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Guarantees in Fair Division: general or monotone preferences

To divide a "manna" Ω of private items (commodities, workloads, land, time intervals) between n agents, the worst case measure of fairness is the welfare guaranteed to each agent, irrespective of others' preferences. If the manna is non atomic and utilities are continuous (not necessarily monotone or convex), we can guarantee the min-Max utility: that of our agent's best share in her worst partition of the manna; and implement it by Kuhn's generalisation of Divide and Choose. The larger Maxmin utility -of her worst share in her best partition -cannot be guaranteed, even for two agents.

If for all agents more manna is better than less (or less is better than more), our Bid & Choose rules implement guarantees between minMax and Maxmin by letting agents bid for the smallest (or largest) size of a share they find acceptable.

Introduction and the punchlines

The fair division of a common property manna -resources privately consumed -is a complicated problem if its joint owners have heterogenous preferences over the manna. A coarse yet important benchmark is the welfare Guarantee a division rule offers to each participant: this is the highest welfare that a given agent can secure in this rule, irrespective of the preferences of other agents, even if our agent is clueless about the latter and assumes the worst. The more an agent is risk averse and the less she knows about others' preferences, the more this worst case benchmark matters to her.

Our goal is to throw some light on the feasible Guarantees in the very general class of non atomic fair division problems: small changes in the size of a share result in small utility changes (a continuity property explained below). Our model places no other restrictions on the structure of preferences and corresponding utilities, or their direction: the manna may contain some desirable parts (money, tasty cake, valuable commodities), some not (unpleasant tasks, financial liabilities, burnt parts of the cake that must still be eaten [START_REF] Segal-Halevi | Fairly Dividing a Cake after Some Parts Were Burnt in the Oven[END_REF]); agents may disagree over which parts are good or bad; utilities can be single-peaked over some parts (teaching loads, volunteering time, shares of a risky project), single-dipped on others, etc.. Assume that the manna Ω and the domain D of potential preferences are common knowledge, and define a Fair Guarantee as a mapping (u i , n) → Γ(u i ; n) selecting for each preference in D, described for clarity as a utility function u i , and each number n of joint owners, a utility level. The mapping is fair because it ignores agent i's identity, and it must be feasible: for any profile (u i ) n i=1 of utilities in D n there exists a partition (S i ) n i=1 of Ω such that u i (S i ) ≥ Γ(u i ; n) for all i.

Given the division problem (Ω, D) we ask what are the best (highest) Fair Guarantees? and what mechanism implements1 them?

Observe first that any Fair Guarantee Γ(u; n) is bounded above by the utility, denoted Maxmin(u; n), of the worst share for u in the best n-partition of the manna. For all u ∈ D and n we have

Γ(u; n) ≤ Maxmin(u; n) = max Π=(S i ) n i=1 min 1≤i≤n u(S i ) (1) 
where the maximum (that may not be achieved exactly) bears on all n-partitions Π = (S i ) n i=1 of Ω. This follows by feasibility of Γ(u; n): at the unanimous profile where u i = u for all i there is a partition Π such that u(S i ) ≥ Γ(u; n) for all i, hence Γ(u; n) ≤ min 1≤i≤n u(S i ) ≤ Maxmin(u; n).

Therefore if (u, n) → Maxmin(u; n) is itself a Fair Guarantee (it is fair, but the issue is feasibility), it is the best possible one and answers the first of the two general questions above. This happens in two well known and much discussed families of fair division problems.

In the cake-cutting model due to Steinhaus ([35]) the manna Ω is a measurable space endowed with a non atomic measure, and utilities are additive measures, absolutely continuous with respect to the base measure. Additivity of u implies Maxmin(u; n) ≤ 1 n u(Ω); this is in fact an equality because the cake can be partitioned in n shares of equal utility. Agent i's share S i is Proportionally Fair if u i (S i ) ≥ 1 n u i (Ω): this is feasible for all agents at any preference profile (u i ) n i=1 , therefore Proportional Fairness offers the best possible Guarantee in this model, and is the weakest and least controversial test of fairness throughout the cake-cutting literature ( [START_REF] Brams | Fair Division: From Cake-Cutting to Dispute Resolution[END_REF] and [START_REF] Robertson | Cake Cutting Algorithms: Be Fair If You Can[END_REF]).

In the microeconomic model of fair division the manna is a bundle ω ∈ R K + of K divisible and non disposable items, and D is the set of convex and continuous preferences over [0, ω] (not necessarily monotonic). It is feasible to give an equal share 1 n ω to every agent, so that Γ es (u; n) = u( 1 n ω) is a feasible Guarantee. In D the inequality Maxmin(u; n) ≤ u( 1n ω) is also true. 2 Therefore the optimal Guarantee is Γ es , aka the Equal Split lower bound

u i (z i ) ≥ u( 1 n ω) (where z i is i's share of ω).
Here too it is the starting point of the discussion of fairness (see e. g., [START_REF] Thomson | The theory of fair allocation[END_REF] and [START_REF] Moulin | Fair Division in the Internet Age[END_REF]).

As soon as we drop either additivity in the former model, or convexity in the latter one, the Maxmin benchmark is not a Fair Guarantee any more: already in some two person problems no division of the manna yields at least Maxmin(u i ; 2) for both i = 1, 2. In a simple example Ann and Bob share 10 units of a single non disposable divisible item (e.g., time spent in a given activity). Ann's preferences are single-peaked (hence convex), while Bob's are single-dipped (see Figure 1 ):

u A (x) = x(12 -x) ; u B (x) = x(x -6) for 0 ≤ x ≤ 10
2 Pick a hyperplane H supporting the upper contour of u at 1 n ω; the lower contour of u at 1 n ω contains one closed half-space cut by H, and every division of ω as ω = n 1 z i includes at least one z j in that half-space.

Compute

Maxmin(u

A ) = 35 at Π 1 = {5, 5} ; Maxmin(u B ) = 0 at Π 2 = {0, 10}
If Bob's share is worth at least Maxmin(u B ) then Ann gets either the whole manna or at most 4 units: so her utility is at most 32 and we see that (Maxmin(u A ), Maxmin(u B )) is not feasible.

A second critical benchmark utility is minMax(u; n), the utility of the best share for u in the worst possible n-partition of Ω:

minMax(u; n) = min Π=(S i ) n i=1 max 1≤i≤n u(S i )
where as before the minimum bears on all n-partitions of Ω.

Our first main result, Theorem 1 in Section 4, says that in any non atomic problem, the mapping u → minMax(u; n) is a Fair Guarantee; in particular minMax(u; n) ≤ Maxmin(u; n) for all u ∈ D and n (by ( 1)). Moreover the minMax Guarantee is implemented by Kuhn's little known n-person generalisation of Divide and Choose ( [START_REF] Kuhn | On games of fair division, Essays in Mathematical Economics in Honour of Oskar Morgenstern[END_REF]), denoted here D&C n .

