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The use of cephalopod beaks in ecological and population dynamics studies has

allowedmajor advances of our knowledge on the role of cephalopods inmarine

ecosystems in the last 60 years. Since the 1960’s, with the pioneering research

by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or
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mandibles) have been described to species level and their measurements have

been shown to be related to cephalopod body size and mass, which permitted

important information to be obtained on numerous biological and ecological

aspects of cephalopods in marine ecosystems. In the last decade, a range of

new techniques has been applied to cephalopod beaks, permitting new kinds of

insight into cephalopod biology and ecology. The workshop on cephalopod

beaks of the Cephalopod International Advisory Council Conference (Sesimbra,

Portugal) in 2022 aimed to review the most recent scientific developments in

this field and to identify future challenges, particularly in relation to taxonomy,

age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes,

trace elements) and physical (i.e., structural) analyses. In terms of taxonomy,

new techniques (e.g., 3D geometric morphometrics) for identifying

cephalopods from their beaks are being developed with promising results,

although the need for experts and reference collections of cephalopod beaks

will continue. The use of beak microstructure for age and growth studies has

been validated. Stable isotope analyses on beaks have proven to be an excellent

technique to get valuable information on the ecology of cephalopods (namely

habitat and trophic position). Trace element analyses is also possible using

beaks, where concentrations are significantly lower than in other tissues (e.g.,

muscle, digestive gland, gills). Extracting DNA from beaks was only possible in

one study so far. Protein analyses can also be made using cephalopod beaks.

Future challenges in research using cephalopod beaks are also discussed.

KEYWORDS

cephalopod ecology, beak taxonomy/composition/morphology/microstructure/
paleontology, cephalopod trophic dynamics, cephalopod population dynamics,
cephalopod ecotoxicology

Introduction

The important role of cephalopods (Mollusca: Cephalopoda)

in many marine ecosystems has been widely acknowledged

(Boyle and Rodhouse, 2005). They are commercially exploited

around the World (Rodhouse et al., 2014; Arkhipkin et al., 2015;

Doubleday et al., 2016; Arkhipkin et al., 2021; Sauer et al., 2021),

are predators on numerous prey and are preyed by predators

(Santos et al., 2001; Boyle and Rodhouse, 2005; Bello et al., 2011;

Hoving et al., 2014; Xavier and Cherel, 2021), whose predator-

prey interactions has been helping the development of a

conservation framework for some of these predators (Luna

et al., 2021). As cephalopod flesh gets quickly digested in

predator stomachs, cephalopod beaks (synonym of jaws and

mandibles) can resist digestion for as long as several months

(Xavier et al., 2005; Barrett et al., 2007). Malcolm Clarke

revolutionised the way cephalopod beaks could be used in

ecological research, by providing evidence that many of them

have unique shapes at species level (Clarke, 1962; Clarke, 1980;

Clarke, 1986). Clarke and colleagues also developed the currently

used terminology for different parts of the upper and lower beaks

(Clarke, 1986) (Figure 1). Such initial efforts helped many other

colleagues to develop beak identification guides (Imber, 1978;

Pérez-Gándaras, 1983; Wolff, 1984; Kubodera and Furuhashi,

1987; Lu and Ickeringill, 2002; Xavier and Cherel, 2021; Pedà

et al., 2022) and supported studies to understand the importance

of cephalopods in the diet of different predator taxa (Clarke,

1996; Croxall and Prince, 1996; Klages, 1996; Smale, 1996; Cherel

and Klages, 1998; Ménard et al., 2013; Abreu et al., 2019;

Romanov et al., 2020; Queirós et al., 2021b; Cherel, 2021;

Guímaro et al., 2021). This is particularly important as much

information cannot be obtained by other means (e.g., scientific

nets are too slow to catch faster cephalopods and catch far fewer

species and narrower range of sampled sizes) (Clarke, 1977;

Santos et al., 2001; Staudinger et al., 2013; Hoving et al., 2014;

Cherel, 2020). Cephalopod beaks can also provide considerable

information on a wide range of physiological, biological and

ecological traits, including cephalopod availability, consumption

of cephalopods, migrations, competition between cephalopod

predators, levels of cephalopod scavenging by predators,

distribution, age, growth, cohorts, life-events, stress, thermal

changes, reproduction, feeding ecology, behavior, spawning

areas, post-spawning mortality and sexual dimorphism [e.g.,

see review in Xavier et al. (2016) and Arkhipkin et al. (2018);

Table 1]. More recently, new emergent techniques for work on

beaks (e.g., stable isotope and trace elements analyses, geometric

morphometrics and microstructure analysis) have provided

further information on habitat and trophic position,

composition, contamination, response of cephalopods to

climate variability at individual and/or population levels,
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embryonic morphogenesis, paralarval ontogeny, ecology and age

estimation (Cherel and Hobson, 2005; Perales-Raya et al., 2014b;

Franco-Santos and Vidal, 2014; Xavier et al., 2016; Perales-Raya

et al., 2018; Queirós et al., 2018; Golikov et al., 2019a; Golikov

et al., 2019b; Northern et al., 2019; Abreu et al., 2020; Queirós

et al., 2020a; Armelloni et al., 2020; Queirós et al., 2020b; Franco-

Santos and Vidal, 2020; Golikov et al., 2020; Perales-Raya et al.,

2020; Fang et al., 2021b; Lishchenko and Jones, 2021).

Consequently, the importance of cephalopod beaks in

ecological studies continues to attract attention and

recognition, with various workshops being organised (Clarke,

1986; Xavier et al., 2007a; Jackson et al., 2007; Xavier et al., 2015).

A workshop on cephalopod hard structures including beaks was

held in Florida (United States), prior to the 2018 Cephalopod

International Advisory Council (CIAC) Conference, results of

which should be published in the near future. Most recently, a

workshop focused on cephalopod beaks was held in Sesimbra

(Portugal) at the 2022 CIAC Conference (Figures A1, A2) in

order to review the latest scientific advances on the use of

cephalopod beaks in marine ecological studies and discuss

future challenges in this and other related research fields. The

individual sections below concern key topics in cephalopod

research based on the beak analysis discussed during this

2022 CIAC workshop.

Advances in taxonomy, beak
morphology, microstructure and
paleontology

Taxonomy and beak morphology

Taxonomic identification is a critical issue of every

investigation using accumulated cephalopod beaks from food

samples (Table 1). Erroneous identifications can propagate

along the studies through the years spreading and

proliferating information, not only on predator-prey

relationships but also on every subsequent analysis on beaks,

regardless the nature of the analyses (e.g., species occurrence/

distribution, stable isotopes, trace elements, growth

increments) (Cherel, 2020, 2021; Xavier and Cherel, 2021).

Substantial efforts have been directed to facilitate the

identification of these hard structures through drawings,

photographs (from different angles), 3-D videos,

measurements, and by materials being accessible through

regular publications or on the internet [e.g., Tree of Life web

project–http://tolweb.org/articles/?article_id=5274 (Young,

2009); https://www.kahaku.go.jp/research/db/zoology/Beak-E/

intro.htm (Kubodera et al., 2005)] (Clarke, 1986; Cherel, 2020;

Xavier and Cherel, 2021). Nevertheless, the need for more

research experts (e.g., boost/support a new generation of

early career scientists in this field) on cephalopod beaks, as

well as updated collections and more comprehensive guides will

continue to be a necessity in the future (Xavier et al., 2007a;

Xavier et al., 2015; Cherel, 2020; Xavier and Cherel, 2021).

Several methods applicable to cephalopod beak shape

analysis were developed to date (Fang et al., 2018;

Lishchenko and Jones, 2021). Nowadays, the group of

methods which can be called “traditional morphometrics”

(measurements of the linear distances, or indices, based on

these measurements), is criticised for leading to a significant

loss of information due to the complexity of studied

structures and the multicollinearity between

measurements (Adams et al., 2004; Volpedo and Vaz-dos-

Santos, 2015). To some extent, this criticism is justified,

although these analyses allowed the development of the

first steps of beak shape analysis relevant for identification

(Mangold and Fioroni, 1966; Wolff, 1982b; Wolff, 1984;

Ogden et al., 1998; Fang et al., 2018). Moreover, they are

the least laborious among morphometric methods and the

richest in terms of available data for comparison.

An alternative approach is represented by two groups of

geometric morphometric methods. The first group is based on

obtaining Cartesian coordinates of biologically definable points, also

called landmarks (Bookstein, 1991; Cadrin, 2014). In addition,

sliding semi-landmarks, which are defined by equidistant points

between two landmarks are also used to represent curves and

surfaces of structures (Bookstein, 1997; Gunz et al., 2005; Gunz

and Mitteroecker, 2013). These landmarks and semi-landmarks

FIGURE 1
Examples of profiles of lower (on the left) and upper (on the
right) beaks of cephalopods and the principal terms used to
characterize decapod beaks (Xavier and Cherel (2021) following
Clarke (1986)).
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TABLE 1 A non-exhaustive overview of the use of cephalopod beaks in ecological studies and related research.

Research field Taxa References

Taxonomy (including beaks ID) and
biogeography

Cephalopoda Clarke (1962), Akimushkin (1965), Mangold and Fioroni (1966), Iverson and Pinkas (1971), Pinkas et al.
(1971), Hotta (1973), Imber (1978), Wolff and Wormuth (1979), Clarke (1980), Wolff (1982a), Wolff
(1982b), Pérez-Gándaras (1983), Wolff (1984), Clarke (1986), Kubodera and Furuhashi (1987), Lu and
Ickeringill (2002), Franco-Santos and Vidal (2014), Fang et al. (2018), Cherel (2020), Acuña-Perales et al.
(2020), Pacheco-Ovando et al. (2021), Xavier and Cherel (2021)

Distribution Cephalopoda Clarke (1962), Akimushkin (1965), Mangold and Fioroni (1966), Iverson and Pinkas (1971), Pinkas et al.
(1971), Hotta (1973), Clarke (1980), Pérez-Gándaras (1983), Clarke (1986), Kubodera and Furuhashi (1987),
Lu and Ickeringill (2002), Xavier et al. (2002b), Xavier et al. (2003a), Cherel et al. (2004), Xavier et al. (2005),
Xavier et al. (2006), Xavier and Croxall (2007), Cherel et al. (2009b), Cherel et al. (2011), Xavier et al. (2014),
Seco et al. (2016), Pereira et al. (2017), Queirós et al. (2019), Cherel (2020), Guímaro et al. (2021), Queirós
et al. (2021a), Xavier and Cherel (2021)

