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Abstract: Despite numerous therapies, cancer remains one of the leading causes of death worldwide
due to the lack of markers for early detection and response to treatment in many patients. Techno-
logical advances in tumor screening and renewed interest in energy metabolism have allowed us
to identify new cellular players in order to develop personalized treatments. Among the metabolic
actors, the mitochondrial transporter uncoupling protein 2 (UCP2), whose expression is increased
in many cancers, has been identified as an interesting target in tumor metabolic reprogramming. Over
the past decade, a better understanding of its biochemical and physiological functions has established
a role for UCP2 in (1) protecting cells from oxidative stress, (2) regulating tumor progression through
changes in glycolytic, oxidative and calcium metabolism, and (3) increasing antitumor immunity in
the tumor microenvironment to limit cancer development. With these pleiotropic roles, UCP2 can be
considered as a potential tumor biomarker that may be interesting to target positively or negatively,
depending on the type, metabolic status and stage of tumors, in combination with conventional
chemotherapy or immunotherapy to control tumor development and increase response to treatment.
This review provides an overview of the latest published science linking mitochondrial UCP2 activity
to the tumor context.

Keywords: uncoupling protein 2 (UCP2); mitochondria; metabolism; oxidative stress; cancer;
therapies

1. Introduction

Cancer is today a major public health issue with a high incidence. With nearly
10 million deaths per year, it was the third leading cause of death worldwide in 2020 [1].
According to the definition of the World Health Organization: “cancer is the rapid mul-
tiplication of abnormal cells with unusual growth, which can then invade neighboring
parts of the body, and migrate to other organs”. Hanahan and Weinberg have deepened
this definition by listing all the common characteristics of cancer cells through periodic
updates of several reviews [2–4]. After the addition of cellular energetic dysregulations to
the “hallmarks of cancer”, the metabolic reprogramming of tumors has gained renewed
interest [3]. In the last decade, the study of tumor metabolism, through its mechanisms,
signaling pathways and metabolites, has even become a crucial issue for the understanding
and treatment of cancer. Otto Warburg’s 1920 hypothesis led for almost a century to the mis-
conception that cancer cells were exclusively dependent on glycolysis to produce adenosine
tri phosphate (ATP), and that mitochondria were damaged [5]. Nevertheless, although can-
cer cells adopt a preferential glycolytic metabolism following the activation of oncogenes,
which stabilize under hypoxic conditions, mitochondria are functional and necessary for tu-
morigenesis [6]. Mitochondria are indeed the production factories of cells. Energy-intensive
tumor cells take up oxygen (O2) and nutrients (glucose and essential amino acids) to form
building blocks (proteins, lipids and nucleic acids) through mitochondrial biosynthetic
pathways to sustain a high proliferation rate and promote resistance to chemotherapy [7–9].
However, mitochondria are the main source of reactive oxygen species (ROS) production.
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The oxidation of glucose by oxidative phosphorylation (OXPHOS) results in the incom-
plete reduction of O2. Electron leakage at complexes I and III of the electron transport
chain (ETC) leads to the release of superoxide (O2

−) molecules, which are highly unstable.
The superoxide is then successively converted to oxygen peroxide (H2O2) and water (H2O)
molecules by antioxidant enzymes to maintain the redox status [10]. However, an uncon-
trolled increase in ROS is cytotoxic and generates oxidative damage that promotes protein
and lipid damage, as well as genomic DNA mutations. This genomic instability can lead to
the induction of pro-tumor genes that destabilize cellular integrity [11,12]. To cope with
metabolic changes, cells have developed metabolic regulators to control excessive ROS
formation. In the past two decades, many studies have highlighted the antioxidant role
of uncoupling proteins (UCPs) and more specifically the UCP2 protein. The limitation of
ROS production by UCPs reduces cellular stress, which would contribute to improving
inflammatory responses in a tumorigenic context [13].

UCPs belong to the family of mitochondrial inner membrane transporters. UCP1
was the first member of the UCP family discovered in 1976 in mammalian brown adi-
pose tissue [14]. Homologs, including UCP2, were then identified [15–17]. UCP2 is the
uncoupling protein with the highest homology to UCP1 (59%), but its localization and
function are distinct [18]. Although its messenger RNA is ubiquitously distributed in all
organs, the protein is only detected in certain tissues such as the spleen, pancreas, lung,
intestine and white adipose tissue, due to the tight regulation of its translation [19,20].
Even though the highly controversial uncoupling activity has been investigated, a recent
biochemical characterization of UCP2 revealed that the protein is involved in the transport
of four-carbon (C4) tricarboxylic acid (TCA) metabolites to regulate pyruvate oxidation
in mitochondria [21,22]. The role of UCP2 has been implicated in various physiological
and pathological conditions. Indeed, through the physiological regulation of ROS [23–25],
the modulation of metabolism [22,26] and the control of the immune system [27,28], UCP2
has been implicated in the control of autoimmune diseases [29], cardiovascular dysfunc-
tion [30], neuronal pathologies [31] and cancers [32–34].

Today, although intensive research has led to major advances in the understanding of
the mechanisms of tumorigenesis, therapies have evolved little, even with the emergence of
immunotherapy. Indeed, immunotherapy and targeted therapies offer only limited success
in curing certain patients and in specific cancers [35,36]. Radiotherapy, chemotherapy
and surgery remain the first-line treatments despite the development of resistance and
significant side effects. However, to improve their effectiveness, the challenge is to combine
treatments by delivering, for example, targeted metabolic therapies with conventional
treatments or immunotherapies. UCP2, which is a protein involved in metabolic control,
could thus represent a therapeutic strategy to fight against the metabolic reprogramming
of tumors [37,38].

In this review, we will first characterize and deepen our knowledge of the physiological
functions of UCP2. Then, we will understand how this protein, through its multiple roles, is
involved in the metabolic and immune reprogramming of tumors. Finally, we will explore
whether targeting UCP2 could represent a therapeutic advantage in the fight against cancer
and resistance to therapies.

2. Role of UCP2 in the Physiological and Pathophysiological Context

Since the late 1990s, many studies have characterized the involvement of UCP2 in
several physiological and pathophysiological processes, but its biological role is not clearly
elucidated. Indeed, UCP2, but also its homologue UCP3, have been the subject of much
controversy (Figure 1) [13,39]. This first part will allow us to review the biochemical func-
tions attributable to UCP2 in order to better appreciate its involvement in a physiological
and pathophysiological context.
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Figure 1. Comparison between the first function attributed to UCP2 and the new concept of mito-
chondrial transport highlighted by the work of the Fiermonte team. Since its discovery, the UCP2
protein has been the subject of much controversy regarding its biochemical function. UCP2 was
initially identified as an uncoupling protein of the electron transport chain. Thus, the protein captures
protons from the intermembrane space and dissipates them into the mitochondrial matrix. Increased
thermogenesis, decreased reactive oxygen species (ROS) levels and ATP synthesis, which conse-
quently reduce insulin secretion, are observed due to reduced membrane potential (left). However,
the non-reproducibility of these results in different cells and tissues has questioned this function.
Since then, work by Vozza et al. [22] in 2014 showed that UCP2 catalyzes the exchange of 4-carbon
(C4) metabolites (oxaloacetate, malate, aspartate) from the tricarboxylic acid (TCA) cycle for a phos-
phate and a proton. UCP2 then regulates pyruvate oxidation in the mitochondrial matrix, which
promotes cell proliferation by providing building blocks and increases antioxidant defenses by reg-
ulating glutathione oxidation. C4 transport also controls TCA cycle activity to avoid overload by
the accumulation of intramitochondrial compounds. The redox pressure of the oxidative phospho-
rylation is then attenuated, which limits the production of ROS more or less harmful in the fight
against pathologies (right). Ac-CoA: Acetyl-CoA; ADP: adenosine diphosphate; ATP: adenosine
triphosphate; C4: 4-carbon metabolites; ETC: electron transport chain; FADH2(-FAD): flavine adenine
dinucleotide; GSH(-SSG): glutathione; H+: hydrogen ion; H2O: water molecule; H2O2: hydrogen
peroxide; NADH(-NAD+): nicotinamide adenine dinucleotide; NADPH(-P+): nicotinamide adenine
dinucleotide phosphate; O2-: superoxide; OAA: oxaloacetate; Pi: phosphate ion; ROS: reactive oxygen
species; TCA: tricarboxylic acid cycle; UCP2: uncoupling protein 2.

