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ABSTRACT

Electrical motors in industrial and emerging applications such as electrical au-
tomotive require high dynamic performance, robustness against parameter varia-
tion, and reliability. Recent advances in neural network-based estimators and fault
detection techniques rely heavily on accurate sensor information. Due to the ex-
treme operating conditions of electrical motors, there is always a chance of sensor
failure which might lead to poor performance in downstream tasks using neural
networks. This paper introduces the problem of identifying and recovering sensor
faults using generative adversarial networks. We consider sensors monitoring var-
ious quantities like currents, voltages, speed, torque, temperature, and vibrations.
We introduce fault model for these sensors to simulate training datasets. We use
existing GAN based data imputation methods as baseline solutions.

1 INTRODUCTION

Electrical motors are widely used and constitute some of the most essential devices in heavy indus-
tries. These machines undergo various stresses in harsh conditions. A large number of adjustable
speed drives in industry and emerging applications such as automotive and drones require high dy-
namic performance and robustness against parameter variations. As the functionalities of electrical
motors have become increasingly complex, continuous monitoring using different sensors becomes
necessary. Various monitoring and fault detection techniques exist that are based on system dy-
namics or are data-driven using machine learning and neural networks. Used sensors are rated for
extreme operating conditions, but due to the nature of operations they may give out faulty data.
Downstream monitoring and fault detection methods, especially neural networks, are very suscepti-
ble to faulty input and may deliver incorrect output.

For the proper work of modern electrical motors, mechanical and electrical variable sensors are nec-
essary. Signals used in the internal control structure of the drive system (such as stator and/or rotor
flux, electromagnetic torque, rotor speed) can be estimated by different simulators, observers, or
neural networks (Verma et al., 2020b;a). The advanced control and fault detection mechanisms
of electrical motor drives should be equipped with diagnostic features to prevent damages and
sudden switch-offs of complex industrial installations. Thus the incipient fault detection has re-
cently become one of the basic requirements for modern electrical motor drive systems (Jiang &
Yu, 2012). For motor operation, current and voltage sensors are necessary for vector control algo-
rithms (Orlowska-Kowalska & Dybkowski, 2010; Jiang, 2011). Rotor speed is also used in motor
drive system recorded using mechanical or optical sensors (Fan & Zou, 2012). These are sensitive
to the current drive and weather conditions (Gaeid et al., 2012). Traditional methods of monitoring
and fault detection like (Benbouzid et al., 2007) rely on system mechanics, redundant sensors, and
estimators to overcome sensor faults.

Neural networks (Che et al., 2018; Yoon et al., 2017; Cao et al., 2018) have been used to impute
missing data. Generative Adversarial Networks (GAN) have been trained on time-series data which
learn relationships between variables (Yoon et al., 2019). The same property of learning relation-
ships between different variables in an input time series is then used to recover missing data (Yoon
et al., 2018; Luo et al., 2018; 2019). We introduce the problem of detecting and recovering from
erroneous and missing data. We present fault models for different types of sensors. We then use ex-
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isting missing data imputation methods to solve the problem, discuss their limitations, and possible
improvements.

2 PROBLEM FORMULATION

Existing neural network methods for missing data imputation use datasets which have either missing
data or can be synthetically generated during training. To generate sensor faults, we first model the
faults in different types of sensors using the process described in (Balaban et al., 2009). We consider
following types of sensors: a) three current shunts measuring currents in three phase (ia, ib, ic), b)
voltmeters measuring three phase voltages (ua, ub, uc), c) encoder measuring speed (ωr), d) torque
meter measuring torques (τ ), e) temperature sensors (ϑ), and f) accelerometers measuring vibrations
(σ). Sensor faults can be classified into six categories as shown in (Zimmerman & Lyde, 1992;
Iyengar & Prasad, 1995). These faults can be used to generate erroneous and missing values using
nominal and abnormal statistics provided in the literature and sensor datasheets.

• Bias: A constant offset from the nominal sensor signal statistics given by Yf = X + β +
noise, where β is the constant offset value, X is true value, Yf is the faulty value, and noise
is a disturbance within a tolerance range.

• Drift: A time-varying offset from the nominal sensor statistics given by Yf = X + δ(t) +
noise, where δ(t) is the time-varying offset factor.

• Scaling: Magnitudes are scaled by a factor, where the form of the waveform itself does not
change. This is given by Yf = α(t)X + noise, where 0 < α(t) < ∞ is a scaling constant
that may be time-varying.

• Noise: A random time series is observed, Yf = noise
• Hard Fault: The sensor output is stuck at a particular level expressed by Yf = C + noise,

where C is a constant. Hard fault can be due to loss of signal (C = 0) or stuck sensor
where C is some non-zero constant. Hard faults are usually treated as missing values.

