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Abstract: This article focuses on heartwood segmentation from cross-section RGB images (see Fig.1). In this context,
we propose a novel attention gate (AG) model for both improving performance and making light convolutional
neural networks (CNNs). Our proposed AG is based on mathematical morphology operators. Our light CNN
is based on the U-Net architecture and called Light U-net (LU-Net). Experimental results show that AGs
consistently improve the prediction performance of LU-Net across different wood cross-section datasets. Our
proposed morphological AG achieves better performance than original U-Net with 10 times less parameters.

1 INTRODUCTION

In this paper, we focus on neural networks (NNs) to
segment heartwood in wood cross-section (CS) im-
ages. There are few publications on raw wood CS
image analysis captured by a RGB camera. CS anal-
ysis of RGB image is relevant to estimate wood qual-
ity. More precisely, the wood quality can be de-
fined by several properties (Barnett and Jeronimidis,
2003) among which: mechanical resistance, dimen-
sional stability, durability and aesthetic.

All of these characteristics are unfortunately not
directly measurable on CS images. However, they
can be estimated by considering intermediate char-
acteristics visible on the images. In this paper, the
characteristic studied is the amount of heartwood (see
Fig.1), which is related to the durability properties of
Douglas-fir wood. In the Fig.1, for a better visual-
ization, only the contour of the heartwood is marked
with the blue line. In addition to a high segmentation
accuracy, the time performance is also an important
criterion for real world applications (both industry or
scientific applications).

For segmentation from CS images, only few meth-
ods have been assessed (Decelle and Jalilian, 2020;
Wimmer et al., 2021). Different convolutional neu-
ral networks (CNNs) are used in (Decelle and Jalil-
ian, 2020) for segmenting the wood logs. They com-
pared different CNNs for such a task on six differ-
ent datasets. (Wimmer et al., 2021) also proposed a
method based on CNNs. They proceed twice a CNN

Figure 1: RGB images of CS with manually delineated
heartwood contour in blue.

to increase performance. None of these studies fo-
cused on heartwood segmentation from CS images.

For the best of our knowledge, there is only one
publication which focuses on heartwood segmenta-
tion on raw CS images. Raatevaara et al. (Raatevaara
et al., 2020) developed a method based on region
growing techniques followed by a post-processing.

In this work, we focus on heartwood segmenta-
tion. We propose a novel attention gate (AG) to eval-
uate CNNs with less parameters. Indeed, NNs can
compute fastly the segmentation which is an impor-
tant criterion in sawmill environment. Moreover, they
have shown their performances in other similar tasks.

2 RELATED WORK

In this section, we recall different techniques: reduc-
ing parameters, attention mechanism and mathemati-
cal morphology for CNNs.



2.1 Reducing Parameters

Increasing the depth of CNNs has been regarded as
an intuitive way to boost performance of the networks
for different learning tasks. However, for some appli-
cations, a large CNN is not necessarily the one offer-
ing the best performance, in particular when the avail-
able dataset of training is limited. In this paper, we ad-
dress the specific problem of heartwood segmentation
with a small dataset, having a CNN with many param-
eters seems not relevant and could lead to redundancy
in the features learned, which are not necessary. Many
model compression techniques have been proposed to
reduce parameters, delete redundancy, and/or compu-
tation time once the training is done. Moreover, hav-
ing a network with a great amount of parameters in-
creases the risk of overfitting. This is especially true
when the amount of data is limited.

Network quantization is a technique for reducing
parameters. It consists in quantizing filter kernels in
convolution layers and weights in fully connected lay-
ers (Liang et al., 2021). Other method is knowledge
distillation which focuses on transferring knowledge
from a large model to a smaller one (Gou et al., 2021).
Pruning technique works by removing weights whose
contribution to the network performance is not signif-
icant (Luo et al., 2017).

Another approach is to design new layer. In this
article, we focuses on the following one. Depth-
wise separable convolutional (DSC) layer is similar
to a convolution with less parameters. DSC consists
of first performing a depthwise spatial convolution
which acts on each input channel separately followed
by a pointwise convolution which mixes the resulting
output channels. They have been used for weather
forecasting in order to obtain a lighter network (Tre-
bing et al., 2021).

