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Abstract. Accurate location of access roads is important for forest man-
agement, in particular in mountain areas. In this paper, we are interested
in their detection from LiDAR data using deep learning approaches. For
this, we use images computed from an interpolated surface, called digi-
tal terrain model (DTM), of the 3D point cloud. In order to train and
validate the neural network models, two ground truth datasets associ-
ated to DTM images are considered: (1) manual digitization of the road
centerlines and (2) automatic extraction followed by supervised comple-
tion using two softwares based on discrete geometry tools. The trained
network models are then evaluated over a test dataset using standard
measures such as precision, recall, F-measure and prediction time.
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1 Introduction

Forest road location and characterization are important information used for
various purposes in forest management and such activities as wood harvesting.
Their maintenance is also of great concern for planning team interventions on
forest fires, in particular in mountain areas where accessibility may be quite dif-
ficult. In this context, airborne laser scanning, also called LiDAR (Light Detec-
tion And Ranging), is of great help to survey forested mountain areas. It is a 3D
acquisition technique based on the emission of a laser beam swept over the mea-
sured scene and on the detection of reflected signal from the surface. In forested
terrains, the received signal is composed of multiple echoes corresponding to the
successive hit obstacles, from the forest canopy, down to lower vegetation levels
and finally to the ground itself. From lower cloud points, classified as ground
points, an interpolated surface, called digital terrain model (DTM), is computed
using optimization techniques. An example of DTM image is given in Fig. 1 a.

Numerous studies have been proposed in the literature for road extraction
from LiDAR data. Most of them deal with urban and peri-urban areas, for
instance [1,12]. They are not well suited to rural context. Large standardized
logging roads (see Fig. 1 b) are easily detected, but the sole topographic in-
formation is not sufficient to distinguish the pathway from bare earth borders
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Fig. 1: (a) A shaded digital terrain model (DTM) image of size 4000×4000 pixels and
0.25 m2/pixel resolution, that corresponds to a 4 km2 area. (b–e) Different forest road
types in mountainous context: (b) logging road with large vegetated shoulders at the
same height, (c) shrinked road crossing natural screes, (d) eroded hollow road, and (e)
unused road left to growing vegetation.

at the same level, that are used for log stocking. They are generally well docu-
mented and not of major interest in our study. Smaller roads are more difficult to
process as they show quite irregular surfaces and strong width variations along
their layout. This may come from local terrain constraints (see Fig. 1 c), natural
erosion (see Fig. 1 d), irregular maintenance or even complete relinquishment
when they are not anymore used (see Fig. 1 e). Some attempts have been done
to use the DTM to detect main roads on large-scale LiDAR [10,16,22,24]. Fewer
works suggested to process raw data in complement to DTM analysis [1,2,12]. In
particular, signal intensity was used to recognize road surface response. However,
these approaches depend strongly on local terrain features, and parameters are
difficult to set in practice. Raw altimetric information could also help to better
discriminate roads, but its processing is generally considered as complicated.

Recently, a new framework, based on efficient discrete geometry and mathe-
matical morphology tools, has been proposed in [8] for extracting automatically
forest roads from LiDAR data. It is composed of two steps. First, the DTM
image is analyzed to find relevant locations for detecting roads, then for each of
these selected seeds, road sections are extracted using only raw LiDAR ground
points. By processing ground points, the detection is more aware of the hetero-
geneous point distribution in the raw data. This helps to overcome the limits
of DTM interpolation. The extraction framework was successfully tested on a
large-scale LiDAR dataset. However, as mentioned in [8], it may not provide a
good detection for complex road sections such as tight curves and intersections.
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Convolutional neural networks (CNNs) based on deep learning technology
are widely used in many different applications of image processing and anal-
ysis including semantic image segmentation. Due to their learning capabilities
from training data, deep learning methods have performed remarkably well on
many image analysis tasks and they lead to very successful results compared
with traditional methods. Recently, they have been applied in road extraction
from airborne LiDAR data [16,22]. In [22], a pixel-to-pixel architecture based
on fully convolutional neural network is used to perform automatic mapping of
small roads. This network provides good results for large-scale data. However,
it may be bad at making local adaptions as mentioned by the authors. Higher
performance could be achieved, but at the price of larger complexity and compu-
tational cost. In [16], a Dense Dilated Convolutions Merging Network (DDCM-
Net) is proposed for multi-class segmentation of forest roads in the purpose of
mapping road networks. The proposed architecture relies on multiple dilated
convolutions merged with various dilation rates. It allows the network to learn
more robust feature representation with densely linked dilated convolutions and
to recognize effectively multi-scale and complex-shaped roads. In [17], this work
was extended to a more general segmentation task using grouped convolutions
and strided convolutions, in order to enhance the discrimination of small objects
for a complete land cover classification task.