The result is clear in two person problems, where ordinary Divide and Choose clearly guarantees her Maxmin to the Divider and his Minmax to the Chooser. For instance in the example above Ann would Divide as Π 1 = {5, 5} and Bob would get utility -5, exactly his minMax(u B ; 2); while Bob would Divide as Π 2 = {0, 10}, and Ann would Choose 10, thus achieving minMax(u A ; 2) = 20.

In three persons problems D&C 3 works as follows. The Divider Ann offers a 3-partition Π = {S 1 , S 2 , S 3 } where all shares are of equal value to her; Bob accepts all shares worth at least minMax(u B ; 3), and Charles all those worth least minMax(u C ; 3). If Bob and Charles can each be assigned a share they accept, we do so and Ann gets the last piece. 3 If both accept a single share in Π, the same one, we give one of the remaining shares S k to Ann (it does not matter which one) and then run D&C 2 between Bob and Charles for Ω S k (it does not matter who Divides or Chooses).

The n-person division rule D&C n proceeds similarly in at most n -1 steps of Division and Acceptance between a shrinking set of agents sharing a shrinking manna. Its only subtlety is a simple combinatorial matching step (Lemma 2 in Section 4) after each partitioning of the remaining manna.

The hard step in proving Theorem 1 is Lemma 1 in Subsection 3.2, stating that in each round of D&C n the current Divider can find an equipartition: a partition of the remaining manna where all shares are equally valuable to this Divider. Because we only assume that he manna is measurable and endowed with a non atomic measure, and that utilities are continuous in that measure, the proof of Lemma 1 requires advanced tools in algebraic geometry: this the object of the companion paper [START_REF] Avvakumov | Equipartition of an interval[END_REF], see the discussion in Subsection 3.2.

Our second main result, Theorem 2 in Subsection 5.2, focuses on non atomic problems where preferences are also co-monotone: that is, increasing if enlarging a share cannot make it worse and we speak of a good manna; or decreasing if the opposite holds and we have a bad manna. Either restriction on preferences opens the door to a new family of division rules significantly simpler than D&C n and implementing a higher Guarantee than the minMax. These rules are inspired by the well known family of Moving Knife (MK n ) rules (Dubins and Spanier [START_REF] Dubins | How to cut a cake fairly[END_REF]) that we recall first.

Assume the manna is good: a knife cuts continuously an increasing share of the cake; agents can stop the knife at any time; the first agent who does gets the share cut so far. Repeat between the remaining agents and manna. For a bad manna, agents can drop at any time and the last one to drop gets the share cut so far.

A Moving Knife (MK) rule chooses a single arbitrary path for the knife, which tightly restricts the range of individual shares and partitions, hence can result in a very inefficient allocation. We introduce a large family of rules in the same spirit as MK but with all partitions in their range, that we call the Bid & Choose (B&C n ) rules. Each rule is defined by fixing a benchmark additive measure of the shares, diversely interpreted as their size, their market price, etc.. If the manna is good a bid b i by agent i is the smallest measure of a share that i finds acceptable: the smallest bidder i * chooses freely a share of measure at most b i * , then we repeat between the remaining agents and manna. For a bad manna the bid b i is the largest size of a share that i finds acceptable, and the largest bidder i * picks any share of size at least b i * .

Theorem 2 in Section 5 shows that all B&C n rules, as well as all MK n rules implement a Guarantee between the minMax and Maxmin level.

A handful of examples in Subsection 5.3 show that the B&C n Guarantee improves substantially the minMax Guarantee in the microeconomic model of fair division. There the Equal Split Guarantee is the Maxmin benchmark (the best possible) for agents with convex preferences, while for agents with "concave" preferences (convex lower contours) Equal Split is the minMax Guarantee, which the B&C n Guarantee improves significantly.

Throughout the paper we speak of implementation in the very simple sense adopted by most of the cake cutting literature (e. g., [START_REF] Brams | Fair Division: From Cake-Cutting to Dispute Resolution[END_REF]), and formalized in the general collective decision context as implementation in "protective equilibrium" (Barbera and Dutta [START_REF] Barbera | Implementability via protective equilibria[END_REF]). A rule implements (guarantees) a certain utility level γ means this: no matter what her preferences, each agent has a strategy that depends also upon Ω, n and D, such that whatever other agents do the utility of her share is no less than γ. Moreover the "guaranteeing strategy" is essentially unique.

Relevant literature

The two welfare levels Maxmin and minMax are key to our results. In the atomic model where the manna is a set of indivisible items, they are introduced by Budish ( [START_REF] Budish | The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes[END_REF]) and Bouveret and Lemaitre ( [START_REF] Bouveret | Characterizing conflicts in fair division of indivisiblegoods using a scale of criteria[END_REF]) respectively . If utilities are additive in that model, the basic inequality of our non atomic model is reversed:

Maxmin(u; n) ≤ 1 n u(Ω) ≤ minMax(u; n)
and minMax(u; n) is obviously not a feasible Guarantee. It took a couple of years and many brain cells to check that the Maxmin lower bound may not be feasible either for three or more agents ( [START_REF] Procaccia | Fair Enough: Guaranteeing Approximate Maximin Shares[END_REF]), though this happens in rare instances of the model ( [START_REF] Kurokawa | When can the maximin share guarantee be guaranteed?[END_REF]). 4 Our paper is the first systematic discussion of these two bounds in the non atomic model of cake division. Kuhn's 1967 n person generalisation of Divide and Choose ( [START_REF] Kuhn | On games of fair division, Essays in Mathematical Economics in Honour of Oskar Morgenstern[END_REF]) promptly implements the minMax guarantee in our model: Theorem 1. Except for a recent discussion in [START_REF] Aigner-Horev | Envy-free Matchings in Bipartite Graphs and their Applications to Fair Division[END_REF] for additive utilities, D&C n has not received much attention, a situation which our paper may help to correct. In particular, unlike the Diminishing Share ( [35]) Moving Knife ( [START_REF] Dubins | How to cut a cake fairly[END_REF]), and Bid and Choose rules, it is very well suited to divide mixed manna, i. e., containing subjectively good and bad parts, as when we divide the assets and liabilities of a dissolving partnership. Introduced in [START_REF] Bogomolnaia | Competitive division of a mixed manna[END_REF] and [START_REF] Bogomolnaia | Dividing Bads under Additive Utilities[END_REF] for the competitive fair division of commodities in the microeconomic model, the mixed manna model is discussed by [START_REF] Segal-Halevi | Fairly Dividing a Cake after Some Parts Were Burnt in the Oven[END_REF] for a general cake, and by [START_REF] Aziz | Fair allocation of combinations of indivisible goods and chores[END_REF] for indivisible items.

Privacy preservation is a growing concern in a world of ever expanding information flows. The D&C n rule stands out for its informational parsimony: each Divider only reports a partition with the understanding that she is indifferent between the two shares she just cut, and Choosers only only accept a subset of these shares. If the manna is mixed, no one is asked to explain which parts they view as good or bad: for instance if we divide tasks, I may not want others to know which tasks I am actually happy to perform, or which ones are very painful to me.