Squid Wolff and Wormuth (1979), Wolff (1982a), Wolff (1982b), Wolff (1984), Xavier et al. (2002a), Xavier and
Croxall (2007), Cherel et al. (2008), Xavier et al. (2013), Guerreiro et al. (2015), Liu et al. (2015), Queirós et al.
(2018), Abreu et al. (2019), Abreu et al. (2020), Cherel (2020), Woods et al. (2022)

Octopods Queirós et al. (2020b)

Bobtail squid Golikov et al. (2020)

Vampyroteuthis Golikov et al. (2019a)

Predators vs nets catch composition Cephalopoda Clarke (1977), Cherel (2020)

Allometric equations Cephalopoda Clarke (1962), Clarke (1980), Clarke (1986), Roeleveld (2000), Lu and Ickeringill (2002), Açik and Salman
(2010), Xavier and Cherel (2021)

Squid Wolff (1982a), Wolff (1982b), Wolff (1984), Ivanovic and Brunetti (1997), Golikov et al. (2018)

Octopods Smale et al. (1993), Golikov et al. (2022)

Vampyroteuthis Golikov et al. (2019a)

Top predators: in general Cephalopoda Clarke (1962), Clarke (1980), Clarke (1986), Santos et al. (2001), Clarke et al. (2002), Ménard et al. (2013),
Staudinger et al. (2013), Cherel (2020), Xavier and Cherel (2021)

Squid Woods et al. (2022)

Top predators: marine mammals Cephalopoda Akimushkin (1955), Clarke (1962), Akimushkin (1965), Clarke (1980), Clarke (1986), Klages (1996), Santos
et al. (2001), Pedà et al. (2015), Cherel (2021)

Squid Cherel et al. (2008), Abreu et al. (2019)

Top predators: seabirds Cephalopoda Pinkas et al. (1971), Furness et al. (1984), Croxall and Prince 1996, Cherel and Klages 1998, Xavier et al.
(2003a), Xavier et al. (2005), Xavier et al. (2006), Xavier et al. (2007b), Xavier et al. (2014), Seco et al. (2016),
Queirós et al. (2019), Guímaro et al. (2021), Xavier and Cherel (2021)

Squid Cherel and Weimerskirch (1999), Xavier et al. (2002a), Xavier and Croxall (2007), Xavier et al. (2013),
Guerreiro et al. (2015), Cherel et al. (2017)

Top predators: sharks and other fishes Cephalopoda Pinkas et al. (1971), Clarke and Stevens (1974), Smale (1996), Xavier et al. (2002b), Peristeraki et al. (2005),
Lansdell and Young (2007), Romeo et al. (2011), Kousteni et al. (2018), Ménard et al. (2013), Romanov et al.
(2020), Queirós et al. (2021a)

Global cephalopod biomass estimation Cephalopoda Clarke (1977), Clarke et al. (2002)

Community trophic structure Cephalopoda Cherel and Hobson (2005), Jackson et al. (2007), Cherel et al. (2009b), Cherel et al. (2011), Guímaro et al.
(2021), Queirós et al. (2021a), Queirós et al. (2021b)

Squid Guerreiro et al. (2015), Cherel et al. (2019), Abreu et al. (2020), Woods et al. (2022)

Octopods Matias et al. (2019), Fang et al. (2021a)

Bobtail squid Golikov et al. (2020)

(Continued on following page)
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may be two- or three-dimensional, and generally are discrete and

homologous (Zelditch et al., 2004). The coordinates obtained are

modified using Procrustes analysis to avoid impact of the position

and size of the studied object.

The second group of methods includes those methods which

describe the structure’s outline as a whole. The most applied

methods in this group are Fourier transform (where outlines are

expressed as a function of equally spaced radii or of the tangent

TABLE 1 (Continued) A non-exhaustive overview of the use of cephalopod beaks in ecological studies and related research.

Research field Taxa References

Long-term changes in community structure Cephalopoda Guímaro et al. (2021)
Squid Abreu et al. (2020)

Trophic ecology of single species Squid Castro and Hernández-Garcia (1995), Ruiz-Cooley et al. (2006), Guerra et al. (2010), Fang et al. (2016a),
Gong et al. (2018), Liu et al. (2018), Queirós et al. (2018), Trasviña-Carrillo et al. (2018), Hu et al. (2019), Liu
et al. (2019a), Liu et al. (2019b), Queirós et al. (2019), Gong et al. (2020), Wang et al. (2022)

Octopods Franco-Santos et al. (2014), Queirós et al. (2020b)

Bobtail squid Golikov et al. (2019b)

Vampyroteuthis Golikov et al. (2019a)

Marine trace metal pollution Squid Xavier et al. (2016), Northern et al. (2019), Queirós et al. (2020a)

Octopods Matias et al. (2020)

Physical and chemical properties of beak
material

Cephalopoda Dilly and Nixon (1976), Uyeno and Kier (2005)

Squid Miserez et al. (2007), Miserez et al. (2008), Miserez et al. (2010), Queirós et al. (2018)

Octopods Matias et al. (2019)

Migrations Squid Cherel and Weimerskirch (1999), Guerra et al. (2010), Liu et al. (2019a), Liu et al. (2019b), Queirós et al.
(2019), Queirós et al. (2021a)

Inter- and intraspecific competition Squid Gong et al. (2018), Gong et al. (2020)

Octopods Matias et al. (2019), Fang et al. (2021a)

Bobtail squid Golikov et al. (2020)

Age and growth Cephalopoda Bello (1991), Clarke (1993), Arkhipkin et al. (2018)

Squid Clarke (1965), Jarre et al. (1991), Liu et al. (2015), Fang et al. (2016a), Hu et al. (2016), Liu et al. (2017), Jin
et al. (2019), Perales-Raya et al. (2020)

Octopods Perales-Raya and Hernández-González (1998), Hernández-López et al. (2001), Perales-Raya et al. (2010),
Rodríguez-Domínguez et al. (2013), Perales-Raya et al. (2014a), Franco-Santos et al. (2016), Garrido et al.
(2016), Perales-Raya et al. (2018), García-Fernández et al. (2019), Schwarz (2019), Armelloni et al. (2020),
Schwarz et al. (2020)

Vampyroteuthis Schwarz et al. (2020)

Stock assessment Squid Fang et al. (2016a)

Population dynamics Squid Liu et al. (2015), Hu et al. (2016), Fang et al. (2021b)

Reproduction Squid Hernández-Garcia et al. (1998b), Cherel and Weimerskirch (1999), Xavier and Croxall (2007)

Sexual dimorphism Squid Jackson (1995), Bolstad (2006), Cherel et al. (2009a)

Fisheries management Cephalopoda Xavier et al. (2007b)

Paleontology Cephalopoda Clarke and Maddock (1988)
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angle to the outline or of the curvilinear abscissa) and wavelet

transform (with outlines expressed by a set of functions

representing the dilations and translations of a single unique

function). Application of both approaches to analyse the shape of

cephalopod beaks have benefits and limitations (Lishchenko and

Jones, 2021). Specifically, landmark-based methods allow

selecting the points of interest which presumably have some

biological or taxonomic meaning (e.g., rostral tip and wing fold,

whose position reflects the length and curvature of the rostrum).

On another hand, landmark selection inevitably leads to the loss

of information, which may be crucial if the points of interest were

chosen incorrectly. Additionally, process of landmark selection is

particularly laborious, time consuming and demands a certain

level of qualification of the researcher. The outline-based

methods of the shape analysis do not have these drawbacks

and allow detailed description of a beak’s contour on the image.

However, the latter methods are associated with a very specific issue,

which is called a “pixel noise” by some authors (Haines and

Crampton, 2000; Harbitz and Albert, 2015) (i.e., “pixel noise”

stands for the excessive and meaningless set of information

which hampers the analysis of the structure’s shape).

Despite these limitations, the potential of these approaches is

substantial, supported by the results of recent studies. Most

commonly, geometric morphometrics methods were successfully

applied for taxonomic classification, species identification or stocks

(Neige and Dommergues, 2002; Crespi-Abril et al., 2010; Tanabe

et al., 2015b; Fang et al., 2017; Jin et al., 2017; Fang et al., 2018;

Pacheco-Ovando et al., 2021; Díaz-Santana-Iturrios et al., 2022). At

the beginning of the millennium, the application of these

approaches to a wide diversity of species was scarce (Neige and

Dommergues, 2002; Tanabe et al., 2015b) and provided limited

resolution of identification. Their findings suggested that the 2-D

lateral shapes of beaks (lateral wall, hood and wing contours) are

clustered at high taxonomic levels (orders, suborders) and that the

upper and lower parts of the beak carry a slightly different

information. By showing that to be true, quantitative analysis of

beak shape might assist identification at high taxonomic levels (at

least, to the level of family). However, in the last decade, geometric

morphometric methods began to flourish. Different authors applied

either 2D landmark-based methods (Fang et al., 2017; Fang et al.,

2018; Pacheco-Ovando et al., 2021; Díaz-Santana-Iturrios et al.,

2022) or outline-based methods (Jin et al., 2017). Both approaches

showed high level of identification accuracy, up to 100% in

classification of the genera (Pacheco-Ovando et al., 2021), up to

93% in species identification (Fang et al., 2018), and up to 70%

correct classifications of stock units (Fang et al., 2017). These results

point to the potential to engineer automated identification

programs.

Several studies revealed the potential of beak shape analysis

in ecological studies (Fernández-Álvarez et al., 2020; Pacheco-

Ovando et al., 2021; Roscian et al., 2022). Specifically, Fernández-

Álvarez et al. (2020) studied impacts of developmental

malformations of the buccal mass on the trophic position of

Eledone cirrhosa and found that the habitat and the trophic

position were not significantly affected by the malformations.

Other authors found significant differences in the beak shapes of

pelagic and benthic species in relation to their trophic levels

(Roscian et al., 2022), between species living in coastal and

oceanic habitats (Pacheco-Ovando et al., 2021) and between

species/populations living in different feeding habitats

(Pacheco-Ovando et al., 2021). New phylogenomic techniques

applied to cephalopods (Anderson and Lindgren, 2021; Sanchez

et al., 2021; Fernández-Álvarez et al., 2022) may help to assess

which morphological characters of the beaks are determined by

phylogeny and which are explained by other drivers.

Geometric morphometric studies of cephalopod beaks

have the greatest potential in the field of species

identification, as part of both the routine monitoring

process and as high-end studies. Application of outline-

based methods allows it even without additional efforts. At

present, an automated similar system has been used for the

identification of fish using otolith contours (Lombarte et al.,

2006). This approach shows that this system may allow

accurate identification of animals even when there is only

very basic information available about the subject of research

and it is probably the least time-consuming method of them

all. Development of such a system is a long-term process that

needs close validation checks, but even at the early stage of

development, it could substantially expand our knowledge on

cephalopods.

