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Abstract—In this paper, a neural network approach is
introduced to estimate non-noisy speed and torque from
noisy measured currents and voltages in induction mo-
tors with Variable Speed Drives. The proposed estimation
method is comprised of a neural speed-torque estimator
and a neural signal denoiser. A new training strategy is
introduced that combines large amount of simulated data
and a small amount of real world data. The proposed de-
noiser does not require non-noisy ground truth data for
training, and instead uses classification labels which are
easily generated from real-world data. This approach im-
proves upon existing noise removal techniques by learning
to denoise as well as classify noisy signals into static
and dynamic parts. The proposed neural network based
denoiser generates clean estimates of currents and volt-
ages which are then used as inputs to the neural net-
work estimator of speed and torque. Extensive experiments
show that the proposed joint denoising-estimation strategy
performs very well on real data benchmarks. The proposed
denoising method is shown to outperform several widely
used denoising methods and a proper ablation study of the
proposed method is conducted.

Index Terms—Denoiser, Induction Motors, Neural Net-
works, Speed-Torque Estimator, Variable Speed Drives

I. INTRODUCTION

This paper considers induction motors controlled by
Variable Speed Drives (VSD). The complex physics of
induction motors requires a controller that can provide
robust control based on its dynamics. Induction motor
controllers also offer protection and supervision of the
electro-mechanical system [1]. For these services, it is
required to establish models based on the physical dy-
namics of induction motors. These dynamical models
are dependent on different induction motor quantities
like currents, voltages, speed, torque, fluxes, inductances
or resistances, which are measured directly (sensors) or
indirectly (estimators). Accurately measuring some of
these quantities may be challenging due to temperature
variations or the presence of noise for instance [2].
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Modeling of electrical motors based on analytical me-
chanics and energy consumption is presented in [3]. In
particular, existing methods for designing a controller for
an induction motor depend on whether a perfect knowl-
edge of the parameters is available [4] or if associated
uncertainties are considered [5]. Some methods take sta-
tistical model of noisy measurements into account along
with the analytical model, when used for controller [6],
[7] or fault detection [8], [9].

Neural network-based control methods [10], [11] have
also been proposed to learn models that can alleviate
problems associated with the traditional model-based
approach. In [12], an encoder-decoder network is pro-
posed to learn dynamics of electrical motors directly
from recorded data. The proposed method achieves good
performance in modeling the input-output relationship.
In [13] a proper study and benchmarking of different
networks proposed in [12] has been performed using
both machine learning and electrical engineering per-
formance metrics. These studies do not take however
into account the presence of measurement noise which
is always present in acquisition processes.

Noise reduction in time signals is a very evolved
field with a multitude of research involving various
methodologies. Some of the techniques that can be eas-
ily applied are linear smoothing filters and non-linear
filters [14]. Kalman filter [15] is widely used in noisy
observation where a state-space based estimation is done
which takes the system model as input. Also, there are
transform based methods like those based on wavelet
transforms [16], [17] which remove noisy components
from transformed sensor data. Variational methods often
based on the total variation [18]–[20] have also been
used in signal denoising and change detection, providing
a robust and often more flexible solution over linear
filter based denoisers. Kalman filter, transform-based
and variational methods require prior knowledge about
the noise/signal statistics for efficient denoising. Deep
learning based method like stacked autoencoders [21]
have been shown to be promising in learning to remove
noise. However, neural network denoisers require a large
amount of data with non-noisy ground truth, which is
not possible in the case of induction motors.

The main contributions of this paper are the following:
• A speed-torque estimation pipeline for supervision

and monitoring tasks in VSDs is proposed that
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processes noisy currents-voltages and outputs non-
noisy currents-voltages, which are then used to pre-
dict non-noisy speed-torque.

• A novel denoising method called Meta-Denoiser is
proposed which overcomes limitations of standard
denoisers, and provides a robust solution to mea-
surement noise removal from currents and voltages.

• It is shown that a large amount of simulated data
and a limited amount of real-world data can be used
to train our pipeline and achieve good performance.

The paper is structured as follows: Section II describes
neural network based speed-torque estimator and its
evaluation metrics. Section III presents the test bench and
the collected dataset. Denoising methods are introduced
in Section IV. Experiments are reported and analysed in
Section V, followed by conclusions in Section VI.