• Itermittents: Deviations from normal readings appear and disappear several times from
the sensor signal. The frequency of such signatures is generally random.

To represent errors and missing values in time-series signals, consider a d-dimensional multivariate
time series x, observed at t = (t0, ..., tn−1), denoted by x = (x0, ..., xn−1) ∈ Rd×n, where t is
the observing timestamp, and xt = (xj

t )1≤j≤d ∈ Rd is the t-th observation. Let m ∈ Rd×n is a
mask matrix that takes values in {0, 1}. The values signal whether the components of x exist or not,
for example, if xj

t exists then mj
t = 1, otherwise it is equal to 0. e ∈ Rd×n is an error matrix that

takes values in range {elj , ehj }, where elj and ehj are the lowest and highest error possible errors in
time, for every j ∈ {0, . . . , n− 1}. The purpose of multivariate time series imputation is to impute
the missing values and correct the erroneous values in x as accurately as possible. Some imputation
methods require time delta information. We define a matrix δ ∈ Rd×n that records the time lag
between the current value and the last observed one. The components of δ are defined as follows:

δjti =


0, if i = 0

ti − ti−1, if i ̸= 0 and mj
ti−1

(1− ejti−1
) = 1

δjti−1
+ ti − ti−1, otherwise,

(1)

The following example provides an intuitive explanation of a multivariate time series x and its
corresponding m and e variables, where ”Na” designates a missing value and xj

i is an erroneous
value:

x =

[
1 2 3 Na
Na 2 3.2 4 . . .
1 Na 3 3.9

]
, m =

[
1 1 1 0
0 1 1 1 . . .
1 0 1 1

]
, (2)

e =

[
0 0 0 0
0 0 0.2 0 . . .
0 0 0 −0.1

]
, δ =

[
0 1 1 1
0 1 1 2 . . .
0 1 2 1

]
, t = (0, 1, 2, 3, . . . ). (3)

2



Published as a conference paper at ICLR 2022

3 EXPERIMENTS AND RESULTS

3.1 DATASETS

Induction Motor dataset (Verma et al., 2020b) consists of 100 hours of simulated and 20 minutes
of real world motor data collected from a 4kW induction motor. The dataset has been used in (Verma
et al., 2020b;a; 2022) for designing neural speed-torque estimators which predicts speed (ωr) and
estimated torque (τem) from input currents (id, iq) and voltages (ud, uq).

PMSM Temperature dataset (Kirchgässner et al., 2021) has been used for data-driven thermal
modeling to remove or reduce the cost of placing thermal sensors deep inside moving parts of mo-
tors. It consists of different experiments where temperature of the stator and rotor were measured in
real operating conditions. The following motor quantities are present in the dataset: currents (id, iq),
voltage (ud, uq), speed (ωr), torque (τem). For the inference task, the following temperatures have
been collected: permanent magnet (ϑPM ), stator yoke (ϑSY ), stator tooth (ϑST ), stator winding
(ϑSW ), ambient temperature outside of stator (ϑa), and coolant temperature (ϑc).

Broken Bar Detection dataset (Maciejewski et al., 2020) consists of electrical and mechanical sig-
nals recorded from 0.7457kW three-phase induction motor. The dataset consists of currents and
voltages represented in abc frame. We convert it to dq frame using Clarke-Park transformation as
explained in (O’Rourke et al., 2019). The dataset has 40 experiments collected at 60Hz. Mechanical
signals were collected using five axial accelerometers (σ). These sensors capture vibration measure-
ments in both drive end (DE) and non-drive end (NDE) sides of the motor, axially or radially, in the
horizontal or vertical directions. For the electrical signals, the currents were measured by alternating
current probes. The voltages were measured directly at the induction terminals using voltage points
of the oscilloscope.

3.2 DATA IMPUTATION METHODS

Mean: We replace the missing values with mean value of the sensor calculated from the dataset.

KNN (Hudak et al., 2008): The missing values are replaced by using the k nearest neighbor samples.
We try k = 3, 5, 7 when experimenting on speed-torque dataset and choose k = 5 considering time
and compute cost.

MF (Acar et al., 2010): Matrix Factorization (MF) method is used to factorise the incomplete matrix
into low-rank matrices and fill the missing values. After several experimentation, we use 100 epochs
and a learning rate of 0.001 for MF.

MICE (White et al., 2011): Multivariate Imputation by Chained Equations (MICE) fills the missing
values by using iterative regression model. Max number of iterations is set at 100.

GRUD (Che et al., 2018): GRUD is a recurrent neural network that uses weighted combination of
Gated Recurrent Units (GRU) output, last observation, and global mean to impute missing data.

