
HAL Id: hal-03886792
https://hal.science/hal-03886792v1

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for the Design of Secure and Efficient
Proofs of Retrievability

Françoise Levy-Dit-Vehel, Maxime Roméas

To cite this version:
Françoise Levy-Dit-Vehel, Maxime Roméas. A Framework for the Design of Secure and Efficient
Proofs of Retrievability. I4CS 2022 - International Conference on Cryptology, Coding Theory, and
Cybsersecurity, Oct 2022, Casablanca, Morocco. �hal-03886792�

https://hal.science/hal-03886792v1
https://hal.archives-ouvertes.fr

A Framework for the Design of Secure and
Efficient Proofs of Retrievability

Françoise Levy-dit-Vehel1 and Maxime Roméas2

1 LIX, ENSTA Paris, INRIA, Institut Polytechnique de Paris, 91120 Palaiseau,
France. levy@ensta.fr

2 LIX, École polytechnique, INRIA, Institut Polytechnique de Paris, 91120 Palaiseau,
France. romeas@lix.polytechnique.fr

Abstract. Proofs of Retrievability (PoR) protocols ensure that a client
can fully retrieve a large outsourced file from an untrusted server. Good
PoRs should have low communication complexity, small storage overhead
and clear security guarantees with tight security bounds. The focus of
this work is to design good PoR schemes with simple security proofs. To
this end, we propose a framework for the design of secure and efficient
PoR schemes that is based on Locally Correctable Codes, and whose
security is phrased in the Constructive Cryptography model by Maurer.
We give a first instantiation of our framework using the high rate lifted
codes introduced by Guo et al. This yields an infinite family of good
PoRs. We assert their security by solving a finite geometry problem,
giving an explicit formula for the probability of an adversary to fool the
client. Moreover, we show that the security of a PoR of Lavauzelle and
Levy-dit-Vehel was overestimated and propose new secure parameters
for it. Finally, using the local correctability properties of Tanner codes,
we get another instantiation of our framework and derive an analogous
formula for the success probability of the audit.

1 Introduction

1.1 Context and state-of-the-art

With the continuous increase in data creation, individuals and business entities
call upon remote storage providers to outsource their data. This new dependency
raises some issues, as the storage provider can try to read and/or modify the
client’s data. Besides, when a client does not often access his data, the service
provider can delete it to make room for another client’s data. In this context,
it appears important to deploy client side protections designed to bring secu-
rity guarantees like confidentiality and integrity. In this work, we focus on the
following problem: given a client who stored a file on a server and erased its
local copy, how can he check if he is able to retrieve his file from the server in
full? Addressing this issue is the goal of a class of cryptographic protocols called
Proofs of Retrievability (PoRs).

The first PoR scheme was proposed in 2007 by Juels and Kaliski [8] and
was based on checking the integrity of some sentinel symbols secretly placed by

the client before uploading its file. This scheme has low communication but its
drawback is that it is bounded-use only, as the number of possible verifications
depends on the number of sentinels. To correct this drawback, Shacham and Wa-
ters [15] proposed to append some authenticator symbols to the file. Verification
consists in checking random linear combinations of file symbols and authentica-
tors. Then comes a few PoR schemes based on codes. Bowers et al. [2] proposed
a double-layer encoding with the use of an inner code to recover information
symbols and an outer code to correct the remaining erasures. Dodis et al. [4]
formalize the verification process as a request to a code which models the space
of possible answers to a challenge. They use Reed-Solomon codes to design their
PoR scheme. In 2013, Paterson et al. [14] laid the foundation for studying PoR
schemes using a coding theoretic framework. Following these ideas, Lavauzelle
and Levy-dit-Vehel [11] (2016) used the local structure of the lifted codes in-
troduced by Guo et al. [5] to build a PoR scheme, that compares favourably to
those presented above w.r.t. storage overhead.

Unfortunately, PoR schemes have a few issues. Indeed, their security defini-
tions are often unclear, making it hard to understand what they really achieve.
Moreover, when a client wants to retrieve his data, the security guarantees
brought by the use of the PoR scheme only holds under the condition that
both client and server unveil some private information (client’s secret material
and server’s state). We give a detailed explanation of this in sec. 2.2. In 2018,
Badertscher and Maurer [1] used the Constructive Cryptography (CC) model
[12] to propose a new PoR definition, that avoids the aforementioned flaws.
They also designed a PoR scheme based on generic erasure codes. Generalizing
[1] and [11], we introduce a framework for designing secure, composable and
efficient PoR protocols based on locally correctable codes.

Our approach allows us to design and study the security of PoR schemes in a
modular fashion, that achieves stronger security and clearer security guarantees
than previous schemes (whose security was based on so-called ε adversaries or
related notions). Using another definitional model such as the Universal Com-
posability one by Canetti [3] would probably give closely related results. We
chose to use CC because it makes the resources available to the parties (namely,
untrusted server storage, local memories, communication channels) explicit. It
also makes the switching between computational, statistical and information-
theoretic security notions easy.

Locally correctable codes (LCCs), which are at the core of our work, were
formally introduced by Katz and Trevisan [9] in 2000. Reed-Muller codes are
well known to be locally correctable, but with poor rate as their length grows.
The year 2011 has seen a breakthrough in the theory of codes with locality,
with the construction by Kopparty et al. [10] of a class of high-rate LCCs -the
multiplicity codes- generalizing the Reed-Muller class. Other high-rate LCCs are
notably the lifted codes introduced by Guo et al. [5], and the expander codes of
Hemenway et al. [6]. The high rates of these codes permit to minimize the server
storage overhead, making them best suited for the outsourced storage context.
We give an instantiation of our framework using the lifted codes of Guo et al..

In a nutshell, we exploit the geometric properties of lifted codes and the CC
security model for PoRs to give simple security proofs with tight bounds. This
is a key difference between our approach and the one of Lavauzelle and Levy-
dit-Vehel [11], which is also based on lifted codes and can in fact be seen as a
different instantiation of our framework. We also propose another instantiation
of our framework using the graph codes of Tanner [16].

1.2 Contributions

Given a LCC, we propose a canvas for deriving a PoR scheme. We get efficiency
by taking advantage of the local correctability of the code to design an audit
with low communication complexity. Using the CC security model for PoRs of
[1], we give clear and composable security guarantees for our PoR construction.
We are also able to give security bounds derived from geometric/combinatorial
proofs and we reevaluate the security of the scheme of [11].

