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ABSTRACT

The multiple scale dynamics of a periodic chain composed of nonlinear mass-in-mass cells is studied.
Based on a continuous approach of the one-dimensional chain, dispersion equation is obtained
which provides the general form of solutions of the linearized system. Taking into account a single
harmonic of the chain around a 1:1 resonance with a targeted mode, fast dynamics of the system
leads to the detection of the slow invariant manifold and its stability borders. Slow dynamics permits
to predict singularities and equilibrium points leading to frequency responses. The developments
predict periodic and non-periodic responses and permit to tune parameters of the chain for the aim of
localization of vibrating energy and design of periodic or non-periodic responses.

Keywords nonlinear metamaterials · mass-in-mass cells · periodic/non-periodic system · multiple scale method

1 Introduction

Metamaterials can present unusual characteristics due to their special designs. There is no exact known date of the
first developed metamaterial, but it seems that the first works were led in the electromagnetic field, where Veselago
(1) was able to predict negative electric permittivity and magnetic permeability. Other developments in the magnetic
field (2) have been carried out and similar ideas have been conducted in optical and mechanical fields. For instance,
special design allows to obtain desired Poisson ratio via using (for example) origami based structures. Bertoldi et al. (3)
designed several types of mechanical metamaterials via exploitation of instabilities in mechanical systems. Topologies
are endowed to change physical properties of the material. Mechanical metamaterials have also applications in the
vibro-acoustic field as passive, active or adaptive materials (4). Negative indices such as negative effective mass induce
bandgaps (5) in the vibro-acoustic fied. One of techniques for designing vibro-acoustic metamaterials is to assemble
cells with special characteristics. Different types of linear cells have been investigated, for instance cells in a chain with
translational and rotational motions for creation of negative effective mass and stiffness (6). Huang et al. (7) studied
membranes and plate-types mass-in-mass system to tune the effective density. Meanwhile, nonlinearities are introduced
in systems for exploiting their advantageous with respect to the linear systems. Different methods such as Harmonic
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Balance (8) or Normal Form (9; 10) permits to determine the frequency response of the nonlinear systems. Lazarov
et al. (11) used nonlinear chain (pure cubic and duffing type) for controlling low-frequency wave transmissions by
high-frequency standing waves in some part of the chain. Some applications of such kinds of vibro-acoustic chains
are reported in (12; 13; 14; 15). One of the special types of architected meta-cells is the mass-in-mass system (16).
Nonlinear version of such system with inclusion of linear and cubic restoring forces is studied by Cveticanin et al.
(17). Based on the notion of negative effective mass, they managed to obtain bandgaps for the unit sub-system under
particular forcing. The influence of the number of inclusions of inner-masses is studied by Rodrigues et al. (18). A
chain of nonlinear mass-in-mass cells wit a special type of nonlinearity under particular excitation has been studied by
Cveticanin et al. (19). Romeo and Rega (20) studied free wave propagation in a chain of oscillators grounded nonlinearly
using nonlinear maps leading to determination of pass and stop band regions of the chain. Using complexification (21)
and multiple scales methods (22), one can determine fast and slow system dynamics (23; 24), and also periodic and
non-periodic system responses (25; 26). They can be extended to multi-degrees of freedom systems such as a chain
of nonlinear oscillators (27). Manevitch et al. (28) investigated on a semi infinite chain presenting standing waves
and energy transfer between nonlinear particles. The infinite cubic nonlinear chain for general forcing was studied by
Lazarov et al. (29). Considering first and third harmonics of the system, they deduced bandgaps from the dispersion
equation of the chain. Vakakis et al. (30) investigated on the forced infinite undamped chain of nonlinear oscillators by
taking a continuous approximation of the system leading to particular motions of the chain depending on the forcing.
Bacigalupo et al. (31) performed an optimal design of lattice metamaterials. Other similar works on infinite chains
are articulated in (32; 33). These kinds of systems become achievable using new three-dimensional (3D) printing
technologies (34; 35).

In this paper, we aim to consider a L-periodic discrete chain of nonlinear oscillators and we apply a continuous approach.
The study is taking into account a mono-harmonic response in accordance with the excitation, meaning that we suppose
that there is no modal interactions in the chain and that forcing frequency is closed to a natural frequency of the chain.
The organization of the paper is as it follows: In Sec.2, the chain under consideration is presented and some primary
treatments on the discrete governing equations are carried out, leading to obtaining the continuous form of system
equations. Determination of modal characteristics of the continuous chain, complexification and detection of fast and
slow dynamics of the non-projected system are illustrated in Sec.3. Analytical results are compared to numerical
simulations in Sec.4. The conclusions of the paper are presented in Sec.5. In Appendices A and B, the projected system
of equations on one of its modes in continuous and discrete domains are presented, treated and discussed, respectively.

2 The system and its primary treatments

2.1 Discrete form of governing system equations

In this study, a periodic mass-in-mass chain with a period of L cells presented in Fig.1, is considered. Each cell of the
chain is composed of a principal and a secondary mass. For the jth cell, j = 1, ..., L, uj and vj are respectively the
displacements of the principal masses mj

1 and inner masses mj
2. These masses are linked by a cubic stiffness k3 and

a linear damping c2. The cell number j is linearly linked to its neighbor cells number j − 1 and j + 1 with a linear
stiffness k1 and linear damping c1. Each cell is at a distance ∆x at rest from its neighbor cells. Because of periodicity,
the cells number 1 and L are neighbors, meaning that the principal mass of the cell 1 is linked to the principal mass of
the cell L with a stiffness k1 and linear damping c1. Governing system equations are:

m
2

k3

c2

m1
k1

c1

m
2

k3

c2

m1
k1

c1

k1

c1

m
2

k3

c2

m1
k1

c1

... ...
L-1 L 1

Figure 1: The considered discrete system around the cell j = L. At rest position, the distance between two neighbor
cells is ∆x.

2



Different dynamics of a periodic mass-in-mass nonlinear chain during a single mode excitationA PREPRINT



m1
d2u1

dt2 + k1(2u1 − uL − u2) + k3(u1 − v1)
3 + c1(2

du1

dt − duL

dt − du2

dt )

+c2(
du1

dt − dv1
dt ) = F1 sin(Ωt)

m1
d2uj

dt2 + k1(2uj − uj−1 − uj+1) + k3(uj − vj)
3 + c1(2

duj

dt − duj−1

dt − duj+1

dt )

+c2(
duj

dt − dvj
dt ) = Fj sin(Ωt) for j = 2, ..., L− 1

m1
d2uL

dt2 + k1(2uL − uL−1 − u1) + k3(uL − vL)
3 + c1(2

duL

dt − duL−1

dt − du1

dt )

+c2(
duL

dt − dvL
dt ) = FL sin(Ωt)

m2
d2vj
dt2 + k3(vj − uj)

3 + c2(
dvj
dt − duj

dt ) = 0 for j = 1, ..., L

(1)

For further developments, the complexified form of system equations (21), will be truncated via a Galerkin method
(27), then the multiple scale method (22) will be used to detect different system dynamics.
Let us set ε as the perturbation parameter where 0 < ε = m2

m1
≪ 1. We normalize the system using the new temporal

variable τ = ωt =
√

k1
m1
t. Let us introduce following parameters: εΛ = k3

k1
, εχ1 = c1√

k1m1
, εχ2 = c2√

k1m1
, εfj =

Fj

k1

and ν = Ω
ω . Final discrete expression of the governing Eq.1 is:



d2uj

dτ2 + (2uj − uj−1 − uj+1) + εΛ(uj − vj)
3

+εχ1(2
duj

dτ − duj−1

dτ − duj+1

dτ ) + εχ2(
duj

dτ − dvj
dτ ) = εfj sin(ντ)

for j = 2, ..., L− 1

d2u1

dτ2 + (2u1 − uL − u2) + εΛ(u1 − v1)
3

+εχ1(2
du1

dτ − duL

dτ − du2

dτ ) + εχ2(
du1

dτ − dv1
dτ ) = εf1 sin(ντ)

d2uL

dτ2 + (2uL − uL−1 − u1) + εΛ(uL − vL)
3

+εχ1(2
duL

dτ − duL−1

dτ − du1

dτ ) + εχ2(
duL

dτ − dvL
dτ ) = εfL sin(ντ)

ε
d2vj
dτ2 + εΛ(vj − uj)

3 + εχ2(
dvj
dτ − duj

dτ ) = 0 for j = 1, ..., L

(2)

2.2 Continuous form of governing system equations

We are proposing a continuous approach for detection of different behaviors of the periodic chain. Let us define the
position of a cell with the spatial coordinate X: the position of the jth cell verifies X = (j − 1)∆x, or X = x∆x. We
choose to use the normalized coordinate, as x = X