II. SPEED-TORQUE ESTIMATOR

Learning input-output relationships using neural net-
works has been explored in [12]. Several benchmark
methods that are derivatives of standard neural net-
works have been investigated. Broadly, feed-forward
network, convolutional neural network, recurrent neural
network (RNN) and Long-Short Term Memory (LSTM)
structures have been evaluated. In [13], these networks
have been analysed using various metrics in ideal con-
ditions where noise is absent. The focus of this work is
on deriving rotor speed ωr and electromagnetic torque
τem from currents (id,iq) and voltages (ud,uq) in the
rotating dq frame, from a real motor. When using a VSD,
the motor voltages are applied to the motor and the
motor currents are measured using integrated current
sensors. However, the important physical quantities for
control are the speed and the torque. Thus, getting these
unknown quantities from the applied/measured values
of the voltages and currents is of primary interest. This
paper is an extension of the work done in [13] by taking
into account measurement noise in currents and volt-
ages. Encoder-decoder with Bidirectional Diagonalized
Recurrent Skip Connection (DiagBiRNN) network from
[12], [13] has been used for all our experiments.

DiagBiRNN, shown in Figure 1, is an encoder-decoder
network with 1D convolutions in the encoder and 1D de-
convolutions in the decoder. Encoder-decoder layers are
connected via skip connections, consisting of recurrent
units which further help the network to learn temporal
information in latent space. The hidden state update
equation of an RNN is given by

ht = tanh(Wxt + Uht−1 + b), (1)

where xt ∈ RM and ht ∈ RN are the input and hidden
states at time t, M and N the respective sizes of the RNN
input and output vectors. W ∈ RN×M, U ∈ RN×N and
b ∈ RN are weights and bias.

One problem with handling multiple recurrent neural
units is the large number of parameters involved in the
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Fig. 1: DiagBiRNN based speed-torque estimator. All the
experiments in this paper use this network to predict
speed and torque from currents and voltages.

matrix multiplications between weights and features. Di-
agBiRNN overcomes this limitation by not using vanilla
RNNs but diagonalizing weights in the recurrent units:
W and U are replaced by vectors and all matrix multipli-
cation operations are replaced by Hadamard products.

A. Machine Learning Metrics

To analyse model performance at global scope, some
standard machine learning (ML) metrics have been used,
namely the mean absolute error (MAE) and the sym-
metric mean absolute percentage error (SMAPE) whose
expressions are recalled below:

MAE(y, ŷ) =
1
T

T

∑
t=1
|yt − ŷt|, (2)

SMAPE(y, ŷ) =
100
T

T

∑
t=1

|ŷt − yt|
|ŷt|+ |yt|

, (3)

where yt is the ground truth, ŷt is the predicted output
of the model at time t, and T is the total experiment
duration.

B. Electrical Engineering Performance Metrics

A more insightful way of evaluating the performance
from an industrial standpoint is to compute widely
used electrical engineering metrics. Following metrics
have been used for the response signal to a speed or
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torque reference ramp (whose amplitude is the absolute
difference between the starting and target values):
• 2% response time (t2%) is the time value at which

the response signal has covered 2% of the ramp
amplitude.

• 95% response time (t95%) is the time value after
which the response signal remains at less than 5%
of the ramp amplitude from the target value.

• Overshoot (D%) is the difference between the maxi-
mum peak value of the response signal and the final
steady-state value. It is expressed in percentage of
the ramp amplitude.

• Steady-state error (Ess) is the difference between the
response signal and target values once the steady-
state has been reached.

• Following error (E f ol) is the difference between the
reference and response signal values when the refer-
ence value has covered 50% of the ramp amplitude.

• Maximum acceleration torque (speed ramp)
(∆τmax) is the max response torque deviation during
the speed ramp.

• Speed drop (torque ramp) (SD) is the max response
speed deviation during the torque ramp.