As in many protocols, the client first encodes its file and uploads it to the
server. Retrieving the file is done by iterating the local decoder. With such a
decoding process in mind, for extracting the file, we identify the adversarial
configurations of corruptions that would prevent its extraction. This analysis of
adversarial impact permits us to phrase the security of the audit -which heavily
relies on the local correction step- as a problem about the structure of the code.
Namely, if the code uses geometric properties of Fmq , we reduce the security of
the audit to a finite geometry problem that we thoroughly address in sec. 5.2.
If the code is a graph code, we reduce the security to a graph theoretic problem
in sec. 5.3.

Instantiating our framework with the lifted Reed-Solomon codes: we characterize
all the configurations of corruptions that are impossible to correct using the local
correctability of those codes. More precisely, we show that these configurations
of corruptions correspond to sets of points verifying a geometric property inside
a vector space over a finite field. Then, we show that these sets of points belong
to a large number of affine lines. From this we derive an explicit formula for
the probability of the adversary to fool the client. Thus, we get a family of
PoR schemes with precise security guarantees. Efficiency of this construction is
shown in fig. 6 and 7 of sec. 6, where we also give a comparison between our
parameters and those of the PoR scheme of [11]. Our security analysis shows
that their scheme is insecure for their choice of parameters. Fortunately, we are
able to give new ranges of secure parameters in fig. 6.

Instantiating our framework with Tanner codes: we proceed analogously as in
the lifted Reed-Solomon codes case to first design a global decoder, and then
to characterize the configurations of erased edges that are unrecoverable by the
decoding algorithm. This way, we derive a bound for the failure probability of
the audit, that only depends on the choice of the graph.

In order to design our framework, we constructed a protocol to authenticate
outsourced data (aSMR, for Authentic Server Memory Resource3) that is tai-

3 Following the terminology of [1].

lored for PoR purposes (see sec. 4). Our aSMR is different from the one of [1]
in several aspects, notably, when dealing with encoded data, we halve the extra
storage needed in comparison to [1]. Further details are to be found in sec. 4.
This new construction might be useful in other code-based schemes. It can also
be used to improve the efficiency of the generic PoR of [1].

2 Background

2.1 The Constructive Cryptography model

The CC model, introduced by Maurer [13] in 2011, aims at asserting the real
security of cryptographic primitives. To do so, it redefines them in terms of so-
called resources and converters. In this model, starting from a basic resource
(e.g. communication channel, shared key, memory server...), a converter (a cryp-
tographic protocol) aims at constructing an enhanced resource, i.e., one with
better security guarantees. The starting resource, lacking the desired security
guarantees, is often called the real resource and the obtained one is often called
the ideal resource, since it does not exist as is in the real world. An example
of ideal resource is a confidential server, where the data stored by a client is
readable by this client only. The only information that leaks to other parties
is its length. This resource does not exist, but it can be emulated by an in-
secure server on which the client uses a suitable encryption protocol. We say
that this construction of the confidential server is secure if the adversary in the
ideal world, i.e. when a confidential server is used, is able to do the same things
than in the real world setting, i.e. when an insecure server is used together with
the protocol. We use the fact that the ideal world is by definition secure and
contraposition to conclude. This construction notion is illustrated in fig. 2.

The CC model follows a top-down approach, allowing to get rid of superfluous
hypotheses made in other models. A particularity of this model is its composabil-
ity, in the sense that a protocol obtained by composition of a number of secure
constructions is itself secure. We give the required material to understand how
we use CC below. We follow the presentation of [7].

Resources, converters and distinguishers. A resource R is a system that interacts,
in a black-box manner, at one or more of its interfaces, by receiving an input at
a given interface and subsequently sending an output at the same interface. Do
note that a resource only defines the observable behavior of a system and not
how it is defined internally.

In CC, converters are used to link resources and reprogram interfaces, thus
expressing the local computations of the parties involved. A converter is plugged
in a set of interfaces at the inside and provides a set of interfaces at the outside.
When it receives an input at its outside interface, the converter uses a bounded
number of queries to the inside interface before computing a value and outputting
it at its outside interface. A converter π connected to the interface set I of a
resource R yields a new resource R′ := πIR. The interfaces of R′ inside the
set I are the interfaces emulated by π. A protocol can be modeled as a tuple of
converters with pairwise disjoint interface sets.

A distinguisher D is an environment that connects to all interfaces of a
resource R and sends queries to them. At any point, the distinguisher can end
its interaction by outputting a bit. Its advantage is defined as ∆D(R,S) :=
|Pr[D(R) = 1]− Pr[D(S) = 1]|.

In this work, we make statements about resources with interface sets of the
form I := P∪{S,W}, where P := {C0,C} is the set of honest client interfaces. A
protocol is a pair of converters π := (πC0

, πC) that specifies one converter for each
interface. The goal of this protocol is to construct a so-called ideal resource from
an available real resource in presence of a potentially dishonest server S. The
world interface W models the direct influence of a distinguisher on a resource.

Specifications. In CC, systems are grouped according to desired or assumed prop-
erties that are relevant to the user, while other properties are ignored on purpose.
A specification S is a set of resources that have the same interface set and share
some properties, for example confidentiality. In order to construct this set of
confidential resources, one can use a specification of assumed resources R and a
protocol π, and show that the specification πR satisfies confidentiality. Proving
security is thus proving that πR ⊆ S, sometimes written as R π−→ S, and we say
that the protocol π constructs the specification S from the specification R. The
composition property of the framework comes from the transitivity of inclusion.
Formally, for specifications R,S and T and protocols π for R and π′ for S, we

have R π−→ S ∧ S π′

−→ T ⇒ R π′◦π−−−→ T .

We use the real-world/ideal-world paradigm, and often refer to πR and S
as the real and ideal-world specifications respectively, to understand security
statements. Those statements say that the real-world is ”just as good” as the
ideal one, meaning that it does not matter whether parties interact with an
arbitrary element of πR or one of S. This means that the guarantees of the ideal
specification S also apply in the real world where an assumed resource is used
together with the protocol.

We use simulators, i.e., converters that translate behaviors of the real world
to the ideal world, to make the achieved security guarantees obvious. For exam-
ple, one can model confidential servers as a specification S that only leaks the
data length, combined with some simulator σ, and show that πR ⊆ σS. It is
then clear that the adversary cannot learn anything more that the data length.

Server-memory resources. We recall the constructions of [1] that we will use
or improve in this work. The first resource is the basic server-memory resource
(SMR) denoted by SMRΣ,n where Σ is the alphabet and n is the number of
data blocks. It allows a client to read and write data blocks that are encoded
as elements of a finite alphabet Σ via interface C. The interface C0 is used to
set up the initial state of the resource. The server can be “honest but curious”
by obtaining the entire history of accesses made by the client (a log file) and
reading its data at interface SH . The server can also be intrusive and overwrite
data using its interface SI when the resource is set into a special write mode.
This write mode can be toggled by the distinguisher at the world interface W.
The specification of the resource SMRΣ,n is given in fig. 1.