Beak morphological changes during the
early life

Beaks of embryos and paralarvae are quite distinct from those

of juveniles and adults (Franco-Santos et al., 2014; Franco-Santos

and Vidal, 2014; Franco-Santos et al., 2016; Armelloni et al.,

2020; Franco-Santos and Vidal, 2020). The beaks of hatchlings

and smaller squid and octopus paralarvae studied so far, are very

fragile and slightly pigmented, being nearly transparent. Growth

rings might or not be clearly visible in the lateral wall of both the

upper and lower beaks (Franco-Santos and Vidal, 2014), and they

might be visible in the anterior pigmented region of upper beaks

that corresponds to the rostrum (Perales-Raya et al., 2014b;

Franco-Santos et al., 2016; Arkhipkin et al., 2018; Perales-

Raya et al., 2018). Paralarval beaks in several cephalopod

families (E.g., Family Ommastrephidae, family Octopodidae)

have teeth that might be present in both beaks or only in the

lower one (Boletzky, 1971; Wakabayashi et al., 2002; Uchikawa

et al., 2009; Franco-Santos et al., 2014; Franco-Santos and Vidal,

2014; Franco-Santos and Vidal, 2020). In the upper beak of many

species, the rostrum has not yet protruded, and has a typical

sagittal slit between the two-halves that could be slightly or very

pronounced (Figure 2). In addition, conspicuous features of the

beaks, such as the hood and lateral walls might not be developed
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yet in paralarvae of some families, such as Ommastrephidae

(Franco-Santos and Vidal, 2020), giving the beak amore rounded

shape. A study with late embryonic hatching stages of Octopus

vulgaris embryos has shown that the upper beak is rudimentary

and lacks the hood, but the teeth are already visible and these

stages represent the beginning of the pigmentation process. The

hood and shoulder develop along with the exposure of the

dentition on the rostrum just prior to hatching (Armelloni

et al., 2020), suggesting that beak development is intensified

afterwards during the paralarval phase (Franco-Santos and Vidal,

2014; Franco-Santos and Vidal, 2020).

The beak morphology of smaller paralarvae suggests a weak

bite force. Thus, at this stage the beak has not yet assumed the

functions of biting flesh and masticating the hard exoskeleton of

crustaceans (Franco-Santos and Vidal, 2014). Indeed, beaks of

smaller paralarvae seem to be adapted for a specialised feeding

mode that involves external pre-digestion and suction of body

fluids of crustacean prey (Franco-Santos et al., 2014; Franco-

Santos and Vidal, 2014; Franco-Santos and Vidal, 2020). This is

supported by observations of the feeding behaviour of O. vulgaris

and loliginid squid paralarvae (Hernández-García et al., 2000;

Franco-Santos and Vidal, 2014).

As paralarvae grow, the teeth are eroded and disappear, and

the hood and lateral walls grow rapidly as they are important sites

for buccal musculature attachment (Uyeno and Kier, 2007). The

sagittal slit progressively closes and gives way to the rostrum. The

pigmented area increases through the deposition of sclerotized

layers (i.e., not chitin during the darkening process), particularly

in the rostrum, which protrudes very fast in both beaks (Franco-

Santos and Vidal, 2014; Franco-Santos and Vidal, 2020). Beak

darkening is a continuous process, through which beaks become

harder and more robust (Hernández-García et al., 1998a, b;

Miserez et al., 2007). Fully pigmented beaks were considered

to be “mature beaks” by Clarke (1986).

These studies have shown that the underdeveloped beaks of

paralarvae are rapidly transformed, giving way to the prominent

structures present in juvenile and adult beaks. Such studies have

provided the foundation for inferences about rostrum

functionality and its relationship with feeding strategy and prey

selection during the first stages of the life cycle, about which little is

known (Franco-Santos and Vidal, 2014; Nande et al., 2017; Vidal

and Salvador, 2019; Franco-Santos and Vidal, 2020). In addition,

beaks of O. vulgaris paralarvae have been used to validate daily

growth increments in the early stages, for comparison of wild and

cultured specimens to understand massive mortalities previous to

the juvenile phase (Garrido et al., 2016; García-Fernández et al.,

2019) and to solidify our understanding of the significant influence

of temperature on increment deposition (Perales-Raya et al., 2018).

The accuracy of age estimation inferred from growth marks in the

upper beak rostrum has been also confirmed in late-stage embryos

(Armelloni et al., 2020). In addition, it was suggested that these

growth marks might be used as biomarkers for stress during

rearing of O. vulgaris paralarvae (Franco-Santos et al., 2016).

Microstructure: Age, growth and record of
life extreme events

Although statoliths are the most frequently used material for

age determination in cephalopods, it has been suggested that

beaks could provide additional/complementary data, especially

when it is impossible to obtain access to age data from statoliths

(Liu et al., 2014). This is the case for octopods, which lack visible

increments in the microstructure of their statoliths (Clarke,

1978). In addition, statoliths of adult cephalopods need to be

ground on both sides, which is time-consuming and labour-

intensive, whereas beaks do not need to be ground on both sides

(Arkhipkin et al., 2018). Beaks are present throughout the life

cycle of all extant cephalopod species, and can be easily extracted

and preserved (Clarke, 1986). Beak growth process takes place

along the posterior border, where the most recent chitinized and

hydrated material is deposited, so that the oldest and most

pigmented material is found in the anterior tip (Miserez et al.,

2008; Perales-Raya et al., 2014a). Moreover, growth increments

have been observed and validated along several parts of

cephalopod beaks [e.g., lateral wall surfaces, rostrum sagittal

sections (Perales-Raya et al., 2010)]. Perales-Raya et al. (2010)

recommended counting growth increments in the lateral wall

surface of beaks of Octopus vulgaris as fewer increments were

detected in rostrum sagittal sections, probably due to erosion of

the rostral tip when the animal is feeding. In some cephalopods

(including O. vulgaris) these increments have been validated as

being deposited daily (see below for further discussion). Thus,

counts of growth increments on these structures can potentially

provide absolute age estimates and growth data in any

ontogenetic phase (Figure 3). Comparison with other

FIGURE 2
Close-up of a scanning electron microscope image
indicating (lines) the teeth and slit in the lower beak (LJ) and the
rostral tip in the upper beak (UJ) of an Illex argentinus paralarva of
4.0 mm ML. Scale bar 10 μm ((Franco-Santos and Vidal,
2020); copyright permission obtained).
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TABLE 2 Detailed information on cephalopod species that have been attempted using beak increment analysis.

Species Beak part Validated Study

Octopoda and Vampyromorpha

Octopus vulgaris Rostrum sagittal section of upper beak No Perales-Raya and
Hernández-González, (1998)

Lateral wall of upper beak Yes (paralarvae) Hernández-López et al. (2001)

Rostrum of upper beak Partially (5 specimens
marked)

Oosthuizen, (2003)

Rostrum sagittal section of upper and
lower beak; lateral wall of upper beak

No Perales-Raya et al. (2010)

Lateral wall of upper beak Yes Canali et al. (2011)

Lateral wall of upper beak No Castanhari and Tomás, (2012)

Lateral wall of upper beak No Cuccu et al. (2013)

Lateral wall and rostrum sagittal section
of upper beak

No Perales-Raya et al. (2014b)

Lateral wall and rostrum sagittal section
of upper beak

Yes Perales-Raya et al. (2014a)

Octopus maya Rostrum sagittal section of upper beak Yes Bárcenas et al. (2014)

Lateral wall of upper beak Yes Rodríguez-Domínguez et al.
(2013)

Octopus huttoni Lateral wall of upper beak No Donlon et al. (2019)

Pareledone aequipapillae, Pareledone charcoti, Megaleledone
setebos, Muusoctopus rigbyae, Adelieledone polymorpha,
Pareledone aurata, Pareledone felix, Pareledone turqueti

Lateral wall of upper beak No Schwarz et al. (2019)

Japetella diaphana, Vampyroteuthis infernalis Lateral wall of upper beak No Schwarz et al. (2020)

Cuttlefish

Sepia apama Lateral wall of upper beak, rostrum of
upper beak

No Hall, (2002)

Squid

Illex argentinus Lateral wall of upper beak Yes (paralarvae) Sakai et al. (2007)

Rostrum sagittal section of upper beak No (cross-verification
with statoliths)

Liu et al. (2015)

Ommastrephes caroli Lateral wall of upper beak Yes (paralarvae) Sakai et al. (2007)

Rostrum sagittal section of upper beak No (cross-verification
with statoliths)

Liu et al. (2015)

Dosidicus gigas Lateral wall of upper beak Yes (paralarvae) Sakai et al. (2007)

Rostrum sagittal section of upper beak No (cross-verification
with statoliths)

Liu et al. (2015)

Sthenoteuthis oualaniensis Lateral wall of upper beak Yes (paralarvae) Sakai et al. (2007)

Rostrum sagittal section of upper beak No (cross-verification
with statoliths)

Liu et al. (2015)

(Continued on following page)
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structures in which deposition of growth increments is thought

to be daily, as it has been validated for statoliths in several species

of squid (E.g., Illex illecebrosus, Loliolus noctiluca, Loligo

chinensis, Loligo vulgaris reynaudii) and cuttlefish (E.g., Sepia

officinalis) (Hurley et al., 1985; Jackson, 1990; Lipinski et al.,

1998; Bettencourt and Guerra, 2001), can be used to infer the

periodicity of increment deposition in the beaks of newly studied

species or when validation experiments are not feasible.

Nevertheless, validation experiments involving mark-recapture

or captive rearing of known-age or chemically-marked

specimens are needed to ensure absolute age determination in

the species (Campana, 2001). Even then, and considering that a

circadian rhythm has been proved in many species (Cobb et al.,

1995; Meisel et al., 2003), the fact that growth increments are

shown to be deposited daily does not prove that this will always

be the case to all cephalopod species/populations as increment

deposition may depend on various factors (e.g., food availability,

water temperature) (Bettencourt and Guerra, 2000; Zumholz

et al., 2006; Canali et al., 2011).

Since growth increments in beaks were first reported in the

1960s for the squid Moroteuthopsis longimana (misidentified as

Moroteuthis ingens by Clarke (Clarke, 1965; Cherel, 2020), many

attempts have been made to use these structures to estimate

cephalopod age (Tables 1, 2). Indeed, the growth increments in

cephalopod beaks, initially observed by Clarke (1965), in the

surface of lateral walls did not show a suitable sequence of

increments to estimate the age in the species examined. The

use of beak microstructure for age estimation was re-assessed in

the 1990’s in octopuses (Perales-Raya and Hernández-González,

1998), due to the absence of evident increments in their statoliths.