III. DATASET

A. Experimental Workbench

Motor Under Test Load Machine 

Fig. 2: Experimental setup

Laptop

Button Box for Load 
Machine Control

Button Box for Motor 
Under Test Control

ATV930 (Control for 
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PSU + Control for 
Load Machine PSU for Motor 

Under Test PSU for Test 
Bench 

Fig. 3: Test bench setup containing the data acquisition

Figure 2 shows a 4kW induction motor under test,
and a direct current motor as load machine part of our
experimental setup. Figure 3 shows our test bench setup
which consists of the power supply units (PSU) for the
test bench, the motor under test, the oad machine, and an
ATV930 VSD to control the induction motor. In addition,

button boxes allow us to give run orders and manually
set speed / torque references, both for the motor under
test and the load machine.

B. Collected Dataset
This paper uses the reference trajectory generator pro-

posed in [13] to generate 100 simulated trajectories of
150 minutes for the training set and 50 simulations of 30
minutes for the validation set. Training and validation
sets are well separated to avoid over-fitting. Simulink
model of a 4kW induction motor is then used to simulate
these trajectories to collect data at 4ms intervals. The
simulation dataset consists of the following electrical
quantities: currents id and iq, voltages ud and uq, rotor
speed ωr, and electromagnetic torque τem.

In addition to these simulated data, 10 experiments
were performed on our 1.5kW and 4kW motors (50Hz
nominal speed) shown in Figure 2 to collect real data.
These experiments have different types of trajectories:
constant speed with torque variations in [-120, 120]% of
the nominal torque, speed variations in [-70, 70] Hz at
no load, torque steps under constant speed and, in some
cases, both speed and torque vary. All these types of
trajectories have been considered to cover the majority of
the use cases that may arise in real world. This provides
different kinds of dynamic behaviour which makes de-
noising and speed-torque estimation quite challenging.

To understand the effect of noise on the performance
of DiagBiRNN, experiments with simulated and real
motor benchmarks have been performed. To evaluate
DiagBiRNN in simulation and on real (prefix R) motor
data, following benchmarks have been used:
(a) Dynamic-Speed1 / RDynamic-Speed1: Reference

speed goes from 0 to 50Hz in 1 second at no load.
(b) Dynamic-Speed2: Reference speed goes from 0 to

50Hz in 0.5 second under nominal torque.
(c) Quasi-Static: Two quasi-static cases are considered:

1) at no load and 2) under constant 50% of nominal
torque. Reference speed goes from 70 to -70 Hz in
50 seconds in both cases.

(d) RDynamic-Speed2: Reference speed goes through
multiple inversions in both direction.

(e) RDynamic-Torque: Load torque goes from 0 to
100% of nominal torque in one time step at a con-
stant 50Hz reference speed.

(f) RQuasi-Static: At no load, reference speed goes
from 80 to -80Hz in 50 seconds.

IV. DENOISING METHODS

This section first presents the measurement noise mod-
eling process. Then various strategies for denoising cur-
rents and voltages are discussed along with the proposed
method.

A. Noise Modeling
The noise of currents (id,iq) and voltages (ud, uq) have

been modeled in a way similar to [22]. To that extent,
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Fig. 4: Noise distributions of id and ud from real data

static parts of the experimental data have been collected,
i.e. the periods during which both speed and torque are
constant. For each static part, assuming that the non-
noisy ”true” currents and voltages signals coincide with
their mean values on the static part, the temporal noise
signals for the two currents and the two voltages have
been determined. Gathering all the static parts of our ex-
perimental data, the temporal distributions of the noise
corrupting each signal have been obtained. Figure 4
shows the distributions of noise in current id and voltage
ud. Relying on ergodicity and making the assumption
that the real distributions can be approximated by Gaus-
sian ones, the statistical characteristics of the noises
have been deduced. The Gaussian approximations are
shown by the red lines in Figure 4. This shows that the
noises approximately follow normal distributions with
zero mean and standard deviations equal to σid = 0.17A,
σiq = 0.29A, σud = 1.85V, and σuq = 1.78V, respectively.

B. Standard Denoisers
Extended Kalman filter (EKF) [23] is a state-space

based non-linear filtering approach. A diagonal mea-
surement noise co-variance matrix is chosen using the
noise variances estimated in Section IV-A and the state
transition matrix is set to [[1, 0], [0, 1]]. Wavelet transform
(WT) denoising is a non-linear estimation method oper-
ating on each wavelet coefficient separately. The adap-
tive Bayes Shrink algorithm [24] has been used to soft
threshold wavelet coefficients using the noise standard
deviations identified in Section IV-A. Minmax-concave
total variation (MCTV) [20] is a non-linear variational
method. It has been used with K = 100 maximum
iterations, a root mean square error of 10−3 as conver-
gence criteria, a regularization constant λ =

√
σT/5 with

σ the standard deviations of Section IV-A and T the
duration of the signal, and the non-convexity parameter
αnc = 0.3/λ, after having also tried other values for the
numerator.