∆x . The continuous displacement functions are defined as:

{
u(x, τ) = u(x = j − 1, τ), x ∈ [0, L], j = 1, ..., L+ 1
v(x, τ) = v(x = j − 1, τ), x ∈ [0, L], j = 1, ..., L+ 1

(3)

Displacements can now be decomposed using Taylor series. In this way, u(x = j − 1, τ) and u(x = j + 1, τ) are
expressed as:

3
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

u(j − 1, τ) = u(j, τ)−∆x
∂u

∂X
(j, τ) +

1

2!
∆x2

∂2u

∂X2
(j, τ) +O(∆x3)

= u(j, τ)− ∂u

∂x
(j, τ) +

1

2

∂2u

∂x2
(j, τ) +O(∆x3)

u(j + 1, τ) = u(j, τ) + ∆x
∂u

∂X
(j, τ) +

1

2!
∆x2

∂2u

∂X2
(j, τ) +O(∆x3)

= u(j, τ) +
∂u

∂x
(j, τ) +

1

2

∂2u

∂x2
(j, τ) +O(∆x3)

(4)

With the introduction of continuous variables, we can adapt dynamical expressions in Eq.2. Neglecting O(∆x3) in
Eq.4, following continuous spatio-temporal system is obtained:

∂2u

∂τ2
− ∂2u

∂x2
+ εΛ(u− v)3 − εχ1(

∂

∂τ

∂2u

∂x2
) + εχ2(

∂u

∂τ
− ∂v

∂τ
) = εf(x) sin(ντ)

ε
∂2v

∂τ2
+ εΛ(v − u)3 + εχ2(

∂v

∂τ
− ∂u

∂τ
) = 0

(5)

We introduce following continuous variables:{
U(x, t) = u(x, t)
V (x, t) = u(x, t)− v(x, t)

(6)

Equation 5 reads:

∂2U

∂τ2
(x, τ)− ∂2U

∂x2
(x, τ) + εΛV 3(x, τ)− εχ1

∂

∂τ

∂2U

∂x2
(x, τ) + εχ2

∂V

∂τ
(x, τ)

= εf(x) sin(ντ)

∂2(U − V )

dτ2
(x, τ)− ΛV 3(x, τ)− χ2

∂V

∂τ
(x, τ) = 0

(7)

Moreover, we suppose a periodic chain via imposing following conditions:

U(x, τ) = U(x+ L, τ)
V (x, τ) = V (x+ L, τ)

∂U
∂x (x, τ) =

∂U
∂x (x+ L, τ)

∂V
∂x (x, τ) =

∂V
∂x (x+ L, τ)

(8)

We now have the final continuous expression of the system and we can begin the multiple scale study in the following
Sec.3.

3 Time multiple scale responses of the system

Applying the multiple scale method (22), time is decomposed in fast time (τ0) and slow times (τk, k = 1, 2, ...) linked
together by the mass ratio ε:

τ0 = τ and τk = εkτ , k = 1, ... (9)
and redefining derivation operator:

∂

∂τ
=

∂

∂τ0
+ ε

∂

∂τ1
+ ... (10)

We use complex variables of Manevitch (21) in the domain of the adimensional angular frequency ν of the external
excitation. We define: 

ϕ(x, τ)eiντ =
∂U

∂τ
(x, τ) + iνU(x, τ)

ψ(x, τ)eiντ =
∂V

∂τ
(x, τ) + iνV (x, τ)

(11)

4
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with i2 = −1. A Galerkin technique is used to pick only the jth harmonic of a function s(τ). This is carried out via
(27):

ν
2π

∫ 2π
ν

0
s(τ)e−ijντdτ (12)

After the introduction of complex variables and application of Eq.12 in Eq.7, the following system is obtained:

(
∂ϕ

∂τ
(x, τ) + iνϕ(x, τ)

)
− 1

iν

∂2ϕ

∂x2
(x, τ)− ε

3iΛ

4ν3
ψ|ψ|2(x, τ)

−εχ1
∂2ϕ
∂x2 (x, τ) + εχ2ψ(x, τ) = −iεf(x)(

∂(ϕ− ψ)

∂τ
(x, τ) + iν(ϕ− ψ)(x, τ)

)
+

3iΛ

4ν3
ψ|ψ|2(x, τ)− χ2ψ(x, τ) = 0

(13)

3.1 Dispersion relation

For the evaluation of modes of the continuous system, we come back to the physical expression of the system and we
consider the linearized form of Eq.7 by withdrawing forcing, cubic interactions and damping. It reads:

∂2Ul
∂τ2

(x, τ)− ∂2Ul
∂x2

(x, τ) = 0

∂2(Ul − Vl)

∂τ2
(x, τ) = 0

(14)

In this case, Ul and Vl are periodic solutions and can be decomposed as:{
Ul(x, τ) = Ul(x)e

iγτ

Vl(x, τ) = Vl(x)e
iγτ (15)

The first equation of Eq.14 becomes:
γ2Ul(x) +

∂2Ul

∂x2 (x) = 0 (16)

with γ ∈ R. Solutions of this equation can be expressed as:

Ul(x) = A cos(γx) +B sin(γx) with A,B ∈ R2 (17)

In order to determine the unknowns of Eq.17, we use boundary conditions of the periodic chain defined in Eq.8 and
applied for x = 0: 

Ul(0, τ) = Ul(L, τ)

∂Ul
∂x

(0, τ) =
∂Ul
∂x

(L, τ)
(18)

Injecting Eq.17 in Eq.18, the following system is obtained:(
1− cos(γL) − sin(γL)
sin(γL) 1− cos(γL)

)
︸ ︷︷ ︸

A

(
A
B

)
= 0

(19)

The non-trivial solution of Eq.19 imposes that:

det (A ) = 0 =⇒ 1− cos(γL) = 0
i.e. γ = ωk = 2kπ

L = kω1 for k ∈ N, ω1 = 2π
L

(20)

Then, general expression of Ul(x) reads:

Ul(x, τ) =
∑∞
k=0 (Ak cos(ωkx) +Bk sin(ωkx)) e

iωkτ =
∑∞
k=0 ρ̃k cos(ωkx+Θk)e

iωkτ (21)

with: {
ρ̃k =

√
A2
k +B2

k

Θk = − tan−1(Bk

Ak
)

(22)

5
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In this study, we suppose that a single mode of the system, namely kth mode, is responding. So, ignoring the rigid body
motion (by setting A0 = B0 = 0), we set:

Ul(x, τ) = ρ̃k cos(ωkx+Θk)e
iωkτ (23)

We are interested to look at system behaviors around the frequency ωk of excitation. Then, in Eq.13, we set ν = ωk+σε.
The system becomes:

(
∂ϕ
∂τ (x, τ) + i(ωk + σϵ)ϕ(x, τ)

)
+

ω2
k

i(ωk+σϵ)
ϕ(x, τ)

−ε 3iΛ
4(ωk+σε)3

ψ|ψ|2(x, τ) + εχ1ω
2
kϕ(x, τ) + εχ2ψ(x, τ) = −iεf(x, τ)(

∂(ϕ− ψ)

∂τ
(x, τ) + i(ωk + σε)(ϕ− ψ)(x, τ)

)
+

3iΛ

4(ωk + σε)3
ψ|ψ|2(x, τ)

−χ2ψ(x, τ) = 0

(24)

i.e.: 

(
∂ϕ
∂τ0

(x, τ) + ε ∂ϕ∂τ1 (x, τ) + 2iσϵϕ(x, τ)
)
− ε 3iΛ

4ω3
k
ψ|ψ|2(x, τ)

+εχ1ω
2
kϕ(x, τ) + εχ2ψ(x, τ) = −iεf(x, τ) +O(ε2)(

∂(ϕ− ψ)

∂τ0
(x, τ) + iωk(ϕ− ψ)(x, τ)

)
+

3iΛ

4ω3
k

ψ|ψ|2(x, τ)− χ2ψ(x, τ) = O(ε)

(25)

Because of the precedent identification of Ul(x) (Eq.21, 23), we can deduce the general expression of U for the kth
mode as:

U(x, τ) = (Ak cos(ωkx) +Bk sin(ωkx))G(τ)e
iντ = ρk(τ) cos(ωkx+Θk) (26)

G being the consequence of damping and cubic terms in Eq.7. We admit that the inner masses have the same
distribution of displacement along the chain and therefore V (x, τ) has a similar general expression to U(x, τ).