The "cuts" selected by Dividers and "queries" answered by Choosers require only a modest cognitive effort: no one needs to form complete preference relations over all shares of the cake. Taking this feature to heart, a large literature in the cake cutting model evaluates the informational complexity of various mechanisms by the number of "cuts" and "queries" they involve: see [START_REF] Brams | Fair Division: From Cake-Cutting to Dispute Resolution[END_REF] or [START_REF] Robertson | Cake Cutting Algorithms: Be Fair If You Can[END_REF], and more recently [START_REF] Cseh | The complexity of cake cutting with unequal shares[END_REF] and [START_REF] Crew | Disproportionate division[END_REF]. This line of research goes beyond the test of Proportional Guarantee, and find cuts and queries division rules more complex than D&C n reaching an Envy-free division of the cake. The algorithms in Brams and Taylor ( [START_REF] Brams | An envy-free cake division protocol[END_REF]), and more recently Aziz and McKenzie ([6]), do exactly this when utilities are additive and non atomic; but because they involve an astronomical number of cuts and queries they are of no practical interest and squarely contradict informational parsimony. See ( [START_REF] Branzei | A note on envy-free cake cutting with polynomial valuations[END_REF], [START_REF] Kurokawa | How to Cut a Cake Before the Party Ends[END_REF]) for some fine tuning of these general facts.

The "equipartition" Lemma (Subsection 3.2) is critical to the proof of Theorem 1, and proved in [START_REF] Avvakumov | Equipartition of an interval[END_REF] by algebraic geometry techniques. These, or subtle variants of Sperner's Lemma, demonstrate the existence of an Envyfree division under very general preferences, where which share I like best in a given partition can depend upon the partition itself, not just upon my own share: Stromquist's ( [START_REF] Stromquist | How to cut a cake fairly[END_REF]) and Woodall's ( [START_REF] Woodall | Dividing a cake fairly[END_REF]) seminal insights are considerably strenghtened by the recent results in [START_REF] Su | Rental harmony: Sperner's lemma in fair division[END_REF], [START_REF] Segal-Halevi | Fairly Dividing a Cake after Some Parts Were Burnt in the Oven[END_REF], [START_REF] Meunier | Envy-free cake division without assuming the players prefer nonempty pieces, forthcoming[END_REF] and [START_REF] Avvakumov | Envy-free Division under Mapping Degree[END_REF]. However all these results assume that, either all agents (weakly) prefer any non empty share to the empty share, or all weakly prefer the empty share to any non empty one: this rules out a mixed manna.

We noted earlier that the concept of unanimity utility (the common efficient utility level in the economy where everyone has the same preferences) leads to the Equal Split Guarantee when we divide private goods and preferences are convex (see Footnote 2). When applied to fair division problems involving production, it defines some compelling Fair Guarantees as well as some meaningful upper bounds on individual welfare: [START_REF] Moulin | Welfare Bounds in the Cooperative Production Problem[END_REF], [START_REF] Moulin | All Sorry to Disagree: a General Principle for the Provision of Non-rival Goods[END_REF].

3 Non atomic fair division

Basic definitions

The manna Ω is a bounded measurable set in an euclidian space, endowed with the Lebesgue measure |•|, and such that |Ω| > 0. A share S is a possibly empty measurable subset of Ω, and B is the set of all shares. A n-partition of Ω is a n-tuple of shares Π = (S i ) n i=1 such that ∪ n i=1 S i = Ω and |S i ∩ S j | = 0 for all i = j; and P n (Ω) is the set of all partitions of Ω. We define similarly an n-partition of S for any share S ∈ B, and write their set as P n (S).

If S ⊗ T = (S ∪ T ) (S ∩ T ) is the symmetric difference of shares, recall that δ(S, T ) = |S ⊗ T | is a pseudo-metric on B (a metric except that δ(S, T ) = 0 iff S and T differ by a set of measure zero).

A utility function u is a mapping from B into R such that u(∅) = 0 and u is continuous for the pseudo-metric δ and bounded. So u does not distinguish between two shares at pseudo-distance zero (equal up to a set of measure zero): for instance u(S) = 0 if |S| = 0. Also if the sequence |S t | converges to zero in t, so does u(S t ). We write D(Ω) for this domain of utility functions.

So a non atomic division problem consists of (Ω, B, (u i ) n i=1 ∈ D(Ω) n ). Several subdomains of D(Ω) play a role below:

• additive utilities: u ∈ Add(Ω) iff u(S) = S f (x)dx for all S, where f is bounded and measurable in Ω;

• monotone increasing:

u ∈ M + (Ω) iff S ⊂ T =⇒ u(S) ≤ u(T ) for all S, T ; • monotone decreasing: u ∈ M -(Ω) iff S ⊂ T =⇒ u(S) ≥ u(T ) for all S, T ;
• separable: u ∈ S(Ω) iff there is a finite set A, a partition (C a ) a∈A ∈ P |A| (Ω) of Ω, and a continuous function

v from R A + into R, such that u(S) = v((|S ∩ C a |) a∈A ) for all S ∈ B.
The separable domain S(Ω) captures the standard microeconomic fair division model: A is a set of divisible commodities, the manna is the bundle ω ∈ R A + such that ω a = |C a | for all a, a share S i gives to agent i the amount z ia = |S i ∩ C a | of commodity a, and the partition Π = (S i ) n i=1 corresponds to the division of the manna as ω = n 1 z i . In the general non atomic division problem, the set of shares B is not compact for the pseudo-metric δ. It follows that when we maximize or minimize utilities over shares, or look for a partition achieving a benchmark utility minMax or Maxmin, we cannot claim the existence of an exact solution to the program: the minMax is not a true minimum, only an infimum, and Maxmin is only a supremum, not a true maximum. As this will cause no confusion, we stick to the min and Max notation throughout.

However in the microeconomic model, the set of shares and of partitions are both compact so for this important set of problems (where all our examples live) the min and Max notation are strictly justified.

One can also specialise the general model by imposing constraints on the set of feasible shares. The most important instance is the familiar interval model, where the manna is Ω = [0, 1] and a share must be an interval, so an n-partition is made of n adjacent intervals. Other instances assume Ω is a polytope, and shares are polytopes of a certain type: e.g. triangles or tetrahedrons ( [START_REF] Segal-Halevi | Fair and square: Cake-cutting in two dimensions[END_REF]). And sometimes shares must be connected subsets of Ω ([8], [START_REF] Aumann | The Efficiency of Fair Division with Connected Pieces, International Workshop on Internet and Network Economics WINE[END_REF]).

The Divide and Choose n rules, as well as our Bid and Choose n rules, do not work in these models5 , so our Theorems 1 and 2 do not apply. But the interval model is still useful here in a technical sense: the proof of the critical Lemma 1 in Subsection 3.2 starts by projecting the general problem onto an interval model and proving existence of an equipartition there.

