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Publique (IPLESP, UMRS 1136), Paris, France, 5 Department of Infectious Disease Epidemiology, Centre

for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine,

London, United Kingdom, 6 CIRAD, UMR ASTRE, Rabat, Morocco, 7 IAV Hassan II, UR MIMC, Rabat,

Morocco, 8 CIRAD, UMR ASTRE, Antananarivo, Madagascar, 9 Institut Pasteur de Madagascar,

Epidemiology and Clinical Research Unit, Antananarivo, Madagascar

☯ These authors contributed equally to this work.

¤ Current address: Department of Biology, New Mexico State University, Las Cruces, New Mexico, United

States of America

* helene.cecilia3@gmail.com (HC); benoit.durand@anses.fr (BD)

Abstract

Rift Valley fever (RVF) is a zoonotic arbovirosis which has been reported across Africa

including the northernmost edge, South West Indian Ocean islands, and the Arabian Penin-

sula. The virus is responsible for high abortion rates and mortality in young ruminants, with

economic impacts in affected countries. To date, RVF epidemiological mechanisms are not

fully understood, due to the multiplicity of implicated vertebrate hosts, vectors, and ecosys-

tems. In this context, mathematical models are useful tools to develop our understanding of

complex systems, and mechanistic models are particularly suited to data-scarce settings.

Here, we performed a systematic review of mechanistic models studying RVF, to explore

their diversity and their contribution to the understanding of this disease epidemiology.

Researching Pubmed and Scopus databases (October 2021), we eventually selected 48

papers, presenting overall 49 different models with numerical application to RVF. We cate-

gorized models as theoretical, applied, or grey, depending on whether they represented a

specific geographical context or not, and whether they relied on an extensive use of data.

We discussed their contributions to the understanding of RVF epidemiology, and highlighted

that theoretical and applied models are used differently yet meet common objectives.

Through the examination of model features, we identified research questions left unexplored

across scales, such as the role of animal mobility, as well as the relative contributions of

host and vector species to transmission. Importantly, we noted a substantial lack of justifica-

tion when choosing a functional form for the force of infection. Overall, we showed a great

diversity in RVF models, leading to important progress in our comprehension of epidemio-

logical mechanisms. To go further, data gaps must be filled, and modelers need to improve

their code accessibility.
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Author summary

Rift Valley fever (RVF) affects humans and livestock across Africa, South West Indian Ocean

islands, and the Arabian Peninsula. This disease is one of the World Health Organization pri-

orities and is caused by a virus which is transmitted by mosquitoes (mainly of Aedes and

Culex spp. genera), but also by direct contact from livestock to humans. Mathematical models

have been used in the last 20 years to disentangle RVF virus transmission dynamics. These

models can further improve our understanding of processes driving outbreaks, test the effi-

ciency of control strategies, or even anticipate possible emergence. Provided with detailed

datasets, models can tailor their conclusions to specific geographical contexts and aid in deci-

sion-making in the field. This review provides a general overview of mathematical models

developed to study RVF virus transmission dynamics. We describe their main results and

methodological choices, and identify hurdles to be lifted. To offer innovative animal and pub-

lic health value, we recommend that future models focus on the relative contribution of host

and vector species to transmission, and the role of animal mobility.

Introduction

Rift Valley fever (RVF) is a viral, vector-borne, zoonotic disease, first identified in Kenya in

1930 [1]. It has since then been reported across the African continent, in the South West

Indian Ocean islands, and in the Arabian Peninsula. Transmission of Rift Valley fever virus

(RVFV) mainly involves Aedes and Culex spp. mosquitoes [2], some of which are present in

Europe and North America [3–10], but other genera may also be potential vectors [11–14]. In

livestock, abortion storms and death can strongly impact the local economy [15,16]. Human

infections arise mostly following contact with tissues of infected animals but is also vector-

mediated. The clinical spectrum in humans is broad, with a minority of deadly cases [17,18].

About 100 years after its first description, RVF outbreaks are still difficult to anticipate and

contain, and the drivers of RVF endemicity are not clearly understood. The multiplicity of ver-

tebrate host and mosquito species involved, the diversity of affected ecosystems, each with

their own environmental dynamics, as well as the impact of human activities, make this com-

plex system hard to disentangle [19]. The limited use of available vaccines [20], coupled with

the overall social vulnerability of affected regions [21,22], are also major obstacles. The pasto-

ralist tradition, which constitutes the main production system in African drylands [23], can

induce delayed access to health care and hinder the traceability of animal mobility. This, in

turn, impacts the quality and the availability of epidemiological data, which can be quite het-

erogeneous [24–26]. As a result, it is often difficult to generalize local findings, unless a mecha-

nistic understanding of epidemiological processes is acquired.

Mathematical models are useful to project epidemiological scenarios, including control

strategies. This can be done at large scales (temporal [27], spatial [28], or demographic [28]).

Powerful methods can now estimate the most likely drivers of observed outbreak patterns

[29,30], or point out key processes needing further field or laboratory investigations [31].

Phenomenological models, be they mathematical or statistical, aim at extracting patterns and

information from data, with no focus on underlying mechanisms responsible for such

observed patterns [32]. By contrast, mechanistic (sometimes called dynamical) models explic-

itly include processes governing the system of interest [32]. Consequently, mechanistic models

can adapt to data-scarce settings by exploring a complex system conceptually, in a hypothesis-

driven fashion [33], e.g., to see what ranges of behavior can emerge from first principles, as is

routinely done in ecology [34]. This flexibility gives rise to an interesting variability in the way
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epidemiological mechanistic models are designed and used, spanning a broad spectrum from

highly theoretical to closely mimicking field situations [35].

Two existing reviews have focused on models developed to study RVF. The first one, by

Métras et al. (2011) [36], was a narrative review presenting modeling tools used to measure or

model the risk of RVF occurrence in animals. At that time, only three mechanistic models

were available and included in the study. The second one, by Danzetta et al. (2016) [37], was a

systematic review constrained to compartmental models which included 24 articles. The

authors used RVF as a case study to present how the use of compartmental models can be help-

ful to investigate various aspects of vector-borne disease transmission. A complementary

paper, by Reiner et al. (2013) [38], reviewed 40 years of mathematical models of mosquito-

borne pathogen transmission, with a thorough and comprehensive reading grid. It did how-

ever only include three models on RVF.

To update the state-of-the-art on mechanistic models of RVFV transmission, we conducted

a systematic review. Our main goal was to identify knowledge gaps left unaddressed by models,

and therefore identify future research avenues. To achieve this, we categorized models on a

spectrum from theoretical to applied (the middle-ground category being called ‘grey’) and

explored these categories throughout the paper to identify what they have in common and

how they differ. First, we explored their inheritance connections and assessed whether these

categories inspired each other. We then detailed their contribution to the understanding of

RVF epidemiology. Lastly, we described the diversity of methodological choices and assump-

tions made in these models. In particular, we dedicated a whole section to present the different

functional forms used by models for the force of infection. We detailed the underlying

assumptions on host-vector interactions that these functional forms imply, as we noticed a

lack of justification regarding this choice in reviewed papers, even though host-vector interac-

tions represent a key factor in RVFV transmission. In that regard, we therefore insist that key

results presented in this review should be interpreted with this methodological choice in mind.

Material and methods

Search strategy

This review was conducted according to the Preferred Reporting Items for Systematic reviews

and Meta-Analyses (PRISMA) guidelines [39,40]. The research was performed in Scopus and

Pubmed databases on 12 October 2021. No restriction on publication date was considered.

The following Boolean query was applied in both databases: (rift AND valley AND fever) AND

(mathematical OR epidem� OR compartment� OR sir OR seir OR metapopulation OR deter-
ministic OR stochastic OR mechanistic OR dynamic�) AND (model�).

This query was used in the “title, abstract, and keywords”, and “title and abstract” fields for

Scopus and PubMed, respectively.