Unlike EKF, WT and MCTV, denoising auto-encoder
(DAE) is a neural network based technique. It consists
of 3 layers of 1-D convolutions and 3 layers of 1-D
deconvolutions with a number of channels equal to 1-
32-64-128-64-32-1.

Although our experiments in the next section will
show that these four standard denoisers work quite well
on simulated data, this is not the case on real motor data.
EKF often fails when there is a sudden transition in noise
amplitude which could be resolved using Adaptive EKF
[25]. The denoised outputs of WT and MCTV exhibit

staircase effects in ramp parts of the signal (with less
error for MCTV). DAE solves these problems and gives
the smoothest denoised output, but leads to incorrect
predictions at the start and the end of a ramp.

C. Proposed Meta-Denoiser (MD)

C
on

v1

Encoder Decoder

C
on

v2

C
on

v3

D
co

nv
1

D
co

nv
2

D
co

nv
3 Se

gm
en

ta
tio

n 
H

ea
d

D
en

oi
se

r
H

ea
d

Noisy Input

Segmented Signal

Denoised SignalMeta-Denoiser

Fig. 5: Meta-Denoiser architecture.
To overcome the problems of measurement noise this

paper introduces Meta-Denoiser (MD) shown in Fig-
ure 5. MD is an extension of DAE where the last
deconvolution layer gives the same number of feature
channels as its input. This is then fed to the segmentation
head and the denoiser head to predict segmentation and
denoised outputs. By training it to identify dynamic and
static parts, the model is able to identify the correct start
and end of a ramp, thereby overcoming the problem of
DAE.

MD is trained using the MD-Joint loss function:

LMD-Joint = αLBCE + (1− α)LMSE

{
α = 0.5 if yi ∈ Sim

α = 1 if yi ∈ Real
(4)

LMSE =
1
N

N

∑
i=1

(
1
T

T

∑
t=1

(yi
t − ŷi

t)
2

)
(5)

LBCE =
1
N

N

∑
i=1

(
1
T

T

∑
t=1

(−zi
t log(ẑi

t)− (1− zi
t) log(1− ẑi

t))

)
(6)

where yi
t and ŷi

t are the respective values of output and
predicted sample i at time-step t for the denoising task,
zi

t and ẑi
t are the respective classification probabilities

of output and predicted sample i at time-step t for the
segmentation task, and N is the number of training
samples where each sample is of duration T. Eq. (4) is
made of a MSE part expressed in Eq. (5), accounting for
the denoising (regression) task, and a widely used binary
cross entropy (BCE) loss [26] in Eq. (6).

V. EXPERIMENTS AND RESULTS

All the experiments in this paper have been performed
on an Ubuntu 18.04 OS with Nvidia V100 GPU. To train
MD and DiagBiRNN, the dataset has been partitioned
into four parts: 70% (resp. 30%) of the simulation data are
used for training (resp. validation), whereas 20% (resp.
80%) of the real motor data for fine-tuning (resp. testing)
purpose. The fact that the majority of the real data has
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Fig. 6: Meta-Denoiser (MD) performance on Dynamic-Speed1 simulated benchmark.

been used for testing is in line with real industrial needs.
DAE and MD have been trained with mean square error
(MSE) loss function and a stochastic gradient descent op-
timizer with the following hyperparameters: 100 epochs,
learning rate of 0.01, and batch size of 128. DiagBiRNN
uses training strategy and hyperparameters described in
[12], [13]. EKF, WT, MCTV, DAE and MD have been used
to denoise the currents (id, iq) and voltages (ud, uq). The
denoised currents and voltages are then used to predict
the speed ωr and the torque τem using DiagBiRNN
trained on non-noisy simulated data [13]. For online
inference both networks were implemented using [27].