M-RNN (Yoon et al., 2017): M-RNN is a bi-directional RNN which uses hidden states in both
directions of RNN to impute values. M-RNN does not consider the correlations among different
missing values.

BRITS (Cao et al., 2018): This method uses bi-directional recurrent network to impute time series.
It implicitly updates missing information and can be used directly for downstream tasks.

GAIN (Yoon et al., 2018): GAIN is a GAN based imputation method that uses a hint vector that
closely matches missing vectors distribution to impute missing values.

2Stage GAN (Luo et al., 2018): 2Stage GAN trains GAN in two stages to impute missing data.

E2-GAN (Luo et al., 2019): E2-GAN is an end-to-end version that overcomes the inefficiency of
2stage training by using a single stage.

GRUD, M-RNN, BRITS, GAIN, 2Stage GAN, and E2-GAN use δ defined in Equation equation 1.
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Fault Range Median Sensors and References

Bias 1.2% to 60% 20% ϑ and ω (Qin & Li, 1999)
0.1% to 0.15% 0.12% τ (Magtrol, 2021)

Scaling 2.5 to 4.8 3.28 σ (Zimmerman & Lyde, 1992)
0.3 to 0.7 0.45 T (Wang et al., 1998)

Drift 6% to 75% 29% T (Goebel & Yan, 2008)
ϑ (Qin & Li, 1999)

0.1% to 0.2% 0.17% τ (Magtrol, 2021)

Noise
2.5% to 250% 20% T , τ and ω (Lu & Hsu, 2002)

σ (Zimmerman & Lyde, 1993)
0.1% to 2% 0.17% τ (Magtrol, 2021)
1% to 6% 2.4% i and u (Zhang et al., 2013)

Intermittent
(Hard Fault) 2 to 10 drops 8 drops all sensors (Goebel & Yan, 2008)

Table 1: Faults leading to missing and erroneous values in different types of sensors.

3.3 TIME SERIES IMPUTATION

For all our experiments we use an Ubuntu 20.04 OS with RTX 3090. PyTorch is employed to imple-
ment all networks. For RNN and GAN based methods we use training hyperparameters reported in
the source literature. We track the Root Mean Square Error (RMSE) and the Mean Absolute Error
(MAE) during GAN training, and train the network till MAE metrics converge. We sample input
data with a window of size 100 and stride equal to 1. We generate missing mask m with probability
0.25 and error e with probability 0.1 for a sensor using the fault model shown in Table 1. For all the
imputation methods, since there is no way of incorporating erroneous data, we treat them as missing.

Dataset Non NN RNN GAN
Mean KNN MF MICE GRUD M-RNN BRITS GAIN 2-Stage E2-GAN

IM 0.632 0.392 0.483 0.400 0.486 0.436 0.396 0.318 0.373 0.352
PMSM 0.672 0.432 0.523 0.440 0.526 0.512 0.436 0.412 0.413 0.372

Broken Bar 0.757 0.517 0.608 0.525 0.611 0.598 0.521 0.509 0.498 0.477

Table 2: MSE results for different imputation methods.

Row 1-3 in Table 2 show MSE between true and imputed values for Induction, PMSM, and Broken
Bar datasets, respectively. Standard imputation methods like mean and KNN (K=5) based imputa-
tion can be applied directly on the signals and provide some good starting baselines. RNN based
approaches like GRUD, M-RNN and BRITS perform at least as good as MF and MICE. We can see
that GAN based methods provide best imputation and corrected values. E2-GAN outperforms all
other methods owing to its GRU for Imputation units (GRUI) used in encoder and decoder part of
generator and discriminator networks. GRUI unit uses δ to introduce a time decay vector to decrease
the memory of GRU cell.

4 DISCUSSIONS

The main challenge associated with the proposed problem is the difficulty associated with the col-
lection of dataset since it requires availability of faulty sensors. Operating a complex industrial
machine with faulty sensors for making datasets is not economical and can be detrimental to the
machine. Proposed fault models can be used to create large amount of synthetic data with sensor
faults derived from small amount of real data. Several existing data imputation methods like Mean
and KNN can be applied directly. MF and MICE perform similar to RNN based methods but they
are not realizable in real time due to large delays. GAN based methods outperform all other methods
and have delays that make them feasible for use in real-time.

The major limitation of all the methods is that they cannot identify sensor faults that are grouped
as errors. We treat erroneous data as missing data in our experiments which is not correct as we do
not know erroneous data apriori. We believe that our question around ”Can GANs recover sensor
faults?” has been answered and now there is an open problem of extending GANs to work for both
erroneous and missing data.
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