Inclusion and exclusion criteria

After removal of duplicates, studies were included in three steps: title screening, abstract

screening, and full text reading. In the first and second steps, records were selected if they

appeared to present a RVF model using a mechanistic approach for at least one part of the

model. Exclusion criteria were: irrelevant topic, reviews, case reports, serological studies, and

statistical studies. Records selected in the first and second steps went to a full text screening of

the corresponding report, using a combination of the first set of exclusion criteria along with

the following additional ones: non-mechanistic models, models representing mosquitoes only,

incomplete model description, and theoretical papers without any RVF numerical application.

Discussion among authors occurred in case of doubt to reach a consensus on final inclusions.
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Screening

We designed a reading grid (S1 Text), partially inspired by the one used in Reiner et al. (2013)

[38], to collect information from the studies. The context of the study (e.g., location, presence

of data), model components (e.g., host and vector species, infection states), and assumptions

(e.g., vertical transmission in vectors), type of outputs (e.g., R0, parameter estimations, sensitiv-

ity analysis), and main results were all recorded. Two authors took charge of the systematic

reading. To cross-validate the use of the grid, three studies were read by both authors and spe-

cific topics were regularly discussed to make sure a consensus was reached.

Model typology and inheritance connections

We defined three model categories: theoretical, applied, and grey models. Theoretical models

do not use any data and are not intended to represent any specific geographical location.

Applied models represent a specific geographical context and use relevant data to tailor model

development to their case study or to validate model outputs. Such data can be of several types,

as environmental or demographic data, and not necessarily epidemiological in the sense of

seroprevalence or case reports. Grey models are those which do not fit into these well-defined

categories. In some cases, authors do not use data but demonstrate a strong will to adapt their

models to a specific geographical or epidemiological context. In other cases, despite the use of

data, the model developed is still very conceptual and lacks realism in its key features. In such

cases, the model analysis rarely deepens the epidemiological understanding of the pathosys-

tem. We recorded inheritance connections between studies: if a model stated being adapted

from another model, we defined the latter as a parent model.

Results and discussion

Study selection

A total of 372 records were identified from the two databases. After removal of duplicates, 248

records were screened at the title level, 146 at the abstract level, and 69 reports were fully read.

Twenty-one reports were excluded during full-text reading: three were excluded due to incom-

plete model description [41–43], three modeled mosquito population only [44–46], ten were

not mechanistic models [47–56], three were review papers [57–59] and two were theoretical

without application to RVF [60,61]. Eventually, 49 studies were selected for the present review

(Fig 1). Among those, 26 were not present in the review by Danzetta et al. (2016) [37].

Model typology and inheritance connections

We identified 18 applied models (37%), 18 theoretical models (37%), and 13 grey models

(26%, Table 1). Twenty-one models (43%) had a parent model within the list of presently

reviewed studies, for a total of twenty-seven models in the inspirational network (Fig 2). In 15

cases (71%), a model and its parent shared at least one author. In 14 cases, a models and its

parent belonged to the same category (6 applied, 1 grey, 7 theoretical). The model by Gaff et al.

(2007) [62] is a clear example of a model laying the groundwork for future model develop-

ments. It was first modified to explore several control strategies in Gaff et al. (2011) [63] (theo-

retical). Adongo et al. (2013) [64] (theoretical) then elaborated on Gaff et al. (2011) [63] to

explore sophisticated vaccination schemes. Besides, Gaff et al. (2007) [62] model was spatia-

lized in Niu et al. (2012) [65] (theoretical). In other cases, theoretical and grey studies provided

a basis for the construction of more applied models in further work. One grey model [66] was

the parent of an applied model [67]. In four cases, a theoretical model ([62] twice, [68], [69])
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was a parent of a grey model ([70], [71], [72], and [66] respectively). Lastly, Gaff et al. (2007)

[62], a theoretical model, was the parent of two applied models [73,74].

Changes in model features can also give an overview of the continuity between a model

and its parent. Métras et al. (2020) [77] added a human compartment to the model of

Fig 1. PRISMA flow diagram representing the selection process. Record: title and/or abstract of a report indexed in a database. Report: document supplying

information about a study. Study: An experiment, corresponding here to models [39]. � One report included two studies.

https://doi.org/10.1371/journal.pntd.0010339.g001
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Métras et al. (2017) [78] and ran the parameter estimation algorithm on a new outbreak

dataset. One of the two models described in EFSA AHAW Panel et al. (2020)[79] then made a

stochastic model based on Métras et al. (2017, 2020) [77,78]. Tennant et al. (2021) [80] trans-

formed the single-patch model of Métras et al. (2017) in Mayotte into a metapopulation model

for the Comoros archipelago. Taylor et al. (2016) [81] used the model by Leedale et al. (2016)

[82] set in Kenya and Tanzania to explore a new research question, i.e., to anticipate the effect

of climate change in East African Community. Xiao et al. (2015) [83] modified the model by

Gao et al. (2013) [84] to include seasonality through time-varying parameters.

Contribution to the understanding of RVF epidemiology

Objective of the modeling study. To broadly describe the contribution of models to the

study of RVF epidemiology, three main scientific objectives were identified (Table 1): explor-

ing epidemiological mechanisms (‘understand’, n = 38), examining consequences of hypothet-

ical outbreaks (‘anticipate’, n = 4), and assessing control strategies (‘control’, n = 7). In the

present section, we focus on key features identified per objective.

The most common primary scientific objective of models was to understand epidemiologi-

cal processes, in all model categories (from 72% of applied models to 79% of grey models,

Table 1, Fig 3). Although in 11 cases, those models also aimed to anticipate or control

Fig 2. Inspirational network of models. Nodes are labeled with the reference of the associated studies (year abbreviated), shaped by model

category, and colored by the functional form of the force of infection (FR: reservoir frequency-dependent, FI: infectious frequency-dependent,

MA: mass action, NA: not applicable (models with no explicit vector compartments); see section on Force of infection and Box 1 for details). An

edge between two nodes represents a model declaring the other as its parent model, as defined in the main text. Twenty-two models are not shown

in this plot as they did not declare a parent model within the list of presently reviewed studies.�[75]. �� [76].

https://doi.org/10.1371/journal.pntd.0010339.g002

PLOS NEGLECTED TROPICAL DISEASES Mechanistic models of Rift Valley fever virus transmission

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010339 November 18, 2022 9 / 32

https://doi.org/10.1371/journal.pntd.0010339.g002
https://doi.org/10.1371/journal.pntd.0010339


outbreaks in a secondary part [62,77,78,80,86–89,95,98,100]. In addition, in 30% of cases,

model development in itself seemed to be a leading objective of the study. In such cases, con-

tributing to RVF epidemiology was as important as contributing methodologically to RVF

mechanistic modeling, by including for the first time a given compartment, parameter, or by

developing a method to integrate data.

An interesting trend is the evolution of the objectives of modeling papers over the years,

which increasingly include the control and anticipation of RVF outbreaks (15/26 studies in

2016-present, 7/23 in 2004–2015). Research on RVF, through mathematical modeling and

other methods, has deeply enhanced our understanding of underlying epidemiological mecha-

nisms, which now allows models to focus more on operational aspects. However, some papers

did not formulate a precise research question and consequently did not tailor their model to a

specific set of hypotheses or scenarios to test. Theoretical models have helped to broadly

explore the pathosystem behavior when dealing with a lot of uncertainty, but such papers

often lack clarity. A difficulty for theoretical papers is to convey how mathematical analysis

can be helpful to field practitioners down the line [110]. Regarding applied and grey models,

their specificity often relied on the geographical application and the dataset they used, rather

than on a focused research question.

Main outputs. The main output of a model, holding the key message of the studies, could

pertain to one of four main categories (Table 1): i) parameter estimation (n = 8), ii) risk maps

(n = 7), iii) comparison of scenarios, defined as a small set of simulations with specific parame-

ters varied (or processes turned off) across a small set of values (n = 25), and iv) sensitivity

analysis, where a large subset (if not all) of parameters are varied across a large set of values

(e.g., using sampling design to generate them), usually to produce an index quantifying the

impact of each parameter on selected model outputs (n = 7). In two additional cases, the main

results relied on a deep analysis of the mathematical properties of the system (e.g., van Kampen

system-size expansion [98], Lyapunov exponent, Poincaré map [107]). A given paper could

have produced several of these outputs but we tried to identify, with an inevitable part of sub-

jectivity, the one standing out as the main output.