2.1. Biochemical Function
2.1.1. Uncoupling?

The strong homology between UCP1 and UCP2 initially directed research toward
similar mitochondrial membrane uncoupling functions (Figure 1). Uncoupling corresponds
to the dissociation of ETC oxidative phosphorylation from ATP synthesis; it causes hydro-
gen ion leakage from the intermembrane space to the mitochondrial matrix to dissipate
proton gradient energy. The use of recombinant UCP2 expression systems in yeast and
proteoliposomes showed that proton flux decreases the membrane potential in the pres-
ence of UCP2 [15,40,41]. The same phenomenon was later described in β-pancreatic cells,
thymocytes and isolated kidney mitochondria [24,42,43]. However, these results have
been questioned by other studies using mitochondria isolated from Ucp2−/− spleen and
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kidney [21]. While a thermogenic phenotype has been described as a consequence of
uncoupling [44], no dysregulation of energy balance and thermoregulation was observed
in Ucp2−/− mice exposed to cold [42,45]. It has been proposed that UCP2 lowers the
membrane potential to decrease the ATP/ADP ratio, and thus limit mitochondrial ROS
production, during successive oxidation–reduction reactions of the respiratory chain, and
negatively regulates insulin secretion [24,42,43]. Indeed, the uncoupling induced by the
overexpression of UCP2 in isolated pancreatic islets decreases the electrochemical gradient,
which then reduces by 50% the production of ATP by complex V, preventing the exocytosis
of insulin vesicles [46]. As for UCP1, these reactions are inhibited by purine nucleotides and
activated by free fatty acids, glucose, retinoic acid or ROS [41]. In 2002, Etchay et al. showed
that the activation of UCP2 by superoxide increased the proton conductance in a manner
dependent on fatty acids, and more particularly on palmitate in isolated mitochondria
from the kidney, spleen and pancreas of rats [43]. Other authors have even stated that
in the absence of these activators, UCP2 could not perform this uncoupling function [31].
However, these results on the uncoupling activity of UCP2 are now highly controversial.
While the characterization of the UCP1 protein showed that two histidine residues (His-145
and His-147) were essential for its protonophore activity, they are absent in UCP2 [47].
These data suggest that if UCP2 is a proton carrier, it uses a different mechanism. More-
over, studies conducted to elucidate the uncoupling role of UCP2 were performed under
overexpression conditions in yeast and bacterial systems [15,40,41,48]. However, the arti-
ficial overexpression of UCP carriers in these models prevented them from reaching the
correct protein conformation [13,49], leading to an uncontrolled artifactual uncoupling
of mitochondrial respiration [49–51] that is no longer comparable to the physiological
level of UCP2 adjusted by tight translation regulation [19]. Furthermore, in the basal state,
a comparison of the respiratory rate of mitochondria isolated from spleen and lung of
Ucp2+/+ and Ucp2−/− mice showed no change [21]. Additionally, in the latter study, the
activation of uncoupling with retinoic acid required micromolar concentrations, and is
unlikely to be physiologically relevant [21]. These data are also in agreement with the work
of Rial et al., who showed that under standard conditions, the use of purine nucleotides,
palmitic acid and retinoic acid had no effect on the respiratory rate of UCP2-overexpressing
yeast mitochondria [41]. In contrast, they observed that an increase in pH associated with
micromolar concentrations of retinoic acid stimulated respiration through an increase in
UCP2 mRNA [41]. However, Ucp2 is translationally regulated and an increase in mRNA
expression does not necessarily correlate with protein levels [19]. Unfortunately, much of
the data in favor of uncoupling activity have not been replicated. Indeed, studies have
described UCP2 activity in renal tissue where UCP2 could never be detected [24,52]. Other
studies have used commercial anti-UCP2 antibodies that have been shown to be nonspecific
for UCP2 protein detection [42,53,54]. To address the difficulties of the interpretation of
western blot, Pecqueur et al. developed in 2001 a sensitive anti-UCP2 polyclonal antibody
(UCP2-605 homemade) that has since been approved [19,25]. Since then, other teams have
developed antibodies against UCP2 [34]. Thus, the use of commercial antibodies must be
carefully validated using Ucp2−/− tissue or UCP2CRISPR/Cas9 cells to ensure the specific
detection of UCP2.

2.1.2. Transport of Metabolites

The discovery of other UCPs in plants and fish, organisms not dependent on ther-
mogenesis, further challenged the uncoupling theory and suggested that UCP2 may have
other biochemical functions [55,56]. Indeed, UCP2 belongs to the SLC25 family, a group
that includes all mitochondrial carriers [57]. The discovery in 2006 of the involvement
of UCP3 in the transport of pyruvate was another argument that directed the search for
UCP2 activity towards a transport function in mitochondria [58]. It was proposed by
Trenker et al., using the overexpression of UCP2 in human endothelial cells, that UCP2
participates in mitochondrial calcium (Ca2+) sequestration [59]. However, after the discov-
ery of mitochondrial calcium uniport (MCU), which was identified as a major contributor
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to mitochondrial Ca2+ transport, it was suggested that UCP2 might have a modulatory
activity. This was confirmed by super-resolution microscopy technology, which showed
a specific association between UCP2 and MCU, once the latter was methylated by the pro-
tein arginine methyl transferase 1 (PMRT1). This interaction was positively correlated with
mitochondrial Ca2+ uptake [60–62]. In addition, an interaction has been demonstrated be-
tween calcium ions and TCA intermediates, such as citrate and malate [63,64]. Interestingly,
Vozza and collaborators demonstrated that UCP2 catalyzes the exchange of C4 metabolites
(oxaloacetate, malate, aspartate) for phosphate and hydrogen ions, and therefore regulates
pyruvate oxidation in the mitochondrial matrix [22]. Thus, the TCA activity is regulated to
avoid overload by the accumulation of intramitochondrial compounds and to reduce the
redox pressure, and thus limit ROS production (Figure 1) [22]. These results highlight that
the metabolic remodeling (regulation of oxidative stress, insulin secretion, etc.) associated
with UCP2 since the early 2000s could be explained by the biochemical transport function
of C4 metabolites, and not by an uncoupling activity.

2.2. UCP2 a Metabolic Regulator

Due to the distribution of the UCP2 protein mainly in glycolytic tissues and its role
as a mitochondrial carrier, it is now well understood that UCP2 is involved in different
physiological and pathological processes related to glucose and lipid metabolism, such as
the regulation of food intake, insulin secretion, and immune response [65,66]. Our team
has demonstrated that UCP2 acts as a metabolic rewiring regulator to favor fatty acid
metabolism over glucose. Indeed, the genetic loss of Ucp2 in murine embryonic fibroblasts
(MEFs) was associated with increased proliferation correlated with glycolytic reprogram-
ming at the expense of β-oxidation [26,67]. Indeed, in Ucp2+/+ MEF cells, only 67% of ATP
is produced by glucose oxidation, compared to 89% in Ucp2−/− MEF cells [68]. Glycoly-
sis allows the supply of nucleotides through the pentose phosphate pathway to support
proliferation. Subsequently, other studies supporting the hypothesis of Pecqueur et al.
confirmed that UCP2 is a sensor of glucose to lipid metabolism, especially under energy
stress [65]. During caloric restriction or fasting, UCP2 expression is positively correlated
with an increased energy response and greater weight loss [69]. Ucp2−/− mice exposed
to fasting have a predisposition to hepatic steatosis due to impaired lipid utilization [70].
These mechanisms are also related to the downregulation of insulin synthesis by UCP2
in pancreatic β-cells [71]. UCP2 thus facilitates lipolysis and consequently the resulting
β-oxidation [71]. However, insulin release is ineffective after exposure to high glucose
concentrations. In this case, UCP2 promotes cell deregulation by inhibiting apoptosis via
bcl-2 [72]. Moreover, ghrelin is a hormone that promotes food intake during a fasting
state through its activating action on NPY/AgRP neurons. UCP2 mediates the action of
ghrelin by activating AMP-activated protein kinase (AMPK), which suppresses acetyl-CoA
carboxylase (ACC) enzymatic activity but increases Carnitine palmitoyl transferase I (CPT1)
expression to promote energy intake via β-oxidation in these neurons [73]. In contrast,
Zhang et al. and Vozza et al. suggested that the loss of UCP2 promotes mitochondrial
glucose oxidation by measuring the intramitochondrial accumulation of TCA constituents
in stem cells and human hepatocarcinoma cells (HepG2) [22,74]. This accumulation reflects
TCA saturation induced by the absence of C4 metabolite efflux. Furthermore, Kukat et al.
demonstrated in mice with cardiomyopathy that the absence of the UCP2 protein prevented
the oxidation of lipids accumulated in the cells [75]. ATP was then supplied by glycolysis,
inducing significant lactic acidosis in disabled mice.

In addition to glucose and fatty acids, cancer and immune cells oxidize glutamine
through the glutaminolysis reaction. Glutamine is a major amino acid in plasma and, as
a substrate, is successively converted into glutamate and ketoglutarate to integrate the TCA
and support oxidative metabolism. In the presence of glutamine, Ucp2−/− macrophages
showed altered homeostasis of glutaminolysis-derived metabolites with the accumulation
of glutamate, succinate and malate compared to Ucp2+/+ macrophages [76]. Additionally,
fatty acids and glutamine have been shown to activate Ucp2 transcription (via Peroxisome
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Proliferator-activated Receptor (PPAR)) and Ucp2 translation, respectively [77–79]. These
data reinforce the transporter role of UCP2, which in turn can export the C4 intermediates
provided by the oxidation of these two substrates independently of the presence of glucose.
The export of C4 metabolites can thus renew the cellular stock of pyruvate and regulate
oxidative stress in parallel via glutathione by avoiding a surplus of glucose consumption
that would overload the TCA cycle in glycolytic tissues.

In conclusion, these different studies show that UCP2 is an essential regulator of
substrate utilization, both at the systemic level via insulin regulation and at the cell-
ular level.