We can apply the same general form of expression to ϕ and ψ as Eq.26. General expression of ϕ and ψ
are:  ϕ(x, τ) = ρ1(τ) cos(ωkx+Θk)e

iθ1(τ) = Ñ1(x, τ)e
iθ1(τ)

ψ(x, τ) = ρ2(τ) cos(ωkx+Θk)e
iθ2(τ) = Ñ2(x, τ)e

iθ2(τ)
(27)

In this case, the expressions of modes are clarified, and oscillations frequency is equal to modal frequency of the system.
In the next section, a multiple scale method is exploited to detect different system dynamics.

3.2 Fast dynamics of the system

3.2.1 Slow Invariant Manifold

Equation 25 at the order ε0 reads: 
∂ϕ
∂τ0

= 0

∂ϕ
∂τ0

− ∂ψ
∂τ0

+H(ϕ, ϕ∗, ψ, ψ∗) = 0
(28)

with
H(ϕ, ϕ∗, ψ, ψ∗) = iωkϕ− iωkψ + 3iΛ

4ω3
k
ψ|ψ|2 − χ2ψ (29)

The Slow Invariant Manifold (SIM) of the system is obtained by looking for fixed points of the system. They are
verifying first relation of Eq.28 and the following condition:

lim
τ0→+∞

∂ψ

∂τ0
= 0 (30)

leading to H=0 (see Eq.28). So, we can write:

ϕ = ψ − iχ2

ωk
ψ − 3Λ

4ω4
k
ψ2ψ∗ (31)

6
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and finally introduce polar coordinates for complex variables defined in Eq.27. We obtain:

H(Ñ1, θ1, Ñ2, θ2) = iÑ1(x, τ1, ...)e
i(θ1−θ2) +

3iΛ

4ω4
k

Ñ3
2 (x, τ1, ...)

−χ2

ωk
Ñ2(x, τ1, ...)− iÑ2(x, τ1, ...) = 0

(32)

where Ñ1, Ñ2 ∈ R2 and θ1, θ2 ∈ R2.
We set N1(x, τ) = |Ñ1(x, τ)| and N2(x, τ) = |Ñ2(x, τ)|, N1, N2 ∈ R2

+. Then, for all the spatial coordinates verifying
cos(ωkx+Θk) ̸= 0, we have:

N1(x, τ1, . . . ) =√(
N2(x, τ1, . . . )− 3Λ

4ω4
k
N3

2 (x, τ1, . . . )
)2

+
(
χ2

ωk
N2(x, τ1, . . . )

)2 (33)

Otherwise, when x verifies cos(ωkx+Θk) = 0, the solution of Eq.32 is
N1(x, τ1, . . . ) = N2(x, τ1, . . . ) = 0.

We can observe that the expression of the SIM in Eq.33 does not directly depend on the position of the cell in the chain.
However, the dependency on x appears when we use the developed expressions of Ñ1(x, τ) = ρ1(τ) cos(ωkx+Θk)

and Ñ2(x, τ) = ρ2(τ) cos(ωkx+Θk) from Eq.27.
Due to damping term χ2 between principal and inner masses, the only solution compatible with N1(x, τ1, . . . ) = 0

is N2(x, τ1, . . . ) = 0. However, when χ2 = 0, two solutions N2(x, τ1, . . . ) = 0 and N2(x, τ1, . . . ) =
2ω2

k√
3Λ

satisfy
N1(x, τ1, . . . ) = 0.
Detection of the SIM can be carried out after applying modal projection in the Eq.13. This work is presented in
Appendix in Sec.5. The general geometry of the SIM is the same as the one defined in Eq.33.
In order to justify the continuous approach, we also provide a discrete approach of the system in Appendix. We
compare results obtained via discrete and continuous approaches. The use of continuous approach provides similar
results with the ones of the discrete approach, even when the chain is composed of a limited amount of cells.
In the next subsection, stability zones of the SIM are clarified.

3.2.2 Stable analysis of the SIM

In order to trace stability of the SIM, we linearly perturb the variable ψ as it follows:{
ψ → ψ +∆ψ
ψ∗ → ψ∗ +∆ψ∗ where |∆ψ| ≪ |ψ| (34)

We don’t perturb the function ϕ because ϕ is independent of the fast time scale τ0 as it is shown in Eq.28 .
Therefore, Eq.29 reads: 

∂(ψ+∆ψ)
∂τ0

= H(ϕ, ψ +∆ψ,ψ∗ +∆ψ∗)

∂(ψ∗+∆ψ∗)
∂τ0

= H∗(ϕ∗, ψ +∆ψ,ψ∗ +∆ψ∗)

(35)

Eq.35 being written in a matrix form leads to the definition of the matrix B: ∂∆ψ
∂τ0

∂∆ψ∗

∂τ0

 =

(
3iΛψψ∗

2ω3
k

− χ2 − iωk
3iΛψ2

4ω3
k

− 3iΛψ∗ψ∗

4ω3
k

− 3iΛψψ∗

2ω3
k

− χ2 + iωk

)
︸ ︷︷ ︸

B

(
∆ψ
∆ψ∗

)
(36)

The characteristic polynomial of B is:

P (X) = X2 + 2χ2X + ω2
k + χ2

2 − 3Λ
ω2

k
ψψ∗ + 27Λ2

16ω6
k
ψ2ψ∗ψ∗ (37)

Unstable zones of the SIM verify:

ω2
k + χ2

2 − 3Λ
ω2

k
ψψ∗ + 27Λ2

16ω6
k
ψ2ψ∗ψ∗ < 0 (38)

Therefore, the stability borders of the system verify:

ω2
k + χ2

2 − 3Λ
ω2

k
ψψ∗ + 27Λ2

16ω6
k
ψ2ψ∗ψ∗ = 0 (39)

7
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Using polar coordinates from Eq.27, the roots of this fourth order in N2 polynomial are:
N21 =

2

3

√
2ω4

k − ω3
k

√
ω2
k − 3χ2

2

Λ

N22 =
2

3

√
2ω4

k + ω3
k

√
ω2
k − 3χ2

2

Λ

(40)

These values are real only if ωk ≥
√
3χ2. The SIM is unstable if N2 verifies N21 < N2 < N22. In the next subsection,

the behavior of the system at slow time scale is detected leading to detection of characteristic points of the system.

3.3 Slow dynamics

In this subsection, we are interested by the system behavior at slow time scale and we will detect characteristic points,
which are singular or equilibrium points. This will help us to identify periodic or quasi-periodic regimes. We begin by
considering the first equation in Eq.25 with forcing and we only consider the first order in ε:

∂ϕ

∂τ1
(x, τ) + E1(ϕ, ϕ∗, ψ, ψ∗, σ) = 0 (41)

with:
E1(ϕ, ϕ∗, ψ, ψ∗, σ) = 2iσϕ(x, τ)− 3iΛ

4ω3
k
ψ|ψ|2(x, τ) + χ1ω

2
kϕ(x, τ)

+χ2ψ(x, τ) + if(x)
(42)

The evolution of the SIM H(ϕ, ϕ∗, ψ, ψ∗) at τ1 time scale, i.e. ∂H∂τ1 and ∂H∗

∂τ1
, is expressed as following: ∂H

∂ψ
∂H
∂ψ∗

∂H∗

∂ψ
∂H∗

∂ψ∗


︸ ︷︷ ︸

B

 ∂ψ
∂τ1

∂ψ∗

∂τ1

 = −

 ∂H
∂ϕ

∂H
∂ϕ∗

∂H∗

∂ϕ
∂H∗

∂ϕ∗

 ∂ϕ
∂τ1

∂ϕ∗

∂τ1


(43)

3.3.1 Singular points

Singular points are characteristics points verifying (36):
H(ϕ, ϕ∗ψ,ψ∗) = 0

E1(ϕ, ϕ∗, ψ, ψ∗, σ) = 0

det(B) = 0

(44)

Application of conditions listed in Eq.44 in Eq.43 reads:

det(B) = 0 with B =

(
3iΛψψ∗

2ω3
k

− χ2 − iωk
3iΛψ2

4ω3
k

− 3iΛψ∗ψ∗

4ω3
k

− 3iΛψψ∗

2ω3
k

− χ2 + iωk

)
=⇒ 27Λ2

16ω6
k

ψ2ψ∗2 − 3Λ

ω2
k

ψψ∗ + χ2
2 + ω2

k = 0

(45)

and solutions are reported in Eq.40. Associated N1 values are:
N11 = 2

9

√
2

√
ωk

ω3
k+9ωkΛχ2

2+(ω2
k−3χ2

2)
√
ω2

k−3χ2
2

Λ

N12 =
2

9

√
2

√
ωk
ω3
k + 9ωkΛχ2

2 − (ω2
k − 3χ2

2)
√
ω2
k − 3χ2

2

Λ

if ωk ≥
√
3χ2 (46)

The 2 singular point coordinates are (N21, N11) and (N22, N12).

