arguments enable us to deal with the term E 2 η (v) and to prove that (4.48)

E 2 η (v) L 1 (R + ;B 0 ) η v 2 L 2 (R + ;B 1 2 ) 
.

Let us finally study the term E 3 η (v) which is most challenging. To this end, we make use of the horizontal paraproduct decomposition: 

av = T h v a + T h a v + R h
E 3 η (v) = 3 =1 E 3, η (v) with E 3,1 η (v) def = T h ∇ h p θ h,η with ∇ h p = ∇ h ∆ -1 h 1≤ ,m≤2 ∂ ∂ m (v v m ) , E 3,2 η (v) def = - 1≤ ,m≤2 T h γ-θ h,η , ∇ h ∆ -1 h ∂ ∂ m v v m and E 3,3 η (v) def = 1≤ ,m≤2 ∇ h ∆ -1 h ∂ ∂ m T h v v m θ h,η , (4.49) 
where T h a b = T h a b + R h (a, b). Combining laws of product with scaling properties of Besov spaces, we obtain

T h ∇ h p(t) θ h,η B 0 ∇ h p(t) B -1 θ h,η B 2 2,1 (R 2 ) η sup 1≤ ,m≤2 v (t)v m (t) B 0 θ B 2 2,1 (R 2 ) η v(t) 2 B 1 2
θ B 2 2,1 (R 2 ) . Along the same lines we get

∇ h ∆ -1 h ∂ ∂ m T h v (t)v m (t) θ h,η B 0 T h v (t)v m (t) θ h,η B 1 v (t)v m (t) B 0 θ h,η B 2 2,1 (R 2 ) η v(t) 2 B 1 2 θ B 2
2,1 (R 2 ) . We deduce that (4.50)

E 3,1 η (v) + E 3,3 η (v) L 1 (R + ;B 0 ) η v 2 L 2 (R + ;B 1 2 ) 
. Now let us estimate E 3,2 η (v). By definition, we have

T h γ-θ h,η , ∇ h ∆ -1 h ∂ ∂ m v v m = k E k,η (v) with E k,η (v) def = S h k-N 0 (γ -θ h,η ), ∆ h k ∇ h ∆ -1 h ∂ ∂ m ∆ h k (v v m
) . Then by commutator estimates (see for instance Lemma 2.97 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF])

∆ v j E k,η (v(t)) L 2 ∇θ h,η L ∞ ∆ h k ∆ v j (v (t)v m (t)) L 2 .
Noticing that ∇θ h,η L ∞ = η ∇θ L ∞ , we get by virtue of laws of product

E 3,2 η (v) L 1 (R + ;B 0 ) η v 2 L 2 (R + ;B 1 2 ) 
, which ends the proof of Estimate (4.45) and thus of of Proposition 4.7.

A similar result holds for the solution w 3 of (T β ) ∂ t w 3 + v • ∇ h w 3 -∆ h w 3 -β 2 ∂ 2 3 w 3 = 0 and w 3 |t=0 = w 3 0 , where β is any non negative real number. In the following statement, all the constants are independent of β. (γ -θ h,η )w 3 A 0 ≤ (γ -θ h,η )w 3 0 B 0 exp T 1 ( v 0 B 0 ) + ηT 2 ( (v 0 , w 3 0 ) Sµ ) . The proof of Proposition 4.8 is very similar to that of Proposition 4.7 and is left to the reader. Propositions 4.7 and 4.8 imply easily the following result, using the special form of Φ 0,∞ n,α,L and Φ 0,loc n,α,L recalled in (4.37) and (4.39), and thanks to (2.6), (2.7) and (2.8).