2.2 Attention Mechanism

Reducing parameters can lead to poorer performance.
Adding attention gate (AG) compensates for the de-
crease in performance. Attention is a key-role in hu-
man perception and computer vision tasks. Indeed,
AGs can allocate the available resources to selectively
focus on processing a particular part instead of the
whole scene. Generally, there are two attention mech-
anisms: spatial and channel attentions.

Multiple AGs are used to address a known weak-
ness in convolution. Hu et al. (Hu et al., 2018)
propose the squeeze-and-excitation module and use
global average-pooled features to compute channel-
wise attention. Woo et al. (Woo et al., 2018) combine
the spatial and channel attentions to propose a convo-

lutional block attention module (CBAM). Their mod-
ule sequentially infers attention maps along two sep-
arate paths, channel and spatial, then attention maps
are multiplied to the input feature map for adaptive
feature refinement, which increases the accuracy of
image recognition. Oktay et al. (Oktay et al., 2018)
develop a new spatial attention module (named AAG)
by adding lower-level features even though it is com-
putationally more expensive than other AGs. Yang et
al. (Yang et al., 2020) integrate channel attention and
wavelet transform so that output feature maps contain
frequency features. Zhu et al. (Zhu et al., 2021) high-
light induced limitations by attentional activations-
based models when spatial and channel features are
separated. They develop a new attention module to
address these limitations. Finally, Misra et al. (Misra
et al., 2021) proposed to rotate an input tensor in or-
der to capture cross- dimension interaction by using
a three-branch structure. For that, the triplet attention
module builds inter-dimensional dependencies by the
rotation operation followed by residual transforma-
tions and encodes inter-channel and spatial informa-
tion. Their module added a negligible computational
time. We will compare our proposed AG with CBAM
module, AAG module and Triplet module.

2.3 Mathematical Morphology

AGs use operators that highlight important features.
Mathematical Morphology (MM) applies specific op-
erations to images to recover or filter out different
structures. It has led to important successes in many
computer vision tasks, such as filtering, segmentation,
feature extraction, and so on. That’s the reason why
we employ MM in our AG.

Mondal et al. (Mondal et al., 2019) use morpho-
logical layer in order to emphasise or remove differ-
ent structures of an image. They apply their method
for de-raining images. Mellouli et al. (Mellouli et al.,
2019) incorporate morphological operations in convo-
lutional layers in order to generate enhanced feature
maps. They apply the method to digit recognition.
Franchi et al. (Franchi et al., 2020) propose to replace
the standard max-pooling with a learned morphologi-
cal pooling. Their results prove to be experimentally
beneficial on MNIST dataset.

3 PROPOSED METHOD

In this section we remind MM operators, then we de-
scribe our AG. Afterwards, we present the proposed
light U-Net, i.e. with few parameters.



Figure 2: Diagram of proposed Morphological Attention Gate

3.1 Morphological Layer

Basic MM operators are dilation and erosion. Other
morphological filtering can be defined by a combi-
nation of these operators. In this work, we borrow
the morphological layers introduced in (Mondal et al.,
2019).

Let I be the input gray scale image. Dilation ⊕
and erosion 	 operations on a pixel (x,y) are defined
as follows :

(I⊕Wd)(x,y) = max
i∈U, j∈V

(I(x− i,y− j)+Wd(i, j))

(1)

(I	We)(x,y) = min
i∈U, j∈V

(I(x− i,y− j)+We(i, j))

(2)

where Wd ∈Ra×b, We ∈Ra×b, U = {1,2, . . . ,a},
V = {1,2, . . . ,b} and a,b ∈ N. Both Wd and We are
respectively dilation and erosion kernel of size a×b.

3.2 Morphological Attention Gate
(MAG)

Our proposed AG focuses on spatial information but
not channel AG. Indeed, heartwood generally is of the
same colour that varies according to the species. For
instance, douglas fir heartwood is in red tones. Then,
AG for channel seems not very relevant.