The main model output varied according to the model category and their primary objective

(Table 1, Fig 3). Scenario comparison was the only main output used by all model categories

Fig 3. Association between the model category, the primary objective of the study, and the main type of output chosen to illustrate the results. This figure

excludes two models for which the main output consisted of a deep analysis of the mathematical properties of the system (Table 1).

https://doi.org/10.1371/journal.pntd.0010339.g003
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(Fig 3). Indeed, this type of analysis is flexible and can focus on a specific hypothesis and its

impact on the system’s behavior. Risk maps were only produced as a main output by applied

models, and was the most common output for models with the aim to anticipate (Fig 3). Sensi-

tivity analyses were mostly used by theoretical models as a main output (5/7), and never as

such by applied models (Fig 3, 3/10 by grey models). Parameter estimation was mostly per-

formed by applied models (6/8), and not at all by theoretical models (Fig 3, 2/8 by grey mod-

els). By nature, sensitivity analyses and parameter estimation are primarily done to understand

the system better. Here, we highlight that theoretical and applied models can use different

tools to contribute to a common objective. In three cases, parameter estimations were used

further in the same model to help anticipate [78] or control [77,80] outbreaks, as a secondary

objective. Fifty-five percent of models provided an estimation of a type of reproduction num-

ber, e.g., the basic reproduction number R0, the effective reproduction number Re, the seasonal

reproduction number Rst (phenomenological relationship estimated between environmental

parameters and transmission rate), or the Floquet ratio RT (the expected number of cases

caused by a primary case after one complete cycle of seasons [111]). Most of these reproduc-

tion numbers were obtained analytically (25/27). These estimates were highly variable and are

therefore not reported here.

Key questions. Mechanistic models can help gauge the importance of hardly observable

epidemiological processes, such as vertical transmission in vectors. This transmission route

was included in around 50% of models, all having ‘understand’ as a main objective of the

study. This seems representative of current knowledge on the importance of this process in the

field. Indeed, evidence is limited regarding its potential role in the interepidemic maintenance

of the virus [112]. Five models centered their research question on the quantification of this

mechanism, in all categories (2 theoretical, 2 grey, 1 applied). Chitnis et al. (2013) [69] (theo-

retical) showed that while the vertical transmission rate does not impact R0, it can contribute

significantly to inter-epidemic persistence. Pedro et al. (2016) [75] (theoretical) estimated a lin-

ear and significant effect of vertical transmission on R0 and vector eradication effort, although

this effect became substantial only when vertical transmission rate was above 20% (percentage

of infected mosquitoes’ progeny which are infected). Such a rate seems much higher than what

has been observed experimentally [113,114]. Manore & Beechler (2015) [66] (grey) focused on

inter-epidemic activity in Kruger National Park (South Africa) and estimated that realistic ver-

tical transmission rates should be combined with the presence of alternate hosts to allow RVF

persistence. Lo Iacono et al. (2018) [93] (grey) showed that vertical transmission of RVFV in

Aedes spp. was not a prerequisite for RVF persistence over time in Kenya. Durand et al. (2020)

[91] (applied) concluded that vertical transmission could not be ruled out but nomadic herd

movements were sufficient to explain the enzootic circulation of RVFV in Senegal. The incon-

sistent conclusions from those models might indicate a spatially and temporally heterogeneous

role of vertical transmission in RVFV maintenance. Moreover, most models have considered a

uniform vertical transmission rate. However, it is more likely that the percentage of infected

progeny may vary depending on individuals. For instance, it has been evidenced in Aedes dor-
salis the possible existence of ’stabilized infections’ for the California encephalitis virus [115],

i.e., a very small percent of mosquitoes are able to infect virtually 100% of their progeny, so

that infection in mosquitoes is able to persist over several generations. Models could be used to

explore this scenario, as the same mechanism has been suggested for RVFV [113].

The importance of animal movements in RVFV spread and persistence is another key ques-

tion explored by included studies. Theoretical models show that local and distant spread of the

virus are positively correlated to animal movement speed and flow size [83,89], but complex

relationships exist in case of heterogeneous movements and livestock death rates across the

network [105]. Spatial spread can also be limited by physical barriers to livestock migration

PLOS NEGLECTED TROPICAL DISEASES Mechanistic models of Rift Valley fever virus transmission

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010339 November 18, 2022 11 / 32

https://doi.org/10.1371/journal.pntd.0010339


[65]. The role of animal movements in RVFV spread is highlighted by applied models, espe-

cially with a low transmission probability [87] or in a low vectorial capacity [86] context.

Métras et al. (2017) [78] suggested that import of infected livestock in 2007 was a major driver

of RVF emergence in Mayotte in 2008–2010, and Gao et al. (2013) [84] that a transport of only

a few infectious animals from Sudan to Egypt could be sufficient to start an outbreak. Across

the Comoros archipelago, RVFV seems to be able to persist even in the absence of new intro-

ductions, with Grande Comore and Moheli more likely to sustain local transmission without

new viral introductions [80].

Original research questions stood out from the rest. Beechler et al. (2015) [67] studied the

impact of co-infections with the mycobacterium causing bovine tuberculosis (BTB). Their

data highlighted that RVFV infection was twice as likely in BTB+ than BTB- individuals. Once

this effect was incorporated in a model, an increase in BTB prevalence nonlinearly affected

three RVF outbreak metrics: the outbreak size in both BTB-infected and BTB-free populations,

the timing of the peak, and the outbreak duration. Pedro et al. (2017) [106] looked at the possi-

ble role of ticks as vectors in addition to mosquitoes. They concluded that if ticks were capable

of carrying and transmitting RVFV, this would sensibly change the transmission dynamics.

Specifically, the size of outbreaks was increased, with a higher peak, reached faster, and the

outbreak duration was reduced, compared to a situation with only mosquito vectors. It should

be noted, however, that there is currently no evidence of the ability of ticks to biologically

transmit the virus [116]. By contrast, other species which have been experimentally demon-

strated as competent, either as biological (such as sandflies [117,118]), or mechanical vector

[119] have not been included so far in RVF models. Tuncer et al. (2016) [97] developed an

immuno-epidemiological model in which pathogen load impacted transmission rate, and

focused on the identifiability of parameters (i.e., the uniqueness of parameter values able to

reproduce a given model trajectory) rather than the epidemiological impact of such a

hypothesis.

A single model [81] has looked at the possible effect of climate change on RVF risk, in East-

ern Africa. This likely does not reflect a lack of interest for this issue, but could rather indicate

that mechanistic modeling is not the preferred method to study such trends, compared to

phenomenological (i.e., statistical) models [120–123]. In their review, Métras et al. (2011) [36]

had highlighted the widespread use of phenomenological models to assess RVF risk across spa-

tio-temporal scales. Phenomenological models can play a key role in selecting relevant pro-

cesses to include or characterize suitable habitats, by highlighting significant correlations in

complex datasets [124–126]. Such phenomenological models can then be nested into mecha-

nistic models for specific processes (e.g., temperature-dependency, density-dependency).

Mechanistic and phenomenological approaches can be seen as complementary ways to build a

comprehensive view of vector-borne and zoonotic pathosystems [127]. Still, how to prioritize

research on livestock and human health in the context of climate change is up to debate

[128,129].

Control measures. Currently, vaccination against RVFV is only available for livestock,

using live attenuated virus or inactivated virus vaccines, with limitations in their use [130].