A. Simulated Benchmarks
To analyze the effect of noise on DiagBiRNN, a set of

experiments with simulated data in both absence and
presence of noise and with real motor data have been
performed. Based on different combinations of test data
and training conditions of DiagBiRNN, the following
cases are studied:

1) Case A: NN estimator trained on non-noisy simu-
lated data, applied on non noisy simulated data.

2) Case B: Estimator from Case A applied to noisy
simulated data.

3) Case C: Estimator trained on simulated data with
noisy currents and voltages and non-noisy speed
and torque, applied on noisy simulated data.

4) Case D: Transfer learning presented in [12] is used
to train and predict on real motor data.

Table I shows the aggregated ML metrics obtained
by DiagBiRNN on the simulated benchmarks with and
without denoising using various methods. Small MAE

Method Speed ωr Torque τem

MAE SMAPE MAE SMAPE

CASE A 0.03 18.7% 0.04 38.5%

CASE B 0.05 20.1% 0.13 41.3%
CASE C 0.05 19.7% 0.13 41.0%

EKF [23] 0.05 19.4% 0.13 41.0%
WT [16] 0.05 19.4% 0.12 41.0%
MCTV [20] 0.05 19.4% 0.12 40.1%

DAE [21] 0.04 19.0% 0.09 39.7%
MD (Ours) 0.04 18.8% 0.05 38.9%

TABLE I: Aggregated ML metrics for the predictions
done on all simulated benchmarks

and SMAPE values are desirable for a good prediction
model. It can be observed that Case B performs worse
than Case A since DiagBiRNN alone has no way of can-
celling the noise. Case C performs relatively better than
Case B since training is performed on noisy simulated
data. Amongst standard denoiser, minor improvements
with MCTV and DAE are observed. However, the pro-
posed MD offers the best performance among all the
evaluated methods, with quantitative results approach-
ing the ones obtained in the non-noisy Case A.

Table II shows performance metrics for Dynamic-
Speed1 benchmark. Our objective is to be as close as
possible to “Real” values given in the first row, ”Real”
standing here for “non-noisy (simulated)”. It can be seen
that MD-DiagBiRNN is the closest one to the “Real” for
almost all metrics, again leading in estimating speed and
torque.

Figure 6 shows results of denoising for Dynamic-
Speed1 benchmark. Sub-figures (a), (b), (c), and (d) dis-
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Fig. 7: Speed-torque estimator (DiagBiRNN) performance on Dynamic-Speed1 simulated benchmark applied on
non-noisy (Case A) or noisy currents and voltages (without - Case C - or with our proposed meta-denoiser - MD)

Method t2%
(ms)

t95%
(ms)

E f ol
(Hz)

D%
(%)

Ess
(Hz)

∆τmax
(%τnom)

”Real” 44.0 960 -0.02 2.16 0.00 32.7

CASE A 44.1 956 0.01 2.32 0.03 32.8

CASE B 44.2 950 -0.01 2.26 -0.01 32.8
CASE C 44.2 955 0.03 2.39 0.04 32.8

EKF [23] 44.1 952 0.02 2.48 0.04 32.6
WT [16] 44.2 955 0.03 2.37 0.04 32.7

MCTV [20] 44.1 956 0.02 2.34 0.04 32.7

DAE [21] 43.8 950 0.00 2.33 0.02 32.7
MD (Ours) 44.2 958 -0.01 2.23 0.01 32.7

TABLE II: Performance metrics for the predictions per-
formed on simulated Dynamic-Speed1 benchmark

play non-noisy and noisy simulated currents and volt-
ages as well as MD denoised signals. It can be observed
that MD denoised trajectories are close to non-noisy
simulated trajectories, demonstrating the good denoising
performance of MD.

Figure 7 shows speed-torque estimation results. Sub-
figures (a) and (c) show speed and torque prediction
results in Case A (applied to non-noisy simulated), Case
C (applied to noisy simulated), and MD-DiagBiRNN (ap-
plied to MD denoised currents and voltages). For better
evaluation, sub-figures (b) and (d) show the difference
between the generated outputs and non-noisy simulated.
While Case C presents substantial errors, it can be seen
that MD-DiagBiRNN has errors of the same order of
magnitude as in non-noisy Case A.

