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Abstract

We develop a machine-learning image segmentation pipeline that de-
tects ductile (as opposed to brittle) fracture in fractography images. To
demonstrate the validity of our approach, use is made of a set of frac-
tography images representing fracture surfaces from cold-spray deposits.
The coatings have been subjected to varying heat treatments in an effort
to improve their mechanical properties. These treatments yield markedly
different microstructures and result in a wide range of mechanical proper-
ties that combine brittle and ductile fracture once the materials undergo
rupture. To detect regions of ductile fracture, we propose a simple ma-
chine learning network based on a 32-layers U-Net framework and trained
on a set of small image patches. These regions most often contain small
dimples and differ by the surface roughness. Overall, the machine-learning
method shows good predictive capabilities when compared to segmenta-
tion by a human expert. Finally, we highlight other possible applications
and improvements of the proposed method.
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1 Introduction
Our ability to quantify the mechanical properties and inner microstruc-
tures of materials is based on mechanical testing and models, and com-
monly requires imaging techniques and analysis [1, 2]. To account for the
complex load redistribution of stress within a material, up to crack or
pore nucleation, statistical and microstructural aspects are essential [3].
In turn, to perform damage-design, versatile and robust image analy-
sis methods must be developed to quantify and characterize microstruc-
tures [4, 5]. The present work is motivated by our need to assess and
understand the mechanical response, up to rupture, of certain coatings
obtained by cold-spray techniques. Cold-spray deposits generally do not
present, in their initial state, satisfying mechanical properties in that
respect. Nevertheless, recently-developed techniques that involve heat-
treatments allow for microstructural softening [6]. Although these meth-
ods have shown promising results, optimizing on the parameters of the
thermal treatments requires some level of automatization, as well as so-
phisticated image analysis to separate (“segment”) brittle from ductile
fracture regions. A related problem, that of image classification based
on failure modes, has been addressed in [7] and [8], using both classical
convolutional layers for texture analysis and a modified method based on
the adaptive wavelet transform. The present study addresses the problem
of image segmentation rather than classification. We make use of a set of
fractography images of cold-spray coatings studied in [6] that show both
brittle and ductile modes of failure, thus providing an ideal application
to the segmentation problem. This short article is divided in three main
sections. The material and fractography images are described in Sec. (2).
Secs. (3) and (4) address the deep-learning architecture and training, and
our results. We conclude in Sec. (5).

2 Cold-spray deposits and fracture sur-
face images
This work is based on cold-spray projections of 316L-stainless steel from
the company “Impact Innovation”. Three thermal treatments in a MF7
furnace under air environment, at 600, 800 and 1000°C are performed,
resulting in different coatings. Fracture surfaces for each sample subjected

Figure 1: Three-points bending tests with (a) and without (b) heat treatment.
Heat treatment significantly enhances ductility.
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Figure 2: a) Fractography image showing regions with predominantly brittle (b)
and ductile (c) rupture modes. The bottom zone in (c) undergoes maximum
bending compared to (b).

to a three-points bending test (Fig. 1) are observed by scanning electron
microscopy (SEM) using a Supra 55 with 15kV tension, at a 12mm working
distance, a diaphragm of 240µm and a magnification of ×1500. Secondary
electron imaging, sensitive to the surface topography, has been used.

The heat treatment strongly influences the ductile response. Adhe-
sion mechanisms, and particle-particle interfaces, are modified by the heat
treatment, leading to a mixed brittle-ductile response [9]. Rupture zones,
in particular, are located in particle-particle interfaces in the as-sprayed
state and are not seen on the whole fracture surface [6]. As shown in
the fractographic analysis in (Fig. 2), fracture surfaces display varying
contrasts as a consequence of the topography, and ductile regions are con-
strained along surfaces that rarely exceed 10µm in size. A signature of
these regions is the presence of dimples that are less than 1µm in diame-
ter. These regions are difficult to detect automatically, yet their texture is
characteristic of ductile behavior. In the following, a convolutional neural
network is developed to segment ductile regions as a way to provide a
more robust method than that of conventional image analysis methods.
The proportion of ductile regions in fracture surfaces provides a quanti-
tative indicator of the mechanical response of these coatings, and could
be used to correlate microstructure, heat treatment as well as mechanical
properties.