Ten models reflected on possible vaccination strategies (Table A in S1 Text), in all categories

(3 applied, 5 theoretical, 2 grey). The main objectives of all of these studies were to ‘control’,

except for Métras et al. (2020) [77] for which it was a secondary objective. Such strategies were

shaped by parameters such as the time to build-up immunity, vaccine efficacy, coverage, and

regimen (Table A in S1 Text). Most models confirmed quantitatively the intuitive need for vac-

cination to happen before outbreaks or quickly after the first cases are detected, to have a sig-

nificant impact (Table A in S1 Text). EFSA AHAW Panel et al. (2020—Model 1), Gachohi

et al. (2016) and Métras et al. (2020) [77,79—Model 1,99] incorporated constraints on the
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number of individuals vaccinated per day, so that a given coverage is reached at a realistic

pace. Regarding the choice of hosts to vaccinate, Gachohi et al. (2016) [99] highlighted that

while small ruminants needed a smaller coverage than cattle to achieve a given reduction in

incidence, the vaccination of cattle provided the benefit of protecting both ruminant popula-

tions. This important role of cattle in RVFV transmission was due to a higher vector-to-host

ratio and a larger body surface area, attracting more mosquitoes. Métras et al. (2020) [77] was

the only model evaluating a possible human vaccination campaign. They estimated that, in the

context of Mayotte island, vaccination of livestock was the most efficient strategy to limit

human cases, compared to human vaccination. It required fewer doses than human vaccina-

tion to achieve a similar reduction in cases, assuming a highly immunogenic, single dose, and

safe vaccine were available in both populations. This model took into account human exposure

to livestock in their risk of infection. Adongo et al. (2013) [64] showed that optimal strategies

differed depending on whether one prioritized the minimization of costs (doses) or of infec-

tions, with no clear take-home message for policy makers. Chamchod et al. (2016) [108]

explored differences between the use of live and killed vaccines, and showed that due to the

associated reversion of virulence, the use of live vaccines could render RVFV enzootic in situa-

tions where R0 is initially below one.

Vector control methods, using adulticides or larvicides, are expensive and difficult to imple-

ment, due to the diversity of potential vector species and of larval developmental sites to treat

[17,20]. These mitigations methods have been tested in a few models, with ambiguous results.

Miron et al. (2016) [70] concluded that reducing mosquito lifetime under 8.7 days would

reduce R0 below one. In one study [63], both adulticides and larvicides were efficient to reduce

the number of cases, when compared to no-intervention in a context of high virus transmis-

sion. In Mayotte, mosquito abundance had to be decreased by more than 40% to reduce RVF

incidence and epidemic length, and an increased duration of epidemics was observed with

lower levels of control [79—Model 1]. In the same model, vector control showed efficiency

when coupled with culling strategy.

Few models considered movement restriction as a control method. A reduction of move-

ments led to a decrease in disease spatial spread [86] and in incidence [95], and can help to

eradicate the disease [89]. In Uganda, Sekamatte et al. (2019) [87] concluded that during peri-

ods of low mosquito abundance, movement restrictions led to a significant reduction in inci-

dence. Movement restrictions had little impact in case of high vector abundance if used alone,

and should therefore be combined with mosquito control. However, in some cases, mitigating

measures could have unexpected consequences. In Comoros, scenarios of movement restric-

tion between Grande Comore and other islands of the archipelago delayed the outbreak to a

more suitable season, making it more severe overall [80]. By contrast, within-island control

appeared to be more effective.

Testing and culling infected animals has been compared to other mitigations methods by

three studies. This appeared to be one of the best strategies when conducted during 28 days

after the detection of an outbreak in the theoretical model by Gaff et al. (2011) [63]. In the

Netherlands, a RVFV-free area, a model concluded that stamping out in a 20 km radius

around an outbreak could be the most effective strategy when comparing with scenarios of

vaccination or other culling strategies [79—Model 2]. Nevertheless, in Mayotte, an effective

strategy seemed hard to implement due to the high levels of animal testing and culling

required [79—Model 1].

Overall, modeling studies often (6 applied, 6 theoretical, 3 grey) incorporate control-like

scenarios, but the applicability of such simulations can be improved. Few models tried to assess

RVF mitigation strategies in real endemic settings. Indeed, among six studies set in areas with

history of RVFV circulation, only two had ‘prevent’ as a primary objective. Vaccination
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(n = 10) and vector control (n = 5) were the main strategies considered by models, although

they currently present major on-field limitations [20]. In addition, simulated vector control

scenarios are often simplistic, consisting of a variation of one parameter homogeneously, and

only one model distinguished the use of larvicides and of adulticides [63]. Finally, only five

models considered movement restrictions as a mitigation strategy, which has been highlighted

as a key determinant of RVFV spread and persistence in some epidemiological contexts [91].

Future efforts should focus on incorporating field constraints into their scenarios, while keep-

ing in mind the transboundary nature of RVFV transmission [131–133].

Model features

Geographical context. Locations of applied and grey models are mapped in Fig 4A. The

scale of applied and grey models varied from local to international (Fig 4B). The sub-national

scale was the most prevalent in both applied (10/18) and grey models (4/13) (Fig 4B). Regard-

ing zones with known presence of RVF, several countries reporting numerous outbreaks in

the last 15 years [20] have had at least one specific model developed (Burundi, Comoros,

Kenya, Madagascar, Rwanda, Senegal, South Africa, Sudan, Tanzania, and Uganda). Besides,

the Netherlands and the USA, both RVF-free, were also used as case studies for several models.

Spatial models, with at least two distinct locations, represented 45% (n = 22) of models

(Table B in S1 Text). Among those, twelve were applied, five theoretical, and five grey models.

All were discrete spatial models. Sixteen out of twenty-two (73%) spatial models incorporated

connections between their spatial entities (Table B in S1 Text): vertebrate hosts moved in nine

cases, vectors and hosts could move in three cases, and in four other cases, the connection was

indirect, in the sense that the force of infection of one location was influenced by neighbors,

taking into account distance, or prevalence. Three models were not spatialized but did include

emigration and immigration of hosts (Table B in S1 Text).

Fig 4. A—Geographical context and number of RVF models. Grey models are mapped but not counted in totals because they sometimes refer to a non-precise context

(e.g., East Africa, North America, see B). Locations of grey models which are not also studied in applied models are shown in grey (Egypt, Sudan). The point north of

Madagascar, accompanied by text, is centered on the Comoros archipelago. It stands for four models applied to Mayotte island and one model applied to the whole

Comoros archipelago, including Mayotte. Map source: Natural Earth (https://www.naturalearthdata.com/). B—Scale of applied and grey models. Labels represent model

locations, with one label per model, hence sometimes repeated locations. Labels are colored to help identify the scale (y-axis). East African Community = Burundi,

Kenya, Rwanda, and Tanzania. Besides, all four models applied to Mayotte considered the whole island (374 sq. km), but those models are classified as sub-national.

Sub-figures A and B are not restricted to spatial models (for those specifically, see Table B in S1 Text).

https://doi.org/10.1371/journal.pntd.0010339.g004
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It should be noted that regions with recurring virus circulation, such as Botswana, Maurita-

nia, Mozambique, or Namibia [20] are still left out from the RVF modeling effort. Identifying

the possible hurdles preventing model development in those regions is important. In addition,

RVF being a transboundary animal disease, larger scale models are needed, able to gauge the

role of animal movements in the transmission dynamics. Currently, international applied

models do not incorporate connections between their spatial entities (Table B in S1 Text),

probably due to a lack of data. A coordinated data collection effort is required across affected

countries, focusing on both commercial and pastoral mobility, and making these data easily

accessible to epidemiological research teams.

Data. Data were used in 25 out of 49 (51%) models. Here, we define data as any raw infor-

mation, as opposed to a readily available parameter value extracted from another study. Several

types of data were used (Table C in S1 Text): experimental (4/25), environmental (19/25), epi-

demiological (15/25), demographic (18/25), related to movements (6/25, Table B in S1 Text),

and geographical (6/25). Most (23/25) models used more than one type of data, and sometimes

had several distinct datasets per type (Table C in S1 Text). Among grey models, seven used

data and six did not.