8
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3.3.2 Equilibrium points

Equilibrium points of the system verify: 
H(ϕ, ϕ∗ψ,ψ∗) = 0

E1(ϕ, ϕ∗, ψ, ψ∗, σ) = 0

det(B) ̸= 0

(47)

We work on the function E1(ϕ, ϕ∗, ψ, ψ∗, σ) defined in Eq.42 and we apply conditions listed in Eq.47. Injecting Eq.31
in Eq.42, we have the simplified relation:

E1(ψ,ψ∗, σ) =
χ1(−3Λkψ

2ψ∗−4iχ2ω
3
kψ+4ω4

kψ)
4ω2

k
+ χ2ψ + if(x)

+
iσ(−3Λψ2ψ∗−4iχ2ω

3
kψ+4ω4

kψ)
2ω3

k
− 3iΛψ2ψ∗

4ω3
k

= 0
(48)

Once polar coordinates from Eq.27 are introduced, following cubic polynomial is obtained:

AX3 +BX2 + CX +D = 0 (49)

with 

A = 9Λ2

16ω8
k
(ω2
k + 4σωk + 4σ2 + χ2

1ω
4)

B = − 3Λ
2ω4

k
(4σ2 + 2σωk + χ2

1ω
4
k)

C = 4σ2 + 2χ1χ2ω
2
k + χ2

1ω
4
k +

χ2
2(4σ

2+4σωk+ω
2
k+χ

2
1ω

4
k)

ω2
k

D = −f2
X = Ñ2

2

(50)

For sweeping of σ, Eq.49 can be solved by Cardan’s method to obtain corresponding N2. Then, N1 can be evaluated
via Eq.33. Backbone curves of the system are obtained by setting f = 0, χ1 = 0, and χ2 = 0 in Eq.49.

3.3.3 Some remarks on the design of the SIM

For designing the SIM, we aim to have a non-monotone curve and therefore to have two non-identical singularity
amplitudes. From the determination of the amplitude of singular points, which coincide with stability borders, it’s
interesting to plot the evolution of these borders as function of k

L directly linked to ωk, as depicted on Fig.2.
When k

L ≪ 1, the design requires very small values of physical parameters Λ and χ2 in order to maintain the presence
of unstable zone of the SIM. Otherwise, either should the number of cell of the chain be reduced or the frequency of the
mode of excitation be high in order to increase k

L (or ωk). Unstable zone only appears when the condition in Eq.38 is
verified, i.e. k

L >
√
3

2π χ2.

Plotting the evolution of borders of unstable zones in the N2 and N1 axis illustrates the fact that the unsta-
ble zone becomes larger with the increase of k

L . Going to higher modes, i.e. increasing ωk, the unstable zone of the
SIM becomes wider leading to wider interval of N2 for presentation of possible non-periodic responses. As the number
of the mode (k) increases, the distance between N11 and N12 increases as well, meaning a large interval of variations of
N1 during quasi-periodic responses corresponding to repeated bifurcations.

The analytical study has been conducted and results will be compared to numerical simulation in the next
Sec.4.

4 Numerical results

4.1 Numerical process

In this section, analytical developments are compared to results obtained from direct numerical integration of Eq.2. In
the whole paper, we name the latter as "numerical results". Therefore, we are confronting predictions obtained from
the continuous system to those obtained from numerical integration of the initial discrete system. This is done using
the "ode45" function of Matlab® which is based on the Runge Kutta scheme. In order to have precise results, the
relative and absolute error tolerances are set to 10−13. The control error relative to norm is also set to 10−13. Different

9
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Figure 2: Evolution of amplitudes of singular points of the SIM with respect to k
L : (a) N21 and N22 (see Eq.40), (b)

N11 and N12 (see Eq.46).

cases of initial conditions and forcing are investigated, but the initial speed and acceleration of masses are always set
to zero. For non zero initial conditions of the free case, we suppose that uj(τ = 0) = ρ̃ cos(ωk(j − 1) + Θi) and
vj(τ = 0) = 0, j = 1, . . . , L, meaning that the initial conditions follow general modal deformation of the chain which
is defined in Eq.23. For the whole numerical results, we set Θk = Θi. The same pattern of distribution for the external
excitation is applied i.e. f(x, τ) = f0 cos(ωkx+Θf ) sin(γτ) meaning that Θk = Θf .

Table 1: Characteristics of the system for numerical verification

Configuration 1
L ε χ1 χ2 Λ
10 0.001 0.1 0.02 0.2

Configuration 2
L ε χ1 χ2 Λ
100 0.001 0.1 0.02 0.2

Configuration 3
L ε χ1 χ2 Λ
100 0.01 0.1 0.02 0.2

The discrete system takes L cells in consideration constituted from a total number of 2L masses. The numerical
integration returns 4L different values at each step of the time integration : uj(τ) and vj(τ), j = 1, . . . , L and their
first derivatives u̇j(τ) and v̇j(τ), j = 1, . . . , L. Complex variables of Manevitch are then computed as described by

10
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Eq.6 and Eq.11. We keep the first harmonics of numerical results. The characteristics of the system are given in
configuration 2 and 3 in Table 1.

4.2 Free responses of the system

The results are plotted in Fig.3 to Fig.6 for different cell positions and modes. On each of these figures, three results are
presented for each chosen cell. The first one (a) presents the given initial displacement of the chain and marks with a
red cross the position of the investigated cell of the discrete system. Time histories of N1(τ) of the investigated cell are
presented in (b) and confrontation between the SIM (green line) and results from numerical integration (red line) for
the investigated cell are plotted in (c). Black ’+’ symbols stand for singular points and unstable zone is plotted in
orange. Two cases of initial deformations (k = 1 and k = 3) are applied as uj(τ = 0) = ρ̃ cos(ωk(j − 1) + Θk) and
vj(τ = 0) = 0, j = 1, . . . , L.
We can observe that due to the distribution of the initial deformation which follows the form of the mode along the
chain, each cell has different initial energy and depending on this energy, it can face bifurcation(s) due to the existence
of singularities. We can see that final state of the system is uj(τ) = vj(τ) = 0 when τ → ∞ as the damped system is
free. Analytical and numerical results are in good agreement. The difference between the SIM and numerical results
could have different reasons. For example, in applying complexes variables of Manevitch (Eq.27), we kept the first
harmonics while one can take the effects of higher harmonics as well, for instance the third harmonics as Bitar et al.
(36) did in their works. Moreover, it can be also due to internal resonances which are omitted in this paper.