Given an input feature map F ∈ RH×W×C, where
H,W and C are integers, our morphological attention
gate (MAG) first infers a 2D spatial attention map
F′ ∈ RH×W×1 as illustrated in Fig.2. It results that
F′ is equal to:

F′ = Ws ∗F
where Ws contains the weights of a channel-wise 1×
1 convolution and ∗ denotes the convolution.

We have considered two paths inside the AG. The
first one uses k ∈ N dilatation layers, and the second
one uses k erosion layers. We have considered an ero-
sion (or dilation) sequence using different weights in
order to remove noise or enhance information. Mul-
tiple dilation and erosion maps are useful because it
may have noise in the input features that could not be
remove by a single operation.

The overall dilatation path can be summarised as:

∀i ∈ J0, . . . ,k−1K,
{

D0 = F′
Di = (Di−1⊕Wi

d)+F′
(3)

The spatial attention map F′ is also passed in an
erosion path, given an eroded map Ek−1, where the
dilation layer ⊕ is replaced by an erosion layer 	.

Since we can not know which path is more effec-
tive for noise removal in a particular situation, we fur-
ther combine both to a single feature map using by a
pixel-wise addition followed by a sigmoid activation
σ. It results a 2D map α. Then, the refined intermedi-
ary feature α is pixel-wise multiplicate� by the input
features F channel by channel:

F′′ = σ(Dk−1 +Ek−1)︸ ︷︷ ︸
α

�F

3.3 Network Architecture

In this section, we detail our light CNN based on
U-Net (Ronneberger et al., 2015). U-Net has been
widely used on small datasets and provides fine per-
formance.

3.3.1 U-Net

U-Net is an encoder-decoder structure. The encoder
part applies twice a convolution, followed by a batch
normalization and an activation function (ReLU).
Then, a max-pooling layer downsamples the image



Figure 3: The proposed Light U-Net architecture

size and doubles the number of features map. The de-
coder part concatenates features from the encoder part
with an upsampled version of lower features. As in
the encoder part, the concatenation is passed in a dou-
ble convolution, a batch normalization and a ReLU
activation. Finally, a 1× 1 convolution is applied to
one output image.

3.3.2 Light U-Net (LU-Net)

Instead of performing convolution twice, we have re-
duced to one time. We replace each convolutional
layer by DSC and change ReLU activation to Leaky
ReLU. Furthermore, shakeout, a generalized dropout
(Kang et al., 2018), is added to each convolutional
layer. Max-pooling are used for downsampling fea-
tures and nearest interpolation are applied for upsam-
pling. The last layer is kept. LU-Net’s architecture is
shown in the Fig.3

3.3.3 Other architectures

For comparison, we trained other U-Net architectures
similar to LU-Net but with different AGs. We com-
pare our module with CBAM (Woo et al., 2018), AAG
(Oktay et al., 2018) and Triplet module (Misra et al.,
2021). In addition, we trained the standard U-Net ar-
chitecture (shakeout included). Each model has 8 fea-
tures map for the first convolution.

Table 1 highlights a comparison of the models’
parameters. The standard U-Net architecture has pa-
rameters that increase quadratically with the number
of filters in the first layer. As it can be seen, our pro-
posed architecture has significantly fewer parameters
than the latter.

4 EXPERIMENTAL RESULTS

In this section, we describe the used datasets and then
we provide implementation details. Afterwards, we
compare the proposed method with the four other
models1.

4.1 Dataset

For the experimentations, two datasets (logyard and
sawmill) of wood log ends CS of Douglas fir are
used. These two datasets are from (Longuetaud et al.,
2022). Since removing the background in order to
have only the CS can be done automatically (Schraml
and Uhl, 2014), (Decelle and Jalilian, 2020), (Wim-
mer et al., 2021), we decide to keep only the CS on
the image. Images have been segmented manually to
remove background. Ground truths have been done
manually. The first one, called logyard, consists of
208 images. The second dataset, called sawmill, con-
sists of 150 images of the same logs. Figure 4 shows
five examples of the same logs in both datasets.

4.2 Training

All models were trained for a maximum of 100
epochs. The input size is fixed at 304×304. We used
data augmentation each time. Random deformations
are proceeded: scaling, rotation, vertical and horizon-
tal shift, zooming and shearing. The data augmen-
tation is done for each batch passed to the network.
The augmentation is also done on the validation set.