We identified a total of 102 datasets (Table C in S1 Text), corresponding to four datasets

per model on average (102/25), ranging from two to ten. Only 44% of all datasets used by mod-

els incorporated a spatial dimension (measures in at least two distinct locations), and 45% a

time dimension (measures for at least two different time points) (Table C in S1 Text). Regard-

ing epidemiological datasets (n = 24), 25% were spatialized, and 58% were time-series (Table C

in S1 Text). This is lower than environmental datasets (n = 28), which were 57% spatialized

and 86% time-series (Table C in S1 Text). This supports conclusions made in recent reviews

[24,25] which highlighted important gaps in RVF epidemiological data. Specifically, such gaps

included the lack of fine-scale geographical metadata, preventing the study of within-country

variation; the need for long-term studies in both endemic and non-endemic countries, to eval-

uate a possible increase in RVFV activity and exposure; and studies considering wildlife, live-

stock, and human concurrently, using standardized reporting and uniform case definitions

[24,25]. Potential corrective measures would depend on whether such missing data are not col-

lected or not made accessible. Most models with data managed to use at least one spatialized

dataset (15/25, 60%) or time-series (23/25, 92%, Table C in S1 Text). This indicates that mech-

anistic models can resort to all types of data to try and compensate for the lack of precision in

epidemiological reporting. Five studies used epidemiological data not published elsewhere

[67,71,77,78,91], showing that modeling studies can also be seen as a way to valorize new

datasets.

We categorized data use into three categories: calibration, input, and model assessment.

Calibration was defined as the parametrization of one process or initial condition of the

model, transforming the data in some way. This was done in 17 cases (Table C in S1 Text).

Input was the fact of using the raw data directly as a parameter or initial condition of the

model. This was done in 20 cases (Table C in S1 Text). Model assessment referred either to

parameter inference or qualitative estimation looking to maximize similarity between epide-

miological model outputs and data. This was done in 12 cases (Table C in S1 Text).

Ultimately, building accurate models helpful for policy makers requires the support of data.

However, for RVF as well as for other infectious diseases, no single data source can be expected

to inform each relevant parameter. Hence, the integration of information from many hetero-

geneous sources of data has become the norm [134]. This is a challenging task, as different

datasets will be of different quality, potentially dependent, or in conflict [134]. Model-driven

data collection can be a solution, but remains the exception rather than the rule [135]. Finally,

we noted that in 40% of cases (4/10), models tailored to a location with known RVFV
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circulation, and which used epidemiological data, did not include any scientist from a local

institution in their author list. This is important to develop more realistic and useful models,

and at a time when concerns are being raised about the equity of South-North research collab-

orations [26,136,137].

Host and vector compartments. Most models (34/49) included a single vertebrate host

category, most of the time broadly labeled as livestock without making distinction between

species (25/34, Table 1). When two hosts were accounted for, it was most often done to add a

human compartment (9/14, Table 1). Cecilia et al. (2020), Durand et al. (2020), Fischer et al.

(2013), and Gachohi et al. (2016)[88,91,92,99] distinguished small ruminants (sheep and

goats) from cattle. This grouping was made to incorporate differences in attractiveness to mos-

quitoes [88,91,92,99] or in RVF-induced mortality [88,91,99]. In addition to livestock, Barker

et al. (2013) [73] included birds as incompetent hosts, used as alternate blood-feeding sources

by vectors, namely Cx. tarsalis and Ae. melanimon. The model by McMahon et al. (2014) [95]

was the only one explicitly including a wildlife compartment, but did not describe the way the

associated carrying capacity, (i.e., the maximum population size which can be sustained by the

environment) was estimated based on land use data. Sumaye et al. (2019) [94] included a prob-

ability to pick up infection from wildlife hosts with a single parameter. Beechler et al. (2015)

and Manore & Beechler (2015) [66,67] both modeled African buffaloes (Syncerus caffer), either

captive or free-ranging.

The role of wildlife seemed largely understudied. Even if RVFV circulation has been

highlighted in several wildlife species, with clinical signs in some ruminants, the potential role

of those species in the epidemiological sylvatic cycles in endemic areas is still poorly under-

stood [138–140]. Studying the competence of local wildlife species for RVFV transmission,

along with their attractiveness to mosquitoes, is a prerequisite to determine the relevance of

this question in a given territory [139,141–143].

In hosts, assumptions regarding the clinical expression of the disease varied. Chitnis et al.

(2013), McMahon et al. (2014), Pedro et al. (2014), and Pedro et al. (2016) [69,75,95,107]

included an asymptomatic state in hosts. Durand et al. (2020), Gachohi et al. (2016), Leedale

et al. (2016), Taylor et al. (2016), and Tennant et al. (2021) [80–82,91,99] distributed hosts in

age classes and (except Tennant et al. (2021) [80]) took into account differences in disease-

induced mortality across classes. In Tennant et al. (2021) [80], only younger age classes moved

between islands of the Comoros archipelago, and the initial proportion of immune individuals

differed between classes. Cavalerie et al. (2015), Chamchod et al. (2014), Chamchod et al.

(2016), Durand et al. (2020), and Sumaye et al. (2019) [71,91,94,100,108] incorporated abor-

tion in livestock hosts due to RVFV infection.

In terms of transmission routes, Cavalerie et al. (2015), Durand et al. (2020) and Nicolas

et al. (2014) [71,90,91] included the possibility of direct transmission between vertebrate hosts.

Among eleven models including a human compartment (Table 1), nine considered livestock-

to-human transmission by direct route (without vector) and ten models considered mosquito-

to-human transmission. From these ten models, three [72,94,103] considered human-to-mos-

quito transmission. The low representation of this transmission route may reflect a confusion

in the likely small role played by humans in the RVFV epidemiological cycle. As human-mos-

quito transmission has not been documented so far, humans may often be mistakenly consid-

ered as dead-end hosts [20,144]. Nevertheless, some data, while scarce, suggest they could

develop a high viremia [144–147], which would be sufficient to infect mosquitoes. Under this

hypothesis, humans could have a role in the long distance spread of the virus [148]. Consider-

ing this knowledge gap and the difficulty to obtain direct observations on that matter, it would

seem relevant for future models to evaluate whether human-to-mosquito transmission is nec-

essary to explain observed transmission dynamics.
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Models with explicit vector compartments (43/49) included one (n = 20), two (n = 20),

or more (n = 3) vector taxa (Table 1). Models with two taxa were all combining Aedes and

Culex spp. vectors, while models with one vector taxon often did not specify the genus or spe-

cies (10/20). The diversity of vectors was important among studies considering them at the

species level, with the most often represented in models being Ae. vexans (n = 5), followed by

Cx. poicilipes (n = 4). Pedro et al. (2017) [106] studied ticks (Hyalomma truncatum) in addition

to Aedes and Culex. Sumaye et al. (2019) [94] included Ae. mcintoshi, Ae. aegypti, and two

generic Culex vectors in their model, distributed in different ecological zones of Tanzania.

Cecilia et al. (2020) [88] included Ae. vexans, Cx. poicilipes, and Cx. tritaeniorhynchus distrib-

uted in different ecological zones of Senegal.

Eleven models (22%) incorporated the influence of abiotic factors on the life cycle and com-

petence of vectors, with dedicated equations. Cecilia et al. (2020), EFSA AHAW Panel et al.

(2020 –Model 2), Fischer et al. (2013), Leedale et al. (2016), Lo Iacono et al. (2018), and

Mpeshe et al. (2014) [72,79—Model 2,82,88,92,93] took into account the influence of tempera-

ture and/or rainfall on the lifespan of adult vectors. Gachohi et al. (2016), Leedale et al. (2016),

Lo Iacono et al. (2018), Mpeshe et al. (2014), Xue et al. (2012), and Xue et al. (2013)

[72,74,76,82,93,99] took into account the influence of temperature and/or rainfall on the egg

laying rate, and on the development or survival of aquatic stages. Barker et al. (2013), Cecilia

et al. (2020), Fischer et al. (2013), Lo Iacono et al. (2018) Mpeshe et al. (2014), and EFSA

AHAW Panel (2020—Model 2) [72,73,88,92,93] took into account the influence of temperature

on the extrinsic incubation period (EIP) and on the biting rate. Durand et al. (2020) [91] consid-

ered it on EIP only and Leedale et al. (2016) [82] on biting rate only. Fischer et al. (2013), Lo

Iacono et al. (2018), Mpeshe et al. (2014), and Durand et al. (2020) [72,91–93] considered differ-

ences between Culex and Aedes mosquitoes for EIP and/or biting rate. Further sophistications,

including the dependence to water body surface, were included into Cecilia et al. (2020), Dur-

and et al. (2020), and in Lo Iacono et al. (2018) [88,91,93]. For Cecilia et al. (2020) and Durand

et al. (2020) [88,91], this was done indirectly by relying on an external entomological model for

vector population dynamics [149]. Overall, and due to the lack of data, modeling the impact of

abiotic factors on the life cycle and competence of mosquitoes often relied on using data from

different genera or species than those under study. In such cases, authors considered this choice

preferable to a constant parameter or an arbitrary mathematical function.