4.3 Forced responses of the system

Here, we present some results corresponding to periodic and non-periodic regimes. Different forcing terms are
considered. Figures 7-15 correspond to a periodic response of the chain due to the excitation with the frequency around
the first mode of the system, i.e. ω1. Figures 16-20 present quasi-periodic response of the system under external
excitation with the frequency around the third mode, i.e. ω3. Globally speaking, these results can be presented for any
modes.
In the first case, the system is with zero initial conditions and under excitation with the amplitude of
fj = 0.03 cos(ω1(j − 1)) and frequency ν = 0.064. Parameters of the system are listed in configuration
number 2 in Table 1. As some representative examples, frequency response curves for cells 1, 21 and 27 are presented
respectively in Fig.7a,7c and 8a with the backbones curves plotted in black. Predicted equilibrium points for the given
frequency ν are compared to numerical results in Fig.7b,7d and 8b. Figures 9-11 show the SIM (in green) accompanied
by results obtained from direct numerical integration for the three considered cells. Singular points are represented by
black ’+’ symbols and unstable zone is plotted in orange. In Fig.9 and 10 associated to cells 1 and 21, we can see
repeated bifurcations during the transient response of the system before it reaches to the periodic regime.
Figure 12 and 13 show 3D and 2D views of analytical predictions of equilibrium points of the continuous system (green
line) along the chain of 100 cells (x ∈ [0; 99]) for the system with ν = 0.064. Equilibrium points obtained from
numerical results, when τ → ∞ (τ > 9.988 × 105) are added to Fig.13 in black ’+’ symbols. Unstable zones are
plotted in orange. This result shows that for this spatial case (k = 1), there are at least two cells where the physical
displacement of the principal mass is very close to 0. From Fig.13, it is seen that there is good agreement between
predicted N1 and corresponding numerical results while the discrepancy between analytical and numerical N2 increases
in some zones of the chain. The possible reasons for these differences are explained in Section 4.2. The chain is also
separated in two groups with a phase lag of π which can be verified in Fig.14 presenting time histories of the physical
variables uj(τ) for the mode 1 (k = 1) along the chain during periodic behavior when τ → ∞ (τ > 9.988× 105). The
similar representation for vj(τ) is illustrated in Fig.15 during transient response. As seen before in Figs.9-11, some
cells present repeated bifurcations before having periodic response associated to periodic equilibrium points predicted
in Fig.12 and 13.
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Figure 3: Free response of the cell 1 around the first mode (k = 1). (a) Given initial displacements reading as
uj(τ = 0) = 0.16 cos(ω1(j− 1)) for the chain; red cross symbol stands for the position of the cell 1. (b) Time histories
of N1 of the cell 1 obtained by direct numerical integration. (c) The SIM of the system (green line) accompanied by
numerical results (red line). Black + symbols present amplitudes of possible singularities of the system. Unstable zone
of the SIM is represented in orange line. Parameters of the system are listed in configuration number 2 of Table 1.
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Figure 4: Free response of the cell 18 around the first mode (k = 1). (a) Given initial displacements reading as
uj(τ = 0) = 0.16 cos(ω1(j − 1)) for the chain; red cross symbol stands for the position of the cell 18. (b) Time
histories of N1 of the cell 18 obtained by direct numerical integration. (c) The SIM of the system (green line)
accompanied by numerical results (red line). Black + symbols present amplitudes of possible singularities of the
system. Unstable zone of the SIM is represented in orange line. Parameters of the system are listed in configuration
number 2 of Table 1.
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Figure 5: Free response of the cell 11 around the third mode (k = 3). (a) Given initial displacements reading as
uj(τ = 0) = 0.37 cos(ω3(j−1)) for the chain; red cross symbol stands for the position of the cell 11. (b) Time histories
of N1 of the cell 11 obtained by direct numerical integration. (c) The SIM of the system (green line) accompanied by
numerical results (red line). Black + symbols present amplitudes of possible singularities of the system. Unstable zone
of the SIM is represented in orange line. Parameters of the system are listed in configuration number 2 of Table 1.
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Figure 6: Free response of the cell 13 around the third mode (k = 3). (a) Given initial displacements reading as
uj(τ = 0) = 0.37 cos(ω3(j−1)) for the chain; red cross symbol stands for the position of the cell 13. (b) Time histories
of N1 of the cell 13 obtained by direct numerical integration. (c) The SIM of the system (green line) accompanied by
numerical results (red line). Black + symbols present amplitudes of possible singularities of the system. Unstable zone
of the SIM is represented in orange line. Parameters of the system are listed in configuration number 2 of Table 1.
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Figure 7: Forced responses of cells 1 and 21 of the chain under external forcing around the first mode (k = 1) with the
amplitude fj = 0.03 cos(ω1(j−1)). (a) and (c) Frequency response curves of cell 1 and cell 21 respectively. Backbone
curves are represented by thick black lines while equilibrium points falling in unstable zone of the SIM are represented
in orange line. (b) and (d) Time histories of amplitudes of concerned cells obtained from numerical results for system
with ν = 0.064 with zero initial condition. System characteristics are provided in configuration 2 of Table 1.
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Figure 8: Forced responses of the cell 27 of the chain under external forcing around the first mode (k = 1) with the
amplitude fj = 0.03 cos(ω1(j − 1)). (a) Frequency response curves of the cell. Backbone curves are represented by
thick black lines while equilibrium points falling in unstable zone of the SIM are represented in orange line. (b) Time
histories of amplitudes of the cell obtained from numerical results for system with ν = 0.064 with zero initial condition.
System characteristics are given in configuration 2 of Table 1.

Let us suppose the system under external excitation with the frequency around the third mode of the chain (k = 3).
The system characteristics are presented in configuration 3 in Table 1 with forcing term fj = 0.01 cos(ω3(j − 1))
and ν = 0.1895. As some representative examples, frequency response curves for different cells are presented in
Fig.16a,16c and 17a, while numerical results for the system with ν = 0.1895, are depicted in Fig.16b,16d and 17b. It is
seen that some cells possess only one equilibrium point falling in the unstable zone of the SIM, e.g. cell 1, indicating a
quasi-periodic response of the system corresponding to repeated bifurcations between stable zones of the SIM (see
Fig.16b and 18a). The Poincaré map of cell 1 is depicted in Fig.20a showing quasi-periodic response of the cell.
Looking at the instantaneous frequency of this cell, see Fig.21a, it is seen that this cell presents abrupt changes of
frequencies due to bifurcations. Some cells possess only one equilibrium point positioned in stable zones of the SIM,
for example cell 8 (see Fig.18b). The Poincaré map and instantaneous frequency of this cell depicted in Fig.20b and
21b, show the quasi-periodic response of this cell, without presence of bifurcations (see Fig.18b). Finally, some other
cells can have one to three equilibrium points falling in stable and unstable zone of the SIM, for example cell 7 (see
Fig.17,19,20c and 21c). The predicted behavior of the chain at its equilibrium points is represented in Fig.22 (3D
view) and 23 (2D views), where blue and red diamonds are referred to maximal and minimal values of amplitude
of N1 and N2 respectively , see also Figs.18 and 19. Numerical results are quantitatively in good agreements with
predicted equilibrium points. When the system possess only one equilibrium point positioned in unstable zone of the
SIM, e.g. cell 1, due to repeated bifurcations, there will be large variations of system amplitudes around predicted
unstable equilibrium point. Other discrepancy between analytical and numerical results can arise from the fact that we
do not consider inter-modal energy exchanges for this study.
To summarize, we can observe three different situations for each cell depending on the frequency and amplitude of the
excitation:

• only one point exists out of unstable zone of the SIM;
• only one point exists inside the unstable zone of the SIM; the concerned cell will present modulated responses

(25) corresponding to repeated bifurcations between stable zones of the SIM;
• two or three possible equilibrium points exist and some of them can be located in the unstable zone of the SIM.
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Figure 9: Forced response of the cell 1 around the first mode (k = 1). The SIM of the system (green line)
accompanied by numerical results (red line). Black ’+’ symbols present amplitudes of possible singularities of the
system. Unstable zone of the SIM is represented in orange line. System is under external excitation with the amplitude
of fj = 0.03 cos(ω1(j − 1)) and the frequency of ν = 0.064 with zero initial conditions. Parameters of the system are
listed in configuration number 2 of Table 1.

5 Conclusion

Multi scale dynamics of a 2L degrees of freedom periodic chain has been studied. After transferring discrete coordinates
to continuous domain, the nature of the solutions according to the spatial arrangement of the system is obtained. Slow
invariant manifold of the system is detected at fast time scale and the behavior of the system at slow time scale is
analytically expressed using multiple scale method. We are able to predict equilibrium points and singularities of the
system according to excitation and the position of each cell in the chain. Plotting stability borders as a function of some
design parameters permits to adapt the system for an application for example. Numerical simulations on this chosen
system have confirmed our analytical predictions when the considered mode is not too high. According to the forcing
term, its spatial phases and the position of the cell in the chain, the system can present one, two or three equilibrium
points which can be in the stable zone of the slow invariant manifold, presenting possible periodic regimes, or in the
unstable zone showing non-periodic behaviors with repeated bifurcations. Different types of behaviors can be observed
along the chain at the same time depending on the position of the cells. Continuous approach of the periodic nonlinear
chain of oscillators has delivered good results and should be extended to multi-modal study. The perspective of this
work will be to consider modal interactions between two or several modes of the chain.

Appendix A

Continuous approach of the system with modal projection:

Let us consider the eigenfunction of the system which is defined in Eq.23. We normalize this function via∫ L
0
(ρ̃k cos(ωkx+Θk))

2
dx = 1 (51)

leading to ρ̃k =
√
2/L. We define: 

U(x, τ) = ρ̃1,k(τ)
√

2
L cos(ωkx+Θk)

V (x, τ) = ρ̃2,k(τ)
√

2
L cos(ωkx+Θk)

(52)
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Figure 10: Forced response of the cell 21 around the first mode (k = 1). The SIM of the system (green line)
accompanied by numerical results (red line). Black ’+’ symbols present amplitudes of possible singularities of the
system. Unstable zone of the SIM is represented in orange line. System is under external excitation with the amplitude
of fj = 0.03 cos(ω1(j − 1)) and the frequency of ν = 0.064 with zero initial conditions. Parameters of the system are
listed in configuration number 2 of Table 1.

Figure 11: Forced response of the cell 27 around the first mode (k = 1). The SIM of the system (green line)
accompanied by numerical results (red line). Black ’+’ symbols present amplitudes of possible singularities of the
system. Unstable zone of the SIM is represented in orange line. System is under external excitation with the amplitude
of fj = 0.03 cos(ω1(j − 1)) and the frequency of ν = 0.064 with zero initial conditions. Parameters of the system are
listed in configuration number 2 of Table 1.
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Figure 12: Analytical predictions of equilibrium points of the continuous system (green line) for system under external
excitation with the amplitude of fj = 0.03 cos(ω1(j − 1)) and the frequency of ν = 0.064. Unstable zone of the SIM
is represented in orange line. Parameters of the system are listed in configuration number 2 of Table 1.