Perales-Raya and Hernández-González (1998) observed a

sequence of thin increments in sagittal sections of the rostrum

of O. vulgaris beaks, and suggested that their deposition should

be related to an individual’s age. Successful analysis of lateral wall

surfaces of O. vulgaris beaks was then performed by Hernández-

López et al. (2001) and daily deposition was confirmed in

paralarvae. Then, both techniques were compared and

improved by Perales-Raya et al. (2010). Validation studies

TABLE 2 (Continued) Detailed information on cephalopod species that have been attempted using beak increment analysis.

Species Beak part Validated Study

Todarodes pacificus Lateral wall of upper beak Yes (paralarvae) Sakai et al. (2007)

Architeuthis dux Rostrum sagittal section of lower beak No Perales-Raya et al. (2020)

Uroteuthis chinensis Rostrum sagittal section of upper beak No Jin et al. (2019)

Uroteuthis edulis Rostrum sagittal section of upper beak No Lin et al. (2019)

Histioteuthis bonnellii Lateral wall of upper beak No Mereu et al. (2011)

FIGURE 3
Lateral view of the upper beak inOctopus vulgaris (A) Sagittal section showing the inner lateral wall surface (LWS) bearing increments (lines). (B)
Rostrum sagittal section magnified and showing the daily increments. From Perales-Raya et al. (2014a); copyright permission obtained. Bar:
approx. 2 mm.
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were subsequently performed to confirm daily deposition also in

octopuses (E.g., Octopus vulgaris, Octopus maya) (Canali et al.,

2011; Rodríguez-Domínguez et al., 2013; Bárcenas et al., 2014).

Finally, daily deposition was validated in the full ontogenetic

range forO. vulgaris on both the rostrum sagittal sections and the

lateral wall surfaces by Perales-Raya et al. (2014a). These authors

used the recording of specific events in beaks of O. vulgaris taken

into captivity (e.g., capture, temperature changes) as dated marks

to validate the temporal deposition of increments. Consequently,

the analysis of beaks as life event recorders has been applied in

wild populations to understand the effects of environmental

variations, biological events, stress of capture (Perales-Raya

et al., 2014b), and to improve the welfare of early stages in

reared populations (Franco-Santos et al., 2016).

Since the daily deposition was validated in O. vulgaris

(Figure 4), the beak microstructure has been used in age and

growth studies of several species of squid, cuttlefish and

octopods, providing key information on their life history and

population dynamics (Cuccu et al., 2013; Fang et al., 2016a; Liu

et al., 2017; Batista et al., 2021). Validation studies have been

performed in species such as Sepia officinalis (Lishchenko,

unpublished data) and Octopus insularis, based on the growth

increments in the rostrum sagittal sections or lateral wall surface

of the beak (see references in Table 2).

In relation to using beaks for age determination in

cephalopods, it was found that the tip erosion during the

feeding process may bias increment counts in the anterior

region of the beak but counting the oldest increments in the

dorsal area of the section prevents age underestimation

(Arkhipkin et al., 2018). A simple method has been recently

developed to quantify the tip erosion using the number of

increments in the dorsal non-eroded region and the width of

increment of the central reading region (Perales-Raya et al.,

2020). Moreover, the beak microstructure of emblematic deep-

sea species such as the giant squid Architeuthis dux (Perales-Raya

et al., 2020) (Figure 5) provided age data and amaximum lifespan

estimation of around 3 years, based on rostrum sagittal sections

from the lower beaks. The same technique was used in the beaks

of the warty squid M. longimana from the stomach contents of

Antarctic toothfish to estimate the age of this Southern Ocean

species (Queirós, Bartolomé, Xavier, Perales-Raya, unpublished

data). In both studies, the authors tested the lateral wall surface of

FIGURE 4
Microstructure of beaks showing growth increments in cephalopod beaks (Octopus vulgaris). (A) Increments in the rostrum sagittal sections
(RSS). Bar: 100 µm. (B) Increments in the inner lateral wall surface of the upper beak. Bar: 200 µm. (C) Increments in the rostrum surface of the upper
beak in early stages. R = rostrum; H = hood; dotted white line = reading area. From Arkhipkin et al. (2018) and Perales-Raya et al. (2018); copyright
permission obtained). Bar: 50 µm.
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upper beaks and the rostrum sagittal sections of upper and lower

beaks but only the latter showed a suitable sequence of

increments for age estimation. On the contrary, the lateral

wall surface has been the only beak region explored in

Antarctic incirrate octopods from the families

Megaleledonidae and Enteroctopodidae (Schwarz, 2019;

Schwarz et al., 2019). These authors suggested lifespans

exceeding 3 years and the possibility that deposition of growth

increments in beaks of Antarctic octopods is not daily.

Growth increments (usually a few dozen) are also known

on the surface of ammonite aptychi (calcitic coverings of the

lower beak). The major growth increments were hypothesised

to represent fortnightly tidal cycles or months, and the minor

increments to correspond to days or semi-diurnal tidal cycles.

If this assumption is correct, the ammonite life span would last

between 1 and 6 years and the growth would be sigmoidal,

with slowing down at maturity (Hewitt et al., 1993; Machalski,

2021).

Palaeontology: Fossil beaks

The nautiloid and ammonoid beaks are the cephalopod

structures that fossilise most effectively after the shells. They

are most often preserved in 2D but 3D fossils occasionally occur

(Nixon, 2015). Ammonoid lower beaks are the most abundant in

the fossil record, particularly from the Lower Jurassic (Toarcian)

where a bivalve calcareous covering appears on the lower beak

(Tanabe et al., 2015a). Similarly, the rostrum of the upper beaks

of nautiluses, consisting of a hard, pointed calcareous tip

(rhyncholite), is quite common in the fossil record from the

Triassic onwards. Entirely organic beaks such as those of coleoids

are very rare in the fossil record but are nevertheless known from

exceptionally well-preserved deposits, the so-called Lägersttätten.

Numerous examples are found in ammonoids dating back to the

Devonian (Tanabe et al., 2015a; Klug et al., 2016). They are rarer

in the Nautilida, but a few specimens are usable for shape analysis

(Klug et al., 2021a). In Coleoids, beaks are found from the end of

the Lower Jurassic (Nixon, 2015; Klug et al., 2021b). Fairly well-

preserved 3D specimens have been related to Sepiolida

(Harzhauser, 1999), Oegopsida (Tanabe et al., 2006), Cirrata

(Tanabe et al., 2008), Vampyromorphida (Tanabe and Hikida,

2010), or undetermined teuthid taxa (Tanabe et al., 2015b).

All these fossils are still underused because of the shortage of

comparative analyses between current and fossil beaks. The

identification of beak shape adaptations to habitats or prey

selection in modern species could inform our understanding

of fossil shapes, thus complementing the classical paleoecological

inferences from shells, gladius, soft tissues or fossil deposits

(Fuchs and Iba, 2015; Fuchs et al., 2016). For example,

investigating habitat shifts from shallow neritic to mesopelagic

or bathyal environments (Hoving et al., 2014; Košťák et al., 2021)

or vice versa (Arkhipkin et al., 2012) is of importance for

understanding the evolution of modern coleoid lineages and

for interpreting radiation events during cephalopod evolutionary

history.

Currently, the data support a significant diversification event

in Octopodiformes and Decapodiformes in relation to the so-

called Marine Mesozoic Revolution, characterised by a major

remodelling of shallow ecosystems, the rise of durophagous

predators, and the resulting ecological “arms race” between

predators and prey (Salamon et al., 2012). In this context, the

diversification of coleoid cephalopods (stem Decabrachia,

Spirulida) would have been driven by competition with

predatory fish (Packard, 1972; Tanner et al., 2017; López-

Córdova et al., 2022). The lineages of modern coleoid species

are thought to have originated from one or more radiation pulses

before the Cretaceous-Paleogene extinction (K-Pg crisis) (Fuchs

and Lukeneder, 2014; López-Córdova et al., 2022). After the K-Pg

crisis, a radiation pulse was stimulated by the disappearance of

many predators and the availability of ecological space. Finally,

another radiation pulse occurred during the mid-Cenozoic,

controlled by climate change and low predator pressure (Fuchs

and Lukeneder, 2014; López-Córdova et al., 2022). New data

FIGURE 5
Lower beak of the giant squid Architeuthis dux. A white circle highlights the rostrum (A). Image composition of the sagittal section of the lower
beak rostrum showing growth increments (B). From Perales-Raya et al. (2020); copyright permission obtained). Bar: 200 µm.
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contributing to the inference of habitat, trophic level or predatory

abilities of fossil species will be useful to assess the proposed

evolutionary scenarios. To achieve this goal, thorough analysis of

the relationship between beak shape and species ecology in current

cephalopods, followed by integration of the results with the fossil

species would be an excellent step forward.

Advances in analysis if the
composition of cephalopods beaks
relevant to ecological studies

Cephalopod beaks are secreted by a single layer of cells in the

buccal tissue, the beccublast cells, which are tall columnar

epithelial cells (Dilly and Nixon, 1976; Tan et al., 2015). Beaks

grow without replacement throughout the life of cephalopods

(Perales-Raya et al., 2014a). Therefore, performing chemical

analyses on entire beaks yields an average value for the entire

life of the individual, whereas dividing the beak into different

sections allows us to study different periods within the life cycle

(Cherel and Hobson, 2005; Cherel et al., 2009a; Guerra et al.,

2010; Xavier et al., 2016; Queirós et al., 2020a).

Beak chemical composition as a challenge
to the application of chemical analyses

Beaks are composed of chitin-protein complexes (Miserez

et al., 2007). There are differences in the composition among

cephalopod taxa, with beaks of octopods being composed

exclusively of α chitin, whereas those from squid, while

mainly composed by α chitin, also contain β chitin (Miserez

et al., 2007; Matias et al., 2019). However, these variations are not

expected to result in significant differences when performing

chemical analyses on these structures. In contrast, the ratio

between chitin and protein varies along the beak, which can

have significant influences on the analyses (e.g., lowering of δ15N

values when the amount of chitin is higher) (Miserez et al., 2008;

Tan et al., 2015). These differences in the chitin: protein ratio can

be easily observed in the pigmentation, with the untanned parts

of the beak having a higher content of chitin than the fully tanned

portion, which has a higher protein content (Miserez et al., 2008).