Modelers are often faced with a substantial lack of data on vector presence and population

dynamics when parameterizing their model. In Métras et al. (2017), Métras et al. (2020), and

Tennant et al. (2021) [77,78,80], the lack of data on vector densities urged the authors to use

an environmental proxy (Normalized Difference Vegetation Index (NDVI) or rainfall) to

drive vectorial transmission, without including an explicit vector compartment. This type of

data have been used previously to map RVFV transmission risk [150,151].

In reviewed models, the only source of variability in the feeding behavior of vectors was the

inclusion of trophic preference for one host species over the others [88,91,92,99]. However,

studies have suggested that the infected or uninfected status of the host might also play a role,

for different pathogens [152,153], including for RVFV [154,155]. Future models could incor-

porate this mechanism to test its epidemiological importance.

Dealing with multiple hosts and vectors makes it difficult to predict disease emergence,

spread, and potential for establishment. It has been shown that accounting for a higher biodi-

versity in epidemiological models can result in amplification or dilution effects depending on

species’ competence and abundance [156,157]. In the case of RVFV, the role and contribution

of hosts and vectors to transmission dynamics is largely understudied. Quantifying these roles

is crucial to design targeted and efficient control strategies, and will require more knowledge

on the intrinsic heterogeneity between host and vector species. Within-host and within-vector
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modeling can help in this matter, but such models for RVF are rare [97,158]. Besides, a para-

mount hypothesis driving model behavior is the contact structure assumed between hosts and

vectors, mathematically embodied by the force of infection.

Force of infection. We chose to focus on the diversity of functional forms (FFs) used in

RVF models for the force of infection related to vector-borne transmission. This was applied

only to models explicitly including a vector compartment. Among those, a majority (29/43)

did not justify their choice of FF, even though the force of infection, as a disease transmission

term, encapsulates authors’ assumption on the host-vector interactions, and therefore influ-

ences their predictions (Fig 5, [159]).

Six FFs were found in reviewed models (Table 1, Fig 5). We detail them in Box 1. Thirteen

models used a reservoir frequency-dependent FF (Eq 1 in Box 1, Table 1, Fig 5). Eight models

used a mass action FF (Eq 2 in Box 1, Table 1, Fig 5). Twelve models used an infectious fre-

quency-dependent FF (Eq 3 in Box 1, Table 1, Fig 5). Ten models used alternative FFs, which

all intended to avoid the shortcomings of other FFs by introducing parameters to constrain the

contact rate between host and vector populations (Eqs 4–6 in Box. 1, called Hybrid1 (n = 8),

Hybrid2 (n = 1), and Hybrid3 (n = 1) in Table 1 and Fig 5).

Box 1: Diversity of assumptions and functional forms for the force of infec-
tion in models of RVFV transmission dynamics

In standard susceptible-infected-recovered (SIR)-type models, the force of infection

(FOI) is the rate at which individuals go from the susceptible (S) state to the infectious

(I, or exposed, E) state. Biologically, the FOI can be decomposed as pcontact. pinf. ptransm.

For vector-borne transmission, pcontact is the contact rate between vectors (subscript v)

and hosts (subscript h), pinf is the probability that a given contact is with an infectious

individual, and ptransm is the probability that a contact with an infectious individual

results in successful transmission. This can be declined in two directions of transmission:

vector-to-host and host-to-vector, which affects the value of these parameters. For pinf,
under the hypothesis of homogeneous mixing, we have:

pinf ;v!h ¼
Iv
Nv

pinf ;h!v ¼
Ih
Nh

The value of ptransm can also vary depending on the source and target of the infection,

but is not linked to host nor vector densities, but rather individual-level parameters (e.g.,

species, viremia, immune response). The different functional forms which can be seen in

vector-borne disease models then arise from different assumptions on pcontact [160].

Reservoir frequency-dependence

The reservoir frequency-dependent (FR, n = 13, Eq 1) functional form assumes that the

rate at which a vector bites hosts is constant across host (reservoir) densities (i.e., the vec-

tor does not feed more if there are more hosts), while the number of bites received by a

host is proportional to the current vector-to-host ratio (i.e., a host is fed upon more if

surrounded by more mosquitoes, at constant host population). Consequently, we get:

• pcontact,h!v = a, with a being the biting rate, usually defined as the maximal rate

allowed by the gonotrophic cycle (i.e the minimum time required between blood

meals for a female to produce and lay eggs). This results in FRh!v ¼ a: Ih
Nh

� �
:ptransm;h!v.
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• pcontact;v!h ¼ a: Nv
Nh

which simplifies with pinf,v!h and results in

FRv!h ¼ a: Iv
Nh

� �
:ptransm;v!h.

We can write, using βhv and βvh as aggregated terms, sometimes called adequate contact

rates as in Gaff et al. (2007) [62]:

FRh!v ¼ bhv:
Ih
Nh

FRv!h ¼ bvh:
Iv
Nh

ð1Þ

This functional form (FF) is therefore called reservoir frequency-dependent because the

total number of hosts is on the denominator for both transmission directions (v!h and

h!v). With this FF, the vector-to-host transmission rate linearly increases with the vec-

tor-to-host ratio, and can therefore reach unrealistic values. Indeed, at some point, hosts

are expected to deploy defense mechanisms to protect themselves from biting, prevent-

ing the vector population from getting all the blood meals needed.

Mass action

The mass action functional form (MA, n = 8, Eq 2), sometimes called pseudo mass

action, is density-dependent. It assumes that a vector bites hosts at a rate proportional to

the number of hosts, and that a host is bitten at a rate proportional to the number of vec-

tors. Consequently, we get:

• pcontact,h!v/Nh, ignoring a possible constant derived from the previous biting rate a,

which simplifies with pinf,h!v and results in MAh!v/Ih. ptransm,h!v.

• pcontact,v!h/Nv, which similarly gives MAv!h/Iv. ptransm,v!h.

MAh!v ¼ bhv:Ih

MAv!h ¼ bvh:Iv ð2Þ

With this functional form, the biting rate of vectors per unit time can exceed their physi-

ological capacity above certain host densities, which again, becomes unrealistic.

Infected frequency-dependence

Following the nomenclature by Wonham et al. (2006) [159], who presented susceptible

frequency dependence, we describe the infectious frequency-dependent (FI, n = 12, Eq

3) functional form. It assumes that the rate at which a vector bites hosts is constant

across host (reservoir) densities, while the number of bites received by a host is constant

across vector densities. The transmission terms are then both correlated to the propor-

tion of infectious in the population:

FIh!v ¼ bhv:
Ih
Nh
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FIv!h ¼ bvh:
Iv
Nv

ð3Þ

The only plausible situation inducing a constant contact rate in both directions is one

where the vector-to-host ratio remains constant. Indeed, if we assume that a vector sys-

tematically gets the blood meals it physiologically needs, and modeled hosts are the sole

source of blood, then a shortage in hosts (high vector-to-host ratio) should result in an

increase in bites per host (FR functional form). Alternatively, if the number of bites

received per host is saturated (and constant) to account for their defense mechanism,

then a vector’s biting rate should vary with host densities, depending on whether this

constrained system allows it to feed as it needs.

Alternative functional forms

Functional forms FR, MA, and FI can only apply biologically at certain population den-

sities, outside of which they can generate aberrant values and therefore lead to erroneous

predictions [159]. Three alternative FFs were found in RVF models to prevent this issue

(Fig 5). Those FFs require additional parameters to constrain the contact rate between

populations.

The first alternative FF (Eq 4, Hybrid1 in Table 1 and Fig 5, n = 8) was first used in a

RVF model by Chitnis et al. (2013) [69], who previously formulated it in a model of

malaria transmission [161].