Resource SMRΣ,n

Initialization

Init,Active, Intrusion← false

Hist← []

Interface C0

Input: init

if not Init
for i = 1 to n

M[i]← λ

Hist← Hist || (0, init)
Init← true

Input: (read, i) ∈ [1, n]
if Init and not Active

Hist← Hist || (0, R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]×Σ
if Init and not Active

Hist← Hist || (0, W, i, x)
M[i]← x

Input: initComplete

Active← true

Interface SH
Input: getHist

return Hist
Input: (read, i) ∈ [1, n]

return M[i]

Interface SI
Input: (write, i, x) ∈ [1, n]×Σ

if Intrusion
return M[i]← x

Interface W
Input: startWriteMode

if Active
Intrusion← true

Input: stopWriteMode

if Active
Intrusion← false

Interface C

Input: (read, i) ∈ [1, n]
if Active and not Intrusion

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]×Σ
if Active and not Intrusion

Hist← Hist || (W, i, x)
M[i]← x

Fig. 1. Description of the basic server-memory resource

In fig. 2, taken from [1], we illustrate the CC construction notion on SMRs.
The SMR security guarantees can be augmented to provide authenticity by using
a suitable protocol in this construction notion. This new SMR is called authentic
SMR, denoted by aSMRΣ,n, and is constructed in [1]. In aSMR, the behavior
of the server at interface SI is weakened as the server cannot modify the content
of data blocks but is limited to either delete or restore previously deleted data
blocks. A deleted data block is indicated by the special symbol ε. In this work,
we use a different aSMR specification that the one used in [1]. We modify
the restore behavior to only restore data blocks that were deleted after the
last client update of the database. We introduce a version number that tracks
the number of said updates in the history of the aSMR and the client is now
allowed to overwrite corrupted data blocks. These changes decrease the storage
overhead along with the communication complexity of read operations while the
communication complexity of write operations is increased in comparison to the
specification of [1]. Our changes to the aSMR yield substantial improvements
for the parameters of our code-based PoR schemes. Our take on the aSMR
resource is described in fig. 3 and our changes are precised in sec. 4.

2.2 Proofs of Retrievability

Proofs of Retrievability (PoR) are cryptographic protocols whose goal is to guar-
antee that a file stored by a client on a server remains retrievable in full. PoRs

Real
SMR

W

S
SH

SI

init

prot

C0

C

Ideal
SMR

W

S

SH

SI

C0

C

≈ sim

Fig. 2. Illustration of the construction notion for SMRs. On the left, we have a real
SMR with a protocol for the client. On the right, we have an ideal SMR with stronger
security guarantees. The construction is secure if there exists a simulator that makes
these two resources indistinguishable.

Resource aSMRΣ,n

The aSMR definition is identical to SMR except for the influence of an ad-
versary at interface SI and the addition of a version number ctr.

Interface C

Input: (read, i) ∈ [1, n]
if Active and not Intrusion

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]×Σ
if Active and not Intrusion

ctr ← ctr + 1
Hist← Hist || (W, i, x, ctr)
M[i]← x

Interface SI

Input: (delete, i) ∈ [1, n]
if Intrusion

M[i]← ε

Input: (restore, i) ∈ [1, n]
if Intrusion

if ∃k, x:Hist[k] = (W, i, x, ctr)
M[i]← x

Fig. 3. Our new authentic SMR (only the differences with SMR are shown)

thus involve two parties: a client who owns a file F and a server, here modeled
as a SMR, on which F is stored. We recall the commonly used definitions for
PoR security as presented in [11]. A PoR scheme is composed of three main
procedures:

• An initialization phase. The client encodes his file F with an initialization
function Init(F) = (F̃ , data). He keeps data (e.g. keys, etc.) for himself,
then he sends F̃ to the server and erases F .

• A verification phase. The client produces a challenge c with a randomized
Chall function and sends it to the server. The latter creates a response
r = Resp(F̃ , c) and sends it back to the client. The client checks if r is
correct by running Verif(c, r), which also access data, and outputs accept
if r is considered correct and reject otherwise.

• An extraction phase. If the client has been convinced by the verification
phase, he can use his Extract algorithm to recover his whole file with high
probability.

The security of PoR schemes is usually defined with ε-adversaries. In a PoR
scheme, the client wants to use the Verif procedure to be sure that he will be
able to retrieve his file in full when using the Extract procedure. The following
definition models the fact that, if the server’s answers to client’s challenges make
him “look like” he owns the file, then the client must be able to recover it entirely.

Definition 1 (ε-adversary). Let P be a PoR system and X be the space of
challenges generated by Chall. An ε-adversary A for P is an algorithm such
that, for all files F , Prx∈X [Verif(x,A(x)) = false] ≤ ε

The client models the server as an ε-adversary and uses his verification pro-
cess to maintain an approximation of ε. Depending on this estimate, the client
can decide whether his file is retrievable or not. The security of PoRs is thus
usually measured as follows:

Definition 2 (PoR security). Let ε, ρ ∈ [0, 1]. A PoR system is (ε, ρ)-sound
if, for all ε-adversaries A and for all files F , we have Pr[ExtractA = F] ≥ ρ
where the probability is taken over the internal randomness of ExtractA.

As pointed out by Badertscher and Maurer in [1], this model has a major
drawback concerning client-side security guarantees. The most important thing
for the client, the availability of his data, is conditioned to the execution of
the Extract algorithm which needs to access the client’s private data and the
server’s strategy (as indicated in def. 2). In practice, no server would reveal its
entire state to a client. This problem is addressed in [1], where the authors used
the CC framework to propose a definition of PoRs that fixes this drawback. In
their work, they introduced an ideal abstraction of PoRs in the form of an ideal
SMR that sees the client’s interface augmented with an audit mechanism. On an
audit request, the resource checks whether the current memory content is indeed
the newest version that the client wrote to the storage. If a single data block has
changed, the ideal audit will detect this and output reject to the client. In case
of a successful audit (returning accept), this guarantee holds until the server
gains write-access to the storage, in which case a new audit has to reveal whether
modifications have been made. We present the specification of the auditable and
authentic SMR aSMRaudit

Σ,n in fig. 4. In addition to the advantages we discussed,
we believe that this CC based security model is simpler and more intuitive than
the one of ε-adversaries.

In CC, a PoR scheme is given by a pair of converters por := (porinit, poraudit)
where porinit implements the (write, F) query that uploads F (or an encod-
ed/encrypted version of F) on the SMR, where F is the client’s file and poraudit
implements the audit query that returns either accept or reject, and the read
query that extracts the file F from the SMR.