2.3. UCP2 and Oxidative Stress: A Link toward Immunity

The homeostasis of redox status contributes to cellular integrity. It has been recog-
nized that ROSs are involved in many etiologies, such as cancer, aging, neurodegeneration
and inflammatory pathologies. Since the first studies on UCP2, its role as a modulator of
ROS has been suggested [24,80,81]. Indeed, in 1997, Nègre-Salvayre et al. showed that
when UCP2 was inhibited by GDP, mitochondrial H2O2 production was increased [80].
Subsequently, UCP2 overexpression studies in human aortic endothelial cells and neonatal
rat cardiomyocytes confirmed these initial results, while emphasizing that the inhibi-
tion of ROS production by UCP2 decreased oxidative stress-induced apoptosis [82,83].
At that time, the hypothesis put forward by scientists was that the uncoupling generated
by UCP2 jointly lowered mitochondrial membrane potential and ATP synthase activity.
The functioning of the ETC was then reduced, which in turn decreased the formation
of ROS [24,80,84]. Nowadays, in view of the findings of Vozza et al., it becomes natural
to think that since UCP2 controls the oxidation of TCA substrates, the redox pressure of
OXPHOS and consequently ROS production is attenuated (Figure 1) [22].

With the identification of the antioxidant role of UCP2, much research has been carried
out to investigate its involvement in various pathologies, including those related to immune
system activation, as evidenced by the numerous reviews recently published [85–87].
Hereafter, we will give a brief and non-exhaustive description of the plurality of oxidative
stress responses induced by UCP2 in different pathologies.

2.3.1. Insulin Regulation—Type 2 Diabetes (T2D)—Cardiovascular Diseases

Research on UCP2 quickly highlighted its role in the pathogenesis of diabetes through
its regulation of pancreatic β-cell function [24]. In mouse models, UCP2 was shown to
be involved in pancreatic development via the ROS-Akt (protein kinase B) pathway by
promoting the proliferation of α and β endocrine cells from the embryonic stage [88],
and its loss promoted glucose-stimulated insulin secretion (GSIS) compared to wild-type
mice [42]. Furthermore, the short-term inhibition of UCP2 activity by Genipin, a pharmaco-
logical inhibitor of UCP2 derived from Chinese medicine, improved glycemic response,
indicating that UCP2 is a negative regulator of insulin secretion [71]. These combined
results may suggest a better response to hyperglycemia. Indeed, Zhang et al. demon-
strated a beneficial effect of UCP2 loss on glucose homeostasis in an ob/ob diabetic mouse
model [42]. These mice had better GSIS in the first phase after glucose ingestion and
better insulin signal transduction in white adipose tissue [42]. However, improved in-
sulin tolerance did not completely restore a healthy phenotype, as no significant changes
in body weight, food intake, serum triglycerides, or epididymal fat were found in diabetic
Sw/Uni mice treated with an antisense Ucp2 inhibitor [89]. On the contrary, other studies
showed that the reduction in Ucp2 expression achieved by transfection of small interfering
RNAs in pancreatic islets of ob/ob diabetic mice did not modify plasma insulin levels or
blood glucose levels [90], but generated an imbalance of oxidative stress in the pancreatic
islets [91]. The loss of UCP2, over several generations of backcrossed mice, in four different
strains induced extensive macrophage immune infiltration, which subsequently caused
a persistent accumulation of ROS with an imbalance in the reduced glutathione/oxidized
glutathione (GSH/GSSG) ratio and an increase in nitrotyrosine levels [92,93]. This excessive
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accumulation of ROS therefore led to pancreatic α- and β-cells dysfunction, favoring the
long-term progression to T2D [94]. Indeed, the lack of insulin feedback on glucagon led to
glucose resistance. By analogy, the overexpression of UCP2 in islets conferred protection to
pancreatic β-cells against oxidative stress and glucotoxicity [95]. In addition, patients with
T2D have an increased risk of developing cardiovascular disease [96]. The genetic deletion
of Ucp2 in a mouse model of atherosclerosis accelerated the development of atheroscle-
rotic lesions in the mouse aorta [30]. Cardiovascular dysfunction resulted in endothelial
alterations that facilitated monocyte invasion into the intima of Ucp2−/− mice [97]. More-
over, an oxidative burst produced by Ucp2−/−-infiltrating macrophages in atherosclerotic
plaques strongly and locally increased ROS, and activated pro-inflammatory cytokine
release through overexpression of the pro-inflammatory transcription factor Forkhead Box
Protein O1 (FoxO1) [30,98].

2.3.2. Infectious Diseases

UCP2 has also been shown to be involved in antimicrobial defense by increasing ROS
production after infection. Shortly after the discovery of Ucp2, Arsenijevic et al. demon-
strated that Ucp2−/− mice were resistant to Toxoplasma gondii infection. The loss of the
protein stimulates the release of ROS from macrophages, which have a toxoplasmicidal
action and thus limit the formation of brain cysts [27]. After listeria infection, the improved
survival of Ucp2−/− mice was also observed due to an enhanced phagocytic infiltrate fol-
lowing increased secretion of the MCP1 chemokine for up to 4 days [28]. At the molecular
level, isolated Ucp2−/− macrophages stimulated by lipopolysaccharides (LPS) significantly
increased ROS production and synergistically potentiated the regulation of the nuclear
factor kappa light chain enhancer of activated B cells (NFκB) and Mitogen-activated protein
kinases (MAPK) signaling pathways to enhance the inflammatory response compared to
wild-type macrophages [23,99]. These in vitro studies were also confirmed after Leishmani-
asis infections. Ball et al. showed in 2011 that mice injected with a Ucp2 shRNA into the
spleen had a parasite load inversely correlated with ROS production [100]. This result was
also confirmed in Ucp2−/− mice [101]. Moreover, in cell lysates from Leishmania-infected
Ucp2−/− macrophages, the increased production of pro-inflammatory cytokines (IL1β, IL6,
TNFα) was induced by the activation of Erk and p38 MAPK signaling pathways and the
inflammasome [100,102]. UCP2 indeed regulates caspase 1 via the NLRP3 inflammasome
by stimulating lipid synthesis, whether during localized or systemic infection [103]. Clinical
studies have also corroborated these data by showing a positive correlation between UCP2
expression and the severity of sepsis in patients [104].

2.3.3. Autoimmune Diseases

In autoimmune diabetes (type 1 diabetes (T1D)), the role of UCP2 has also been
discussed. Indeed, using the streptozotocin (STZ) model with repeated injections of low
doses of STZ that induce selective necrosis of pancreatic β-cells, Emre et al. showed in
Ucp2−/− mice that the development of the disease was advanced and more severe with
increased hyperglycemia compared to Ucp2+/+ mice [29]. This phenotype is accompanied
by an increased infiltration of pro-inflammatory lymphocytes and macrophages, as well as
the increased production of ROS. Indeed, the promotion of inflammation and oxidative
stress accelerated the establishment of T1D by causing the rapid destruction of Ucp2−/−

pancreatic β-cells [29]. In contrast, Lee et al. found that the STZ use associated with UCP2
loss essentially alters the function of glucagon-secreting α-cells by increasing ROS [105].
Overall, these results indicate that the loss of UCP2 in autoimmune diabetes can affect both
pancreatic β- and α-cells, depending on the study setting and mouse strain (C57BL/6J and
C57BL6/129, respectively).

Multiple sclerosis and its corresponding animal model (experimental autoimmune
encephalomyelitis (EAE)) is a demyelinating pathology of the central nervous system
(CNS). Since no curative treatment has been developed, teams have been interested in
studying the impact of the loss of UCP2 on this neurodegenerative disease. Ucp2−/− mice,



Int. J. Mol. Sci. 2022, 23, 15077 8 of 25

immunized with a myelin-specific antigen combined with an adjuvant, developed more
severe clinical scores compared to wild-type mice [54]. Greater T cell infiltration was
found in Ucp2-deficient mice compared with wild-type mice. This accumulation of CD4
and CD8 lymphocytes promoted a strong pro-inflammatory response with the production
of high levels of TNFα, IL2 and ROS [54]. Interestingly, the double deficiency of UCP2
and iNOS (inducible nitric oxide synthase) reduced the inflammatory phenotype [106].
More recently, in the spinal cord of wild-type mice, it was shown that the peak of UCP2
expression coincided with the peak of clinical symptoms of EAE occurring 14 days after
immunization [107]. These results suggest that UCP2 may be upregulated in the spinal
cord to counteract inflammation-induced oxidative stress, and thereby protect the CNS.
Accordingly, Alves Guerra et al. showed in 2003 that UCP2 was strongly regulated during
the immune response. In the early stages of LPS stimulation, UCP2 expression was inhibited
to promote the establishment of the inflammatory response through ROS production.
Then, at a later stage, UCP2 was overexpressed to counteract the toxic effect of oxidative
stress [25].

In conclusion, all the studies cited above have demonstrated that the mitochondrial
transporter UCP2 is involved in energy metabolism and in the regulation of oxidative stress
capable of initiating an immune response (Table 1). As both of these features are important
aspects of tumorigenesis, we will discuss in the next section how UCP2 might regulate
tumor development.

Table 1. Non exhaustive overview of pathophysiological implications of the mitochondrial protein
UCP2.

Disease Experimental
Model UCP2 Status Impact Ref.