Table III and Figure 8 show performance metrics and
results of speed-torque estimation for Dynamic-Speed2
benchmark. Similar to Dynamic-Speed1 benchmark it

Method t2%
(ms)

t95%
(ms)

E f ol
(Hz)

D%
(%)

Ess
(Hz)

∆τmax
(%τnom)

”Real” 32.0 492 0.32 3.86 0.00 65.7

CASE A 32.1 588 0.24 5.77 0.05 65.6

CASE B 32.2 596 0.30 6.28 0.18 65.9
CASE C 32.2 604 0.20 7.33 0.11 69.8

EKF [23] 32.2 616 0.19 7.23 0.12 65.8
WT [16] 32.2 604 0.20 7.27 0.12 65.8

MCTV [20] 32.1 600 0.22 6.24 0.07 65.5

DAE [21] 32.9 608 0.19 6.21 0.10 66.3
MD (Ours) 32.1 484 0.26 4.45 0.05 65.9

TABLE III: Performance metrics for the predictions per-
formed on simulated Dynamic-Speed2 benchmark

Method CASE A CASE B CASE C

Quasi-Static1 0.198 0.213 0.227
Quasi-Static2 0.171 0.199 0.204

Method EKF WT MCTV DAE MD (Ours)

Quasi-Static1 0.196 0.201 0.198 0.198 0.197
Quasi-Static2 0.184 0.189 0.181 0.174 0.173

TABLE IV: Maximum absolute error (Hz) for the predic-
tions done on simulated Quasi-Static benchmarks

can be observed that MD-DiagBiRNN performs very
well.

Table IV reports the maximum absolute error between
the model predicted speed and the non-noisy simulated
speed obtained with the different methods on two quasi-
static benchmarks. The lowest error values are reached
for non-noisy Case A and for DiagBiRNN associated
with NN denoisers, namely DAE, and once again MD.
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Fig. 8: Speed-torque estimator (DiagBiRNN) performance on Dynamic-Speed2 simulated benchmark applied on
non-noisy (Case A) or noisy currents and voltages (without - Case C - or with our proposed meta-denoiser - MD)
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Fig. 9: Speed-torque estimator (DiagBiRNN) online performance on RDynamic-Speed1 real data benchmark (on
1.5kW motor), with transfer learning (Case D) or with our proposed meta-denoiser (MD).

B. Real Data Benchmarks

The main requirement for the speed-torque estimator
is that it operates in real-time with minimum possible
delay. The processing time for DiagBiRNN is 40ms. To
avoid adding too much extra delay, it is recommended
that denoisers operate in less than 40ms. This is possible

in the case of EKF, DAE, and MD. WT and MCTV require
larger delay to get acceptable performance, making them
hardly usable for real-time usage. Since EKF and DAE
do not perform as well as MD on simulated benchmarks,
real benchmark experiments are limited to Case D and
MD.
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Fig. 10: Speed-torque estimator (DiagBiRNN) performance on RDynamic-Speed2 real data benchmark, with transfer
learning (Case D) or with our proposed meta-denoiser (MD)

Method Speed ωr Torque τem

MAE SMAPE MAE SMAPE

CASE D 0.92 23.7% 1.12 39.2%

MD (Ours) 0.61 13.7% 1.09 35.2%

TABLE V: Aggregated ML metrics for the predictions
done on all real data benchmarks

Method t2%
(ms)

t95%
(ms)

E f ol
(Hz)

D%
(%)

Ess
(Hz)

∆τmax
(%τnom)

”Motor Real” 31 1118 0.49 1.44 0.00 359.0

CASE D 36 1134 0.83 0.78 0.48 362.7

MD (Ours) 30 1133 0.69 0.52 0.45 355.4

TABLE VI: Performance metrics for the online inference
on RDynamic-Speed1 benchmark for 1.5kW motor.

Table V shows the aggregated ML metrics on the
dynamic and quasi-static real benchmarks obtained by
DiagBiRNN with MD and in Case D. It confirms that
DiagBiRNN-MD performs very well compared to Case
D owing to its denoising capability. Table VI shows elec-
trical engineering metrics for RDynamic-Speed1 bench-
mark. It should be pointed out that, for consistency, elec-
trical engineering metrics for Case D are computed on
smooth reconstruction of Case D predictions. Moreover,
”Motor Real” stands for “non-noisy (reconstructed)”,
which has been obtained manually by doing an a pos-
teriori approximation of the non-noisy trajectory. It can
be seen that electrical engineering metrics of both Case
D and DiagBiRNN-MD predictions are very close to real
data metrics, DiagBiRNN-MD being even a little closer.