Equipartitions

Definition 1 An n-equipartition of the share T ∈ B for utility u ∈ D(T ) is a partition Π e = (S i ) n i=1 ∈ P n (T ) such that u(S i ) = u(S j ) for all i, j ∈ {1, • • • , n}; we write u(Π e ) for this common value, and EP n (T ; u) for the set of these n-equipartitions.

It is clear that EP

n (S; u) is non empty if u is additive: if B[S]
is the subset of shares included in S, Lyapunov Theorem implies that the range u(B[S]) is convex, so it contains 1 n u(S); then we replace n by n -1 and repeat the argument on the remaining share.

The same is true if u is monotone (u ∈ M ± (Ω)), and the proof, outlined in Remark 1 below, is fairly simple. That of our next statement is much harder.

Lemma 1 ([4])

Fix a share S ∈ B and a utility u ∈ D(Ω). The set EP n (S; u) of nequipartitions of S at u is non empty.

Proof. The Theorem in [START_REF] Avvakumov | Equipartition of an interval[END_REF] proves Lemma 1 for the interval model (which, as mentioned above, is not a special case of our model). Fix a real valued function f on the set of intervals [a, b] ⊂ [0, 1], continuous in the standard topology and such that f (a, a) = 0 for all a ∈ [0, 1]. Then there exist

n subintervals [0 = x 0 , x 1 ], [x 1 , x 2 ], • • • , [x n-1 , x n = 1] of [0, 1] forming an equipartition of f : f (x i-1 , x i ) is constant for i = 1, • • • , n.
Start now from a share S in the statement of Lemma 1 and pick a moving knife through S, i. e., a path κ :

[0, 1] ∋ t → K(t) ∈ B from K(0) = ∅ to K(1) = S,
continuous for the pseudo-metric δ on B and weakly inclusion increasing:

0 ≤ t < t ′ ≤ 1 =⇒ K(t) ⊆ K(t ′ )
(in Subsection 5.1 moving knifes must be strictly inclusion increasing). Then the function

f (a, b) = u(K(b) K(a))
is as in the previous paragraph, and an f -equipartition ([x i-1 , x i ]) n i=1 of [0, 1] yields the desired u-equipartition (K(x i ) K(x i-1 )) n i=1 of S. Remark 1 It is easy to prove Lemma 1 if we assume that the sign of u is constant: all shares are weakly preferred to the empty share, or all are weakly worse. Assume the former and use as above a moving knife to project S onto [0, 1], where a n-partition is identified with a point in the simplex of dimension n -1. Then apply the Knaster-Kuratowski-Mazurkiewicz Lemma to the sets Q i of partitions of the interval where the i-th interval gives the lowest utility: each Q i is closed, contains the i-th face of the simplex, and their union covers it entirely. Thus these sets intersect.

One can also invoke the stronger results in [START_REF] Stromquist | How to cut a cake fairly[END_REF] and [START_REF] Su | Rental harmony: Sperner's lemma in fair division[END_REF] showing the existence of an Envy-free partition under this assumption. But recall that a key feature in the division of a mixed manna is that the sign of u is not constant across shares.

Two utility benchmarks

Definition 2 Fix n, the manna (Ω, B) and u ∈ D(Ω):

minMax(u; n) = min Π∈Pn(Ω) max 1≤i≤n u(S i ) ; Maxmin(u; n) = max Π∈Pn(Ω) min 1≤i≤n u(S i ) (2)
Recall that minMax is the utility agent u can achieve by having first pick in the worst possible n-partition of Ω, and Maxmin by having last pick in the best possible n-partition of Ω.

Proposition 1 i) If u ∈ Add(Ω) then minMax(u; n) = Maxmin(u; n) = 1 n u(Ω) ii) If u ∈ M ± (Ω) minMax(u; n) = min Π e ∈EPn(Ω;u) u(Π e ) ; Maxmin(u; n) = max Π e ∈EPn(Ω;u) u(Π e ) (3) iii) If u ∈ D(Ω) minMax(u; n) ≤ min Π e ∈EPn(Ω;u) u(Π e ) ≤ max Π e ∈EPn(Ω;u) u(Π e ) ≤ Maxmin(u; n) (4) 
Proof Statement iii) If Π e is an n-equipartition, u(Π e ) is the utility of its best share, hence minMax(u; n) ≤ u(Π e ); proving the other inequality in (4) is just as easy. Statement i) By additivity of u, for any n-partition Π we have max i u(P i ) ≥

1 n u(Ω) implying minMax(u; n) ≥ 1
n u(Ω); we check symmetrically 1 n u(Ω) ≥ Maxmin(u; n), and the conclusion follows by comparing these inequalities to those in (4). Statement ii) Assume u ∈ M + (Ω); the proof for M -(Ω) is identical. The continuity and monotonicity of u imply: if S, T are two disjoints shares such that u(S) > u(T ), we can trim part of S and add it to T to get two disjoint shares with equal utility in between u(S) and u(T ). Expanding this argument, if S 1 , • • • , S k and T are disjoint shares such that

u(S 1 ) = u(S 2 ) = • • • = u(S k ) > u(T )
we can simultaneously trim S 1 , • • • , S k keeping them of equal utility and add the trimming to T , so that the resulting k + 1 shares are all equally good and their common utility is between the two utilities above. Iterating this process, we see that if Π = (S i ) n i=1 ∈ P n (Ω) is such that max 1≤i≤n u(S i ) > min 1≤i≤n u(S j ), we can construct an equipartition Π e ∈ EP n (Ω; u) such that

max 1≤i≤n u(S i ) > u(Π e ) > min 1≤j≤n u(S j )
Now fix ε > 0, arbitrarily small, pick Π = (S i ) n i=1 ∈ P n (Ω) such that min 1≤j≤n u(S j ) ≥ Maxmin(u; n)ε, and assume that Π is not an equipartition. By the argument above we can find Π e ∈ EP n (Ω; u) such that u(Π e ) > min 1≤j≤n u(S j ), therefore Π e too is an ε-approximation of Maxmin(u; n), and the right-hand inequality in (3) follows. The proof of the left-hand inequality is similar.

In the general domain D(Ω), the partitions achieving the Maxmin and minMax utilities are not necessarily equipartitions. In the microeconomic example of Section 1, Ann has single-peaked preferences and her minMax is achieved by the all-or-nothing partition {∅, Ω}; Bob has single-dipped preferences and the same partition delivers his Maxmin; but {∅, Ω} is not an equipartition for either utility.

Remark 2: In the interval model with a monotone utility u, it is easy to check that any two n-equipartitions have the same utility and in turn this implies minMax(u; n) = Maxmin(u; n): hence this is the best Fair Guarantee. The numerical example above can be viewed as an instance of the interval model where the two agents are indifferent between [0, x] and [1x, 1] for all x: so only the inequality (4) holds true in the general (non monotone) interval model.