Type 2 diabetes ob/ob mice Ucp2−/− Increased glucose-stimulated
insulin secretion [42]

Ucp2 siRNA Oxidative stress imbalance [91–93]

Atherosclerosis Atherogenic diet
Ldlr-/-mice

Ucp2−/−

Bone marrow

Increased atherosclerotic lesions
Increased invasion of macrophages into

the intima
Oxidative burst

[30]

Infections

Toxoplasma gondii Ucp2−/−
Resistance to infection by

increased production of ROS and pro-
inflammatory molecules

[27]
Listeria Ucp2−/− [28]

Leishmaniasis Ucp2−/−

Ucp2 shRNA
[100,101]

Autoimmune diseases

Streptozotocin (type
1 diabetes)

Ucp2−/−
Higher disease scores

Increased oxidative stress
and inflammation

[29]

Experimental auto-
immune encephalomyelitis [54,106,107]

Cancer

Oxidative stress:

AOM/AOM-DSS/APCmin

(colorectal cancer) Ucp2−/−
Decreased protection against

oxidative stress
and increased colorectal tumorigenesis

[32,108]

A549 cell line
(lung cancer)

UCP2
overexpression

Reduction of ROS accumulation
conferring

anti-apoptotic properties
[109]

A549 and PaCa44 cell line
(lung and pan-
creatic cancer)

Ucp2 siRNA ROS stimulate apoptosis derived
from autophagy [109,110]

Glycolysis:
B16F10 cell line

(melanoma)
UCP2

overexpression
Less tumorigenic cells through

down-regulation of glycolytic enzymes [111]
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Table 1. Cont.

Disease Experimental
Model UCP2 Status Impact Ref.

Cancer

HuCCT1, TFK-1 and PaCa44
cell lines

(bile duct and
pancreatic cancer)

Ucp2 siRNA
AMPK activation decreases

glycolytic activity
and therefore the cell invasiveness

[112,113]

Glutaminolysis:
HPB-ALL cell line

(leukemia) Ucp2 CRISPR Reduction of oxygen consumption
Shift of metabolism to glycolysis

Low nucleotide synthesis
Decreased cell proliferation

[114]

Patu8988T, Panc1 and BxPC3
cell lines

(pancreatic cancer)
Ucp2 shRNA [34]

Ca2+ signaling:

JB6 P+ and HeLa cell lines
(skin and cervix cancer)

UCP2
overexpression

Increased calcium activity stimulates
ATP production

Long-term mitochondrial dysfunction
[115,116]

Immune response:
Xenografts in mice with
B16-OVA and YUMM1

cell lines
(melanoma)

UCP2
overexpression

Better prognosis
Infiltration of CD8+ T cells and cDC1 cells

Improved response to immunotherapy
[117]

3. UCP2 and Cancer

In recent years, many studies have shown increased UCP2 protein expression in
a large number of human tumors compared to adjacent normal tissues (e.g., head and neck,
skin, pancreatic, prostate, colon, gallbladder, breast cancer, etc.) [118–121]. After screening
more than 100 colon adenocarcinomas, Horimoto et al. showed 3- to 4-fold higher levels of
Ucp2 mRNA and protein in tumors than in normal tissues [118]. Additionally, UCP2 levels
were positively correlated with increased amounts of lipid peroxidation and associated
with neoplasia [118]. Naturally, these results lead us to wonder whether increased UCP2
expression is protective or deleterious for tumor development. Thus, in this section, we
will attempt to elucidate the role of UCP2 in a tumor context by successively examining its
involvement in the oxidative stress, metabolic and immune reprogramming of a tumor.

3.1. UCP2: A Double-Edged Fight against ROS

Oxidative stress plays a complex role in cancer development. UCP2, whose antioxi-
dant role has been detailed previously, has been implicated in tumorigenesis by controlling
ROS. The initiation of colon cancer by azoxymethane (AOM) treatment induces the forma-
tion of more aberrant crypts in Ucp2−/− mice than in Ucp2+/+ mice [108]. In the absence
of UCP2, the increase in lesion number was associated with a lack of protection against
oxidative stress and the activation of NFκB-dependent anti-apoptotic genes [108]. Fur-
thermore, Aguilar et al. recently showed an increase in tumor number in Ucp2−/− mice
compared to wild-type mice using two models of colorectal carcinogenesis: AOM-DSS
(dextran sodium sulfate) and APCmin (Adenomatous polyposis coli) [32]. Loss of UCP2
enhanced colon tumorigenesis by promoting lipid synthesis, which limits the availability
of nicotinamide adenine dinucleotide phosphate (NADPH) for glutathione synthesis to
buffer oxidative stress [32]. In addition, mutations in the tumor protein 53 (TP53) gene
occur during tumorigenesis in over 50% of human cancers, and particularly affect colorec-
tal cancer. The mutant p53 protein loses its antioxidant capacity but acquires new pro-
tumor, pro-inflammatory and pro-oxidant biological properties [122]. Indeed, the mutant
p53 protein inhibits the Sestrin 1 (SESN1)/AMPK/PPARγ coactivator 1 (PGC1) pathway,
which is a transcriptional axis that activates UCP2, and consequently the inhibition of this
signaling pathway stimulates O2

− production in cancer cell lines. In this context, the loss
of UCP2 associated with the gain of function of the p53 mutant confers hyperproliferative
anti-apoptotic effects on cancer cells [123].
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However, depending on the stage and type of cancer, UCP2 has a dual regulation
mechanism. The hypothesis today is that UCP2 would be repressed in the tumor initiation
phases to allow the accumulation of ROS, as described above, while on the contrary the
protein would be overexpressed in the late phase to maintain the proliferative capacities
of the cells in the tumor microenvironment (TME) that are already under stress condi-
tions [120,124]. This hypothesis is also based on the binary action of ROS. Indeed, when
ROS levels are elevated but not uncontrolled, they favor tumor promotion through the
acquisition of mutations in oncogenes and the activation of pro-tumor metabolic signals
associated with the disruption of the establishment of antioxidant mechanisms. Moreover,
a significant increase in oxidative damage will trigger programmed cell death, which re-
lies on caspase activity and cell elimination by phagocytes to limit tumor development.
However, tumor cells set up antioxidant activities essential for tumorigenesis to counteract
ROS-induced apoptosis [125,126]. Several studies have shown the ROS control induced
by UCP2 in established tumor cell lines. Under hypoxic conditions, similar to tumor core
conditions, the overexpression of UCP2 in the lung adenocarcinoma cell line A549 showed
anti-apoptotic properties. Indeed, the UCP2-induced decrease in ROS accumulation in-
hibited programmed cell death by blocking cytochrome c release and reducing caspase
9 activity [109]. Correlatively, the transfection of Ucp2 siRNA into A549 and PaCa44 (human
pancreatic adenocarcinoma) cell lines inhibited cell growth through a strong increase in
ROS production [109,110]. The loss of UCP2 in different human pancreatic adenocarcinoma
cell lines further stimulated autophagy through the ROS-dependent nuclear translocation
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [110]. Autophagy-derived apop-
tosis was reversed by treatment with the free radical scavenger N-acetylcysteine (NAC)
when Ucp2 was inhibited genetically by siRNA and pharmacologically by Genipin [110].
Additionally, Wu et al. demonstrated that the silencing of UCP2 in human glioma cell
lines alters the p38 MAPK signaling cascade, which reduces the migration and invasion
capabilities of tumor cells [127]. Indeed, p38, widely studied as an antitumorigenic factor
in the early stages of the disease, has rather an oncogenic role in advanced disease, since
it is involved in the metastatic process when it is no longer blocked by dual-specificity
phosphatases (DUSP) [127,128]. Therefore, the loss of UCP2 may favor tumor cells that are
less likely to metastasize.

3.2. UCP2 and Tumoral Metabolic Reprogramming

Metabolic dysregulation is one of the factors identified by Hanahan and Weinberg as
a common feature of cancer cells [3]. Moreover, we have seen previously that UCP2 plays
an important role in controlling cell metabolism by modulating the TCA cycle activity, but
what about under conditions of tumorigenesis?

3.2.1. Glycolysis

Glycolysis is the metabolic pathway that converts glucose to pyruvate. In the absence
or presence of oxygen, tumors promote the production of lactate from pyruvate [129].
Tumors have an intensely active metabolism to provide energy and building blocks for
unregulated cell proliferation. Thus, due to the dysregulated activation of oncogenes that
induce the overexpression of glycolysis-stimulating enzymes, cancer cells oxidize abundant
amounts of glucose [8]. In this context, Esteves et al. demonstrated that UCP2 overex-
pression in the murine melanoma cell line B16F10 induces hypoxia-inducible factor-2α
(HIF2α)/AMPK axis-dependent metabolic reprogramming [111]. The authors revealed
that the reduced level of fumarate observed in UCP2high cells would be the link between
AMPK activation and decreased HIF2α expression [111]. Indeed, a decrease in fumarate
contributes to stabilize the enzyme pyruvate dehydrogenase (PDH) and inhibits HIF2α,
and would therefore be indirectly responsible for the downregulation of the expression
of the glycolytic enzymes hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2) [111,130].
In addition, several studies have demonstrated a positive effect of fumarate on AMPK
activity [131,132]. Besides this, the decrease in fumarate accumulation also suggests
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a better regulation of TCA cycle through the export of C4 metabolites by UCP2 [111].
Hence, UCP2 shifts the glycolysis-dependent metabolism to oxidative phosphorylation,
which significantly decreases the proliferation of B16F10 cells and thus reduces the cells’ tu-
morigenic capacity. These results are consistent with a recently published study indicating
that saturation of the mitochondrial malate shuttle, which uses a nicotinamide adenine din-
ucleotide (NADH) cofactor to reduce oxaloacetate to malate, redirects proliferative cellular
metabolism to aerobic glycolysis [133]. To go further, metabolomics fluxes using C13-labeled
glucose caused an 18% reduction in glucose consumption by the UCP2-overexpressing
JB6 P+ murine skin epidermal cell line [134]. In contrast, pyruvate was found to be much
more enriched in C13 under aerobic conditions in the same murine cell line. A significant
percentage of carbons were rewired to the TCA cycle and not to lactate production, to allow
amino acid and nucleic acid synthesis [134]. In addition, palmitate oxidation, as measured
by the Seahorse XF apparatus, was higher in JB6 P+ cells transfected with UCP2 compared
to control cells [115]. These data demonstrate that the presence of UCP2 induces an increase
in β-oxidation in a tumor context as well as in a physiological context, as previously shown
by Pecqueur et al. [26,115]. However, although the TCA cycle function is enhanced by
UCP2 content, the authors do not show whether this correlates with reduced tumor cell
proliferation, migration or invasion.