ωk being defined in Eq.20.
We can project second equation of Eq.7 on the kth mode as:∫ L

0

(
∂2(U−V )
∂τ2 (x, τ)− ΛV 3(x, τ)− χ2

∂V
∂τ (x, τ)

)√
2
L cos(ωkx+Θk)dx

=
d2ρ̃1,k
dτ2 (τ)− d2ρ̃2,k

dτ2 (τ)− χ2
dρ̃2,k
dτ (τ)− 3Λ

2L ρ̃
3
2,k(τ) = 0

(53)

New complex variables of Manevitch (21) are introduced as:
φ1(τ)e

iντ =
dρ̃1,k
dτ

(τ) + iνρ̃1,k(τ)

Ψ1(τ)e
iντ =

dρ̃2,k
dτ

(τ) + iνρ̃2,k(τ)

(54)

We are looking for the SIM and set ν = ωk.
Taking the first harmonic of Eq.53 expressed with complex variables provides:

d
dτ (φ1 −Ψ1) + iωk(φ1 −Ψ1)− χ2Ψ1 +

9iΛ
8Lω3

k
Ψ2

1Ψ
∗
1 = 0 (55)

We seek for fixed points (see Eq.30) so we can write:

φ1 = Ψ1 − iχ2

2 Ψ1 +
9Λ

8Lω4
k
Ψ2

1Ψ
∗
1 (56)

We introduce complex variables in polar domain as:{
φ1(τ) = N1(τ)e

iϑ1(τ)

Ψ1(τ) = N2(τ)e
iϑ2(τ)

(57)

with N1,N2 ∈ N2 and ϑ1, ϑ2 ∈ Z2. Finally, this approach leads to the SIM expression:

N1(τ1, . . . ) =

√(
N2(τ1, . . . )− 9Λ

8Lω4
k
N 3

2 (τ1, . . . )
)2

+
(
χ2

ωk
N2(τ1, . . . )

)2
(58)

The SIM does not depend to space variable x because of the modal projection. The expression is compared to numerical
results using Runge Kutta algorithm in free and forced cases using the same methodology as in Sec.4.
In the free case shown in Fig.24 for the first mode (k = 1) and for the same physical parameters listed in configuration
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Figure 13: Analytical predictions of equilibrium points of the continuous system (green line) accompanied by those
obtained from direct numerical integration (black ’+’ symbols) when τ → ∞ (τ > 9.988 × 105) with zero initial
conditions under external excitation with the amplitude of fj = 0.03 cos(ω1(j − 1)) and the frequency of ν = 0.064.
Unstable zone of the SIM is represented in orange line. Parameters of the system are listed in configuration number 2 of
Table 1.
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Figure 14: Periodic variations of uj(τ) of the discrete system (numerical results) for different j (j = x+ 1) around
equilibrium points of the system with zero initial condition under external excitation with the amplitude of fj =
0.03 cos(ω1(j − 1)) and the frequency of ν = 0.064 when τ → ∞ (τ > 9.988× 105). Parameters of the system are
listed in configuration number 2 of Table 1.

Figure 15: Transient response of vj(τ) (j = x + 1) of the discrete system (numerical results). Some cells present
modulated responses before going to the equilibrium point which is represented in Fig.13(b). System is under external
excitation with the amplitude of fj = 0.03 cos(ω1(j − 1)) and frequency of ν = 0.064 with zero initial conditions.
Parameters of the system are listed in configuration number 2 of Table 1.
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Figure 16: Forced responses of the cells 1 and 8 of the chain under external forcing around the third mode (k = 3) with
the amplitude of fj = 0.01 cos(ω3(j − 1)). (a) and (c) Frequency response curves of the cells 1 and 8 respectively.
Backbone curves are represented by thick black lines while equilibrium points falling in unstable zone of the SIM
are represented in orange line. (b) and (d) Time histories of amplitudes of concerned cells obtained from numerical
results for system with the frequency of ν = 0.1895 and zero initial condition. System characteristics are given in
configuration 3 in Table 1.
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Figure 17: Forced responses of the cell 7 of the chain under external forcing around the third mode (k = 3) with the
amplitude of fj = 0.01 cos(ω3(j − 1)). (a) Frequency response curve of the cell. Backbone curves are represented by
thick black lines while equilibrium points falling in unstable zone of the SIM are represented in orange line. (b) Time
histories of amplitudes obtained from numerical results for system with the frequency of ν = 0.1895 and zero initial
condition. System characteristics are given in configuration 3 in Table 1.

2 in Table 1 and initial deformation defined as uj(τ = 0) = 0.13 cos(ω1(j − 1)), we can observe that the numerical
results (in red line) are not really following the SIM (in green line) defined in Eq.58 except in the part close to
N1(τ) = N2(τ) = 0, when all masses are in small displacements and system behave in a classical manner. We
can observe that there are jumps in the numerical curve creating steps like aspect on the curve. In fact, these jumps
correspond to the crossing of some cells through one bifurcation point. Indeed, each cell is at a different level of
energy characterized by different amplitudes of N1(x, τ) and N2(x, τ), as defined in first part in Eq.27. For this reason,
each cell is susceptible to cross through bifurcation points at different instants than another cells. When projecting
on the mode, if some of the cells are in the unstable zone, then when a cell faces a bifurcation point, there will be a
jump in the numerical curve obtained after modal projection. This phenomena is the cause of the gap between the
numerical integration and the SIM that is appearing "step by step" like on the numerical curve. This is confirmed by

superposing time history of numerically obtained
√

2
LN2(τ) of projected discrete system with different numerically

obtained discrete N2(x = j, τ) time histories of twenty five first cells of the chain in Fig.25. This figure illustrates well
the influence of each cell on the modal projection results.
Same results are observable in the forced case: when forcing is added to the system, the numerical results are also less
in agreement with the SIM except in the part close to N1(τ) = N2(τ) = 0, when all masses are in small displacements
and system behave in classical manner, as shown in Fig.26 for excitation around the third modal frequency ω3. This
time, jumps happen around the first bifurcation point (N21, N11) for some cells creating the visible non-regularities on
the numerical curve obtained after modal projection of discrete system in Fig.26. This is confirmed in Fig.29 where

time history of numerically obtained
√

2
LN2(τ) of projected discrete system is compared to numerically obtained

discrete N2(x = j, τ) time histories of twenty five first cells of the chain. Moreover, when some cell amplitudes of the
chain are in the unstable zone of the SIM while others are behaving in a classical manner, Fig.29 permits to understand
that the modal projection is less effective because it has to traduce two different types of behaviors at the same time.
When all cells are behaving in a classical manner close to N1 = N2 = 0 or at high amplitudes, spatial projection will
provide good results, but does not have advantages in the analytical study compared to study in Sec.3 while considering
only one mode. We can remark for example from Fig.29 that the numerical curve obtain after modal projection won’t
be in agreement with the SIM when the distribution of the number of cells behaving in a classical manner close to
N1 = N2 = 0 and the number of cell having a modulated response is equitable. The SIM obtained without projection
of the continuous system provides better results (see Fig.27,28).
For these reasons, the initial study has been conducted without modal projection.
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Figure 18: Forced response of the cell 1 in (a) and cell 8 in (b) around the third (k = 3). The SIM of the system (green
line) accompanied by numerical results (red line). Black ’+’ symbols present amplitudes of possible singularities of the
system. Unstable zone of the SIM is represented in orange line. Blue and red diamonds indicate maximal and minimal
values of N1 and N2 respectively. System under external excitation with the amplitude of fj = 0.01 cos(ω3(j−1)) and
the frequency of ν = 0.1895 with zero initial condition. Parameters of the system are listed in configuration number 3
of Table 1.
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Figure 19: Forced response of the cell 7 around the third mode (k = 3). The SIM of the system (green line)
accompanied by numerical results (red line). Black ’+’ symbols present amplitudes of possible singularities of the
system. Unstable zone of the SIM is represented in orange line. Blue and red diamonds indicate maximal and minimal
values of N1 and N2. System under external excitation with the amplitude of fj = 0.01 cos(ω3(j − 1)) and the
frequency of ν = 0.1895 with zero initial condition. Parameters of the system are listed in configuration number 3 of
Table 1.