2.3 Locally Correctable Codes

In [1], Badertscher and Maurer give a protocol based on generic erasure codes to
construct the auditable aSMR. Due to the use of classical codes, a client who
wants to read a single data block needs to read the entire memory in order for
him to run the decoding algorithm of the code to recover (or not) the data block.
In this work, we show how one can use LCCs, so that one has to read only a
small number of memory positions to recover one data block, while keeping the
auditable property of the constructed resource. We now briefly present LCCs,
which were formally introduced by Katz and Trevisan [9] in 2000.

Resource aSMRaudit
Σ,n

Interface C
Input: (write, i, x) ∈ [n]×Σ

Defined as in aSMR except the ver-
sion number ctr has been removed.

Input: audit
if Active and not Intrusion

output auditReq to SH
Let d ∈ {allow, abort} be the re-

sult
if d = allow

M′ ← []
for i = 1 to n

if ∃k, x : Hist[k] =
(W, i, x)

k0 ← max{k | ∃x :
Hist[k] = (W, i, x)}

Parse Hist[k0] as
(W, i, x0)

M′[i]← x0
else

M′[i]← λ

if M′ = M
return accept

else
return reject

else
return reject

Interface SI
Input: (restore, i) ∈ [n]

if Intrusion
if ∃k, x : Hist[k] = (W, i, x)

k0 ← max{k | ∃x : Hist[k] =
(W, i, x)}

Parse Hist[k0] as (W, i, x0)
M[i]← x0

else
M[i]← λ

Fig. 4. Description of the auditable and authentic SMR of [1] (only the differences
with our aSMR are shown)

Definition 3 (Locally correctable code). Let r ∈ N, δ ∈ [0, 1] and ε : [0, 1]→
[0, 1]. A code C ⊆ Fnq is said to be (r, δ, ε)-locally correctable if there exists a
probabilistic decoding algorithm A such that,

1. For all c ∈ C, for all i ∈ J1, nK and for all vectors y ∈ Fnq with relative
Hamming distance ∆(c,y) ≤ δ, we have Pr[Ay(i) = ci] ≥ 1 − ε(δ), where
the probability is taken over the internal randomness of Ay.

2. The algorithm A makes at most r queries to the vector y.

In this work, we consider locally correctable codes for erasures and we do not
use the estimate of their failure probability. See sec. 3 for more details.

3 Our framework

We describe our framework which derives PoR schemes from a given LCC C.
In all our PoRs, the client’s file is encoded as a codeword of C and uploaded to
the server. We want to protect the client from an adversary able to introduce
corruptions on the outsourced file. To do so, we need to describe an audit that
probes a few symbols of the outsourced file and accepts if it thinks that the
corruptions can all be corrected. Recall that, in the CC definition, an audit is
considered secure if it only succeeds when the outsourced file is retrievable in

full, without modifications. If we want to derive PoR schemes from an LCC C in
CC, we thus need to do the following three things:

1. Give an extraction procedure that aims at retrieving the outsourced file while
correcting any corruption encountered.

2. Characterize the configurations of corruptions that are uncorrectable by this
extraction procedure.

3. Give an audit procedure that is able to detect those configurations of uncor-
rectable corruptions on the outsourced file.

Since a good PoR scheme must have low communication complexity, we want
to exploit the locality of LCCs to design our audit procedure. We choose our ex-
traction procedure as an iteration of the local correction algorithm of the LCC.
This means that our schemes will try to locally correct any corruption encoun-
tered during the extraction. Thus, we need a way to identify those corruptions.
Using the composability of the CC framework, we will place ourselves in a set-
ting where adversaries can only introduce erasures on the outsourced file. We
can design our PoR schemes with this assumption and we will need to construct
an authenticated server to realize it later on. Our blueprint becomes:

1. Give an extraction procedure that aims at correcting erasures by using the
local correctability of C.

2. Characterize the configurations of erasures that are uncorrectable by this
extraction procedure.

3. Our audit is the following: try to locally correct a random position of the
outsourced file, if the correction is impossible return reject, else return
accept.

In step 2, we identify the configurations of erasures that are unrecoverable
when iterating the local correction of C. We find a lower bound on the number of
local correction queries that would fail if such a configuration of erasures existed.
When instantiating our framework in sec. 5, we shall see that this problem is, in
practice, much easier than giving a lower bound on the minimum size of such a
configuration of unrecoverable erasures. In the CC model of security for PoRs,
the advantage of the adversary in breaking the security of the scheme is the
probability that the audit accepts while the file is not retrievable. In our case,
our audit consists in checking if a random local correction query succeeds. Our
file is not retrievable if there exists a configuration of unrecoverable erasures.
Thus, the lower bound we computed above is all we need to assess the security
of the PoR. We give a complete proof when instantiating our framework, see
th. 1 of sec. 5.

More precisely, let C be an erasure code of length n, alphabet Σ and erasure
symbol ⊥. Suppose that C possesses a local erasure decoder L with query space
Q ⊆ 2[1,n]. On query q ∈ Q and input w ∈ (Σ ∪ {⊥})n such that there exists
c ∈ C such that for any i ∈ [1, n], wi 6=⊥ implies wi = ci, L probes the symbols
w|q := (wi)i∈q of w and attempts to correct its erasures if they exist. We can
define a global decoder G for C by iterating L until no erasures remain. Let

P be a predicate on ∪ni=0(Σ ∪ {⊥})i, i.e., for w ∈ (Σ ∪ {⊥})n and q ∈ Q,
P (w|q) ∈ {true, false}. Let 0 ≤ ε ≤ 1 and suppose that we have the following
property:

∀w ∈ (Σ ∪ {⊥})n, if at least one erasure of w cannot be corrected by G
then Pr

q∈Q
[P (w|q) = false] ≥ 1− ε (1)

We define our general PoR scheme por := (porinit, poraudit), where:

1. On input (write, F), porinit encodes F into a codeword F̃ of C and writes F̃
in the aSMR memory.

2. On input audit, poraudit samples a query q ∈ Q uniformly. If w is the file
stored in the SMR, poraudit retrieves w|q with read queries. Then, the con-
verter returns accept if P (w|q = true) and returns reject otherwise.

3. On input (read), the converter poraudit tries to extract the file F using the
global decoder G of C.

Recall that in the CC model of security for PoRs, the advantage of the
adversary in breaking the security of por is the probability that the audit accepts
while the file is not retrievable. In our case, this advantage is upper bounded by
ε (see eq. 1). We believe our security model for PoRs to be cleaner, simpler and
to give clearer security guarantees than the ε-adversary model.

4 Our authentication protocol

Recall that we focus on schemes based on erasure capabilities of error correcting
codes. Thus, we need a setting where the actions of adversaries only lead to
introducing erasures, instead of errors, in the outsourced data. This is exactly
what an authentic server-memory resource (aSMR) achieves since the adversary
can only delete data or restore previously deleted data. Thus, we need a protocol
that constructs an aSMR from a basic SMR.