Fair Guarantees

Definition 3 Fix the manna (Ω, B) and a subdomain D * , D * ⊆ D(Ω). A Fair Guarantee in D * is a mapping Γ : u → Γ(u; n) such that for any profile

(u i ) n i=1 ∈ (D * ) n there exists Π = (S i ) n i=1 ∈ P n (Ω) such that u i (S i ) ≥ Γ(u i ; n) for all i.
In Section 1 we observed, by looking at unanimity profiles, that Maxmin(•; n) is an upper bound for any Fair Guarantee: inequality (1). We also mentioned two subdomains where Maxmin(•; n) itself is a (hence the optimal) Fair Guarantee: the additive domain Add(Ω) and the subdomain of the separable one S(Ω) where preferences are also convex. Finally we used the Ann and Bob microeconomic example with a single commodity to show that Maxmin(•; n) is not a Fair Guarantee in D(Ω), even for n = 2 and a one dimensional manna.

Before proving in the next Section that minMax(•; n) is a Fair Guarantee in the whole domain D(Ω) we construct a microeconomic problem with two divisible items and two agents u 1 and u 2 where minMax(u i ; 2) = 0 < 1 = Maxmin(u i ; 2) for i = 1, 2 and (minMax(u 1 ), minMax(u 2 )) is weakly Pareto optimal This implies that for any Fair Guarantee Γ, at least one of Γ(u 1 ; 2) = 0 and Γ(u 2 ; 2) = 0 must hold. In words, for some problems, no Fair Guarantee can reduce the gap from minMax to Maxmin for both agents. 6The manna is ω = (1, 1) and we a share as z = (x, y). Both utilities are symmetric in x, y: u i (x, y) = u i (y, x) so it is enough to define them for x ≤ y:

u 1 (z) = 0 if x ≤ 1 2 ≤ y u 1 (z) = 1 -2y if x ≤ y ≤ 1 2 u 1 (z) = 2x -1 if 1 2 ≤ x ≤ y u 2 (z) = 0 if x ≤ y ≤ 1 2 or 1 2 ≤ x ≤ y u 2 (z) = 2y -1 if 1 2 ≤ y ≤ 1 -x u 2 (z) = 1 -2x if 1 2 ≤ 1 -x ≤ y
The range of both utilities is [0, 1]. Agent 1's utility u 1 (z 1 ) is null in the NW and SE quadrant of the box [0, 1] 2 with center at ( 1 2 , 1 2 ); it is strictly positive in the SW and NE quadrants except on the lines x = 1 2 and y = 1 2 . Agent 2's utility u 2 (z 2 ) is symetrically null in the SW and NE quadrants, and strictly positive in the NW and SE quadrants except on the same two lines. Therefore for any division (1, 1) = z 1 + z 2 of the manna we have u

1 (z 1 ) • u 2 (z 2 ) = 0: there is no feasible division s. t. u i (z i ) > 0 for i = 1, 2.
The partition {(0, 0), (1, 1)} achieves Maxmin(u 1 ) = 1 and minMax(u 2 ) = 0; the partition {(0, 1), (1, 0)} achieves Maxmin(u 2 ) = 1 and minMax(u 1 ) = 0.

The Divide & Choose n rule

Start by a combinatorial observation. Let G be a bilateral graph between the sets M of agents and R of shares: interpret (m, r) ∈ G as agent m likes share r. We say that the subset M of agents are properly matched to the subset R of shares if | M | = | R|, agents in M are each matched (one-to-one) to a share they like in R, and no one outside M likes any share in R.

Lemma 2. Assume |M| = |R|, each agent in M likes at least one object in R and some agent i * likes all objects in R. Then there is a (non empty) largest set M * of properly matchable agents containing i * : if M is properly matched to R, then M ⊆ M * .

Proof. We apply the Gallai-Edmonds decomposition of a bipartite graph: see e.g. [START_REF] Lovasz | Matching Theory[END_REF] Chap 3 (or Lemma 1 in [START_REF] Bogomolnaia | Random matching under divhotomous preferences[END_REF]). If M can be matched with R this is a proper match and the statement holds true. If M and R cannot be matched, then we can uniquely partition M as (M + , M * ) and R as (R + , R * ) such that: 1. |M + | > |R + |, the agents in M + do not like any object in R * , and they compete for the over-demanded objects in R + : every subset of R + is liked by a strictly larger subset of agents in M + ; 2. |M * | < |R * | and the agents in M * can be matched with some subset of R * .

By the general Gallai-Edmonds result, M + and R * are non empty. Here M * is non empty as well because it contains the special agent i * . Every match of M * to a subset of R * is proper. Finally suppose M is properly matched to R and M = M ∩ M + is non empty. Then M is matched to some subset R of R + but R is liked by more agents in M + than there are in M , therefore the match is not proper: contradiction. So M does not intersect M + as was to be proved.

Definition 4: the D&C n rule. Fix the manna (Ω, B) and the ordered set of agents N = {1, • • • , n}, each with a utility in D(Ω).

Step 1. Agent 1 proposes a partition Π 1 ∈ P n (Ω); all other agents report which shares in Π 1 they like (at least one). In the resulting bipartite graph between N and the shares in Π 1 , where agent 1 likes all the shares, we use Lemma 2 to match properly the largest possible set of agents N 1 (it contains agent 1) with some set of shares R; if N 1 = N we are done, otherwise we go to

Step 2. Repeat with the remaining manna Ω 2 and agents in N N 1 . Ask the first agent in the exogenous ordering to propose a partition Π 2 ∈ P n-|N 1 | (Ω 2 ), while others report which of these new shares they like. And so on.

At least one agent, the Divider, is served in each step, thus the algorithm just described takes at most n -1 steps. But the algorithm matches as many agents as possible, so as to minimize information disclosure, and typically takes fewer steps.

There is some flexibility in the Definition of the rule: although the set of agents matched in each step is unambiguous, we have typically several choices for the set R of shares to assign in each step, and multiple ways to assign these to the agents.

Our first main result is that minMax is a Fair Guarantee, implemented by the D&C n rule in the full domain D(Ω).

Theorem 1

Fix the manna (Ω, B) and n. i) In the D&C n rule, an agent with utility u ∈ D(Ω) guarantees the minMax(u; n) utility level by 1) when called to divide, proposing an equipartition Π e ∈ EP m (S; u) of the remaining share S of manna among the m remaining agents, and 2) when reporting shares he likes, accepting all shares, and only those, not worse than minMax(u; n) (the minMax level in the initial problem). ii) Moreover the first Divider (and no one else) guarantees her Maxmin utility by proposing her Maxmin partition in Step 1. Other agents cannot guarantee more than their minMax utility.

Proof. Statement i). Consider agent u using the strategy in the statement. At a step where he must report which shares he likes among those offered at that step, he can for sure find one worth at least minMax(u; n): all shares previously assigned are worth to him strictly less than minMax(u; n), and together with the freshly cut shares they form a partition in P n (Ω); in any partition at least one share is worth minMax(u; n) or more.