Appendix B: discrete consideration of the system

General analytical determination of discrete system modes

In this part, we are a providing the dynamical study in a discrete way. Let us consider the L-cell discrete system
described in Eq.2. We express the system in the matrix form. The study is limited to the order ε0. Eq.2 has the matrix
form: 

d2U
dτ2 (τ) + ML.U = 0

d2U
dτ2 (τ)− d2V

dτ2 (τ)− Λ V3(τ)− χ2
dV
dτ (τ) = 0

Uj(τ) = uj(τ), Vj(τ) = uj(τ)− vj(τ) and V3
j (τ) = (uj(τ)− vj(τ))

3

ML =



2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0

0 0
. . . . . . . . . 0 . . . 0

0 . . . 0 −1 2 −1 0 . . . 0

0 . . . 0 0
. . . . . . . . . 0

0 . . . 0 −1 2 −1
−1 0 . . . 0 −1 2


a L× L matrix

(59)

Following the same procedure as described in Eq.14,15, the linearized system reads:
d2Ul

dτ2 = −λ.Ul = −ML.Ul or AL.Ul = (ML − λ.IdL).Ul = 0

Ul(τ) =

u1...
uL

 ei
√
λτ (60)

IdL being the LxL identity matrix. In order to use modal projection, we are interested by the eigenvalues and
eigenvectors of the matrix ML.
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Figure 20: Poincaré diagrams (uj versus duj

dτ , j ∈ {1, 8, 7}): (a) cell 1; (b) cell 8; (c) cell 7. System is under external
excitation with the amplitude of fj = 0.01 cos(ω3(j − 1)) and the frequency of ν = 0.1895 with zero initial condition.
Parameters of the system are listed in configuration number 3 of Table 1.

Let us evaluate eigenvalues of ML. For this purpose, we define the tri-diagonal matrix:

BL =



α −1 0 . . . 0

−1 α −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 α −1

0 . . . 0 −1 α


L×L

(61)
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Figure 21: Instantaneous frequency of m1 located at different positions. (a) cell 1; (b) cell 8; (c) cell 7. System is under
external excitation with the amplitude of fj = 0.01 cos(ω3(j − 1)) and the frequency of ν = 0.1895 with zero initial
condition. Parameters of the system are listed in configuration number 3 of Table 1.
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Figure 22: Analytical predictions of equilibrium points of the continuous system (green line) for system under external
excitation with the amplitude of fj = 0.01 cos(ω3(j − 1)) and the frequency of ν = 0.1895. Unstable zone of the SIM
is represented in orange line. Parameters of the system are listed in configuration number 3 of Table 1.

We define α = 2− λ and using Gauss pivoting methodology, we decompose:

det(AL) = α.det(BL−1)− (−1)3 det(



−1 −1 0 . . . . . . 0

0 α −1 0
...

0 −1 α −1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 α −1
−1 . . . . . . 0 −1 α


L−1×L−1

)

−(−1)L+1 det(



−1 α −1 0 . . . 0

0 −1 α −1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . −1
0 . . . . . . 0 −1 α
−1 . . . . . . . . . 0 −1


L−1×L−1

)

(62)
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Figure 23: Analytical predictions of equilibrium points of the continuous system (green line) accompanied by those
obtained from direct numerical integration (blue and red diamonds indicate maximal and minimal values of N1 and
N2). Unstable zone of the SIM is represented in orange line. System is under external excitation with the amplitude of
fj = 0.01 cos(ω3(j − 1)) and the frequency of ν = 0.1895 with zero initial condition. Parameters of the system are
listed in configuration number 3 of Table 1.
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Figure 24: The SIM of the continuous system after projection on its first mode (k = 1), see Eq.58, accompanied by
numerical results. Numerical data are collected by projections of results (obtained from direct numerical integration of
Eq.2) on the first mode. Initial conditions are uj(τ = 0) = 0.13 cos(ω1(j − 1)) with fj = 0. System characteristics
are listed in configuration 2 of Table 1.

Figure 25: Time histories of
√
2/LN2(τ) of the projected discrete system accompanied by those of N2(x = j, τ),

j = 1, . . . , 25 of discrete system. N2(τ) numerical data are collected by projections of results (obtained from of direct
numerical integration of Eq.2) on the first mode. Definition of N2(τ) and N2(τ) are in Eq.27 and Eq.57 respectively.
Initial conditions are uj(τ = 0) = 0.13 cos(ω1(j − 1)) with fj = 0. System characteristics are listed in configuration
2 of Table 1.
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Figure 26: SIM of the continuous system after projection on third mode (k = 3) in green line accompanied by
numerical results of discrete system during repeated bifurcations. Numerical data are collected by projections of
results (obtained from of direct numerical integration of Eq.2) on third mode. External excitation has an amplitude
fj = 0.02 cos(ω3(j − 1)) with frequency ν = 0.1885 and zero initial conditions. System characteristics are listed in
configuration 2 in Table 1.
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Figure 27: Forced response of the cell 1 around the first mode (k = 1). The SIM of the system (green line)
accompanied by numerical results (red line) during repeated bifurcations. Black + symbols present amplitudes of
possible singularities of the system. Unstable zone of the SIM is represented in orange line. System is under external
excitation with the amplitude of fj = 0.02 cos(ω3(j − 1)) and the frequency of ν = 0.1885 with zero initial condition.
System characteristics are listed in configuration 2 of Table 1.

32



Different dynamics of a periodic mass-in-mass nonlinear chain during a single mode excitationA PREPRINT

0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

SIM

Unstable zone

Num. integration

Singular points+

Figure 28: Forced response of the cell 11 around the first mode (k = 1). The SIM of the system (green line)
accompanied by numerical results (red line). Black + symbols present amplitudes of possible singularities of the
system. Unstable zone of the SIM is represented in orange line. System is under external excitation with the amplitude
of fj = 0.02 cos(ω3(j − 1)) and the frequency of ν = 0.1885 with zero initial condition. System characteristics are
listed in configuration 2 of Table 1.

Figure 29: Time histories of
√
2/LN2(τ) of the projected discrete system accompanied by those of N2(x = j, τ),

j = 1, . . . , 25 of discrete system. N2(τ) numerical data are collected by projections of results (obtained from of
direct numerical integration of Eq.2) on the third mode. System is under external excitation with the amplitude of
fj = 0.02 cos(ω3(j − 1)) and the frequency of ν = 0.1885 with zero initial condition. System characteristics are listed
in configuration 2 of Table 1.
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where:

det(



−1 −1 0 . . . . . . 0

0 α −1 0
...

0 −1 α −1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 α −1
−1 . . . . . . 0 −1 α


L−1×L−1

) = (−1) det(BL−2)+

(−1)(−1)L det(



−1 0 0 . . . . . . 0

α −1 0
...

−1 α −1
. . .

...

0
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 0

0 . . . 0 −1 α −1


L−2×L−2

)

= −det(BL−2) + (−1)2L−1 = −det(BL−2)− 1

(63)

and:

det(



−1 α −1 0 . . . 0

0 −1 α −1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . −1
0 . . . . . . 0 −1 α
−1 . . . . . . . . . 0 −1


L−1×L−1

) = −1(−1)L det(BL−2)+

(−1) det(



−1 α −1 0 . . . 0

0 −1 α −1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . −1
...

. . . . . . α
0 . . . . . . . . . 0 −1


L−2×L−2

)

= (−1)L+1 det(BL−2) + (−1)(−1)L−2 = (−1)L+1 det(BL−2) + (−1)L−1

(64)

Finally, by re-injecting in Eq.62 the previous simplified determinants, the following simple expression is obtained:

det(AL) = α.det(BL−1)− 2(det(BL−2) + 1) (65)

Let us now evaluate DL = det(BL). In order to obtain non-trivial solutions of the system, we have to verify
det(AL) = 0. Therefore, Eq.65 leads to a second degree characteristic polynomial and we set the general expression of
the solutions of the constant recursive sequence:

DL = ΓX1
n +ΣX2

n, {Γ,Σ} ∈ C2, n ∈ N (66)

where X1 and X2 are the solutions of the characteristic polynomial.
We have the firsts relations: {

D0 = Γ + Σ = 1
D1 = ΓX1 +ΣX2 = α

(67)

Solving the system up to higher orders shows that X1 and X2 can’t have real expressions. Therefore, X1 and X2 must
be conjugated complexes and we use polar expressions for the two unknowns:{

X1 = ηeiζ

X2 = ηe−iζ
(68)
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with η, ζ ∈ R2. Solving Eq.67 leads to the two expressions:{
Γ = α−ηe−iζ

2i sin(ζ)

Σ = − α−ηeiζ
2i sin(ζ)

(69)

We can now also remark that: {
D0 = Γ + Σ = ρ = 1
D2 = ΓX2

1 +ΣX2
2 = (2α cos(ζ)− 1) = α2 − 1

(70)

The solution of the second relation leads to α = 0 or α = 2 cos(ζ). Since α = 2− λ, we have the expression of the
eigenvalues:

λ = 2(1− cos(ζ)) or λ = 2 (71)
DL reads:

DL = 1
2i sin(ζ)η

L (α2i sin(Lζ)− η2i sin((L− 1)ζ)) = sin((L+1)ζ)
sin(ζ) (72)

We can finally recompose the expression of det(AL):

det(AL) = α sin((L)ζ)
sin(ζ) − 2

(
sin((L−1)ζ)

sin(ζ) + 1
)
= 2(cos(Lζ)− 1) (73)

det(AL)=0 if ζ = 2kπ
L , k = 0, 1, . . . , L− 1.