Hyb1;h!v ¼
svshN� h

svNv þ shNh
:avh

Ih
N� h

Hyb1;v!h ¼
svshN� v

svNv þ shNh
:ahv

Iv
N� v

ð4Þ

In Eq 4, αhv and αvh refer to probabilities of successful transmission given contact, from

host to vector and vice versa. σv is defined as the maximum number of times a mosquito

would bite a host per unit time, if freely available. This is a function of the mosquito’s

gonotrophic cycle and its preference for a given host species. σh is the parameter added

to avoid abnormally high contact rates and represents the maximum number of bites

sustained by a host per unit time. Although σh seems virtually impossible to estimate in

the field, this alternative FF can efficiently prevent erroneous model predictions and has

therefore often been reused in RVF models. It is also the most justified FF (5/8, Fig 5).

Some slight variations in its mathematical formulation can be found in Sumaye et al.

(2019) [94].

The second alternative FF was used by McMahon et al. (2014) [95] (Eq 5, Hybrid2 in

Table 1 and Fig 5, n = 1).

Hyb2;h!v ¼ infh:susv:e
� r
a:Ih

Hyb2;v!h ¼ infv:sush:e
� r
a:Iv
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In 82% of cases (14/17), a model used the same FF for its force of infection as its parent

model (Fig 2). In 9/14 cases, the parent model did not justify the choice of FF used, and no fur-

ther justification was provided in the subsequent model in 7/9 cases. In 3/17 cases, the FF was

changed compared to the parent model, which induced a justification in 2/3 cases. In addition,

in three cases, the representation of vectors was implicit in a model and its parent model,

therefore preventing the classification of the force of infection into any FF.

Several review papers on various epidemiological models concluded that the choice of a

functional form for the force of infection could greatly affect model behavior. Begon et al.

(2002), Hoch et al. (2018), and McCallum et al. (2001) [160,162,163] focused on non-vectorial

transmission. Hopkins et al. (2020) [164] focused on parasite transmission, which could be

through a vector, but did not include possible variations in frequency-dependent functions.

Wonham et al. (2006) [159] focused on FFs used to model vectorial transmission of West Nile

virus and also noticed an important diversity. In 2001, McCallum et al. were already recom-

mending to "explicitly state and justify the form of transmission used" as well as "evaluate

r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nv þ Nh

A

r

ð5Þ

Here, inf and sus refer to a vector or host infectivity and susceptibility, respectively. The

contact rate is formulated as e� ra , with a the characteristic length of local spread. In r, A is

the patch area.

A last alternative FF was used in Lo Iacono et al. (2018) [93] (Eq 6, Hybrid3 in Table 1

and Fig 5, n = 1).

Hyb3;h!v ¼ ahv:
~y
~ Ih
Nh

Hyb3;v!h ¼ avh:m:
~y

~ Iv
Nv

~y
~
¼

y

1þ m
q

m ¼ pf :
Nv

Nh
ð6Þ

Here, pf is the proportion of the mosquito population able to detect and feed on the host

species under consideration, and m is therefore an ‘effective’ vector-to-host ratio. ~y
~
is

the biting rate, function of m, as well as of the rate of completion of the gonotrophic

cycle θ, and of q, the vector-to-host ratio for which vector fecundity is divided by two.

This is done to account for the decrease in fecundity in the case of absence of sufficient

hosts to take a blood meal.
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several alternative models of transmission, if possible" [163]. Contact structures between host

and vector populations are hard to observe in natural conditions. This should be an additional

incentive for modelers to explicitly state the reasoning behind their choice of functional form,

which can be motivated by the context of their case study (e.g., expected host and vector densi-

ties, mixing between the populations). A comparison of the FF listed presently would be useful.

The conclusions might vary depending on whether this is done through theoretical scenarios,

keeping all other parameters equal, or by fitting different models to a common empirical data-

set. The latter might not be able to discriminate between FF to select the best-performing one,

because of underlying correlations between parameters.

Conclusion

In the last 5 years, more mechanistic models of RVFV transmission dynamics have been pub-

lished (n = 26) than in the 10 previous years combined (n = 23). This possibly indicates a grow-

ing interest for RVF epidemiology, although it is known that the number of publications is

continuously growing in all fields [26,165,166]. Our review highlighted important knowledge

gaps, rarely addressed in mechanistic models of RVFV transmission dynamics. In our opinion,

the most pressing issues are i) the incorporation of heterogeneity among host and vector spe-

cies, in order to determine their relative role in transmission dynamics, which will require a

focus at the within-host and within-vector scales, and ii) the development of large scale mod-

els, able to quantify the role of animal mobility in RVFV spread. Both of these research avenues

will rely on novel data sets being generated, and will require methodological accuracy and

transparency, particularly with regards to the choice of force of infection [113]. Indeed, as it

reflects assumptions made on the contact rate between host and vector populations, this choice

crucially influences model predictions and therefore cannot be made lightly. This systematic

Fig 5. Functional forms (FFs) used by models for their force of infection (FOI; vector-borne transmission only).

FR: reservoir frequency-dependent, FI: infectious frequency-dependent, MA: mass action; see section on Force of

infection and Box 1 for details. The full bar length indicates the number of models using a given FF, the color

determines how many models properly justified their choice of FF. See Eqs 1–6 for details on each FF. See Table 1 for

details on papers using a given FF.

https://doi.org/10.1371/journal.pntd.0010339.g005
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review showed that, as was the case for West Nile virus [159], models of RVFV transmission

dynamics make very distinct assumptions which render their results not directly comparable.

We detailed them didactically, hoping to guide future models focusing on vector-borne

transmission.

This increasing number of models could also reflect a growing trust in mechanistic models

in the field of infectious disease epidemiology [167,168]. When it comes to decision-making

for disease management, we agree with previous work showing that combining models is the

most sensible approach rather than attempting to find the best model [169,170]. Indeed, the

diversity of models’ structure and hypotheses is a richness, which can be used to highlight

actions that are robust to model uncertainty, but also identify key differences needing clarifica-

tion through additional field exploration [169,170].

Importantly, we note that only seven studies made their code available (Table 1), which rep-

resents 23% of models published since 2015. Adopting this practice more broadly would

increase the reproducibility of results and encourage the community to bring existing work

further [110].

Supporting information

S1 Text. Reading grid and complementary tables. Text A: Reading grid; Table A: Vaccina-

tion strategies implemented in models and main results; Table B: Characteristics of spatial

models as well as non-spatial models with external renewal; Table C: Type of datasets and their
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Code used to produce figures and summary statistics is available in Github public repository at

https://github.com/helenececilia/riftvalleyfever-model-review.git.
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3. Birnberg L, Talavera S, Aranda C, Núñez AI, Napp S, Busquets N. Field-captured Aedes vexans (Mei-

gen, 1830) is a competent vector for Rift Valley fever phlebovirus in Europe. Parasit Vectors. 2019 Oct

16; 12(1):484.

4. Brustolin M, Talavera S, Nuñez A, Santamarı́a C, Rivas R, Pujol N, et al. Rift Valley fever virus and

European mosquitoes: vector competence of Culex pipiens and Stegomyia albopicta (= Aedes albo-

pictus). Med Vet Entomol. 2017 Aug 7; 31(4):365–72.

5. Lumley S, Hernández-Triana LM, Horton DL, Fernández de Marco MDM, Medlock JM, Hewson R,

et al. Competence of mosquitoes native to the United Kingdom to support replication and transmission

of Rift Valley fever virus. Parasit Vectors. 2018 May 18; 11(308):308:1–308:11.

6. Moutailler S, Krida G, Schaffner F, Vazeille M, Failloux AB. Potential vectors of Rift Valley fever virus

in the Mediterranean region. Vector-Borne Zoonotic Dis. 2008 Dec; 8(6):749–53. https://doi.org/10.