Stable isotopes

Stable isotopes, particularly of δ13C and δ15N, are widely used

in ecological studies (Peterson and Fry, 1987; Bearhop et al.,

2004; Newsome et al., 2007). Using δ13C values, it is possible to

determine the carbon source at the base of the food chain and,

ultimately, the feeding habitat of individuals (Cherel and

Hobson, 2005). In marine systems, δ13C values are known to

vary with latitude (lower towards the poles), with

inshore–offshore gradient (lower values towards offshore

waters) and between benthic and pelagic environments (lower

in pelagic organisms) (Cherel and Hobson, 2005; Newsome et al.,

2007; Magozzi et al., 2017). In addition, anthropogenic CO2 in

the atmosphere has resulted in a decrease in δ13C (as well as in
14C) in both the atmosphere and the oceans, due to fossil fuels

being relatively depleted in heavier carbon isotopes, the so-called

Suess effect (Keeling, 1979; Gruber et al., 1999; Sonnerup et al.,

1999). Regarding δ15N values, these are used to study the trophic

position of the individuals, based on the principle that predators

are enriched in 15N in relation to their prey (Peterson and Fry,

1987).

Bulk stable isotopic analyses (SIA) on beaks have been

routinely perfomed, with δ13C and δ15N measured in

cephalopods from all ocean basins (Hobson and Cherel, 2006;

Cherel et al., 2009b; Guerra et al., 2010; Navarro et al., 2013;

Golikov et al., 2019a; Queirós et al., 2020b; Fang et al., 2021a).

They have been used: 1) in ecological and biogeographical studies

to determine the foraging habitat and the role of cephalopods in

food webs (Ruiz-Cooley et al., 2006; Guerra et al., 2010; Golikov

et al., 2018; Staudinger et al., 2019; Fang et al., 2021a), 2) in

fisheries to study stocks’ distribution, contributing also to the

implementation of ecosystem-based management (Fang et al.,

2016b; Queirós et al., 2019), and 3) to study impacts of climate

change and environmental fluctuations in these organisms

(Golikov et al., 2019a; Hu et al., 2019; Abreu et al., 2020).

Furthermore, SIA on beaks can also be used to study the

foraging ecology of their predators (Guerreiro et al., 2015;

Abreu et al., 2019; Guímaro et al., 2021). SIA of the entire

beak gives us an average value for the life of the individual,

and when applied to different sections of the beak (using the

methodology specifically applied for SIA analyses (Guerra et al.,

2010; Queirós et al., 2018)), it enables the study of ontogenetic

changes throughout the lifespan (Cherel and Hobson, 2005;

Guerra et al., 2010; Queirós et al., 2018; Wang et al., 2022).

More recently, compound specific stable isotopes on amino acids

(CSIA-AA) have also been studied in cephalopod beaks, mainly

to delete the chitin effect that lowers the bulk δ15N values of beaks

when compared to other tissues (Cherel et al., 2019; Woods et al.,

2022) (see below).

The SIA of beaks is a well-established technique with several

advantages when compared to the use of other tissues.

Cephalopod beaks recovered from predators’ stomachs have

comparable stable isotopic compositions regardless the time

they were subjected to digestive processes and independently

of the time-period during which they have been kept in

collections (Cherel and Hobson, 2005; Abreu et al., 2020). The

preservation method (e.g., dried, frozen, in ethanol, in formalin)

also does not affect SI values/ratios, enabling its application to

museum beak collections and retrospective investigations (Ruiz-

Cooley et al., 2011). However, when using SIA, there are some

caveats to be aware of (see those listed below). Some of these can

be overcome using CSIA-AA but due to the higher costs of this
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technique, its wider use has been so far limited. In addition, there

are common problems (e.g., amount of sample required,

knowledge of the trophic enrichment factor) associated with

both CSIA-AA and bulk SIA. Below, we summarise the main

problems associated with SIA, how to detect them and possible

solutions. First and foremost, the amount of sample (usually

~0.35 mg but it is dependent of the equipment/methodology/

analyzer used) that is necessary for both SIA and CSIA-AA (and

other analyses) can be a limitation, especially if the study aims for

a sequential analysis along the beak or concerns smaller species/

specimens whose entire beaks do not make up the necessary mass

for the analyses. In this situation, a possible solution is to pool the

minimum number of different beaks necessary to perform the

analyses. However, it must be guaranteed that beaks belong to

similar individuals (i.e., similar size, collected in the same

location and at the same time) to ensure they belong to the

same school/cohort (e.g., Guímaro et al., 2021; Queirós et al.,

2021a). Interpretation of SIA results from cephalopod beaks (and

other tissues) is dependent on baseline stable isotopic values

(i.e., to determine the habitat and trophic level). It is advisable to

determine the δ13C values of Particulate Organic Matter (POM)

from the region and/or the δ15N values of an organism with a

known trophic position (e.g., δ15N value of a filter-feeder species

that it is in the second trophic level). To overcome the necessity of

analysing POM stable isotopic values, it is possible to use values

obtained from previous studies, or studies that modelled isotopic

variation around the world’s oceans (Somes et al., 2010; Farmer

et al., 2021; St John Glew et al., 2021). However, when using

values from previous studies or when comparing values obtained

in beaks collected in different periods, it is necessary to account

for the temporal variation of isotopes in the environment. To

solve this, the obtained δ13C values need to be corrected

considering the Suess effect when values span across decades

or consider modelled past δ13C values (Farmer et al., 2021). For

the δ15N, the use of values obtained by previous modelling studies

is so far the best option (Somes et al., 2010; Farmer et al., 2021;

Verwega et al., 2021). If the capture location of the individual is

known, the isotopic value of the near-death beak segment

[i.e., the end of the hood and crest in the upper beak and the

end of the hood and crest and wing in the lower beak (Queirós

et al., 2018)], can be related to the local isotopic values. This may

not be appropriate when using beaks sampled from predators’

stomachs, since it needs to also take into consideration the daily

(and long-time scale) movements of the predator and the time

the beak spent in the stomach and these will vary depending on

predator and cephalopod species involved (Xavier et al., 2003b;

Xavier and Cherel, 2021). Nevertheless, for bulk SIA, without

measuring baselines at the time of collection, it is impossible to

estimate the trophic position of the individual. In contrast, a

baseline is not necessary when determining the trophic position

using CSIA-AA because the use of so-called “source amino acids”

(e.g., phenylalanine) provides a baseline for the cephalopod beak

(Cherel et al., 2019). However, using bulk SIA it is still possible,

by comparing different beaks or different sections of the beaks

(Queirós et al., 2018), to identify changes in habitat or trophic

position. One limitation when studying changes in habitat is that

changes in δ13C values can be related to latitudinal, inshore-

offshore, or benthic-pelagic changes (Cherel and Hobson, 2007;

Newsome et al., 2007); thus results should be considered carefully

and conclusions should be supported by previous knowledge of

the ecology of the species. Furthermore, it is important to note

that δ13C also increases by around ~1‰ per trophic level through

the food web, so that a significant correlation between δ13C and

δ15N values could be due to a habitat change or diet change.

Determining the slope of a regression between δ13C and δ15N

values may however enable these two possibilities to be

distinguished.

Regarding trophic position changes, when comparing δ15N

values, it is important to know the relevant trophic enrichment

factor (TEF) (trophic discrimination factor (TDF) in CSIA-AA)

(i.e., the differences between the δ15N values of predator and its

diet). Previous studies using S. officinalis raised in captivity showed

that for beaks, this value is ~3.4‰ (Hobson and Cherel, 2006).

However, recent studies showed that the TEF tends to decrease

with increasing trophic position, requiring the use of the “scale

δ15N framework” (Hussey et al., 2014a; b). This δ15N framework

also needs to be region specific (Hussey et al., 2014a; b). In CSIA-

AA, the δ15N framework is not applicable and a TDF of ~7.6‰ is

used universally (O’Connell, 2017; Whiteman et al., 2019),

although no cephalopod-specific studies exist to date. Also,

CSIA-AA requires information on the difference between δ15N

values of «trophic» and «source amino acids » in producers

(trophic level 1), commonly referred to as β, to estimate

consumer’s trophic position. A value of β of −3.4‰ is

universally used in aquatic ecosystems (O’Connell, 2017;

Whiteman et al., 2019). It should be borne in mind that δ15N

values do not change only with the trophic position or prey species,

but can be related to other changes in the diet of the predators such

as the proportions of different prey that are eaten (Bearhop et al.,

2004) and to changes in the diet of the prey species.

Currently neither bulk nor compound-specific SIA allows the

identification of specific prey species. Even if the measurement of

δ13C and δ15N values in a specific target prey species is performed,

it is difficult to confirm that the tested species was eaten rather

than another species with similar diet and trophic level (Fogel

and Tuross, 2003; Naito et al., 2013; Pinkerton et al., 2014;

Golikov et al., 2020). So-called mixed models are commonly

used to infer predator diet composition from bulk SIA data. They

require information on the δ13C and δ15N values of all putative

prey but, even then, the natural variation around average values

needs to be accounted for and, fundamentally, using values of

only two variables (δ13C and δ15N values) to determine the

values of multiple model parameters (the dietary importance

of N putative prey types) is difficult (Phillips et al., 2014). In

this sense, CSIA-AA offers a way forward since δ13C and

δ15N values are potentially available for multiple
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trophic amino acids, greatly increasing the theoretical

discriminatory power of the data to allow diet composition to

be determined.

The δ13C and δ15N values obtained from bulk SIA and CSIA-

AA are not directly comparable, and even if using the estimated

trophic position allows the two types of δ15N measurement to be

compared indirectly, there is currently no such method for δ13C.

One key limitation when applying SIA to beaks is their chitin

content. Chitin is a polymer of N-acetyl-glucosamine (i.e., a

complex sugar that contains N atoms that are impoverished in
15N when compared to amino acids). Thus, δ15N values are not

only lower in beaks than in other tissues, but also vary between

different sections of the same beak due to the varying chitin:

protein ratio (as mentioned above). It is necessary to carefully

evaluate the C:N mass ratios obtained in the results, with higher

ratios suggesting a higher amount of chitin (Cherel et al., 2009a). It

may be possible to define a C:N ratio beyond which SIA results

should be discarded, or to calculate a correction factor based on

previous studies [e.g., Post et al. (2007)]. Results are usually

considered unusable if C:N ratio values are above 4.0 but it

may be appropriate to use results from part of the beak

(i.e., the more heavily pigmented part) or to relax the rule if

the study is on a rare species. This is particularly important when

analysing beaks of juvenile cephalopods for which much of the

structure is transparent, thus with higher chitin concentration than

in the fully tanned beaks of adults (Clarke, 1986; Cherel et al.,

2009a). This limitation can be overcome by removing the

transparent part of the beak (Matias et al., 2019; Staudinger

et al., 2019) or by using CSIA-AA which is not dependent on

the amount of chitin in the beaks (Cherel et al., 2019; Woods et al.,

2022). Regarding the use of different sections of the beaks for SIA,

it should be noted that values obtained from the tip of the rostrum,

sometimes considered as a proxy for juvenile life, result from a

mixture of beakmaterial deposited in early life stages and new beak

material deposited over the life of the individual (Queirós et al.,

2018). This suggests that in species that migrate and increase their

trophic position throughout their life, δ13C values are higher or

lower depending on the habitat occupied by the adult, and δ15N

values are higher due to the higher trophic position in the later life-

stage (Queirós et al., 2018).