1Source code: https://gitlab.com/Ryukhaan/treetrace/-/
tree/master/heartwood/deeplearning

https://gitlab.com/Ryukhaan/treetrace/-/tree/master/heartwood/deeplearning
https://gitlab.com/Ryukhaan/treetrace/-/tree/master/heartwood/deeplearning


Model Parameters Relative Size F1 F2 F3 F4 F5 F6 F7 F8 Mean Std

lo
gy

ar
d

U-Net 378,321 1 × 0.931 0.911 0.932 0.926 0.915 0.900 0.933 0.925 0.921 0.011
LU-Net 33,428 0.08 × 0.883 0.906 0.926 0.881 0.927 0.926 0.888 0.920 0.907 0.019
LU-Net + AAG 99,672 0.26 × 0.903 0.930 0.939 0.911 0.906 0.942 0.936 0.911 0.922 0.015
LU-Net + CBAM 44,940 0.12 × 0.897 0.913 0.949 0.915 0.899 0.941 0.904 0.916 0.917 0.018
LU-Net + Triplet 34,652 0,09 × 0.925 0.926 0.908 0.924 0.874 0.923 0.911 0.929 0.915 0.018
LU-Net + MAG 34,332 0.09 × 0.936 0.923 0.924 0.925 0.939 0.952 0.934 0.907 0.930 0.013

sa
w

m
ill

U-Net 378,321 1 × 0.892 0.882 0.907 0.943 0.790 0.699 0.888 0.894 0.862 0.074
LU-Net 33,428 0.08 × 0.932 0.928 0.926 0.931 0.890 0.931 0.929 0.939 0.926 0.014
LU-Net + AAG 99,672 0.26 × 0.934 0.925 0.920 0.929 0.931 0.917 0.941 0.938 0.929 0.008
LU-Net + CBAM 44,940 0.12 × 0.932 0.932 0.916 0.931 0.928 0.932 0.945 0.920 0.930 0.008
LU-Net + Triplet 34,652 0,09 × 0.923 0.930 0.934 0.866 0.923 0.932 0.931 0.933 0.923 0.021
LU-Net + MAG 34,332 0.09 × 0.941 0.925 0.921 0.946 0.926 0.928 0.942 0.940 0.934 0.009

Table 1: Cross validation MCC of the models on both datasets for the considered 8 folds.

Figure 4: On the first row, images from logyard dataset. On the second row, images from sawmill dataset.

The initial learning rate was set to 0.001 and Adam
optimizer was used with default values (β1 = 0.9,
β2 = 0.999 and ε = 1e−7). Shakeout’s parameters
are τ = 0.1 and c = 0.1.

The training was done on a single NVidia 2070
Super with 8Gb of VRAM. The used loss function
is the Matthews coefficient correlation (MCC) intro-
duced in (Abhishek and Hamarneh, 2021):

LMCC = 1−
∑ ŷiyi−

∑ ŷi ∑yi

N√
F

F = ∑ ŷiyi−
∑ ŷi
(

∑yi
)2

N
−
(

∑ ŷi
)2

∑yi

N
+
(

∑ ŷi ∑yi

N

)2

where N is the number of samples, yi is the value of
the ground truth and ŷi is the value of the prediction.
The output is a mask representing the area of heart-
wood. This loss tackles the class imbalance problem.
It has been shown to improve performance.

4.3 Results

Experimental results have been proceeded using a 8-
fold cross validation on both datasets. We take 6 fold
for the training set (respectively 156 images for log-
yard dataset and 113 images for sawmill dataset), one
for the validation (resp. 26 images and 19 images)
and one for testing (resp. 26 images and 18 images).

The best results have been obtained with k = 3
(see Eq.3) and kernel of size 7× 7 for both erosion
and dilation layers. In addition to the MCC loss, we
calculate the MCC score after thresholding the pre-
dicted image:

MCC=
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

where TP is True Positive, TN is True Negative, FP is
False Positive and FN is False Negative.