1089/vbz.2008.0009 PMID: 18620510

7. Turell MJ, Dohm DJ, Mores CN, Terracina L, Wallette DL, Hribar LJ, et al. Potential for North American

mosquitoes to transmit Rift Valley fever virus. J Am Mosq Control Assoc. 2008 Dec; 24(4):502–7.

https://doi.org/10.2987/08-5791.1 PMID: 19181056

8. Turell MJ, Wilson WC, Bennett KE. Potential for North American mosquitoes (Diptera: Culicidae) to

transmit Rift Valley fever virus. J Med Entomol. 2010 Sep 1; 47(5):884–9. https://doi.org/10.1603/

me10007 PMID: 20939385

9. Hartman DA, Bergren NA, Kondash T, Schlatmann W, Webb CT, Kading RC. Susceptibility and barri-

ers to infection of Colorado mosquitoes with Rift Valley fever virus. PLoS Negl Trop Dis. 2021 Oct 25;

15(10):e0009837. https://doi.org/10.1371/journal.pntd.0009837 PMID: 34695125

10. Iranpour M, Turell MJ, Lindsay LR. Potential for Canadian mosquitoes to transmit Rift Valley fever

virus. J Am Mosq Control Assoc. 2011 Dec; 27(4):363–9. https://doi.org/10.2987/11-6169.1 PMID:

22329267

11. Chevalier V. Relevance of Rift Valley fever to public health in the European Union. Clin Microbiol Infect

Off Publ Eur Soc Clin Microbiol Infect Dis. 2013 Aug; 19(8):705–8. https://doi.org/10.1111/1469-0691.

12163 PMID: 23517372

12. Linthicum KJ, Britch SC, Anyamba A. Rift Valley fever: an emerging mosquito-borne disease. Annu

Rev Entomol. 2016; 61:395–415. https://doi.org/10.1146/annurev-ento-010715-023819 PMID:

26982443

13. Tantely LM, Boyer S, Fontenille D. A review of mosquitoes associated with Rift Valley fever virus in

Madagascar. Am J Trop Med Hyg. 2015 Apr 1; 92(4):722–9. https://doi.org/10.4269/ajtmh.14-0421

PMID: 25732680

14. Lumley S, Horton DL, Hernandez-Triana LLM, Johnson N, Fooks AR, Hewson R. Rift Valley fever

virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol. 2017

May; 98(5):875–87. https://doi.org/10.1099/jgv.0.000765 PMID: 28555542

15. Davies FG. The historical and recent impact of Rift Valley fever in Africa. Am J Trop Med Hyg. 2010

Aug 5; 83(Suppl 2):73–4. https://doi.org/10.4269/ajtmh.2010.83s2a02 PMID: 20682909

16. Rich KM, Wanyoike F. An assessment of the regional and national socio-economic impacts of the

2007 Rift Valley fever outbreak in Kenya. Am J Trop Med Hyg. 2010 Aug 5; 83(Suppl 2):52–7. https://

doi.org/10.4269/ajtmh.2010.09-0291 PMID: 20682906
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158. Cecilia H, Vriens R, Schreur PJW, Wit MM de, Métras R, Ezanno P, et al. Heterogeneity of Rift Valley

fever virus transmission potential across livestock hosts, quantified through a model-based analysis of

host viral load and vector infection. PLoS Comput Biol. 2022 Jul 22; 18(7):e1010314. https://doi.org/

10.1371/journal.pcbi.1010314 PMID: 35867712

159. Wonham MJ, Lewis MA, Rencławowicz J, van den Driessche P. Transmission assumptions generate

conflicting predictions in host-vector disease models: a case study in West Nile virus. Ecol Lett. 2006

Jun; 9(6):706–25. https://doi.org/10.1111/j.1461-0248.2006.00912.x PMID: 16706915

160. Begon M, Bennett M, Bowers RG, French NP, Hazel SM, Turner J. A clarification of transmission

terms in host-microparasite models: numbers, densities and areas. Epidemiol Infect. 2002 Aug; 129

(1):147–53. https://doi.org/10.1017/s0950268802007148 PMID: 12211582

PLOS NEGLECTED TROPICAL DISEASES Mechanistic models of Rift Valley fever virus transmission

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010339 November 18, 2022 31 / 32

https://doi.org/10.1017/S0950268807009806
https://doi.org/10.1017/S0950268807009806
http://www.ncbi.nlm.nih.gov/pubmed/17988425
https://doi.org/10.3390/vetsci5040092
http://www.ncbi.nlm.nih.gov/pubmed/30380736
https://doi.org/10.7589/0090-3558-48.2.241
http://www.ncbi.nlm.nih.gov/pubmed/22493102
https://doi.org/10.1038/emi.2013.81
https://doi.org/10.1038/emi.2013.81
http://www.ncbi.nlm.nih.gov/pubmed/26038446
https://doi.org/10.1128/JCM.01905-08
http://www.ncbi.nlm.nih.gov/pubmed/19171680
https://doi.org/10.1371/journal.pntd.0006460
http://www.ncbi.nlm.nih.gov/pubmed/29727450
https://cabidigitallibrary.org/doi/
https://doi.org/10.1079/cabireviews202217029
https://doi.org/10.1126/science.285.5426.397
http://www.ncbi.nlm.nih.gov/pubmed/10411500
https://doi.org/10.1016/j.cell.2022.05.016
https://doi.org/10.1016/j.cell.2022.05.016
http://www.ncbi.nlm.nih.gov/pubmed/35777355
https://doi.org/10.4269/ajtmh.1984.33.1232
http://www.ncbi.nlm.nih.gov/pubmed/6150656
https://doi.org/10.1073/pnas.82.22.7725
http://www.ncbi.nlm.nih.gov/pubmed/3865192
https://doi.org/10.1098/rsif.2017.0791
http://www.ncbi.nlm.nih.gov/pubmed/29563242
https://doi.org/10.1016/j.crvi.2011.02.008
http://www.ncbi.nlm.nih.gov/pubmed/21640947
https://doi.org/10.1371/journal.pcbi.1010314
https://doi.org/10.1371/journal.pcbi.1010314
http://www.ncbi.nlm.nih.gov/pubmed/35867712
https://doi.org/10.1111/j.1461-0248.2006.00912.x
http://www.ncbi.nlm.nih.gov/pubmed/16706915
https://doi.org/10.1017/s0950268802007148
http://www.ncbi.nlm.nih.gov/pubmed/12211582
https://doi.org/10.1371/journal.pntd.0010339


161. Chitnis N, Cushing JM, Hyman JM. Bifurcation analysis of a mathematical model for malaria transmis-

sion. SIAM J Appl Math. 2006 Jan; 67(1):24–45.

162. Hoch T, Touzeau S, Viet AF, Ezanno P. Between-group pathogen transmission: from processes to

modeling. Ecol Model. 2018 Sep; 383:138–49.

163. McCallum H, Barlow N, Hone J. How should pathogen transmission be modelled? Trends Ecol Evol.

2001 Jun 1; 16(6):295–300. https://doi.org/10.1016/s0169-5347(01)02144-9 PMID: 11369107

164. Hopkins SR, Fleming-Davies AE, Belden LK, Wojdak JM. Systematic review of modelling assumptions

and empirical evidence: does parasite transmission increase nonlinearly with host density? Methods

Ecol Evol. 2020 Feb 25;

165. Bornmann L, Mutz R. Growth rates of modern science: a bibliometric analysis based on the number of

publications and cited references. J Assoc Inf Sci Technol. 2015; 66(11):2215–22.

166. Larsen PO, von Ins M. The rate of growth in scientific publication and the decline in coverage provided

by Science Citation Index. Scientometrics. 2010 Sep 1; 84(3):575–603. https://doi.org/10.1007/

s11192-010-0202-z PMID: 20700371

167. Lofgren ET, Halloran ME, Rivers CM, Drake JM, Porco TC, Lewis B, et al. Mathematical models: a key

tool for outbreak response. Proc Natl Acad Sci. 2014 Dec 23; 111(51):18095–6.

168. Ezanno P, Andraud M, Beaunée G, Hoch T, Krebs S, Rault A, et al. How mechanistic modelling sup-

ports decision making for the control of enzootic infectious diseases. Epidemics. 2020 Sep 1;

32:100398. https://doi.org/10.1016/j.epidem.2020.100398 PMID: 32622313

169. Webb CT, Ferrari M, Lindström T, Carpenter T, Dürr S, Garner G, et al. Ensemble modelling and struc-
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