In [1], Badertscher and Maurer present a protocol that constructs an aSMR
using a MAC function, timestamps and a tree structure on the outsourced data.
Their construction of the aSMR has the following features:

1. The aSMR of size n with alphabet Σ is constructed from an SMR of size
2n − 1, alphabet Σ × Zq × T and a local memory of constant size for the
client. T is the tag space of the MAC function used.

2. To read or write one memory cell on aSMR, the protocol of [1] produces
O(log n) read and write queries to SMR.

Our work focuses on PoR schemes where the client uploads a very large
encoded file to an outsourced server. In this context, the logarithm of the size
of the alphabet Σ is an order of magnitude smaller than the length of the MAC
tags. The aSMR construction of [1] is thus not suited for this kind of application.
Its issues are threefold. First, since the file size is huge, a factor of 2 in the storage

overhead is a big problem. Second, the O(log n) communication complexity for
write operations is of no use to us since we will be working on encoded data
and updating a codeword requires anyway to read a linear number of symbols.
Third, the verification phase of PoRs often consists in probing as few symbols as
possible to ensure that the outsourced file is retrievable in full. Having a O(log n)
read communication complexity is a problem in this context.

With these observations, we now present a different protocol that constructs
an aSMR with good features for our context:

1. Our aSMR of size n with alphabet Σ is constructed using an SMR of size
n, alphabet Σ × T and a local memory of constant size for the client.

2. A read request to our aSMR produces only one read request to SMR.
3. A write request to our aSMR produces at most 2n − 1 read and write

requests to SMR.

This way, we minimize the storage overhead and the communication com-
plexity of read requests on the one hand. On the other hand, the increased
communication complexity for write requests does not matter since our PoR
schemes use only one such request. We sketch our protocol.

In the following, let n be the size of the SMR, fsk(·) be a MAC function
with tag space T and Σ be a finite alphabet. The protocol auth starts with the
clients choosing a secret key sk for the MAC function, setting a version number
ctr to 0. The main idea is the following: if the i-th cell is supposed to store the
data x ∈ Σ, the protocol will store the pair (x, fsk(x, ctr, i)) ∈ Σ×T instead. Do
note that the version number ctr is incremented with every write request. This
also means that every valid tag needs to be updated with every write request.
Intuitively, this protocol prevents the adversary from:

1. Replacing the data x with y 6= x since this would make the tag invalid.
2. Moving the data stored in location i to location j 6= i since this would make

the tag invalid.
3. Replaying an older value since the version numbers would not match and

the tag would thus be invalid.

5 Instantiation with high rate LCCs

5.1 Lifted Reed-Solomon Codes

We introduce a very interesting class of LCCs, namely the high rate lifted Reed-
Solomon (RS) codes of Guo et al. [5]. In the following, let Fq be the finite field
with q elements and m be a positive integer. The set of affine lines in Fmq is
denoted by Lm := {(at + b)t∈Fq | a, b ∈ Fmq }. RSq[q, d] is the q-ary RS code of
length q and minimum distance d = q − k + 1.

Definition 4 (Lifted Reed-Solomon Code [5]). Let Fq be a finite field. Let
d,m ∈ N∗. The m-lift of RSq[q, d] is Liftm(RSq[q, d]) := {w ∈ Fmq | ∀ line ` ⊆
Fmq , w|` ∈ RSq[q, d]}.

As we are using an aSMR, codewords can only be affected by potential
erasures. A codeword of the RS base code RSq[q, d] is the vector of evaluations
of a polynomial f of degree strictly less than k = q− d+ 1. Thus, if there are at
most d−1 erasures, we can always recover the codeword i.e. the polynomial f by
interpolating on k > deg f points. Therefore, if we want to correct a coordinate
x ∈ Fmq of the Liftm(RSq[q, d]) code, we can pick a random line going through x
and run the aforementioned local decoding algorithm.

5.2 The lifted RS PoR scheme

In this section, we use our PoR framework to design a secure and efficient PoR
scheme using lifted RS erasure codes. We call this scheme lifted RS PoR scheme.
We build our PoR for an aSMR and then use the composability of CC. Since
this server is authenticated, we only have to deal with potential erasures instead
of errors. Using the blueprint of sec. 3, we need to do the following:

1. Give a global decoding algorithm for lifted RS codes using their local cor-
rectability.

2. Characterize the configurations of erasures that are unrecoverable by this
algorithm.

3. Give an audit procedure that is able to detect those configurations of uncor-
rectable corruptions on the outsourced file.

Let us start with the global decoding algorithm. For the lifted RS code
Liftm(RSq[q,m]), our global decoder works as follows. For each erasure, the
decoding algorithm corrects it by finding, if it exists, a line going through the
erasure and containing less than d − 1 other erasures (using interpolation as
quoted in sec. 5.1). If one or more erasures have been corrected during this step,
the algorithm tries to correct the remaining erasures using the same method.
Indeed, since some erasures were corrected, there exist lines with less erasures
than before. If, during one iteration, no erasures have been corrected, the algo-
rithm stops and returns the current vector. We give a pseudo-code description
of this algorithm in fig. 5.

Input: The encoded file V with potential erasures
Output: The encoded file F̃ .

repeat
E := ∅
for an erased position x ∈ Fmq

if there exists a line ` ⊆ Fmq going through x with strictly less than d erasures.
Use the global decoder of RSq[q, d] on the restriction of the file to `.
We have corrected all the erasures on that line, x included.
E = E ∪ {x}
Modify V accordingly.

until E = ∅
return V

Fig. 5. Our global decoding algorithm for lifted Reed-Solomon codes.

We now study the fail cases of the global decoding algorithm. Let Liftm(RSq[q, d])
be a lifted RS code. For an erased position s ∈ Fmq to be unrecoverable, it is
necessary that each line going through s possesses at least d erasures. However,
it is not sufficient. Indeed, suppose that there exists a line ` going through s
with exactly d erasures. If there exists an erasure position s′ on the line ` and a
line `′ going through s′ with at most d − 1 erasures then the symbol erased at
position s′ can be recovered using the RSq[q, d] decoder. Since s′ lies on `, this
means that ` now contains only d−1 erasures and they all can be corrected, the
one at s included.