At a step where our agent is called to cut, he proposes to the remaining agents an m-equipartition Π e ∈ EP m (S; u) of the remaining manna S. To check the inequality u(Π e ) ≥ minMax(u; n) note that Π e together with the previously assigned shares is a partition of Ω in which the old shares are worth strictly less than minMax(u; n). 7Statement ii). This is clear for the first Divider. Fix now an agent i with utility u and check that if he is not the first Divider, for certain moves of the other agents, agent u gets exactly his minMax utility. Pick a partition Π ∈ P n (Ω) achieving minMax(u; n) (as usual, the existence assumption is without loss). Suppose that the first Divider, who is not agent i, offers Π, and all agents other than i (including the Divider) find all shares acceptable: then a full match is feasible (i must accept at least one share) so i's share cannot be worth more than minMax(u; n).

Bid and Choose and Moving Knives for good or bad manna

We now assume that the manna is unanimously good, u ∈ M + (Ω), or unanimously bad, u ∈ M -(Ω). Because u(∅) = 0, for all S we have u(S) ≥ 0 in the former case and u(S) ≤ 0 in the latter. Recall that in these two domains, the minMax (resp. Maxmin) utility is the smallest (resp. largest) equipartition utility: property (3) in Proposition 1.

We check first that the profile of Maxmin utility levels still may not be feasible, even in the simple microeconomic model (corresponding to the separable domain S(Ω) in Subsection 3.1). We have one unit each of two divisible goods,ω = (1, 1), to be shared between two agents. The first agent has Leontief preferences u 1 (z) = min{x, y} so his worst case partition is Π = {(1, 0), (0, 1)} and his best one is the equal split partition Π ′ = { 1 2 ω, 1 2 ω}: minMax(u 1 ; 2) = 0 < 1 2 = Maxmin(u 1 ; 2). Agent 2 has anti-Leontief preferences: u 2 (z) = max{x, y}. For her the equal split partition Π ′ is the worst and the best one is Π: minMax(u 2 ; 2) = 1 2 < 1 = Maxmin(u 2 ; 2). Clearly the profile of Maxmin utilities ( 12 , 1) is not feasible, while D&C 2 implements ( 1 2 , 1 2 ) and (0, 1), depending on who is the Divider. We show that the minMax guarantee is always improved, at least weakly, by the large family of Bid and Choose (B&C n ) rules, inspired by the familiar Moving Knives (MK n ) rules ( [START_REF] Dubins | How to cut a cake fairly[END_REF]).

MK κ n and B&C θ n rules

A moving knife through the manna (Ω,

B, | • |) is a path κ : [0, 1] ∋ t → K(t) ∈ B from K(0) = ∅ to K(1)
= Ω, continuous for the pseudo-metric δ on B and strictly inclusion increasing:

0 ≤ t < t ′ ≤ 1 =⇒ K(t) ⊂ K(t ′ ) and |K(t ′ ) K(t)| > 0
The moving knife κ arranges shares of increasing value to all participants along the specific path of the knife. An example is K(t) = B(t) ∩ Ω, where t → B(t) is a path of balls with a fixed center and radius growing from 0 to 1, so that B(1) contains Ω. Moving knifes can take many other shapes, for instance hyperplanes.

Our Bid and Choose rules offer more choices than Moving Knives to the agents, with the help of a benchmark measure θ of the shares, chosen by the rule designer: θ is a positive σ-additive measure on (Ω, B), normalised to θ(Ω) = 1. It is absolutely continuous w.r.t. the Lebesgue measure | • | and vice versa: the density of θ w.r.t. | • | is strictly positive. In particular θ is strictly inclusion increasing:

∀S, T ∈ B : S ⊂ T and |T S| > 0 ⇒ θ(S) < θ(T )
In applications θ can evaluate for instance the market value, physical size, or weight of a share.

Fixing a moving knife κ and a measure θ, we define in parallel the Moving Knife (MK κ n ) and the Bid and Choose (B&C θ n ) rules. In both cases a clock t runs from t = 0 to t = 1.

Definition 5 the MK κ n and B&C θ n rules with increasing utilities Step 1. The first agent i 1 to stop the clock, at t 1 , gets the share K(t 1 ) in MK κ n , or in B&C θ n chooses any share in Ω s.t. θ(S) = t 1 , say S i 1 , and leaves; Step k: Whoever stops the clock first at t k gets the share

K(t k ) K(t k-1 ) in MK κ n , or in B&C θ n chooses any share in Ω ∪ k-1 1 S i ℓ s.t. θ(S) = t k -t k-1
, say S i k , and leaves; In Step n -1 the single remaining agent who did not stop the clock takes the remaining share Ω K(t n-1 ) or Ω ∪ n-1 1 S i ℓ . Definition 5 * with decreasing utilities In each step all agents must choose a time to "drop", and the last agent i 1 who drops, at t 1 , gets K(t 1 ) in MK κ n , or in B&C θ n chooses S i 1 s.t. θ(S i 1 ) = t 1 . The other steps are similarly adjusted.

Breaking ties between agents stopping the clock (or dropping) at the same time is the only indeterminacy in these rules, much less severe than in D&C n , where we serve at each step an unambiguous set of agents, but there are typically several ways to match them properly.

Up to tie-breaking, B&C θ n and MK κ n are anonymous (do not discriminates between agents) but not neutral (do discriminate between shares), while D&C n is neutral but not anonymous.

In MK κ n the share of an agent takes the form K(t) K(t ′ ) so it covers a set of dimension 2 (and feasible partitions move in a set of dimension n -1). By contrast every partition in P m (Ω) is feasible under the B&C θ n rule. To check this fix Π = (S i ) n i=1 and assume first |S i | > 0 for all i. Consider n agents deciding (cooperatively) to achieve Π. By the strict monotonicity of θ the sequence t i = θ(∪ i j=1 S j ) increases strictly therefore they can stop the clock (or drop) at these successive times and choose the corresponding shares in Π. If there are shares of measure zero they can all be distributed at time 0.

On the other hand in B&C θ n all but one agent must pick a share under constraints, thus revealing more information than in MK κ n . Loosely speaking, B&C θ n is informationally comparable to D&C n . Remark 3. We can also implement the Guarantees described in the next Subsection by alternative static versions of MK κ n and B&C θ n where agents bid all at once for potential stopping times; we do not discuss these rules for the sake of brevity.

B&C θ and MK κ Guarantees

We fix an increasing utility u ∈ M + (Ω). The results are identical, and identically phrased, for a bad manna u ∈ M -(Ω). See also Remark 4 at the end of this Subsection.