Nevertheless, other studies have not corroborated these initial results. Yu et al. demon-
strated a poor prognosis associated with increased expression of Ucp2 RNA and UCP2
protein in patients with cholangiocarcinoma. Metabolically, the cellular knockdown of
UCP2 in the intrahepatic cholangiocarcinoma cell line HuCCT1 and in the extrahepatic
cholangiocarcinoma cell line TFK-1 resulted in the attenuation of glycolysis through the
activation of AMPK [112]. Phosphorylated AMPK expression, an indicator of its activa-
tion, was upregulated in the absence of UCP2 following increased mtROS production and
decreased antioxidant activities [111,112]. Indeed, AMPK is an essential sensor for the
maintenance of cellular energy homeostasis that is activated by phosphorylation during
metabolic stress, such as ROS-mediated oxidative stress [135]. Moreover, activated AMPK
reversed the mesenchymal phenotype by inhibiting Akt signaling in cholangiocarcinoma
cell lines with low UCP2 expression. Thus, cancer cells lose their ability to migrate and
invade healthy tissue [112]. Through its transport activity, UCP2 modified the utiliza-
tion of substrate by cancer cells. These changes induce Akt-mTOR (mammalian target
of rapamycin) signaling, which activates and mediates a glycolytic flux by maintaining
an elevated expression of glucose transporter 1 (GLUT1), 6-phosphofructo-2-kinase (PFKB2),
and PKM2, which triggers increased lactate release [113,136]. Furthermore, the inhibition
of UCP2, either pharmacologically with Genipin or genetically with siRNAs, was sufficient
to reverse the metabolic phenotype and reduce proliferation in PaCa44 and JB6 P+ cancer
cell lines [113,136].

Although all these results indicate that UCP2 is involved in the glycolytic metabolism
of cancer cells, some data are contradictory. These discrepancies can be explained by the
fact that the authors used different cell lines that do not necessarily rely on the same energy
metabolism. Moreover, the cancer cells used do not express identical basal levels to UCP2.

3.2.2. Glutaminolysis

However, glucose is not the only energy-providing substrate, and glutamine is an im-
portant source of nitrogen and carbon for the TCA cycle in tumor cells. Indeed, oncogenes
support glutaminolysis to drive mitochondrial metabolism that regulates cellular precur-
sors essential to support increased cell proliferation [137]. The translation of Ucp2 being
partly regulated by glutamine, and UCP2 facilitating TCA cycle function, several teams
have analyzed the role of the protein in glutamine dependence in oxidative tumors [22,77].
A positive correlation between the expression level of UCP2 and glutamine dependence
has been demonstrated in several human and murine tumor cell lines [114,138]. Indeed,
when N18TG2 neuroblastoma cells were deprived of glucose, UCP2 was upregulated
in response to glutamine consumption, which became the main source of oxidative phos-
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phorylation [138]. However, Sancerni et al. recently demonstrated that the metabolic
adaptations of cells to intra- and extracellular glutamine depend on the basal level of
UCP2 [114]. Indeed, the loss of UCP2 in HPB-ALL leukemic cells, which highly express
UCP2 and are metabolically dependent on glutamine, decreased their oxygen consumption
and redirected their metabolism to glycolysis. This cellular metabolic adaptation induced
a decrease in cell proliferation. In contrast, Jurkat leukemia cells, which express low levels
of UCP2 and are dependent on glycolytic metabolism, were less metabolically affected
by Ucp2 knockdown. These results show that Jurkat cells have a more flexible and less
oxidation-dependent glutamine metabolism than HPB-ALL cells. However, the loss of
UCP2 in Jurkat cells further decreased proliferation by altering the biosynthesis of lipid,
protein and nucleotide precursors [114]. In addition, to counteract nutritional stress due
to glutamine deficiency, the murine neuroblastoma cell line N18TG2 promoted lactate
synthesis; nevertheless, in a manner dependent on activating transcription factor 4 (ATF4),
the cells entered quiescent-metabolic and -proliferative phases [138]. Raho et al. also
demonstrated that in human pancreatic ductal adenocarcinoma (PDAC), the loss of the
UCP2 transporter reduced the mitochondrial glutamine catabolism, leading to increased
ROS levels and a shortage of aspartate required for protein and nucleotide biosynthesis [34].
Interestingly, the in vitro and in vivo silencing of UCP2 reduced the rate of cell prolifer-
ation only in PDACs mutated for Kirsten Rat Sarcoma Virus (KRAS), which is an onco-
gene that rewires glutamine consumption for the synthesis of aspartate and oxaloacetate.
In parallel, aspartate or GSH supplementation partially or totally rescued the cell growth
defect observed in the absence of UCP2 [34,139]. Altogether, these results highlight that
UCP2 is essential for glutamine-dependent tumors.

3.2.3. Ca2+ Signaling

Ca2+ signaling is essential for cellular physiological functions, especially in cancer
cells, in order to cope with high energy demands and rewire Ca2+ requirements [140].
Upon cellular stress, such as increased oxidative stress reflected by elevated H2O2 lev-
els, receptor tyrosine kinases activate phospholipase Cγ-1 (PLCγ-1), which then cleaves
membrane phospholipids, generating two second messengers that stimulate intracellular
Ca2+ entry [141]. The overexpression of UCP2 in JB6 P+ cells stimulated with the tumor
inducer TPA (12-O-tetradecanoylphorbol 13-acetate) enhanced calcium signaling induced
by PLCγ-1 upregulation [115]. Cytoplasmic Ca2+ is then captured by the endoplasmic
reticulum (ER) and transferred via mitochondria-associated membranes (MAMs) to mito-
chondria, stimulating ETC activity and thereby promoting ATP production [140]. Above,
we have already pointed out that UCP2 is required for mitochondrial Ca2+ uptake to coun-
teract the inhibitory methylation of the MCU transporter by PRMT1 [61]. Furthermore, it
has also been shown that the combined overexpression of UCP2 and PRMT1 improved
mitochondrial respiration and cell viability in lung carcinoma cells [142]. In agreement,
lung cancer patients with combined Ucp2high and Prmt1high RNA expression had reduced
5-year survival [142]. However, the prolonged binding between mitochondria and MAMs
promotes the risk of mitochondrial Ca2+ overload, which, following mitochondrial dys-
function, induces apoptotic cell death. Thus, it has been shown that UCP2 expression is
downregulated to avoid overload when the mitochondria–ER interaction is stabilized [116].
Calcium signaling is therefore a finely regulated process that depends on the balance be-
tween mitochondria-ER binding and mitochondrial Ca2+ uptake via variations in UCP2
expression to optimally promote tumor development.

Altogether, the studies demonstrated that UCP2 acts differently depending on the
metabolic dependence of tumors. In conclusion, the energy metabolism of cancers being
very different, it is therefore important to characterize precisely their specific metabolism
in order to determine whether a positive or negative targeting of UCP2 will be effective
against tumor development.
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3.3. UCP2-Activated Antitumor Immunity

Immunometabolism represents a new area of intense research to find new targets
to fight cancer, as the infiltration of immune cells into the tumor is indeed influenced
by the metabolic characteristics of the TME [143]. UCP2, through its regulation of ROS
production, acts on the inflammatory and immune responses of various pathologies (see
Section 2.3). In addition, UCP2 modulates the metabolic demands of cancer cells and
thus appears to be an interesting candidate to study the immune reprogramming of tu-
mors. Bioinformatics analyses of the Cancer Genome Atlas (TCGA) database of breast
cancer and melanoma patients showed a positive correlation between UCP2 expression and
antitumor immune infiltration [117,144]. A better prognosis associated with high UCP2
expression also confirmed these correlative findings [117,144]. Based on these observations,
Cheng et al. aimed to decipher the role of UCP2 in the immune response of melanoma
tumors. First, transcriptomic studies demonstrated that UCP2 induced an CD8+ T cell
and conventional dendritic cell (cDC1) infiltration profile [117]. Then, by establishing
xenografts with B16-OVA and YUMM1 melanoma cell lines with doxycycline-inducible
UCP2 expression, they demonstrated that UCP2 overexpression in these tumor cells in-
duced an immune environment similar to that of melanoma patients. UCP2 facilitated
the recruitment of CD8+ T cells through an increased release of the chemokine CXCL10
from cCD1, combined with a decrease in the expression of pro-tumorigenic factors (IL10,
M-CSF (macrophage colony-stimulating factor) and VEGF (Vascular Endothelial Growth
Factor)) and a normalization of the vasculature that amplifies the antitumor infiltration.
Moreover, the induction of UCP2 in combination with immunotherapy (anti-PD1 antibody)
resulted in reduced tumor volume and improved survival compared with anti-PD1 anti-
body alone. These results highlight the potent role of UCP2 in increasing the response to
immunotherapy treatment [117]. Based on the results of Esteves et al., the authors hypoth-
esized that increased UCP2 expression in melanoma cells limits the aerobic glycolysis of
tumor cells, allowing glucose to be available for consumption by lymphocytes [111,117].
Indeed, when lymphocytes are activated and recruited to the tumor site, they essentially
consume glucose to release cytotoxic factors [143]. Other authors have shown that UCP2
improves immune recruitment by acting directly on lymphocytes expressing high levels of
UCP2. Indeed, the antigenic stimulation of isolated naive CD4+ and CD8+ T cells induced
an increase in UCP2 expression after 24 h, and even more so after restimulation [145].
Furthermore, activated UCP2 inhibits ROS generation to limit ROS-induced apoptosis, and
simultaneously regulates glycolytic flux and TCA cycle activity to promote lymphocyte
clonal expansion [146].