Corollary 4.9. The vector fields Φ 0,loc n,α,L and Φ 0,∞ n,α,L satisfy the following: Φ 0,loc n,α,L vanishes at x 3 = 0, in the sense that for all r in [2, ∞], = v 0,loc n,α,L + h 0 n w 0,loc,h n,α,L , w 0,loc,3 n,α,L h 0 n , where v 0,loc n,α,L solves (NS2D) x 3 with data v 0,loc 0,n,α,L , w 0,loc,3 n,α,L solves the transport-diffusion equation (T h 0 n ) defined page 22 with data w 0,loc,3 0,n,α,L and w 0,loc,h n,α,L = -∇ h ∆ -1 h ∂ 3 w 0,loc,3 n,α,L . Combining Property (2.6) togeter with Propositions 4. In particular the two vector fields Φ 0,loc n,α,L and Φ 0,∞ n,α,L satisfy Corollary 4.9, and furthermore thanks to the Lebesgue theorem, Given a small number ε > 0, to be selected later on, we choose L, α and η = η(α, L, u 0 ) so that thanks to Corollary 4.9 and (4.54), for all r in [2, ∞], and for n large enough, + (1 -θ h,η )Φ 0,loc n,α,L A 0 + (1 -θ η )u α L 2 (R + ;B 1 ) + θ h,η Φ 0,∞ n,α,L A 0 ≤ ε . For sake of simplicity, denote in the sequel (Φ 0,∞ ε , Φ 0,loc ε , ψ ε ) def = (Φ 0,∞ n,α,L , Φ 0,loc n,α,L , ψ n,α,L ) and Φ app

ε def = u α + Φ 0,∞ ε + Φ 0,loc ε .
By straightforward computations, one can verify that the vector field ψ ε satisfies the following equation, with null Cauchy data:

∂ t ψ ε -∆ψ ε + div ψ ε ⊗ ψ ε + Φ app ε ⊗ ψ ε + ψ ε ⊗ Φ app ε = -∇q ε + E ε , with E ε = E 1 ε + E 2 ε and E 1 ε def = div Φ 0,∞ ε ⊗ (Φ 0,loc ε + u α ) + (Φ 0,loc ε + u α ) ⊗ Φ 0,∞ ε + Φ 0,loc ⊗ (1 -θ η )u α + (1 -θ η )u α ⊗ Φ 0,loc , E 2 ε def = div Φ 0,loc ε ⊗ θ η u α + θ η u α ⊗ Φ 0,loc ε . (4.56)
The heart of the matter consists in proving that So let us focus on (4.57). The term E 1 ε is the easiest, thanks to the separation of the spatial supports. Let us first write

E 1 ε = E 1 ε,h + E 1 ε,3 with E 1 ε,h def = div h (Φ 0,loc ε + u α ) ⊗ Φ 0,∞,h ε + Φ 0,∞ ε ⊗ (Φ 0,loc,h ε + u h α )
+ (1 -θ η )u α ⊗ Φ 0,loc,h + Φ 0,loc ⊗ (1 -θ η )u h α and

E 1 ε,3 def = ∂ 3 (Φ 0,loc ε + u α )Φ 0,∞,3 ε + Φ 0,∞ ε (Φ 0,loc,3 ε + u 3 α )
+ (1 -θ η )u α Φ 0,loc,3 + Φ 0,loc (1 -θ η )u 3 α .

Now using as usual the action of derivatives and the fact that B 1 is an algebra, we infer that

E 1 ε,h L 1 (R + ;B 0 ) + E 1 ε,3 L 1 (R + ;B 1,-1 2 2,1 ) ≤ θ h,η Φ 0,∞ ε L 2 (R + ;B 1 ) Φ 0,loc ε + u α L 2 (R + ;B 1 ) + (1 -θ h,η )(Φ 0,loc ε + u α ) L 2 (R + ;B 1 ) Φ 0,∞ ε L 2 (R + ;B 1 ) + Φ 0,loc ε L 2 (R + ;B 1 ) u ∞ ε L 2 (R + ;B 1 ) ,
where we denote by u ∞ ε the function (1 -θ η )u α . Thanks to (4.55) and to the a priori bounds on Φ 0,∞ ε , Φ 0,loc ε and u α , we easily get

lim ε→0 E 1 ε F 0 = 0 .
Next let us turn to E 2 ε . To this end, we use the following estimate (see for instance, Lemma 3.3 of [START_REF] Chemin | Sums of large global solutions to the incompressible Navier-Stokes equations[END_REF]): This proves (4.57), hence Theorem 4.
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 324 t∆ ρ n,α,L L 2 (R + ;B 1 ) = 0 . End of the proof of Theorem 2. Let us return to the decomposition given in Proposition 3.2, and use definitions (3.29), (3.30) and (3.33) which imply that

0

  and w h is determined by the divergence free condition on w.In Paragraph 4.1.1 (resp. 4.1.2), we establish a priori estimates on v (resp. w), and in Paragraph 4.1.3, we achieve the proof of Theorem 3 by studying the perturbed Navier-Stokes equation satisfied by ψ.