Figure 9 shows results from MD and Case D on this
benchmark. Sub-figures (a) and (c) show speed-torque
estimation from Case D and MD-DiagBiRNN, while sub-
figures (b) and (d) show speed and torque prediction
errors with respect to non-noisy (reconstructed) real
speed and torque. Unlike DiagBiRNN-MD predictions,
both speed and torque predictions for Case D are cor-
rupted with a level of noise comparable to the noisy
(measured) real data. This is confirmed by sub-figures (b)
and (d), which show that case D predictions are pretty
good in average but highly varying, while DiagBiRNN-
MD predictions are not only clean but also very close
to the non-noisy (reconstructed) real signals. Figure 10
shows results for RDynamic-Speed2 benchmark which
contains multiple speed inversions in both directions.
It can be observed that the MD-DiagBiRNN performs
significantly better than case D predictions on such a
challenging benchmark.

Method t95%
(ms)

D%
(%)

Ess
(%τnom)

SD
(Hz)

”Motor Real” 370 12.8 -0.4 3.41

CASE D 373 13.2 -0.2 3.56

MD (Ours) 372 12.9 -0.3 3.45

TABLE VII: Performance metrics for the predictions done
on real data RDynamic-Torque benchmark

Figure 11 shows results obtained on RDynamic-Torque
benchmark. Case D predictions have significant amount
of noise, whereas DiagBiRNN-MD prediction error is
close to 0. In Table VII, reporting electrical engineering
metrics for RDynamic-Torque benchmark, it can be seen
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Fig. 11: Speed-torque estimator (DiagBiRNN) performance on RDynamic-Torque real data benchmark, with transfer
learning (Case D) or with our proposed meta-denoiser (MD)
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Fig. 12: Results on RQuasi-Static benchmark.
that, as for the previous benchmark, electrical engi-
neering metrics of both DiagBiRNN-MD and smoothed
Case D predictions are very close to real data metrics.

Figure 12 displays results on RQuasi-Static benchmark
for Case D and DiagBiRNN-MD. As for the dynamic
benchmarks, both methods perform well in average but
with some noticeable noise for Case D prediction. The
difference between prediction with DiagBiRNN-MD and
non-noisy (reconstructed) real speed is never greater
than 0.1Hz, which is very good.

C. Discussion
All the results obtained on the simulated and real

benchmarks show that MD-DiagBiRNN outperforms
other methods in estimating non-noisy speed and torque
from noisy currents and voltages. Results on the four
real data benchmarks show that both Case D and
DiagBiRNN-MD provide significantly better speed and
torque prediction. Case D predicts noisy speed and

torque due to the fact that it is fine-tuned on train set
of real data. DiagBiRNN-MD predicts speed and torque
very close to the ideal (reconstructed) signals owing to
the good denoising performance of the proposed MD
technique. MD outperforms all other methods since it
is not biased to static parts in the input noisy signals.
Other methods perform relatively poorly in dynamic
parts. This justifies the need for MD to be trained to
perform segmentation and denoising simultaneously.

VI. CONCLUSIONS

We have developed a data-driven approach for esti-
mating speed and torque from measured currents and
voltages of an induction motor. This method allows us
to make the bridge between data simulated from a phys-
ical model and real-world ones. We showed however
that standard techniques for learning the underlying
dynamical model are prone to errors in the presence
of measurement noise. To overcome such shortcomings,
we proposed a novel meta-denoiser (MD) method that
removes noise from currents and voltages before feeding
them to our speed-torque estimator (DiagBiRNN). We
showed that the proposed approach performs very well
on real data benchmarks. This neural estimator paves the
way for fault detection algorithms for induction motors
and their applications, by comparing speed and torque
predictions to measured data. An interesting future work
would be to explore the proposed method to estimate
speed and torque using a motor soft starter, for which
access to a precise motor model is more difficult than for
a VSD.
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