Define the triangle T = {(t 1 , t 2 )|0 ≤ t 1 ≤ t 2 ≤ 1} in R 2 + and the set Υ(n) of increasing sequences τ = (t k ) 0≤k≤n in [0, 1] s.t.

t 0 = 0 ≤ t 1 ≤ • • • ≤ t n-1 ≤ 1 = t n
For a moving knife κ, utilities of the shares in MK κ n are described by the function u κ on T :

u κ (t 1 , t 2 ) = u(K(t 2 ) K(t 1
)) for all (t 1 , t 2 ) ∈ T For a measure θ, the corresponding definition in B&C θ is the indirect utility u θ : u θ (t 1 , t 2 ) = min

T :θ(T )=t 1 max S:S∩T =∅;θ(S)=t 2 -t 1 u(S) for all (t 1 , t 2 ) ∈ T (5) 
Both u κ and u θ decrease (weakly) in t 1 and increase (weakly) in t 2 . We show below that the Guarantees Γ k and Γ θ implemented by MK κ n and B&C θ n respectively are computed as

Γ α (u; n) = max τ ∈Υ(n) min 0≤k≤n-1
u α (t k ; t k+1 ) where α is κ or θ

For instance in MK κ 2 with two agents, write τ κ for the (not necessarily unique) position of the knife making our agent indifferent between the share K(τ κ ) and its complement. Then Γ κ (u; 2) = max

0≤t 1 ≤1 min{u(K(t 1 )), u(Ω K(t 1 )) = u(K(τ κ )) = u(Ω K(τ κ )
In B&C θ 2 the bid τ θ makes the best share of size τ θ as good as the worst share of size 1τ θ :

Γ θ (u; 2) = max 0≤t 1 ≤1 min{ max θ(S)=t 1 u(S), min θ(S)=t 1 u(Ω S)} = max θ(S)=τ θ u(S) = min θ(S)=τ θ u(Ω S) (7) Lemma 4 
i) The utility u κ and the indirect utility u θ are continuous. Both the minimum and maximum in [START_REF] Aziz | Fair allocation of combinations of indivisible goods and chores[END_REF] are achieved.

ii) The maximum of problem (6) (for both rules) is achieved at some τ ∈ Υ(n) where the sequence t k increases in k, all the u α (t k ; t k+1 ) are equal, and this common utility is the optimal value of [START_REF] Aziz | A Discrete and Bounded Envy-free Cake Cutting Protocol for Any Number of Agents[END_REF].

Proof in the Appendix.

Theorem 2 Fix the manna (Ω, B), the number of agents n, and a utility u ∈ M + (Ω). i) With the MK κ n rule, an agent guarantees the utility Γ κ (u; n) by committing to stop the knife at t k κ if exactly k -1 other agents have been served before; ii) With the B&C θ n rule, she guarantees Γ θ (u; n) by stopping the clock at t k θ if exactly k -1 other agents have been served before; and choosing then the best available share of size

t k -t k-1 . iii) minMax(u; n) ≤ Γ α (u; n) ≤ Maxmin(u; n) where α is κ or θ. Proof. Statement i) and iii) for MK κ n . Recall the equipartition Π = (K(t k κ ) K(t k-1 κ )) n 1 has u(Π) = Γ κ (u; n). Thus (3) in Proposition 1 implies the inequalities iii).
Next if the knife has been stopped k -1 times before our agent is served, the last stop occured at or before t k-1 κ therefore if she does stop the knife at t k κ (and wins the possible tie break) her share is at least K(t k κ ) K(t k-1 κ ). If she never gets to stop the knife, the last stop is at or before t n-1

It is easy to check that no agent can secure more utility than Γ κ n in MK κ n or Γ θ n in B&C θ n . Remark 4. The minMax Guarantee and Maxmin upper bound for u ∈ M ε (Ω) and -u ∈ M -ε (Ω), where ε = ±, are related: minMax(-u; n) = -Maxmin(u; n). With two agents the Guarantees Γ κ (u; 2) and Γ θ (u; 2) are similarly antisymmetric:

Γ α (-u; 2) = -Γ α (u; 2) where α is κ or θ (8) 
This is clear for Γ κ and we check it for Γ θ by means of the change of variable S → S ′ = Ω S:

Γ θ (-u; 2) = -min 0≤t 1 ≤1 max{ min θ(S)=t 1 u(S), max θ(S)=t 1 u(Ω S)} = -min 0≤t 1 ≤1 max{ min θ(S ′ )=1-t 1 u(Ω S ′ ), max θ(S ′ )=1-t 1 u(S ′ )} = -min 0≤t ′ ≤1 max{ max θ(S ′ )=t ′ u(S ′ ), min θ(S ′ )=t ′ u(Ω S ′
)} and the claim follows because if two continuous functions t → f (t) and t → g(t) intersect in [0, 1] and one increases while the other decreases, then min 0≤t≤1 max{f (t), g(t)} = max 0≤t≤1 min{f (t), g(t}.

The identity (8) generalises to n ≥ 3 for the MK κ Guarantee, but not for the B&C θ one.

Microeconomic fair division

We must divide a good manna ω ∈ R K + in n shares z i ∈ R K + . Utilities u ∈ M + (ω) are continuous and weakly increasing on [0, ω].

A Moving Knife is a continuous increasing path t → K(t) from 0 to ω:

a natural choice is K(t) = tω, 0 ≤ t ≤ 1: the corresponding Guarantee Γ κ (u; n) = u( 1 n ω) is the Equal Split utility Γ es (u; n) = u( 1 n ω). A positive, additive measure θ defining B&C θ is a "price" θ(z) = p • z, p ∈ R K + {0}
, so we write the corresponding Guarantee as Γ p .

Recall from Section 1 that if an agent's preferences are convex her Equal Split utility equals her Maxmin utility, the upper bound on all Fair Guarantees ((1)), in particular it is weakly larger than the B&C p guarantee for any p. The converse inequality holds for "concave preferences".

Lemma 5 i) If the upper contours of the utility

u ∈ M + (ω) are convex, then Γ p (u; n) ≤ u( 1 n ω) = Maxmin(u; n). ii) If the lower contours of the utility u ∈ M + (ω) are convex, then minMax(u; n) = u( 1 n ω) ≤ Γ p (u; n).
The equality in statement i) was proven in Section 1. A symmetrical argument gives statement ii).

We turn to a handful of numerical examples where K = 2, ω = (1, 1), and p • z = 1 2 (x + y). Shares are z = (x, y), utilities are 1-homogenous and normalised so that u(ω) = 10. We compute our three Guarantees: Bid and Choose Γ p , Equal Split, and minMax, and compare them to the Maxmin upper bound.

The first three utilities (Leontief, Cobb Douglas and CES) define convex preferences, the last two define "concave preferences" (represented by quadratic and "anti-Leontief" utilities).

Our first table assumes two agents, n = 2, and illustrates Lemma 5. An agent with convex (resp. concave) preferences gets a better Guarantee under Equal Split (resp. Bid and Choose): The equal split partition delivers the Maxmin utility for the first four preferences, and the minMax utilities for the last three. The equipartition Π = {(1, 0), (0, 1)} gives similarly the minMax utilities of the first four, and the Maxmin ones for the last three.

u(x, y) minMax(u; 2) Γ p (u; 2) u(
To compute Γ p (u; 2) we know from (7) that the optimal bid t 1 (denoted t for simplicity) solves max This equality implies 0 ≤ t ≤ 1 2 . If u represents convex preferences symmetric in the two goods, u(x, y) is maximal under 1 2 (x + y) ≤ t at x = y = t, and minimal under x + y ≥ 2(1t) at x = 1, y = 1 -2t. So we must solve u(t, t) = u(1, 1 -2t): see Figure 2.