3 Machine learning method
In order to establish a reference dataset, we first selected 30 images per
sample, each containing 1024× 704 pixels and showing different (disjoint)
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Figure 3: Annotated fractography images. a) SEM image. b) Selected ductile
zones.

regions of the fracture surface, with varying contrast and brightness, as
specified above. The regions undergoing ductile rupture have been man-
ually annotated by an expert, in all images, making use of a hand-made
macro incorporated in the software “ImageJ”. These regions are selected
by assuming that ductile regions contain dimples and higher roughness.
Each of the obtained images are binarized and cropped into 88 patches
containing 128×64 pixels. Initial images have been subsequently cropped
so as to be used during training. Cropping proved necessary to generate a
sufficiently large number of images, while reducing the memory required
for training. See Fig. (3) for an illustration of the resulting segmentation.

We have selected “U-Net” [10] architecture network for the detec-
tion and segmentation of regions with ductile fracture. This architecture,
based on a series of filters organized as a “U”, allow us to perform four
most important tasks: (i) convolution so as to apply one or more filters
on the images; (ii) nonlinear transformation of images with the rectified
linear unit (“ReLu”), so that negative values can be thresholded to zero;
(iii) pooling so that the image size can be reduced while keeping track
of the most important information, including maximum, mean, sum; (iv)
classification with a fully-connected layer, which links each neuron on the
previous layer with a neuron on the following layer, thus allowing one
to classify the input pixels according to characteristics highlighted in the
previous tasks. In the present study, the number of filters on the first layer
is set to 32. During training both training and validation scores are mea-
sured. The first one is obtained by measuring the difference between the
prediction of the network, made up of regions of ductile failure, and that
manually selected by the expert whereas the validation score only takes
into account those images that are not part of the training database.

The score is given by the Jaccard distance J = 1 − |A ∩ B|/|A ∪ B|
between two sets A and B, where | · | denotes the set surface. Fig. (4)
represents the evolution of both scores during training. The scores are
plotted with respect to epoch numbers. In one epoch, the algorithm uses
each patch in the database once. To prevent overfitting, the algorithm is
stopped when the score corresponding to the validation dataset ceases to
decrease. This is determined by an additional “patience” parameter, set
to 100, which prescribes the number of epochs without improvement on
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Figure 4: Validation and training Jaccard indices as a function of the number
of epochs during training.

(a) (b)

Figure 5: Two images representing the network predictions for regions undergo-
ing ductile fracture (in blue). Over and under-detections are marked by symbols
⊕, 	, respectively (see text).

the validation dataset that is tolerated during training. The algorithm
stopped at epoch 542, whereas the network retained is that corresponding
to epoch 442.

4 Results
Two images representative of the network predictions are shown in Fig. (5)
as indicated in blue. These images have been obtained by applying the
trained U-net network to a set of novel fractography images. We have
highlighted in both images zones where the predictions of the network are
incorrect: “over-detections” (marked by the symbol ⊕), corresponding to
brittle regions predicted to be ductile, and “under-detection” (symbol 	)
for ductile zones indicated as brittle.

An error criterion is now definee in order to interpret these results.
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Output images are thresholded to a value of 200 (out of a maximum of
255), and we compute in each image: (i) the number f of non-detected
pixels (“false negative”); (ii) the number f ′ of wrongly-detected pixels
(“false positive”); (iii) the number t of correct pixels (“true positive”).
These statistics allow us to define the precision p = t/(t+f ′), the recall r =
t/(t+f), and score F = 2pr/(p+r), equal to the harmonic mean of p and
r. It approaches 1 for predictions close to that of the human expert. The
mean of F is about 0.46. This value corresponds to visually satisfactory
segmentation results. Indeed, the F-score is strongly influenced by the
exact shape of the ductile zones, which are, in effect, not precisely defined
by the expert. Furthermore, we emphasize that the tool is designed to
perform comparison between microstructures; accordingly, we aim to rank
fractography images by ductile region surfaces, not necessarily to exactly
predict the location of each ductile zone.

5 Conclusions and perspectives
In this work, use has been made of a simple U-Net architecture to segment
different fracture mechanisms present in fracture surface images. The im-
ages represent complex mixed rupture modes. Ductile rupture is detected
by the presence of small dimples seen in the SEM images at various an-
gles from the plane of the image. The network devised in this study shows
promising results. However, the machine-learning pipeline tends to detect
fewer ductile regions than the human expert, which is conservative but pe-
nalizing. Further work is needed to enhance these results, left as outlook:
(i) one may improve the image database used for training, and in partic-
ular increase the number of images, use larger image patches, or perform
data augmentation based on axial symmetries, gaussian noise and rota-
tions; (ii) modify the network architecture, such as the number of filters
in the first layer; (iii) finally, one may want to adjust or pre-process input
images, removing noise and using contrast-enhancing filters. Finally, we
emphasize that the simple segmentation method developed in his work
can be used in a variety of applications, in particular that of mixed rup-
ture modes, as occurs in the ductile-to-brittle transition of ferritic and
bainitic steels [11].
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