In conclusion, despite the different functions of UCP2, which may have opposite effects
depending on the type and stage of cancer, the authors are in global agreement that the
UCP2 protein does not intervene by modulating proton leakage and thus ETC uncoupling.
An increase in mitochondrial respiration in the presence of UCP2 independently of the
uncoupling function has nevertheless sometimes been described. However, if the effect
on metabolism has been well characterized, the effect on tumor immunity remains little
studied to date (Figure 2 and Table 1).
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Figure 2. Role of the mitochondrial carrier UCP2 in tumor progression according to published
results [32,111,114,116,117,147]. UCP2 is involved at all stages of tumor development with differ-
ent consequences depending on the type of cancer. UCP2 acts as an antioxidant to counteract
the formation of cellular and mitochondrial reactive oxygen species that could then spread into
the tumor microenvironment (TME) to promote the acquisition of new pro-tumor properties of the
cells. Through the transport of 4-carbon metabolites of the tricarboxylic acid (TCA) cycle, UCP2 is
involved in the regulation of tumor metabolism. When UCP2 is expressed, tumor cells undergo
oxidative metabolic reprogramming. Thus, glucose is preferentially converted to pyruvate to support
cellular anabolism through TCA cycle activity. In addition, the export of C4 metabolites prevents the
overloading of the TCA cycle via the accumulation of intramitochondrial compounds and reduces
redox pressure to limit ROS production. Moreover, β-oxidation and glutaminolysis can be promoted
to sustain TCA. Calcium dependence also supports the energy requirements of tumor cells. Never-
theless, the presence of UCP2 correlates with a significant antitumor immune infiltration to resist
tumor development. C4: 4-carbon metabolites; Ca2+: calcium ion; ROS: reactive oxygen species; TCA:
tricarboxylic acid cycle; UCP2: uncoupling protein 2.

3.4. Drug Sensitivity and Therapeutic Improvement

Chemotherapy is a very common strategy used to control tumor growth. Antineoplas-
tic drugs, often given in combination with other treatments, specifically or otherwise target
the cell cycle to damage DNA and induce apoptosis in tumor cells. However, the effective-
ness of chemotherapy is a major challenge. Indeed, many patients fail to respond due to
specific mutations or acquire resistance by adapting antioxidant defense mechanisms and
altering the TME [148,149]. Through the roles of UCP2, studies have characterized the in-
volvement of UCP2 in the regulation of tumor cell sensitivity to cancer therapies. In patients
with serous ovarian carcinoma, one study showed a negative correlation between UCP2
protein expression and platinum sensitivity. Thus, patients with low UCP2 expression had
improved overall survival with platinum-based therapy [150]. However, this work was
performed using an AbCam antibody, which was found to be unreliable and non-specific by
Aguilar et al. [32]. In vitro, cells overexpressing UCP2 induced chemoresistance by modu-
lating ROS that abrogate p53-induced apoptosis [151]. UCP2 also promoted the expression
of the mitochondrial detoxifier superoxide dismutase 2 (SOD2) [121]. The pro-survival
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activity of UCP2 is also mediated by the NFκB/β-catenin axis. After the treatment of
gallbladder cancer cells (G-415) with gentamicin, these transcription factors were activated
and, in combination with UCP2, promoted cancer cell survival during chemotherapy [121].
Since gentamycin alone induces Ucp2 gene expression in pancreatic adenocarcinoma cell
lines, it has been hypothesized that UCP2 is directly involved in acquired cancer resis-
tance to gentamycin [152]. Conversely, enhanced sensitivity to staurosporine has been
reported in several cell lines overexpressing UCP2, reflected in increased pro-apoptotic
caspase activities [111]. As pointed out by Wang and colleagues, the deletion of UCP2
under hypoxic conditions increased ROS, but contributed to the stabilization of nuclear
factor erythroid 2–related factor 2 (Nrf2), which upregulated the mediate efflux transporter
ATP-binding cassette super-family G member 2 (ABCG2), resulting in chemoresistance
to cisplatin and docetaxel [153]. Furthermore, these results are consistent with a clinical
study that showed poorer response to and survival following cisplatin-based chemotherapy
in advanced lung cancer patients with low UCP2 expression [154]. Overall, these studies
showed that regulating UCP2 expression, either positively or negatively depending on the
type of cancer, represents a therapeutic strategy to be considered to improve responses to
chemotherapy (Figure 3).

Figure 3. Therapeutic strategies targeting UCP2 combined with antitumor therapies to promote
cancer cell apoptosis. Use of activators (rosiglitazone) or inhibitors (Genipin) of UCP2, depending
on tumor-dependent metabolism, leads to changes in the capacities of mitochondria to provide
energy and building blocks through the transport of 4-carbon tricarboxylic acid cycle metabolites,
and may improve sensitivity to anticancer therapies by increasing tumor cell apoptosis. C4: 4-carbon
metabolites; UCP2: uncoupling protein 2.

3.4.1. Genipin

Genipin is a plant chemical extracted from the fruit of Gardenia Jasminoides Ellis.
This molecule is widely used in traditional Chinese medicine for its anti-inflammatory,
antioxidant, and antipyretic properties. Chemically, Genipin is an excellent cross-linking
agent that has been commonly used in industry to produce biomaterials. In 2006, Genipin
was also identified as an inhibitor of UCP2; indeed, a specific inhibition of proton transport
by the binding of arginine residues on UCP2 was proposed [71]. However, the lack of
UCP2-mediated uncoupling highlighted in the studies cited above does not allow us to
determine the true mechanism of action of this molecule on UCP2, although the antitumor
role of Genipin is well documented [71,155–157]. Furthermore, Vozza and his team pointed
out in 2014 that Genipin had no effect on UCP2 transport activity. Indeed, this molecule
did not catalyze the 33Pi/Pi exchange [22]. In contrast, Genipin, by decreasing UCP2
expression in MCF7 breast cancer lines, inhibited tumor promotion characterized by lower
cell proliferation and migration compared to control [158]. The growth, migration and
3D steroid invasion of cholangiocarcinoma cancer lines were also effectively reduced by
Genipin in a dose-dependent manner [112]. In vitro, Genipin treatment activated intrinsic
apoptotic pathways that enabled cell cycle arrest in the G2/M phase through the inhibitory
induction of cyclin-dependent kinase inhibitor 1 (p21) [159,160]. Moreover, the triggering of
p38 MAPK signaling inducing the pro-apoptotic activity of caspase 3, which enhances
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the antitumor effect of Genipin [161], appears to be ROS-dependent [110,113]. Indeed,
the inhibition of UCP2 by Genipin induced high levels of total ROS measured by the non-
fluorescent diacetylated 2′,7′-dichlorofluorescein (DCFH-DA) probe in the cell medium of
pancreatic adenocarcinoma lines triggering cell apoptosis through an autophagic process
that was impaired by NAC treatment [110]. In addition, Cho et al. recently demon-
strated that Genipin supplementation suppressed the uptake of 18F-FDG (18Fluorine-
fluorodeoxyglucose), a glucose analog and radiotracer, in positron emission tomography
(PET) scans of breast (T47D and MDA-MB-435) and colon (HCT116 and HT29) cancer
cells [162]. The resulting decrease in lactate production and glycolytic flux has been char-
acterized at the molecular level by inhibition of the expression of glycolytic enzymes
(GLUT1, PFKFB2, PKM2, Lactate dehydrogenase a (LDHa). . . ) associated with Akt signal-
ing [113,136]. Finally, the pleiotropic action of Genipin also induced tumor suppression
in vivo by depleting tumor-associated macrophages in the TME of hepatocellular carcinoma
mouse xenografts [163].

Nevertheless, the real benefit associated with Genipin treatment appears to be
the significant improvement in the sensitivity of cancer cells to antitumor treatments.
The combined use of cytotoxic molecules, in this case trastuzumab, with Genipin syner-
gized their action and created a similar effect on the inhibition of cell viability to the use
of Ucp2 siRNA and trastuzumab on the HER2-positive BT474 cell line [164]. In pancre-
atic adenocarcinoma cells, the combination treatment of Everolimus, an antitumor agent
that inhibits the mTOR pathway, with Genipin synergistically inhibited cancer cell pro-
liferation by increasing the nuclear translocation of GAPDH [147]. In pancreatic, lung
and leukemia cancer cells, GAPDH is indeed translocated by increased production of
ROS, mainly from the mitochondria [147,165,166]. The resulting amplified triggering of
apoptosis strongly reduced the tumor volume of pancreatic adenocarcinoma xenografts in
mice without altering their general condition during Everolimus–Genipin treatment [147].
Furthermore, Lee et al. also demonstrated that co-treatment with Genipin and Elescomol,
a pro-apoptotic chemotherapy adjuvant, decreased tumor energy metabolism by reducing
glycolytic flux [165].