Table 1 shows the MCC score for each fold of
the cross validation for both datasets. For logyard
dataset, LU-Net is less accurate than the original one.
However, when AGs are added, LU-Net shows bet-
ter results. U-Net is more stable than other models, it



(a)

(b) (c) U-Net (d) LU-Net

(e) AAG (f) CBAM (g) Triplet (h) Our
Figure 5: One example of an image from logyard dataset. (a) Original image. (b) Input image with removed background and
contour of the ground truth. (c) Output from U-Net. (d) Output from LU-Net. (e)-(g) Output from LU-Net with additional
attention gate : (e) AAG (Oktay et al., 2018), (f) CBAM (Woo et al., 2018) and (g) Triplet (Misra et al., 2021). (h) LU-Net
with our proposed attention gate.

(a)

(b) (c) U-Net (d) LU-Net

(e) AAG (f) CBAM (g) Triplet (h) Our
Figure 6: One example of an image from sawmill dataset. (a) Original image. (b) Input image with removed background and
contour of the ground truth. (c) Output from U-Net. (d) Output from LU-Net. (e)-(g) Output from LU-Net with attention
gate : (e) AAG (Oktay et al., 2018), (f) CBAM (Woo et al., 2018) and (g) Triplet (Misra et al., 2021). (h) LU-Net with our
proposed attention gate.



U-Net LU-Net +AAG +CBAM +Triplet +MAG

188 67 76 97 81 89

Table 2: Mean computation time (in ms) to proceed one
image for each network.

provided the lowest standard deviation over the folds.
Our proposed AG gives the best average score and
outperforms on 3 of the folds.

For the sawmill dataset, we observe that U-Net
gives low performance. LU-Net outperforms U-Net.
A possible explanation for these results is that images
are of very low contrast. Furthermore, in RGB im-
ages each channel is correlated to each other. As a
result, convolution filters fail to highlight the heart-
wood. Instead, the DSCs applies a convolution filter
on each channel then merge them by a pointwise op-
erator. They act like a colour deconvolution (Ruifrok
et al., 2001).

Fig.5 and Fig.6 highlight the outputs provided by
the different networks for the same image in each
dataset (from the testing set). For a better visualisa-
tion, only the countour of the heartwood is shown. In
the Fig.5 we see that U-Net provides a good segmen-
tation. As excepted, the lighted one is less precise.
Adding an attention module increasing the precision
of the light U-Net, as execpted. However, AAG un-
derestimates the heartwood in this case, CBAM over-
estimates, Triplet proposes an unconnex heartwood (a
small part of sapwood is considered as heartwood).
But our proposed module performs as good as U-Net
and even better.

In the Fig.6, the heartwood is not as coloured as in
the Fig.5. We can see U-Net has considered a part of
the background as the heartwood. LU-Net is clearly
worse with many holes inside the heartwood, despite
that the heartwood in the background has been re-
moved. AAG is goo. CBAM performs as well as
LU-Net. Triplet module is the worst output for this
image, the center of the heartwood is missing. Finally
our module is as good as AAG module, but our mod-
ule consider a part of the sapwood as heartwood.

Table 2 shows the mean computation time for each
network. The first thing we notice is that the light ver-
sion of U-Net (LU-Net) is faster. It’s expected since
the convolution has been simplified (by using seper-
able depthwise convolution instead). On the con-
trary, the computation time increases when an atten-
tion module is added. The LU-Net with CBAM atten-
tion takes the longest execution time. Our attention
module has the same time as the classical version of
U-Net. In the end, taking into account the previous
results, our attention module offers better results, for
a minimal addition of parameters and a very small in-
crease in computation time.

5 CONCLUSION

This paper introduced a light U-Net architecture for
single-class image segmentation. Besides, we intro-
duced an attention gate based on morphological op-
erators (erosion and dilatation). The key is that our
spatial morphological attention gate performs better
than some of other attention gates used in a light net-
work. Lightening the network leads to a significant
reduction in the number of its parameters. Adding an
attention gate slightly increases the number of param-
eters but allows to compensate the less good perfor-
mances of such a light network. Erosion and dilata-
tion are time-consuming operations. Thus, our AG is
more time-consuming than usual convolution, but it
marginally increases the number of network parame-
ters. However, it provides the best results for our two
datasets for heartwood segmentation of Douglas fir.
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