Trace elements

Trace elements occur naturally in the environment, yet their

concentrations are increasing due to anthropogenic activities (Sen

and Peucker-Ehrenbrink, 2012). These elements can be essential

(e.g., copper, iron, zinc) or non-essential (e.g., cadmium, mercury,

lead), with both being potentially toxic at a given concentration

(Jakimska et al., 2011). They may bio-accumulate throughout the

life of individuals and some of them can bio-magnify through the

food webs, with the main uptake being by prey ingestion

(Szynkowska et al., 2018). Because of their importance in the

food web, trace element concentrations have been extensively

studied in cephalopods (Bustamante et al., 2000; Seixas et al.,

2005; Pierce et al., 2008; Lischka et al., 2020; Seco et al., 2020).

However, they have only recently been measured in cephalopod

beaks (Fang et al., 2019; Lin et al., 2019; Northern et al., 2019).

While numerous studies measured the concentration of mercury

in beaks (Xavier et al., 2016; Matias et al., 2019; Queirós et al.,

2020a), studies analyzing the concentration of other trace elements

are rarer. Northern et al. (2019) measured the trace element

concentrations in three different sections of Moroteuthopsis

ingens lower beaks using both solution based inductively

coupled plasma mass spectrometry (SB-ICP-MS) and laser

ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS) methodologies. Both techniques were able to measure

the concentrations of at least 23 elements, though LA-ICP-MS was

able to detect three additional elements (i.e., Be, Y and Zr), that SB-

ICP-MS did not detect, and also found more variability between

beak sections (Northern et al., 2019). More studies are needed to

understand whether this inequality is related to the methodology

or to differences between the studied specimens.

For trace elements analyses, in contrast to SIA, the tip of the

rostrum cannot be considered a proxy for the juvenile life phase as

results obtained in this section are similar to those obtained in the

end of the hood (Queirós et al., 2020a). Here, the anterior section of

the hood is the most appropriate to study this life phase (Queirós

et al., 2020a). Analyses of trace elements on beaks are useful for: 1)

ecotoxicological studies (Xavier et al., 2016; Queirós et al., 2020a), 2)

biogeographical studies to determine the distribution andmigration

of individuals (Fang et al., 2019; Northern et al., 2019), 3) ecological

studies to evaluate the individuals trophic ecology and diet changes

during ontogeny (Matias et al., 2019), and 4) the identification of

cryptic species (Fang et al., 2021c). As cephalopods are usually

widely distributed all around the world, measuring the

concentrations of the different trace elements in beaks can also

be used for biomonitoring the variability of contamination across

ocean basins and, by using beaks preserved in collections, it may

allow an evaluation of how concentrations of these elements have

changed over time. Moreover, as performed in other taxa, such as

bivalves and fish (Campana et al., 1994; Gomes et al., 2016), the

analysis of trace elements over the life of individuals in beaks can be

used to study the connectivity between different areas to help in the

conservation of species and management of cephalopod fisheries.

It is worth noting that, when analysing trace element

concentrations in cephalopod beaks, the resulting

concentrations are significantly lower than those in other

tissues such as muscle, digestive gland, or gills (Xavier et al.,

2016; Matias et al., 2019; Matias et al., 2020). Although a previous

study found a relationship between mercury concentrations in

beaks and muscle in one Antarctic octopod species, which would

suggest the former as a potential proxy for the mercury

concentration of the flesh, no such relationship was found in

other species (Matias et al., 2020). However, the analyses of trace

element concentrations in different sections of the beaks may
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allow to determine differences (i.e., ratios) of elements

concentrations in different life stages (Queirós et al., 2020a).

For example, mercury concentrations on beaks suggest that

adults of M. longimana have twice as more mercury than

juveniles, which also may happen in the muscle (Queirós

et al., 2020a). Ultimately, element concentrations measured in

beaks can be used to estimate the concentration of the element

that might be transferred from the prey to the predator.

Measuring trace element concentrations in cephalopod beaks

does have some limitations. As beaks tend to have lower

concentrations of the target elements, the detection limit of the

techniques can be a problem, especially when looking for minor

elements and when analysing subsections of the beaks for trace

metal analyses. This should not be a problem when analysing

entire beaks (except if they are from small species or very young

individuals). When a specific equipment is available for an

element, e.g., Advanced mercury analyser to mercury, its use

should be prioritised as it is more sensitive to the element and

enables the measurement of lower concentrations. Otherwise, LA-

ICP-MS is probably the best option as it has a lower detection limit

than other techniques (Fang et al., 2019; Northern et al., 2019; Fang

et al., 2021c), and is thus suitable to determine concentrations of

minor elements or tomeasure the concentrations of trace elements

in small sections of the beaks. The amount of sample needed to

perform some trace element analyses can also be a problem for

both entire small beaks and/or beak sections. Here, as for SIA,

pooling beaks with similar size, origin and time of sampling is a

possible solution (Queirós et al., 2020a; Guímaro et al., 2021).

These limitations also apply to the emerging compound-specific

trace element analyses (Weiss et al., 2008; Wiederhold, 2015).

Emerging compound-specific trace element analyses, such as

mercury stable isotopes, can offer a great opportunity to

delineate the vertical habitat of cephalopods, as already shown

in sharks (Le Croizier G. et al., 2020; Le Croizier G.l. et al., 2020;

Besnard et al., 2021) and seabirds (Renedo et al., 2018). Indeed,

when using trace elements to study individual migrations, it is

important to know if there is any ontogenetic change in the diet or

trophic position, because as trace elements are mostly taken up by

diet (Szynkowska et al., 2018), we need to be sure to be sure that

changes in trace element concentrations are in fact related to

changes of habitat and not with the trophic position of cephalopods.

Beak composition should always be considered in any of the

analyses mentioned here. As some trace elements have a higher

affinity for proteins, e.g., mercury (Bustamante et al., 2006), the

changing protein:chitin ratio along the beak can potentially

influence the result. Hence, it is important to be careful when

analysing the results, especially when comparing different beak

sections or beaks from different species for trace elements, sizes

and maturation states (Queirós et al., 2020a). As with SIA, this

limitation can be overcome with the compound specific trace

elements analysis (Renedo et al., 2018; Cherel et al., 2019;

Whiteman et al., 2019; Besnard et al., 2021).

DNA analyses

Genetic analysis plays an important role in the study of

cephalopod systematics and evolution (Boyle and Rodhouse,

2005; Strugnell et al., 2011; Allcock et al., 2015; Bolstad et al.,

2018). It has also been used to identify cephalopod flesh found in

the stomachs of predators as well to study the role of cephalopods

as predators (Deagle et al., 2005; Braley et al., 2010; Hoving et al.,

2014; Olmos-Pérez et al., 2017; Fernández-Álvarez et al., 2018;

Queirós et al., 2021b). These previous studies used the flesh, both

muscle and buccal mass, of individuals from collections, or that

were captured or washed up on the shore (Bolstad et al., 2018;

Queirós et al., 2020b). As some cephalopods, in particular oceanic

squids, tend to easily avoid capture and many predators prey/

scavenge on them, extracting DNA from the beaks would be an

important tool as it would facilitate the identification of some

species whose beaks are very similar [e.g., Histioteuthis eltaninae

and H. atlantica (Xavier and Cherel, 2021)], the identification of

beaks belonging to undescribed species [e.g., Oegopsida sp. A,

Taonius sp. (Clarke), Onychoteuthis sp. B (Imber) (Cherel et al.,

2004; Cherel et al., 2011; Cherel, 2020)], and to study the

phylogeny and taxonomy of these hard-to-catch species.

As far as we know, only one study was able to extract DNA

from cephalopod beaks (Vecchione et al., 2009). These authors

extracted DNA from a beak ofMuusoctopus thielei collected from

a whole specimen. Another successful tentative trial was made in

the beaks of Architeuthis dux but the amount of extracted DNA

was not enough to follow up with further research at the time

(TomGilbert, personal communication). In contrast, Xavier et al.

(2016) did not succeed in extracting DNA from beaks of M.

longimana and Filippovia knipovitchi. When comparing the

studies of both Vecchione et al. (2009) and Xavier et al.

(2016) to understand what could influence DNA extraction,

one primary difference is that the former study used fresh

beaks retrieved from the individual, while the latter used non-

fresh beaks from predators’ diet. After spending time in the

stomach, the beaks lost their transparent part which is the area

closer to the beccublast cells that synthesise the beak proteins

(Tan et al., 2015). Further differences can also be found in the

methodology used in both studies (Vecchione et al., 2009; Xavier

et al., 2016). We believe that it is worthwhile to continue to

attempt the extraction of DNA from cephalopod beaks, although

we suggest that studies should focus on the transparent parts of

the beaks, rather than the entire, fully sclerotized, beak.

Nevertheless, the use of the transparent part of the beak could

be a limitation for these methodologies in smaller species in

which the transparent part is reduced, as well as in beaks from

predators’ stomachs since the transparent part disappears with

the action of the gastric acids (Clarke, 1986; Duffy and Jackson,

1986). Furthermore, we suggest trying different methodologies,

including approaches that have been used to successfully

extracted DNA from other difficult-to-handle issues e.g.,
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bones or fossils (Vecchione et al., 2009; Xavier et al., 2016;

Campos and Gilbert, 2019; Modi et al., 2021).

Structural analysis

The rostrum of cephalopod beaks is among the hardest and

stiffest fully organic materials on Earth, while the lateral walls and

wing areas of these beaks are generally soft and flexible (Miserez

et al., 2008). Indeed, the beak rostrum can be harder than

engineering polymers and present an intermediate response to

blunt abrasion (Miserez et al., 2007). Because of these

characteristics, beaks are seen as an inspiration for new

engineering protein-based and environmentally load-bearing

polymers (i.e., polymers that can support great amounts of

weight) that can replicate properties of living organisms

(Miserez et al., 2010; Linder, 2015; Sun et al., 2020).