According to Eq.71, we have L+ 1 equations but we only need L solutions.
The solution λ = 2 can be eliminated as general solution for every chain because it can’t verify the conditions of
periodicity without being linked to the number of cells of the chain (except for the solution λ = 0). However, the
eigenvalue λ = 2 can be solution when k

L = 1
4 =⇒ ζ = π

2 =⇒ λ = 2 which in this case verifies periodicity
conditions. We can conclude that all solutions can be found solving:

λ = 2(1− cos(ζ)) (74)

with ζ = 2kπ
L , k = 0, 1, . . . , L− 1.

Moreover, we can remark that:

cos
(
2kπ
L

)
= cos

(
2(L−k)π

L

)
for k = 0, 1, . . . , L− 1 (75)

Therefore, we only have
⌊
L

2

⌋
+ 1 different eigenvalues, L ∈ N∗. The first eigenvalue is λ = 0, corresponding to the

rigid body dynamic of the chain.
The treatment of ML.X = λ.X leads to the L eigenvectors. We can identify two cases:
-L is uneven, implying that the only eigenvalue associated to only one eigenvector is λ0. Every other eigenvalues have
two associated eigenvectors.
-L is even, implying that 2 eigenvalues λ0 and λ⌊L/2⌋ have both one associated eigenvector. Every other eigenvalues
have 2 associated eigenvectors.
We note P the orthonormal transfer matrix and we adopt the following decomposition:

P = ( P0︸︷︷︸
λ0

,P1,P2︸ ︷︷ ︸
λ1

, ...,P2j−1,P2j︸ ︷︷ ︸
λj

, ..., PL︸︷︷︸
λ⌊L/2⌋ if L is pair

)
(76)

In all cases, we can use for the first eigenvector:

P0 =
√

1
L (1 . . . 1)

T (77)

On the contrary, during the last mode of the chain with an even number of cells, all cells present equal amplitudes while
each cell is out of phase with its neighbors. We can use:

PL =
√

1
L

(
−1 1 . . . (−1)j . . . −1 1

)T (78)

This modal decomposition is caused by the periodicity conditions of the chain. Indeed, the decomposition of the
physical behavior according to each eigenvalue needs two different eigenvectors and this joins the continuous approach:
we showed that the general expression of principal displacement was Ul(x) = Ak cos(ωkx)+Bk sin(ωkx) (see Eq.21).
The determination of Ak and Bk can’t be done until an excitation is applied. Therefore, the general form of expression
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of deformation has to be described using cos(ωkx) and sin(ωkx) components. The same process is happening in the
discrete study. Indeed, for each double eigenvalue λk = ω2

k, the 2 eigenvectors can be assimilated to
√
2/L cos(ωkx)

and
√
2/L sin(ωkx), as shown on Fig.30 and 31. On the first figure, P1 and P2 are represented in red and black

’+’ symbols respectively while
√
2/L sin(ω1x) and

√
2/L cos(ω1x) are plotted in red and black respectively. On

the second figure, P5 and P6 are presented in red and black ’+’ symbols while
√

2/L sin(ω3x) and
√
2/L cos(ω3x)

are plotted in red and black respectively. Eigenvectors are obtained using "eig" function of Matlab® and system
characteristics are configuration 1 in Table 1. Both discrete eigenvectors and continuous eigenfunctions have been
normalized. Modal frequencies obtain from continuous and discrete approach are compared for different sizes of
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0.2

0.3

0.4

0.5

Figure 30: Comparison between eigenvectors of the discrete system at first mode (k = 1), P1 and P2, and components
of the corresponding continuous system (see Eq.52) in the form of sin(ω1x) and cos(ω1x). P1 and P2 are respectively
in red and black ’+’ symbols and normalized;

√
2/L sin(ω1x) and

√
2/L cos(ω1x) are represented in red and black

continuous lines respectively and normalized to be compared. System characteristics are listed in configuration 1 of
Table 1.

chain in Table 2. When the number of cells is high (L = 100 cells for example), there is a good agreement between ωk
defined in the Eq.20 and the corresponding discrete pulsation

√
λk. As expected, when the number of cells decreases,

as well as when the considered harmonic increases, results obtained from discrete and continuous approaches depart.

Table 2: Comparison between discrete and continuous modal values

Approach k L=10 L=20 L=100
1 0.618 0.313 0.0628

Discrete 2 1.176 0.618 0.126
5 2.00 1.414 0.313
1 0.628 0.314 0.0628

Continuous 2 1.257 0.628 0.126
5 3.142 1.571 0.314

The SIM of the discrete chain

We can now work from second equation of Eq.59. U and V and their derivatives have the modal decomposition:{
dnU
dτn (τ) =

∑
j
dnuj

dτn (τ)Pj
dnV
dτn (τ) =

∑
j
dnvj

dτn (τ)Pj
(79)
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Figure 31: Comparison between eigenvectors of the discrete system at third mode (k = 3), P5 and P6, and components
of the corresponding continuous system (see Eq.52) in the form of sin(ω3x) and cos(ω3x). P5 and P6 are respectively
in red and black ’+’ symbols and normalized;

√
2/L sin(ω3x) and

√
2/L cos(ω3x) are represented in red and black

continuous lines respectively and normalized to be compared. System characteristics are listed of configuration 1 in
Table 1.

with n ∈ N. In our case, we only consider one jth eigenvalue:
dnU
dτn (τ) =

dnu2j−1

dτn (τ)P2j−1 +
dnu2j

dτn (τ)P2j

dnV
dτn (τ) =

dnv2j−1

dτn (τ)P2j−1 +
dnv2j

dτn (τ)P2j

(80)

We project the second equation of Eq.59 on the 2 eigenvectors associated to the jth eigenvalue:
PT2j−1.

(
d2U
dτ2 (τ)− d2V

dτ2 (τ)− ΛV3(τ)− χ2
dV
dτ (τ)

)
= 0

PT2j .
(
d2U
dτ2 (τ)− d2V

dτ2 (τ)− ΛV3(τ)− dV
dτ (τ)

)
= 0

(81)

We can now introduce new complex variables of Manevitch (21) defined as:

ϕ2j−1(τ)e
iντ =

du2j−1

dτ
(τ) + iνu2j−1(τ)

ϕ2j(τ)e
iντ =

du2j
dτ

(τ) + iνu2j(τ)

ψ2j−1(τ)e
iντ =

dv2j−1

dτ
(τ) + iνv2j−1(τ)

ψ2j(τ)e
iντ =

dv2j
dτ

(τ) + iνv2j(τ)

(82)

with ν =
√
λj .

After keeping the first harmonic of the system, the complex variables are expressed in polar domain as:

ϕ2j−1(τ) = N2j−1e
iξ2j−1

ϕ2j(τ) = N2je
iξ2j

ψ2j−1(τ) = M2j−1e
iδ2j−1

ψ2j(τ) = M2je
iδ2j

(83)
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The methodology of the study is the same as in Sec.3.

Application to a simple case

We consider a chain with parameters reported in configuration 1 of Table 1. We suppose that initial deformation of the
chain is defined as
U(τ = 0) = u1(τ = 0)P1 and that there is no other external excitation. Therefore, U and V are expressed only using
P1: we are able to set u2(τ) = 0 and v2(τ) = 0. We use the function "Eig" from Mathematica® in order to obtain
exact eigenvalues and eigenvectors and we normalize the vectors of the modal base. So, we are here investigating the
following case: 

L = 10
U(τ) = u1(τ)P1

V(τ) = v1(τ)P1

λ1 = 1
2 (3−

√
5) first non-zero eigenvalue

(84)

We obtain the following relation by injecting Eq.84 in Eq.81 and choosing j = 1:

d2u1

dτ2 (τ)− d2v1

dτ2 (τ)− 3Λ
20 v

3
1(τ)− χ2

dv1

dτ (τ) = 0 (85)

Noticing that we’ve set L = 10, we can see that we obtain exactly the same equation as Eq.53 during projection of
the continuous system. The rest of the study will lead to the same equation of the SIM. Both continuous and discrete
approaches provide similar results.
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