In order to capture a set of unrecoverable erasures for our global decoding
algorithm, we introduce the following property:

Definition 5. Let Fq be a finite field and m, d be positive integers. We say that
a set S ⊆ Fmq is a d-cover set if S verifies the following property:

∀s ∈ S,∀ line ` ⊆ Fmq going through s, |S ∩ `| ≥ d

Or equivalently, for all line ` ⊆ Fmq , |S ∩ `| = 0 or |S ∩ `| ≥ d

Since the d-cover subsets of Fmq represent the unrecoverable erasure patterns,
we want to find an audit procedure that can detect their existence with high
probability and low communication complexity. We propose the following audit:

1. The client randomly chooses a line ` ⊆ Fmq .
2. The client retrieves the restriction of the outsourced file to the chosen line.
3. If it contains d or more erasures, reject, if not, accept.

The next step is to determine the probability that this audit detects a set
of unrecoverable erasures if one exists. Let S ⊆ Fmq be a non-empty d-cover set.
Then there exists s ∈ S and for each line ` going through s, |`∩S| ≥ d. We also
know that for any line ` ⊆ Fmq , either |` ∩ S| = 0 or |` ∩ S| ≥ d.

Recall that L := (qm−1)/(q−1) is the number of lines going through a point
in Fmq and that qm−1L is the total number of lines in Fmq . Let ` be the randomly
chosen line for the audit and s be an element of S. We have:

Pr[|` ∩ S| 6= 0] =
L

qm−1L
+

(
1− 1

qm−1

)
· Pr[|` ∩ S| 6= 0 | s /∈ `]

Let E be the event {|` ∩ S| 6= 0 | s /∈ `}. For each point x ∈ `, there is a
unique line (xs) going through x and s. Since s ∈ S, this line contains at least d
erased points in S, one being s. Since lines in Fmq have q points, the probability
that x ∈ S is at least (d− 1)/(q − 1). Moreover, if at least q − d+ 1 points of `
do not belong to S we immediately know that ` ∩ S = ∅ since, by definition of
S, either |`∩S| = 0 or |`∩S| ≥ d. Thus, Pr[E] ≥ 1− (1− (d− 1)/(q− 1))q−d+1.

Therefore, Pr[|` ∩ S| 6= 0] ≥ 1−
(

1− 1

qm−1

)(
1− d− 1

q − 1

)q−d+1

.

The calculation we just made is essential. Indeed, since we supposed S 6= ∅,
the event ¬{|`∩S| 6= 0} can be interpreted as ‘on probed line `, the audit accepts
although the file is not retrievable‘. In the CC security model for PoR, this is
exactly the advantage of the distinguisher, i.e. the security of the scheme. In
other words, we just upper-bounded the security of our PoR scheme.

We now formally prove the security of our PoR in the CC framework. We
quickly describe the converters lift rs porinit and lift rs poraudit. Both use the en-
coder and global decoder for lifted RS codes. On input (read, i), both converters
retrieve the whole memory using read requests, then they call the global decoder
on the obtained word (corrupted values ε are replaced with erasures) and return
the i-th symbol of the output if decoding succeeds. On input (write, i, x), both
converters retrieve the whole memory with read requests and decode it like be-
fore. If decoding succeeds, they replace the i-th symbol by x, encode the whole
word and store it on the SMR using write requests.

On input audit, lift rs poraudit chooses a random line ` ⊆ Fmq and retrieves
the restriction of the outsourced file to ` through read requests. If the restriction
contains d or more erasures, it returns reject. If not, it returns accept.

Theorem 1. Let d,m, ` ∈ N, Fq be a finite field. The protocol lift rs por :=
(lift rs porinit, lift rs poraudit) for the lifted RS code Liftm(RSq[q, d]) of dimension

` constructs the auditable and authentic SMR, say aSMRaudit
Σ,` , from aSMRΣ,qm ,

with respect to the simulator simaudit. More precisely, for all distinguishers D
making at most r audits, we have

∆D(lift rs porP aSMRΣ,qm , sim
S
audit aSMRaudit

Σ,`) ≤ r·
(

1− 1

qm−1

)(
1− d− 1

q − 1

)q−d+1

Proof. Since our scheme is clearly correct (i.e. the client can always retrieve its
file when there is no adversary), we alleviate notations and proofs by omitting
correctness. We prove security by comparing the behaviors of the audit of the real
system (the aSMR with the protocol) with that of the ideal one (the aSMRaudit

with the simulator). We describe the simulator simauth. It maintains a simulated
memory, emulating the real world memory, using the history of the ideal resource.
On (delete, i), the simulator replaces the i-th entry of its simulated memory
by ε. On (restore, i), the simulator restores the content of the i-th entry of its
simulated memory to the last value written there. The simulator maintains a
simulated history using the ideal history of the aSMRaudit.

If, after a delete request, the set of corrupted locations of the simulated
memory contains a d-cover subset of Fmq , the simulator deletes the whole ideal

memory by sending delete requests to aSMRaudit. Similarly, if after a restore

request, the set of corrupted locations of the simulated memory does not contain
a d-cover subset of Fmq , the simulator restores the whole ideal memory by sending

restore requests to aSMRaudit.
On an audit request, the simulator chooses a random line ` ⊆ Fmq , adds the

entries (read, i) for i ∈ ` to its simulated history. Then, if the restriction of its
simulated memory to ` contains strictly less than d corrupted cells, the simulator
sends allow to aSMRaudit. Else, it instructs the aSMRaudit to output reject.

Upon auditReq at interface SH : Recall that d-cover sets are the sets of
unrecoverable erasures for our global decoder of lifted RS codes. Suppose that a
subset of the corrupted cells forms a d-cover set. In order to run the audit, the
converter chooses a random line ` ⊆ Fmq , retrieves the restriction of the memory
to this line through read requests and adds the corresponding entries to its
simulated history. We showed, see equation 5.2, that the probability that this
restriction contains strictly less than d erasures, i.e., that the audit is successful,
is less than (1− 1/qm−1)(1− (d− 1)/(q − 1))q−d+1.

The simulation is perfect unless the following BAD event occurs: having sim-
ulated a real audit, the simulator answers allow (audit should succeed) whereas
a d-cover subset of corrupted cells exists. In that case, the simulator has chosen a
restriction of the memory to a line ` that contains strictly less than d corrupted
cells, and has written the corresponding read requests to its simulated history.
Note that the distinguisher has access to the simulated history. Then, the simu-
lator outputs allow to the ideal resource, that runs the ideal audit. Since there
exists a d-cover set of corrupted memory cells, the file is unretrievable so the ideal
audit fails and the client receives reject. The distinguisher thus observes the
following incoherence: reject is output while the (simulated) history contains
the trace of a valid audit. The adversary knows that this is the ideal system.

To sum up, the only observable difference from a distinguisher point of view
lies in the audit procedure. The overall distinguishing probability is thus the one
of distinguishing a real audit from a simulated one. As we saw, if the distinguisher
runs r audits, this probability is less than r·(1−1/qm−1)·(1−(d−1)/(q−1))q−d+1,
yielding the aforementioned result. ut

5.3 The graph code PoR scheme

We give another instantiation of our framework using the graph codes of Tanner
[16]. We briefly recall how these codes are constructed.