Furthermore, there is also an interest in chitosan, a biopolymer

obtained from chitin (Miserez et al., 2008), which has applications

in the food industry, pharmaceuticals, textiles and biotechnology

(Morin-Crini et al., 2019). However, for such compounds to be

replicated, it is important to understand how they are formed and

what gives the beaks their unique properties since they do not

contain metal ions, minerals, or halogens, which typically confer

hardness and stiffness to biomaterials [e.g., Zinc (Zn) ions on

polychaete jaws (Miserez et al., 2007; Linder, 2015)]. The

determination of beak characteristics can also be used in the

study the trophic ecology (by providing insights into what kind

of prey could be eaten) (Matias et al., 2019).

Several studies analysed the structure and mechanical

properties of cephalopod beaks, most of them using those of

the jumbo squid Dosidicus gigas (Miserez et al., 2007; Miserez

et al., 2008; Miserez et al., 2010; Tan et al., 2015). To our

knowledge, apart from these studies, only Matias et al. (2019)

have studied the mechanical properties of cephalopod beaks, using

two Antarctic octopod species, Pareledone turqueti and

Adelieledone polymorpha. The methodology used by all these

studies was very similar [i.e., optical and scanning electron

microscopy and high-resolution microcomputed tomography to

determine the microstructure and structural features, x-ray

diffraction to study the density, nanoindentation test to

determine the beak mechanical properties and single-edge

notched tension (SENT) to determine the fracture toughness].

In contrast to previous methodologies, only one limitation was

found, and it was related to the size of the beak and its suitability

for some tests (e.g., SENT test). This is why the authors decided to

use very large D. gigas beaks (Miserez et al., 2007). The similarity

between the techniques used to date suggests that future studies

could use the same approach to study the structural properties of

beaks, facilitating comparisons, providing insights into the ecology

of the species and inspiring the engineering of new materials.

Indeed, different results obtained for three species showed different

hardness in the following sequence, from hardest to least hard: D.

gigas > P. turqueti > A. polymorpha (Miserez et al., 2007; Matias

et al., 2019).

Proteomics

The study of an organisms’ proteome can assume a major

role in understanding how species will react to climate change,

pollutants and other environmental stressors (Nunn and

Timperman, 2007; Braconi et al., 2011; Tomanek, 2014).

Indeed, previous studies showed that temperature, toxic trace

elements, food limitation, or hormones can all affect the proteins

in molluscs, as well as their amino acid pool (Veldhoen et al.,

2012; Clark et al., 2017). Furthermore, an organisms’ proteome

can help in species’ identification (Mazzeo and Siciliano, 2016). A

proteomic approach has been used in cephalopods to understand

their colours, toxins, host-parasite relationships and their

immune system (Gestal and Castellanos-Martínez, 2015;

Roumbedakis et al., 2018; Albertin and Simakov, 2020;

Gonçalves and Costa, 2021). These studies used tissues such

as skin (Crookes et al., 2004), slime (Caruana et al., 2016), saliva

(Cornet et al., 2014), and in cuttlefish cuttlebones (Pabic et al.,

2017).

In a pioneering study, Miserez et al. (2008) carried out the

first analysis of the proteins in cephalopod beaks. Using beaks of

the jumbo squid D. gigas, they found differences in the amino

acids composition between the tanned and untanned areas

(Miserez et al., 2008) and showed that the stiffness of the

beaks was linked to the amount of certain proteins,

identifying l-3,4-dihydroxyphenylalanine-histidine (dopa-His)

as providing mechanical strength to the beak material. The

authors subsequently found many cross-links were actually

based on (His)-4-methylcatechol and not dopa-His (Miserez

et al., 2008; Miserez et al., 2010). Following these studies, Tan

et al. (2015) combined different transcriptomic (using mRNA

from beccublast) and proteomic techniques to study the proteins

in cephalopod beaks. They found the presence of two major

families of proteins: the chitin-binding proteins (DgCBPs) and

the histidine-rich beak proteins (DgHBPs), the former new to

science (Tan et al., 2015). However, the precise distribution of

each protein in the beak remains unknown, and only estimations

using its wet mass are available (Tan et al., 2015). Despite this

major step, it is still true that very little is known about the

proteome of cephalopod beaks, especially because these studies

focused only on one species and, as proteins are related to

stiffness and beaks of different species have different stiffness

structural analyses (Miserez et al., 2008), it is important to know

if these proteins are the same for all species. Additionally, the

presence of stress marks during the formation of beaks suggests

changes during their formation that can be related to proteins

(Perales-Raya et al., 2014a).

The study of cephalopod beak proteins is important to

protein engineering as they can be a model for liquid-liquid
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phase separation (Sun et al., 2020). Another advantage of

studying beak proteins, as with other techniques, is their

availability in collections and the possibility of using predators

as biological samplers. This suggests that cephalopod beaks can

be used to study environmental changes through time but also be

useful to study impacts of environmental stressors in species that

are challenging to sample. As proteomics can also be used in

evolutionary and ecological studies (Diz et al., 2012), it also has

the potential to help in the study of cephalopod evolution.

However, there are known limitations to studying beak

proteins, and major uncertainties since this is a very new field

of study. The major limitation found by Tan et al. (2015) is that

classic protein extraction protocols do not work on beaks. They

overcame this limitation by using non-enzymatic reagents that

cleave peptide bonds, releasing them from the beak structure

(Tan et al., 2015). However, other strategies are needed to extract

beak proteins without destroying them. Furthermore, it is still

unknown whether different methods of preservation have

different effects on proteins and whether proteins are still

present in beaks from museum collections.

Future challenges in research in
cephalopods beaks

Regarding the use of beaks for taxonomy, some relevant key

features, limitations and perspectives are outlined below. Most

previous investigations used lower beaks only (Clarke, 1986;

Xavier et al., 2007a; Xavier et al., 2015). However, discarding

upper beaks is a potential loss of information that was

highlighted in subsequent investigations (Cherel et al., 2000;

Cherel et al., 2017). Hence, both lower and uppers beaks should

be included in future studies (Xavier et al., 2011). Also, care is needed

when using names of species assigned to beaks in older publications,

due to a combination of past misidentifications and subsequent

improvements in both beak identification and cephalopod taxonomy

over the last few decades (Cherel, 2020, 2021). Also, beaks are

routinely used in the studies of trophic ecology of predatory

species to estimate prey length and mass. However, regression

formulas of relationships between beak size and length and mass

of cephalopods are lacking for the majority of species. Extensive

collection and routine publishing of such data is an essential task in

cephalopod research in the future. Another challenge is that, despite

the recent global revision of some families (e.g., Onychoteuthidae)

(Bolstad, 2010; Bolstad et al., 2018), cephalopod taxonomy is still

problematic: the chaotic state of some taxa precludes identifying

beaks to the species level with confidence in many cases (e.g.,

Brachioteuthidae, Chiroteuthidae). Improvement in beak

identification requires that both taxonomic revision and the

description of new species include drawings and/or photos of the

lower and upper beaks, ideally from early stages to mature adults. It

also requires exploring newmethods to extract DNA from biological

samples in poor condition. In most cases, as reported above,

conventional procedures fail to extract DNA from partly digested

cephalopod flesh, thus preventing the use of buccal masses from food

samples to confirm/inform and thus improve cephalopod

identification based on the corresponding beaks. This loss of

information is unfortunate because most oceanic squids are

notably difficult to catch using traditional means, while some

species form a significant part of predators’ diet. In a few cases,

the reverse is true, with beaks helping to solve systematic issues. For

example, conventional examination of squid morphology and

anatomy failed to find differences between Histioteuthis bonnellii

bonnellii and H. b. corpuscula (Voss et al., 1998) [presently

considered synonym: H. bonnellii (MolluscaBase, 2022)], while

both beak morphology and size clearly indicate that they belong

to different taxa (Clarke, 1980), a finding that merits further genetic

investigation using the new generation of efficient DNA tools.

Finally, identifying beaks from their morphology is time-

consuming and needs expertise. We thus recommend getting

expert advice before attributing a species name to a beak (Xavier

and Cherel, 2021). Unfortunately, the most important bottleneck

of the method now is the low and decreasing number of experts,
meaning that efforts must be made to train early career
researchers to identify cephalopod beaks from their
morphology. The value of conventional photographic guides
of cephalopods beaks for training and species identification
should be recognized. Existing beak identification guides have
covered only minor part of cephalopods diversity and their
regional morphological variability. Therefore, the development
of new extended guides or web-based solutions (see examples
above) are still essential. Additionally, simultaneous
collaborative efforts focused on collection of beaks, their
photographs and DNA samples deposited as public web-
based resource may also serve as important reference
database for cephalopod identification in the future, as it
already occurs with fish (i.e., AFORO as an example for
collaborative otoliths database (http://aforo.cmima.csic.es/)
(Lombarte et al., 2006).

A promising alternative or supplement to identification of

cephalopods based on the morphology of their beaks is the

development of a software for geometric morphometric-based

automatic identification of the beaks. However, this approach

also has some limitations. The first issue to solve is the

development of efficient methods of acquisition of images for

processing. At the moment, there is no agreement about the

equipment to use, from which angles to record images, and how

to take photos of the beaks. Some authors used 2-D images of the

beak’s lateral view (Fang et al., 2017; Jin et al., 2017; Tan et al.,

2021), others used a complex system of mirrors to obtain

combined 2-D images of frontal and lateral views (Crespi-

Abril et al., 2010), and others used a combination of

underwater photogrammetry and CT scanning to obtain 3-D

images of beaks (Roscian et al., 2022). As results of studies based

on 2-D images suggest, this is enough for routine identification of

abundant species (Tan et al., 2021), although in-depth ecological,

paleontological, or taxonomic studies may demand more
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complex method (Roscian et al., 2022). We argue that the use of

beaks for identification purposes demands a simple approach,

which can be adopted both in the field and in the laboratory.

From this point of view, acquisition of 2-D images of the beak’s

lateral view seems more promising (Fang et al., 2017; Tan et al.,

2021), but further studies on the loss of information and

accuracy, when in using images of only the lateral view, are

still needed.

Another issue is the selection of methods for analysis of

images. Landmark-based methods of analysis have plenty of

advantages in this regard, specifically when it comes to

preserving ecologically or taxonomically meaningful

information, but approach requires experienced users. On

another hand, outline-based methods more suitable for

automation of the process, since they do not require the

user to select the points of interest or otherwise fine-tune

the analysis. Thus, the software for automatic identification of

the cephalopods based on the shape of their beaks may be

based on Fourier or wavelet transformation, similar to the

system developed for fish identification (Lombarte et al.,

2006). It should be noted that accuracy of such an

approach to identification may be improved if

supplemented by the analysis of beak’s pigmentation (Fang

et al., 2017), or if only the pigmented part is analysed

(Lishchenko and Jones, 2021).