However, although Genipin appears to be a promising molecule for improving re-
sponse to chemotherapy treatments, the lack of knowledge about its molecular mechanism
of action has so far prevented the establishment of clinical trials in cancer.

3.4.2. Rosiglitazone

Since the potent role of UCP2-mediated metabolic reprogramming associated with cancer
cell proliferation and immunity has been described above in different studies [32,34,111,114,117],
UCP2 activators may represent a promising therapeutic strategy to simultaneous target
different energetic pathways essential for tumor growth.

After activation, PPARs, members of the steroid receptor family, are translocated
into the nucleus to heterodimerize with the retinoid receptor (RXR) and thus initiate the
transcription of target genes such as UCP2 [167]. Among the three PPAR isoforms (PPARα,
PPARβ/δ, PPARγ), PPARγ is the most studied to date due to its crucial role in carbo-
hydrate and lipid homeostasis, regulation of apoptosis and tumor progression [168,169].
Numerous studies have demonstrated that PPARγ acts as a tumor suppressor by activating
the pro-apoptotic gene TP53 and blocking the cell cycle through the overexpression of
p21 in colon, lung, pancreatic, prostate and breast cancer cell lines [170–174]. Further-
more, Kwon and colleagues showed that reduced levels of PPARγ in sporadic colorectal
cancers correlated with poor prognosis in patients [175]. The search for synthetic activat-
ing molecules led to the identification of thiazolidinediones, including rosiglitazone, as
PPARγ agonists [168]. Thus, rosiglitazone has been shown to transcriptionally induce
Ucp2 [176]. Recently, increased UCP2 expression following rosiglitazone treatment in
melanoma cell lines promoted antitumor immunity and induced the reprogramming of
the cytokine profile secreted by tumor-infiltrating T cells [117]. UCP2 induction also sig-
nificantly improved the response to anti-PD1 immunotherapy, and a greater reduction
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in tumor volume in melanoma xenografts was reported when anti-PD1 was combined
with rosiglitazone [117]. Rosiglitazone also improved radiosensitivity and response to
5-fluorouracil chemotherapy by inhibiting cell growth and suppressing pancreatic and
colorectal cancer cells in vitro [177,178].

However, these potential therapeutic benefits against cancer need to be re-evaluated
in humans in terms of dose, because, unfortunately, serious side effects in patients such
as fluid retention, heart failure or an increased risk of developing bladder cancer have
been described [179]. Although rosiglitazone is still approved by the Food and Drug
Administration (FDA), its regulation and use are now very restricted [180]. Moreover,
PPAR agonists activate a multitude of target genes, so identifying a specific activator of
UCP2 remains a challenge.

4. Conclusions

Cancer can be initiated by an uncontrolled accumulation of ROS, and then cancer
cells survive and proliferate until they invade other organs by metabolic and immune
reprogramming. Although complex to demonstrate, UCP2 is involved in all these steps
with different consequences. Its chemical role has been widely reconsidered in recent
years following the questioning of its uncoupling function. In this review, we described
that UCP2 acts as a metabolic sensor through its role as a mitochondrial transporter of C4
metabolites of the TCA cycle to regulate and control these processes. Overall, we argue
that UCP2 transport-related regulations occur not only in a tumor context, but also in
a healthy context. Metabolite modulation then leads to adaptations in cellular and mito-
chondrial metabolism. Nevertheless, we believe that the metabolic adaptations enabled
by UCP2 are more pronounced in a stressful context, such as cancer. Indeed, few effects
due to a modification of UCP2 expression can be observed in a model of healthy intestinal
epithelium, for example. The latter theoretically has the capacity to maintain its ATP
production through the different pathways of energy catabolism. However, when cells are
damaged in metabolic diseases, infections or cancers, a loss of UCP2 will have more drastic
consequences. Cancer cells or immune cells are indeed dependent on specific metabolic
pathways, such as glutamine, which are essential for their activation and expansion. Thus,
the absence of UCP2 will lead to a saturation of their TCA cycle, totally unbalancing
the metabolism of these cells, and this will decrease in parallel the cellular antioxidant de-
fenses caused by the absence of aspartate transport, and consequently of glutathione synthesis.

In clinical studies, different correlations, negative or positive depending on the type
of cancer, have been described between Ucp2 mRNA expression and patient survival.
UCP2 is therefore considered today in many studies based on the Oncomine database as
a potential cancer biomarker. However, it is crucial to remember that Ucp2 gene expression
is not correlated with protein levels due to translational regulation [19]. Moreover, many
commercial antibodies targeting UCP2 commonly used by different teams are not effective,
and are sometimes even non-specific, because the detected signal is conserved in Ucp2−/−

tissues [32]. Thus, caution should be taken in correlating the prognosis of cancer progres-
sion with UCP2 protein levels in cancer patients, as has been done in breast, pancreatic and
lung cancer with non-specific antibodies [33,124,142]. Nevertheless, based on all the studies
cited above, the inhibition or activation of UCP2 according to the metabolic status of the
tumor represents a therapeutic opportunity to improve cancer remission. Targeting UCP2
in combination with conventional treatments (chemotherapy, radiotherapy, immunother-
apy) could promote a beneficial response in patients. However, we have seen here that
the use of Genipin or rosiglitazone is not optimal because their mode of action on UCP2 is
not well characterized and not specific. Designing or synthesizing new molecules directly
targeting UCP2 should be a priority in the coming years to counter tumor progression.

Author Contributions: Conceptualization, A.L. and M.-C.A.-G.; writing—original draft preparation,
A.L. and M.-C.A.-G.; writing—review and editing, A.L. and M.-C.A.-G.; Supervision, M.-C.A.-G. All
authors have read and agreed to the published version of the manuscript.



Int. J. Mol. Sci. 2022, 23, 15077 18 of 25

Funding: This work was financially supported by the “Centre National de la Recherche Scientifique”
(CNRS), the “Institut National de la Santé et de la Recherche Médicale” (Inserm) and the Uni-
versity Paris-Cité.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
2. Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [CrossRef]
3. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]
4. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [CrossRef]
5. Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. J. Gen. Physiol. 1927, 8, 519–530. [CrossRef]
6. Heiden, M.G.V.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Prolifera-

tion. Science 2009, 324, 1029–1033. [CrossRef]
7. Ahn, C.S.; Metallo, C.M. Mitochondria as Biosynthetic Factories for Cancer Proliferation. Cancer Metab. 2015, 3, 1–10. [CrossRef]
8. DeBerardinis, R.J.; Chandel, N.S. Fundamentals of Cancer Metabolism. Sci. Adv. 2016, 2, e1600200. [CrossRef]
9. Amoedo, N.D.; Sarlak, S.; Obre, E.; Esteves, P.; Bégueret, H.; Kieffer, Y.; Rousseau, B.; Dupis, A.; Izotte, J.; Bellance, N.; et al.

Targeting the Mitochondrial Trifunctional Protein Restrains Tumor Growth in Oxidative Lung Carcinomas. J. Clin. Investig.
2021, 131. [CrossRef]

10. Brand, M.D. Mitochondrial Generation of Superoxide and Hydrogen Peroxide as the Source of Mitochondrial Redox Signaling.
Free Radic. Biol. Med. 2016, 100, 14–31. [CrossRef]

11. Chio, I.I.C.; Tuveson, D.A. ROS in Cancer: The Burning Question. Trends Mol. Med. 2017, 23, 411–429. [CrossRef]
12. Sullivan, L.B.; Chandel, N.S. Mitochondrial Reactive Oxygen Species and Cancer. Cancer Metab. 2014, 2, 1–12. [CrossRef]
13. Bouillaud, F.; Alves-Guerra, M.-C.; Ricquier, D. UCPs, at the Interface between Bioenergetics and Metabolism. Biochim. Biophys.