Let G = (V,E) be a q-regular graph on n vertices. For a vertex v ∈ V , let
Γ (v) be the set of vertices adjacent to v. Let F be a finite field and let C0 ⊆ Fq be
a linear code, called the inner code. Fix an arbitrary order on the edges incident
to each vertex of G and let Γi(v) be the i-th neighbor of v. A Tanner code is
defined as the set of all labelings of the edges of G that respect the inner code
C0. Formally,

Definition 6 (Tanner code). Let G = (V,E) be a q-regular graph on n vertices
and let C0 ⊆ Fq be a linear code. The Tanner code C(G, C0) ⊆ FE is a linear code
of length nq/2, so that for c ∈ FE, c ∈ C(G, C0) if and only if, for all v ∈ V ,
(c(v,Γ1(v)), . . . , c(v,Γq(v))) ∈ C0.

One can easily check, by counting constraints, that if C0 has rate R, then
C(G, C0) has rate at least 2R−1. These codes possess some sort of local correction.
Indeed, to correct an edge e incident to a vertex v, one can retrieve the vector
(c(v,Γ1(v)), . . . , c(v,Γq(v))) of labels of edges incident to v and correct it using the
decoder of C0.

In the following, let d be the minimum distance of the inner code. Again,
using the composability of CC, we only have to deal with potential erasures.
Following our framework of sec. 3, we start by sketching our global decoder. In
the following, we say that an edge is erased when the label of that edge is erased.
Similarly, we say that we correct an edge if we correct the label of that edge.

Assume that we want to correct an erasure on an edge e incident to a vertex
v. If v is incident to less than d−1 erased edges, we can use the erasure decoding
of C0 to correct all the edges incident to v, e included. Otherwise, v is incident
to k > d − 1 erased edges. Pick an erased edge incident to v. This edge is also
incident to a vertex v′ 6= v. If v′ is incident to less than d − 1 erased edges, we
can correct them all and v is now incident to k− 1 erased edges. If k− 1 ≤ d− 1
we can correct the edge e. Else, we iterate the process on v and its neighbors.

Now, we have to characterize the configurations of erased edges that are
unrecoverable for our decoding algorithm. We claim that these unrecoverable
configurations correspond to subgraphs of G of minimum degree d. Indeed, these
are the graph analogues of the d-cover sets for lifted RS codes. We prove our
claim: suppose that the subgraph formed by the unrecoverable edges possesses a
vertex v incident to less than d− 1 unrecoverable edges. Then, by iterating the
local decoding algorithm, we can recover the other edges incident to v so that
only these unrecoverable edges remain erased. Then, since there are less than
d − 1 erased edges incident to v and since the minimum distance of the inner
code is d, we can correct all the edges incident to v using the decoder of the
inner code. This is in contradiction with these edges being unrecoverable.

Finally, the audit consists in randomly choosing a vertex v and retrieving
the vector w := (c(v,Γ1(v)), . . . , c(v,Γq(v))) of labeling of edges incident to v. If w
contains d or more erasures, the audit rejects. Else, it accepts.

The security of the audit depends on the graph G and the minimum distance
d of the inner code C0. The bigger the minimum subgraphs of G with minimum
degree d are, the better the security of the PoR will be. Indeed, let s be the
minimum size (number of vertices) of a subgraph of G with minimum degree d.
For a configuration of unrecoverable erasures to exist, we thus need at least s
vertices of G with at least d erased edges. Recall that our audit chooses a random
vertex of G and accepts if and only if this vertex is incident to less than d − 1
erased edges. Thus, the probability that our audit accepts when there exists an
unrecoverable set of erased edges is less than 1 − s/|V |. In our framework, this
is exactly the advantage of the adversary in breaking the security of our PoR.
A similar proof ans simulator to the ones of th. 1 yield the following theorem:

Theorem 2. Let G = (V,E) be a q-regular graph with |V | = n and let C0 ⊆ Fq
be a linear code with minimum distance d and rate R. Let s be the minimum size
(number of vertices) of a subgraph of G with minimum degree d. The protocol
graph por := (graph porinit, graph poraudit) for a Tanner code C(G, C0) of length
nq/2 and rate at least 2R− 1 that:

1. Starts by encoding the file and uploads it to the server.
2. On an audit request, chooses a random vertex v ∈ V and accepts if and only

if v is incident to less than d− 1 erased edges.

3. Extracts the file using the algorithm sketched above.

constructs the auditable and authentic SMR, say aSMRaudit
F,(2R−1)nq/2, from

aSMRF,nq/2, with respect to the simulator simaudit. More precisely, for all dis-
tinguishers D making at most r audits, we have

∆D(graph porP aSMRF,nq/2, sim
S
audit aSMRaudit

F,(2R−1)nq/2) ≤ r ·
(

1− s

n

)
6 Parameters

The impact of the choice of the lifted RS code on the parameters of our lifted RS
PoR scheme are highlighted in fig. 7. The grey line gives a choice of parameters
with a storage overhead of 13.9% and total communication of 0.01% of the file
size. Increasing the length q of the RS base code decreases the storage overhead
and increasing the lifting parameter m increases the size of the file stored. Exact
formulae for the parameters of our scheme is given in fig. 6.

Let us compare our parameters with the ones of [11]. First, in both schemes,
the client’s file is encoded using a lifted RS code and the audit consists in prob-
ing the restriction of this codeword to a random affine line. In our case, we
authenticate the data using our MAC based authentication protocol (see sec. 4)
whereas [11] binds data to a specific location by using an encryption scheme.
Let κ be the computational security parameter of both schemes and Σ be the
alphabet of the code. Our scheme stores a code symbol along with a MAC tag,
that is κ+ log |Σ| bits, in each memory location of the server whereas [11] stores
a ciphertext, that is κ bits, in each memory location. Since log |Σ| � κ (we have
κ = 128 and |Σ| = q in fig. 7), our scheme and the one of [11] have very close
storage overhead and communication complexity. In [11], the minimum distance
of the code d is chosen to be equal to 2. Using our security analysis of th. 1,
we show that the [11] scheme has only 1.44 bits of statistical security, when
d = 2, whereas state-of-the-art schemes expect at least 40. See fig. 7 for our
recommended parameters.