Lemma 4 . 2 .

 42 For any compact set I included in ] -1, 1[, a constant C exists such that, for any r in [2, ∞] and any s in I, we have for any two solutions v 1 and v 2 of the two-dimensional Navier-Stokes equations

Lemma 4 . 3 .

 43 For any compact set I included in ] -1, 1[, a constant C exists such that, for any r in [2, ∞] and any s in I, we have for any solution v to (NS2D) x 3 ,

s 2 ,

 2 s exp(C v 0 B 0 E(0)) , which ends the proof of Inequality (4.22), and thus for (4.3) when r in [2, ∞] and s in ] -1, 1[.

Proposition 4 . 4 .

 44 Let v 0 and v be as in Proposition 4.1. For any non negative real number β, let us consider w 3 the solution of

( 4 .

 4 28) a L ∞ ([Tm,T m+1 ];B s,s ) + a L 1 ([Tm,T m+1 ];B s+2,s ) ≤ 2C a(T m ) B s,s + f L 1 ([Tm,T m+1 ];B s,s ) .Now let us us prove by induction thata L ∞ ([0,Tm];B s,s ) ≤ (2C) m a 0 B s,s + f L 1 ([0,Tm],B s,s ) .

  (a, b) with T h a b def = k S h k-1 a∆ h k b and R h (a, b) 2 -k ξ h ) with ϕ is a smooth compactly supported (in R 2 \ {0}) function which has value 1 near B(0, 2 -N 0 ) + C, where C is an adequate annulus. This allows us to write

Proposition 4 . 8 . 1 (R 2 )

 4812 Let v and w 3 be as in Proposition 4.4. The control of the value of w 3 at the point x 3 = 0 states as follows: For any r in [2, ∞], + β . Moreover, with the notations of Theorem 3, we have for all η in ]0, 1[ and γ in {0, 1},(4.52) 

( 1 -

 1 and there is a constant C(α, L) such that for all η in ]0, 1[, lim supn→∞ θ h,η )Φ 0,loc n,α,L A 0 + θ h,η Φ 0,∞ n,α,L A 0 ≤ C(α, L)η .Proof. In view of (4.39) and under Notation (1.11) Φ 0,loc n,α,L = Φ 0,loc,app n,α,L + ψ 0,loc n,α,L with Φ 0,loc,app n,α,L

  which ends the proof of (4.53) invoking (2.5) and (4.39). The argument is similar for the other estimates.

4. 2 . 3 .

 23 Conclusion of the proof of Theorem 4. Now, with the above notations, we look for the solution to (NS) system associated to the Cauchy data Φ 0 0,n,α,L under the form:Φ 0 n,α,L def = u α + Φ 0,∞ n,α,L + Φ 0,loc n,α,L + ψ n,α,L .

( 4 ( 1 -

 41 θ η )u α L 2 (R + ;B 1 ) = 0 .

E

  ε F 0 = 0 .Indeed, exactly as in the proof of Theorem 3, this ensures that ψ ε belongs to L 2 (R + ; B 1 ), with limε→0 ψ ε L 2 (R + ;B 1 ) = 0 ,and allows to conclude the proof of Theorem 4.

( 4 . 1 . 2 ( 1 2, 1 (

 41211 58) ab B 1 a B 1 b(•, 0) B 1 2,1 (R 2 ) + x 3 a B 1 ∂ 3 b B Defining u loc ε def = θ η u α , we get applying Estimate (4.58) R + ;B 1 ) Φ 0,loc ε (•, 0) L 2 (R + ;B R 2 )) + x 3 u loc ε L 2 (R + ;B 1 ) ∂ 3 Φ 0,loc ε L 2 (R + ;B 1 ). Thanks to (4.55) as well as Inequality (2.14) of Theorem 3, we obtain lim ε→0 E 2 ε F 0 = 0 .

  1.3. Conclusion of the proof of Theorem 3. Using the definition of the approximate solution Φ app given in (4.1), we infer from Propositions 4.1 and 4.4 and Corollary 4.6 that

	(4.29)

Here H s+ 2 r (R 2 ) denotes the usual homogeneous Sobolev space.

,s ) k ≤k 2 (k -k )(s-1 2 ) f j ,k (t)