Acta (BBA) Mol. Cell Res. 2016, 1863, 2443–2456. [CrossRef]
14. Heaton, G.M.; Wagenvoord, R.J.; Kemp, A.; Nicholls, D.G. Brown-Adipose-Tissue Mitochondria: Photoaffinity Labelling of the

Regulatory Site of Energy Dissipation. Eur. J. Biochem. 1978, 82, 515–521. [CrossRef]
15. Fleury, C.; Neverova, M.; Collins, S.; Raimbault, S.; Champigny, O.; Levi-Meyrueis, C.; Bouillaud, F.; Seldin, M.F.; Surwit, R.S.;

Ricquier, D.; et al. Uncoupling Protein-2: A Novel Gene Linked to Obesity and Hyperinsulinemia. Nat. Genet. 1997, 15, 269–272.
[CrossRef]

16. Mao, W.; Yu, X.X.; Zhong, A.; Li, W.; Brush, J.; Sherwood, S.W.; Adams, S.H.; Pan, G. UCP4, a Novel Brain-Specific Mitochondrial
Protein that Reduces Membrane Potential in Mammalian Cells. FEBS Lett. 1999, 443, 326–330. [CrossRef]

17. Sanchis, D.; Fleury, C.; Chomiki, N.; Goubern, M.; Huang, Q.; Neverova, M.; Grégoire, F.; Easlick, J.; Raimbault, S.;
Lévi-Meyrueis, C.; et al. BMCP1, a Novel Mitochondrial Carrier with High Expression in the Central Nervous System of Humans
and Rodents, and Respiration Uncoupling Activity in Recombinant Yeast. J. Biol. Chem. 1998, 273, 34611–34615. [CrossRef]

18. Enerbäck, S.; Jacobsson, A.; Simpson, E.M.; Guerra, C.; Yamashita, H.; Harper, M.-E.; Kozak, L.P. Mice Lacking Mitochondrial
Uncoupling Protein Are Cold-Sensitive but not Obese. Nature 1997, 387, 90–94. [CrossRef]

19. Pecqueur, C.; Alves-Guerra, M.-C.; Gelly, C.; Lévi-Meyrueis, C.; Couplan, E.; Collins, S.; Ricquier, D.; Bouillaud, F.; Miroux, B. Un-
coupling Protein 2, in vivo Distribution, Induction upon Oxidative Stress, and Evidence for Translational Regulation. J. Biol. Chem.
2001, 276, 8705–8712. [CrossRef]

20. Hurtaud, C.; Gelly, C.; Bouillaud, F.; Lévi-Meyrueis, C. Translation Control of UCP2 Synthesis by the Upstream Open Reading
Frame. Cell. Mol. Life Sci. 2006, 63, 1780. [CrossRef]

21. Couplan, E.; del Mar Gonzalez-Barroso, M.; Alves-Guerra, M.C.; Ricquier, D.; Goubern, M.; Bouillaud, F. No Evidence for
a Basal, Retinoic, or Superoxide-Induced Uncoupling Activity of the Uncoupling Protein 2 Present in Spleen or Lung Mitochondria.
J. Biol. Chem. 2002, 277, 26268–26275. [CrossRef]

22. Vozza, A.; Parisi, G.; De Leonardis, F.; Lasorsa, F.M.; Castegna, A.; Amorese, D.; Marmo, R.; Calcagnile, V.M.; Palmieri, L.;
Ricquier, D.; et al. UCP2 Transports C4 Metabolites out of Mitochondria, Regulating Glucose and Glutamine Oxidation.
Proc. Natl. Acad. Sci. USA 2014, 111, 960–965. [CrossRef]

23. Bai, Y.; Onuma, H.; Bai, X.; Medvedev, A.V.; Misukonis, M.; Weinberg, J.B.; Cao, W.; Robidoux, J.; Floering, L.M.;
Daniel, K.W.; et al. Persistent Nuclear Factor-KB Activation in Ucp2−/− Mice Leads to Enhanced Nitric Oxide and
Inflammatory Cytokine Production. J. Biol. Chem. 2005, 280, 19062–19069. [CrossRef]

24. Krauss, S.; Zhang, C.-Y.; Scorrano, L.; Dalgaard, L.T.; St-Pierre, J.; Grey, S.T.; Lowell, B.B. Superoxide-Mediated Activation of
Uncoupling Protein 2 Causes Pancreatic β Cell Dysfunction. J. Clin. Investig. 2003, 112, 1831–1842. [CrossRef]

25. Alves-Guerra, M.-C.; Rousset, S.; Pecqueur, C.; Mallat, Z.; Blanc, J.; Tedgui, A.; Bouillaud, F.; Cassard-Doulcier, A.-M.; Ricquier, D.;
Miroux, B. Bone Marrow Transplantation Reveals the in vivo Expression of the Mitochondrial Uncoupling Protein 2 in Immune
and Nonimmune Cells during Inflammation. J. Biol. Chem. 2003, 278, 42307–42312. [CrossRef]

http://doi.org/10.3322/caac.21660
http://doi.org/10.1016/S0092-8674(00)81683-9
http://doi.org/10.1016/j.cell.2011.02.013
http://doi.org/10.1158/2159-8290.CD-21-1059
http://doi.org/10.1085/jgp.8.6.519
http://doi.org/10.1126/science.1160809
http://doi.org/10.1186/s40170-015-0128-2
http://doi.org/10.1126/sciadv.1600200
http://doi.org/10.1172/JCI133081
http://doi.org/10.1016/j.freeradbiomed.2016.04.001
http://doi.org/10.1016/j.molmed.2017.03.004
http://doi.org/10.1186/2049-3002-2-17
http://doi.org/10.1016/j.bbamcr.2016.04.013
http://doi.org/10.1111/j.1432-1033.1978.tb12045.x
http://doi.org/10.1038/ng0397-269
http://doi.org/10.1016/S0014-5793(98)01713-X
http://doi.org/10.1074/jbc.273.51.34611
http://doi.org/10.1038/387090a0
http://doi.org/10.1074/jbc.M006938200
http://doi.org/10.1007/s00018-006-6129-0
http://doi.org/10.1074/jbc.M202535200
http://doi.org/10.1073/pnas.1317400111
http://doi.org/10.1074/jbc.M500566200
http://doi.org/10.1172/JCI200319774
http://doi.org/10.1074/jbc.M306951200


Int. J. Mol. Sci. 2022, 23, 15077 19 of 25

26. Pecqueur, C.; Bui, T.; Gelly, C.; Hauchard, J.; Barbot, C.; Bouillaud, F.; Ricquier, D.; Miroux, B.; Thompson, C.B. Uncoupling
Protein-2 Controls Proliferation by Promoting Fatty Acid Oxidation and Limiting Glycolysis-Derived Pyruvate Utilization.
FASEB J. 2007, 22, 9–18. [CrossRef]

27. Arsenijevic, D.; Onuma, H.; Pecqueur, C.; Raimbault, S.; Manning, B.S.; Miroux, B.; Couplan, E.; Alves-Guerra, M.-C.; Goubern, M.;
Surwit, R.; et al. Disruption of the Uncoupling Protein-2 Gene in Mice Reveals a Role in Immunity and Reactive Oxygen Species
Production. Nat. Genet. 2000, 26, 435–439. [CrossRef]

28. Rousset, S.; Emre, Y.; Join-Lambert, O.; Hurtaud, C.; Ricquier, D.; Cassard-Doulcier, A.-M. The Uncoupling Protein 2 Modulates
the Cytokine Balance in Innate Immunity. Cytokine 2006, 35, 135–142. [CrossRef] [PubMed]

29. Emre, Y.; Hurtaud, C.; Karaca, M.; Nubel, T.; Zavala, F.; Ricquier, D. Role of Uncoupling Protein UCP2 in Cell-Mediated Immunity:
How Macrophage-Mediated Insulitis Is Accelerated in a Model of Autoimmune Diabetes. Proc. Natl. Acad. Sci. USA 2007, 104,
19085–19090. [CrossRef]

30. Blanc, J.; Alves-Guerra, M.C.; Esposito, B.; Rousset, S.; Gourdy, P.; Ricquier, D.; Tedgui, A.; Miroux, B.; Mallat, Z. Protective Role
of Uncoupling Protein 2 in Atherosclerosis. Circulation 2003, 107, 388–390. [CrossRef]

31. Brand, M.D.; Esteves, T.C. Physiological Functions of the Mitochondrial Uncoupling Proteins UCP2 and UCP3. Cell Metab. 2005,
2, 85–93. [CrossRef]

32. Aguilar, E.; Esteves, P.; Sancerni, T.; Lenoir, V.; Aparicio, T.; Bouillaud, F.; Dentin, R.; Prip-Buus, C.; Ricquier, D.; Pecqueur, C.; et al.
UCP2 Deficiency Increases Colon Tumorigenesis by Promoting Lipid Synthesis and Depleting NADPH for Antioxidant Defenses.
Cell Rep. 2019, 28, 2306–2316.e5. [CrossRef]

33. Pons, D.G.; Nadal-Serrano, M.; Torrens-Mas, M.; Valle, A.; Oliver, J.; Roca, P. UCP2 Inhibition Sensitizes Breast Cancer Cells to
Therapeutic Agents by Increasing Oxidative Stress. Free Radic. Biol. Med. 2015, 86, 67–77. [CrossRef]

34. Raho, S.; Capobianco, L.; Malivindi, R.; Vozza, A.; Piazzolla, C.; De Leonardis, F.; Gorgoglione, R.; Scarcia, P.; Pezzuto, F.;
Agrimi, G.; et al. KRAS-Regulated Glutamine Metabolism Requires UCP2-Mediated Aspartate Transport to Support Pancreatic
Cancer Growth. Nat. Metab. 2020, 2, 1373–1381. [CrossRef]

35. Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.;
Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019,
377, 1345–1356. [CrossRef]

36. Bozic, I.; Allen, B.; Nowak, M.A. Dynamics of Targeted Cancer Therapy. Trends Mol. Med. 2012, 18, 311–316. [CrossRef]
37. Wang, K.; Jiang, J.; Lei, Y.; Zhou, S.; Wei, Y.; Huang, C. Targeting Metabolic–Redox Circuits for Cancer Therapy. Trends Biochem. Sci.

2019, 44, 401–414. [CrossRef]
38. Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of Drug Resistant Cancer Cells: A Matter of Combination Therapy.

Cancers 2018, 10, 483. [CrossRef]
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