A major benefit of our scheme is that our audit produces less “false positives”
than the one of [11]. For PoRs, a false positive occurs when an audit rejects while
the file is still retrievable. In other words, the client thinks that he lost his file, but
it is still retrievable in full. The number of false positive audits has no influence
on the security of the PoR but, in practice, it is a situation that we absolutely
wish to avoid. The audit of [11] rejects if the restriction of the file to an affine
line does not belong to the RS base code. In other words, if there is at least one
corruption on the line probed by the audit, it deems the file unretrievable. If the
adversary introduces at least one erasure on every line of the space, the audit
would always reject independently of the correction capability (i.e. the minimum
distance) of the code. Using our framework and our authentication protocol, we
are able to fix this problem. Indeed, our audit deems the file unretrievable only
if the probed line contains at least d erasures, where d is the minimum distance
of the RS base code. This means that we drastically decrease the number of false
positive audits, making our scheme much more reliable and usable in practice.

For example, suppose that the outsourced file is encoded using a lifted RS
code over F2

q with minimum distance d ≥ 3. Let `1, `2 be two intersecting lines

in F2
q. Suppose that an adversary erases all the file’s symbols at the locations

given by `1 and `2 and no other symbols. Of course, the file is still retrievable
since the local decoder can correct all the erasures of `1 \ `2 by querying all the
lines parallel to `2 (these lines contain only one erasure and d ≥ 3). Then, the
local decoder can correct all the erasures of `2 by querying any line intersecting
`2. Unfortunately, in this situation, the audit of [11] rejects with probability 1.
Indeed, their audit chooses a random line ` in F2

q and rejects if ` contains at
least one erasure. This is always the case here since, either ` intersects `1 or, `
is parallel to `1 and is thus intersecting `2. This is not the case with our audit.
Indeed, since only two lines of F2

q have d or more erasures, our audit rejects with
probability 2/(q2 + q) since there are q2 + q lines in F2

q.

Future work includes evaluating the efficiency of our Tanner code PoRs ac-
cording to different choices of inner codes and graphs as well as instantiating
our framework with other families of high-rate locally correctable codes.

Exact value Asymptotics

C. storage overhead κ O(1)
S. storage overhead (1

R
− 1)|F |+ qmκ O(|F |)

C. → S. 2m log q O(|F |)
S. → C. q(κ+ log q) O(|F |1/m)

Fig. 6. The exact parameters of our scheme. |F | denotes the file size in bits, κ the
security parameter of the MAC, q the field size and m ≥ 2 the lifting parameter. We
have Rqm log q = |F |.

PoR param. Results

m q d
|F | 1

R
− 1

comm. C.→ S. comm. S.→ C.
comm./|F | Statistical

(bits) (bits) (bits) Security

2

256

32

255003 1.056 32 2048 0.0081 2−42

512 1446533 0.631 36 4608 0.0032 2−43

1024 7441987 0.409 40 10240 0.0013 2−44

2048 36072982 0.279 44 22528 0.0006 2−44

4096 168474135 0.195 48 49152 0.0003 2−44

8192 765948403 0.139 52 106496 0.0001 2−44

1024

64

6389859 0.641 40 10240 0.0016 2−88

2048 32605896 0.415 44 22528 0.0007 2−89

4096 157041023 0.282 48 49152 0.0003 2−90

8192 728834780 0.197 52 106496 0.0001 2−90

Fig. 7. Different choices of lifted Reed-Solomon codes for our PoR scheme.

References

1. Badertscher, C., Maurer, U.: Composable and robust outsourced storage. In: Topics
in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference
2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings. pp. 354–373 (2018).
https://doi.org/10.1007/978-3-319-76953-0 19

2. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: Theory and im-
plementation. In: Proceedings of the 2009 ACM Workshop on Cloud Com-

https://doi.org/10.1007/978-3-319-76953-0_19

puting Security. pp. 43–54. CCSW ’09, ACM, New York, NY, USA (2009).
https://doi.org/10.1145/1655008.1655015

3. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science. p. nil (- 2001), https://doi.org/10.1109/sfcs.2001.959888

4. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Proceedings of the 6th Theory of Cryptography Conference on Theory of
Cryptography. pp. 109–127. TCC ’09, Springer-Verlag, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 8

5. Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting.
In: Proceedings of the 4th Conference on Innovations in Theoretical Com-
puter Science. pp. 529–540. ITCS ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2422436.2422494

6. Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) Automata, Lan-
guages, and Programming. pp. 540–551. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2013)

7. Jost, D., Maurer, U.: Overcoming Impossibility Results in Composable Security
Using Interval-Wise Guarantees, pp. 33–62. Advances in Cryptology - CRYPTO
2020, Springer International Publishing (2020)

8. Juels, A., Kaliski, Jr., B.S.: Pors: Proofs of retrievability for large files. In:
Proceedings of the 14th ACM Conference on Computer and Communica-
tions Security. pp. 584–597. CCS ’07, ACM, New York, NY, USA (2007).
https://doi.org/10.1145/1315245.1315317

9. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: Proceedings of the Thirty-second Annual ACM Symposium
on Theory of Computing. pp. 80–86. STOC ’00, ACM, New York, NY, USA (2000).
https://doi.org/10.1145/335305.335315

10. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time de-
coding. In: Proceedings of the Forty-third Annual ACM Symposium on The-
ory of Computing. pp. 167–176. STOC ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1993636.1993660

11. Lavauzelle, J., Levy-Dit-Vehel, F.: New proofs of retrievability using locally de-
codable codes. In: International Symposium on Information Theory ISIT 2016. pp.
1809 – 1813. Barcelona, Spain (2016). https://doi.org/10.1109/ISIT.2016.7541611

12. Maurer, U.: Constructive Cryptography - A New Paradigm for Security Defini-
tions and Proofs, pp. 33–56. Theory of Security and Applications, Springer Berlin
Heidelberg (2012)

13. Maurer, U., Renner, R.: Abstract cryptography. In: In Innovations In Computer
Science. Tsinghua University Press (2011)

14. Paterson, M., Stinson, D., Upadhyay, J.: A coding theory foundation for
the analysis of general unconditionally secure proof-of-retrievability schemes
for cloud storage. Journal of Mathematical Cryptology 7(3), 183–216 (2013).
https://doi.org/doi:10.1515/jmc-2013-5002

15. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
Advances in Cryptology - ASIACRYPT 2008. pp. 90–107. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2008)

16. Tanner, R.: A recursive approach to low complexity codes.
IEEE Transactions on Information Theory 27(5), 533–547 (1981).
https://doi.org/10.1109/TIT.1981.1056404

https://doi.org/10.1145/1655008.1655015
https://doi.org/10.1109/sfcs.2001.959888
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/1993636.1993660
https://doi.org/10.1109/ISIT.2016.7541611
https://doi.org/doi:10.1515/jmc-2013-5002
https://doi.org/10.1109/TIT.1981.1056404

	A Framework for the Design of Secure and Efficient Proofs of Retrievability