If u represents concave symmetric preferences its maximum under 1 2 (x + y) ≤ t is at x = 0, y = 2t, and its minimum under x + y ≥ 2(1t) at x = y = 1t, so we solve u(0, 2t) = u(1t, 1t): see Figure 3.

We compute finally the same Guarantees with three agents:

u(x, y) minMax(u; 3) Γ p (u; 3) u( The minMax equipartition for u = 5 2 ( √ x + √ y) 2 and the Maxmin equipartition for u ′ = 5 2(x 2 + y 2 ) have the same form Π = {(x, 0), (0, x), (1x, 1x)}: in the former case we find x = 4 5 and minMax(u; 3) = 2, in the latter we get x = 2 -√ 2 and Maxmin(u ′ ; 3) = 10( √ 2 -1). Lemma 5 and the partition Π ′ = {(1, 0), (0, 1 2 ), (0, 1 2 )} fill the remaining values of minMax and Maxmin.

To compute Γ p (u; 3) we know by Lemma 4 that the three terms in (6) are equal. They are u p (0, t 1 ) = max1 2 (x+y)≤t 1 u(x, y) u p (t 1 , t 2 ) = min 1 2 (x 1 +y 1 )≤t 1 max 1 2 (x+y)≤t 2 -t 1 and (x 1 +x,y 1 +y)≤(1,1) u(x, y) u p (t 2 , 1) = min1 2 (x 2 +y 2 )≤t 2 u(1x 2 , 1y 2 ) Clearly t 1 ≤ 1 3 (as t 2t 1 < 1 3 < t 1 and 1t 2 < 1 3 < t 1 are both impossible). Therefore u p (0, t 1 ) = u p (t 1 , t 2 ) is achieved by t 2 = 2t 1 (the constraint (x 1 + x, y 1 + y) ≤ (1, 1) does not bind). Writing t = t 1 = t 2t 1 it remains to solve max When u represents convex preferences symmetric in the two goods, the minimum on the right-hand side is achieved by (x, y) = (1 -4t, 1) so we solve u(t, t) = u(1 -4t, 1). See Figure 4.

If u represents concave symmetric preferences, the minimum on the righthand side is achieved by (x, y) = (1 -2t, 1 -2t) so we solve u(2t, 0) = u(1 -2t, 1 -2t). See Figure 5.

Concluding comments

Comparing B&C n versus D&C n rules The exogenous ordering of the agents greatly affects the outcome of D&C n , whereas B&C n treats the agents symmetrically. On the other hand the choice of the benchmark measure in B&C n is exogenous, which allows much, perhaps too much flexibility to the designer.

In D&C n the dividing agent may have many different strategies guaranteeing her minMax utility. By contrast in B&C n the solution to programs [START_REF] Barbera | Implementability via protective equilibria[END_REF] and ( 6) is often unique. Multiple choices and the resulting indeterminacy of the outcome may be appealing for the sake of privacy preservation, less so from the implementation viewpoint.

Two challenging open questions 1). Fix the manna (Ω, B) as in Theorem 1, and each of the n agents with his own utility in D(Ω). As mentioned in Section 2 and Subsection 3.2, Stromquist ( [START_REF] Stromquist | How to cut a cake fairly[END_REF]) showed that an Envy-free partition of Ω exists if all utilities are non negative for all shares. Without the sign assumption on utilities, Avvakumov and Karasev ( [START_REF] Avvakumov | Envy-free Division under Mapping Degree[END_REF]) prove existence of an Envy-free partition if n is a power of a prime number. Whether this remains true for all n is still an open question.

2) If the utilities vary in a domain U(Ω) where the Maxmin utility is not feasible, we would like to describe the family of undominated Fair Guarantees u → Γ(u; n). For instance in the microeconomic domain M + (ω) of Subsection 5.3, the Equal Split Guarantee is clearly undominated. We conjecture that in the domains M ± (Ω) the B&C Guarantees Γ θ (Subsection 5.2) are undominated as well.

7 Appendix: proof of Lemma 4 1). First statement. Recall that we can replace in definition (5) the equalities like θ(T ) = t 1 with inequalities θ(T ) ≤ t 1 . We check first that the correspondence t → {S ∈ B|θ(S) ≤ t} is continuous. Upper hemi continuity follows by the continuity of θ. For lower hemi continuity pick a sequence t n converging to t and S ∈ B s.t. θ(S) ≤ t. If t n has a decreasing subsequence, we set S n = S so that θ(S n ) ≤ t n and S n converges to S. If t n has an increasing subsequence we construct an inclusion increasing sequence S m converging to S and s.t. |S m | < |S| for all m: because θ increases strictly, so does the

1 2 (x 2 +y 2 )≤2t u( 1 -x 2 , 1 -y 2 ) = min 1 2

 11211 (x+y)≥1-2t u(x, y)

In the simple sense of implementation described in the last paragraph of this section.

Maybe more than one such assignment is feasible; any choice implements the target Guarantee, which is all we need.

If the manna is atomic and utilities are not necessarily additive, it is easy to construct examples showing that all six orderings of M axmin, minM ax, and 1 n u(Ω) are possible.

For instance in the interval model, the first divider can find an equipartition made of adjacent intervals (by our Lermma 1), but the next agent called to divide is typically left with disconnected intervals.

Divide and Choose implements the utility profile (minM ax(u i ; 2), M axmin(u j ; 2)): this gap can be closed for one agent.

After Step 1 an agent can secure his M axmin utility for the smaller manna S among m agents, but this may be below the M axmin utility in the initial problem.

sequence θ(S m ) converging to θ(S), therefore we can pick subsequences S p of S m and t p of t n s.t. θ(S p ) ≤ t p , as desired.

Next we apply the Maximum Theorem twice. The first one to show that the function (T,

2). Second statement. For simplicity we assume n = 3, the general proof is entirely similar. Fixing u and t 1 there is some t 2 such that u θ (t 1 ; t 2 ) = u θ (t 2 ; 1). This is because of the monotonicity properties of u θ and of the inequalities u θ (t 1 ; t 1 ) = 0 ≤ u θ (t 1 ; 1) and u θ (t 1 ; 1) ≥ 0 = u θ (1; 1). This common value is unique (though t 2 may not be) and defines a function g(t 1 ) = u θ (t 1 ; t 2 ) = u θ (t 2 ; 1). It is easy to check from the continuity and monotonicity properties of u θ that g is weakly decreasing and continuous. Then we find in the same way t 1 s.t. g(t 1 ) = u θ (0; t 1 ).

Check finally that if

* ; and so on until we reach a contradiction with the fact that both τ and τ * are in Υ(n).

Finally, the optimal sequence t k increases in k, strictly if u is not everywhere zero because u(t, t) = 0 for all t.