Further studies on a large number of taxa, testing the

phylogenetic signal carried by beak shape will be necessary to

establish the level of accuracy that could be achieved in

identification. Moreover, as 3-D reconstruction is time-

consuming and more complex than 2-D analyses, recent work

using 3-D geometric morphometrics, which allows the

complexity of beak shape to be better captured, has shown that

the phylogenetic signal of upper and lower beaks is significant but

moderate and that it cannot explain all the morphological variation

in beaks on its own (Roscian et al., 2022). On the other hand,

cephalopod beaks remain complex to image in three dimensions

without damaging them. The use and improvement of advanced

imaging technologies such as X-ray tomography and underwater

photogrammetry on small objects will allow most species to be

digitized (Roscian et al., 2021; Ziegler and Sagorny, 2021; Roscian

et al., 2022). Nevertheless, the digitization of specimens is a long task

and the accumulation and accessibility of the data to the community

is a major challenge in achieving a comprehensive sampling of

cephalopod 3-Dmodel beaks. These 3-Dmodels could indeed allow

us to thoroughly renew our understanding of the signal carried by

the shape of the beaks and be very complementary to 2-D analyses.

Recently, Roscian et al. (2022) showed, using 3-D geometric

morphometrics, that there is a likely link between ecological

parameters such as habitat and trophic level and beak shape.

These outcomes are in accordance with those obtained for squid

and octopod paralarvae indicating a relationship between beak

shape variation and diet shifts (Franco-Santos et al., 2014;

Franco-Santos and Vidal, 2014; Franco-Santos and Vidal, 2020).

The study of developmental features of the beak during the

early ontogeny of cephalopods is a nearly unexplored field of

study. Much remains to be investigated in relation to the

developmental pattern, shape and chemical composition of

the beak and its relationship with the feeding ecology during

early life. These studies encourage further research into the

analysis of beak shape in relation to the ecology of the taxa,

to test whether adaptive traits can be identified in these structures

at any phase of the life cycle. To achieve this goal, it will be

necessary not only to have many 3-D models but also to collect

more data on the diets, habitats and trophic positions of species

for which information remains scarce or poorly known, such as

some deep-sea octopods or squids (i.e., some members of the

genus Opisthoteuthis, the pelagic Vitreledonella richardi or

Asperoteuthis lui). This approach will open new opportunities

to study the evolutionary history of cephalopods, as it will be

possible to integrate fossil forms. Although the contribution of

fossil beaks to the reconstruction of the evolutionary history of

coleoids is challenging due to the deformations of the fossil

record and their rarity, methods are now available to overcome

these problems (Hughes and Jell, 1992; Schlager et al., 2018;

Demuth et al., 2022). Quantitative comparative analyses of

modern and fossil beaks are now achievable and should

produce significant advances in paleoecological interpretation

of selected fossil forms.

Regarding using beaks in age and growth studies, some key

relevant features, limitations and perspectives of the field are

outlined below. When working on age determination of a

species for the first time, exploration of both lateral wall surfaces

and rostrum sagittal sections is mandatory. Increments do not

always present regular pattern in the lateral wall surfaces, but they

usually do so in the rostrum sagittal sections. Moreover, both upper

and lower beaks need also to be examined to select themost suitable

for the species of interest. Some species exhibit high erosion and

irregular increment sequences in lateral wall surfaces of upper beaks

(e.g., Architeuthis and Moroteuthopsis), whereas in others (e.g.,

Octopus vulgaris) the upper beaks are the most suitable for age

estimation. When using beaks from cephalopod predators

(stomach contents), the loss of material from the external border

of these beaks might be substantial, presenting problems if the

lateral wall surfaces are used for age estimation, therefore the

information on how long it takes for the transparent part of

lateral walls to disappear would help to prevent age

underestimations. On the other hand, it is necessary to know

how long the beak has been in the stomach to have a proxy of

the death day of the specimen. These issues are covered in depth

further down since further research is desirable. Age validation

experiments are scarce in beaks, but they are required to confirm

the periodicity of deposition of the growth increments in the species

of interest. Mark-recapture methods in wild populations are

expensive but others such as captive experiments, using marking

or known-age specimens, are suitable for age validation when

aquaculture facilities are accessible and the species can live in
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captivity for some time. It is also important to validate the age of the

first increment, not only the temporal deposition of increments, to

obtain reliable age estimations. When the species of interest is

unsuitable for validation experiments (e.g., deep-water species),

cross-verification by comparing with other validated structures

(e.g., statoliths in squids or vestigial shells in octopuses), is an

alternative.

The observation, counting and analysis of daily increments is

time-consuming. The life-mode approach to performing semi-

automated counts is advisable but not usually available in current

image analysis systems. Artificial intelligence could provide a

useful tool to save time and improve the detection and count of

increments since it could “learn” from the images previously

analysed by experienced readers. Finally, the cumulative width of

the daily increments could be a potential tool to estimate growth

in the wild, before capture (e.g., Perales-Raya et al. (2020) for

Architeuthis dux; Queirós, Bartolomé, Xavier and Perales-Raya,

unpublished forM. longimana). Preliminary results on reared O.

vulgaris used correlations between cumulative widths and body

mass to estimate the growth in the wild, before capture (Perales-

Raya, Bartolomé, Márquez, Felipe and Almansa, unpublished

data). Moreover, future research should also further evaluate

beak growth under warming (e.g., climate change scenarios)

under laboratory conditions, which is known to cause thermal

stress in cephalopod beaks (E.g., in Octopus vulgaris) (Perales-

Raya et al., 2014a) (Perales-Raya et al., 2014b), in order to

validate the magnitude of such beak marks and their

ecological implications.

The application of different chemical and structural analyses

on cephalopod beaks to study different aspects of the species and

individual life-cycle is increasing, though with some techniques

being well-established in cephalopods (e.g., stable isotopic

analyses), while others are still in development (e.g.,

proteomics). Nevertheless and independently of whether a

method is “established,” all methods present issues and

challenges that should be addressed in the future. Stable

isotopic analysis, as is the case for most of the techniques

applied on beaks, is dependent on the chitin:protein ratio,

which varies throughout the beak. Future studies should

evaluate whether the variation of the chitin:protein ratio is

similar across species. Furthermore, as a higher proportion of

chitin results in lower δ15N values, a correction factor for chitin,

similar to those used in stable isotopic analyses on muscle for

lipids (Hobson and Cherel, 2006), should be found to enable the

direct comparison of δ15N values between different sections of the

beak and different life-stages and to compare with other tissues.

Several studies applied SIA on beaks from predators’ stomachs,

with most of these determining the habitat using known

gradients of δ13C values in the environment (Cherel and

Hobson, 2005; Guerreiro et al., 2015; Abreu et al., 2020),

especially when using different sections of the beak (Guerra

et al., 2010; Queirós et al., 2018). If the capture location is

known, the δ13C value of the last formed beak material could

be used as a baseline that helps to determine the movement of the

individual. However, to have an idea of the capture location if the

sample came from stomach contents, it is important to know how

long the beak remained in the stomach. Although there is some

information on the amount of time a beak can stay in a predator

stomach (Ashmole and Ashmole, 1967; Clarke, 1980; Jackson

and Ryan, 1986; Gales and Cheal, 1992; Xavier et al., 2011), future

experimental studies are needed to understand the average time a

beak takes to be egested in relation to the type of predator and

how long it takes for transparent parts of a beak to disappear,

depending on both its own size and darkening stage as well as on

the predator biology. Consequently, it is essential for diet studies

to distinguish the beaks that are from recently eaten prey

(i.e., beaks recently consumed by predators that still have flesh

attached, beaks in buccal masses or from complete or partially

digested specimens) from those which have been in the stomach

a long time and may be eroded (i.e., beaks without transparent

parts or flesh attached).

SIA is also dependent on a baseline value and, despite some

previous studies determining POM isotopic values for the

different areas or modelling these values, future studies

should update these values, partly because they may

change over time, as well as using beaks from individuals

with known capture location to create an isoscape

specifically for cephalopod beaks. Apart from the

baselines, future studies should focus on establishing a

specific trophic enrichment factor for cephalopod beaks

(ideally for each cephalopod species in a given region)

that enables the study of the trophic level of an individual

using an enrichment factor adapted for these structures

rather than general enrichment factors that are common

for all marine organisms.

Regarding the trace elements analyses, further studies should

investigate in detail whether the differences found between

results from different techniques used in previous studies

(i.e., SB-ICP-MS and LA-ICP-MS) (Northern et al., 2019), are

a consequence of the technique or simply a function of which

beaks were used. It is also important that future studies

investigate the relationship between element concentrations in

the beaks and those found in other tissues of the individual. Due

to the different chitin:protein ratio along the beak and the

different affinity that some elements have with proteins, it is

important that future studies evaluate how the change in beak

composition can affect the concentrations of the different

elements, and look in detail at the rostrum as this part of

the beak may be prone to accumulate high levels of some

elements, not working as a proxy for the juvenile life-phase

as it does in SIA (Queirós et al., 2020a). Additionally, it is

important to evaluate the usefulness of beaks as proxy of

environmental pollution, such as studying these trace

elements in beaks related to pollution (e.g., increased

mercury levels due to anthropogenic sources), to provide a

proxy of pollution in cephalopods.
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Concerning the most recent techniques applied to beak

structure and protein composition, we suggest that the various

available methodologies are tested in order to find which are the

most efficient. Considering previous studies, we suggest that future

research aiming to extract DNA from (fresh) beaks from predators’

stomachs that still have their transparent parts, as well as the use of

techniques that have been shown to recover DNA material from

fossils or bones. Regarding structure analyses, we suggest that future

studies should aim to develop an understanding of the interspecific

variability in the beak structure and how it can influence, for

example, the diet of each species. The study of the beak proteins

is, as far as we know, one of themost recent techniques that has been

applied to these structures. Based on its importance for beak

composition and its influence on the ecology of the species, we

suggest that new techniques should be explored: techniques used in

the past able to retrieve proteins, though destroying the beaks,

should be applied in other species to understand the inter-species

variability. Future studies should also explore the effect of the

different preservation methods on the beak proteins to evaluate

whether beaks in museum collections can be used in these studies.
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Appendix

FIGURE A1
Group photo of the participants, in person, of the CIAC 2022 beak workshop (Sesimbra, Portugal).
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FIGURE A2
Group photo of the participants online of the CIAC 2022 beak workshop (Sesimbra, Portugal).
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