Inspired by the works [7,8,16], the current study aims at developing a fast,
accurate and operationally simple deep-learning-based method, which consid-
ers information obtained from shaded DTM maps to detect the forest road in
mountainous areas. More precisely, we use two softwares based on discrete ge-
ometry tools: ILSD (Interactive Linear Structure Detector) [7] and AMREL
(Automatic Mountain Road Extraction from LiDAR data) [8] to generate the
training dataset of forest roads from DTM images and LiDAR data. These data
are fed to a convolutional neural network. In particular, we consider the bi-
nary branch of DDCM-Net [16] designed for a road segmentation task, and
here adapted to the detection of narrow forest roads. Actually, it is quite dif-
ficult to segmentate these changing objects on a geometrical basis, in partic-
ular to provide reliable ground truths. The trained network models are then
evaluated over a test dataset using the standard measure (precision, recall,
F-measure). Another dataset, with manual annotations of forest roads repre-
sented by their centerline, is used to evaluate the improvement and the effi-
ciency of the neural network in comparison to AMREL results [8] for forest
road detection. The implementation of the neural network architecture, the
trained models and execution procedure for road predictions are available at:
https://github.com/paulgeorges1998/Light-DDCM-Net.

The rest of the paper is organized as follows: Sec. 2 describes our problem of
forest road extraction and recalls the previous works related to this problem as
well as the DDCM-Net architecture used in this work. Sec. 3 explains the experi-
mental setup: dataset and network training, and Sec. 4 presents the experimental
results. Finally, Sec. 5 gives a conclusion and draws some perspectives.

https://github.com/paulgeorges1998/Light-DDCM-Net
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Fig. 2: Detail of the ground point density map; the color corresponds to the number d
of points per pixel (1 m2).

2 Method

2.1 Problem statement

The present work addresses the problem of automatic extraction of forest roads
from the grayscale images of digital terrain model (DTM) associated to LiDAR
ground point cloud. The DTM is encoded as a normal vector map obtained
by derivation of the original height map. To visualize a DTM, hill-shading is a
widespread technique based on controlable directional light sources. For detec-
tion purpose, we rather use slope-shading which can be seen as a lighting by a
zenital source obtained by the normal vector z-component. As pointed out in
[24], slope-shading ensures a good contrast between low gradient road surface
and steep adjacent road cuts. In mountainous context, the interest objects –
forest roads – correspond to mostly flat zones compared to the surroundings and
this distinguishes them from the background. The slope-shaded DTM is a good
representation allowing to enhance the flat zones. This is very beneficial for a
learning process with neural networks to detect the forest roads.

Contrarily to road detection in urban and peri-urban areas using LiDAR
data in which road characteristics are quite regular and well-contrasted, the
case of forest roads is more challenging because of their wide range of shape
and geometric features, and moreover, the large variations of the ground point
density. Actually, dense vegetation impedes the laser beam from reaching the
soil, and thus produces a heterogeneous distribution of the ground points as
illustrated in Fig. 2. Such local lack of points makes the road detection task
more difficult. Furthermore, sparse data may cause large approximations in the
delivered DTM.

The purpose of the present study is to investigate the performance of a sim-
ple deep-learning-based algorithm combined with available LiDAR and image
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Fig. 3: A forest road extraction: a) altimetric profile collected at start scan (matched
plateau enclosed, inaccurate right border location because of point lack); b) altimetric
profile collected at scan 20 (tilted plateau); c) detected road over the DTM view (one
scan on ten is displayed, manual seed in green, next scans in blue).

processing tools to automatically detect forest roads in mountainous areas using
shaded DTM images. More specifically, this problem can be seen as a binary
segmentation with DTM images as input, and a binary image as output with
white pixels indicating forest roads and black pixels for background, i.e., not
forest road. To that end, we selected a network architecture based on dilated
convolutions at different rates [26]. Considering the complexity of goal objects,
such convolutions will allow the network to have very large receptive fields and to
learn scale-invariant features, and therefore recognize effectively multi-scale and
complex-shaped roads with similar textures and intensities from input images.

2.2 Previous approach to forest road extraction

This work follows a former project on linear structure extraction, that resulted
in two open-source softwares: ILSD [6] and AMREL [5].

ILSD allows the interactive extraction of linear structures, such as ridges,
holloways or forest roads, from LiDAR raw data, i.e., the set of 3D points clas-
sified as “ground” [4]. It relies on a scanline approach, where the user draws a
stroke across a visible structure in the DTM view. Ground points lying in this
manual seed are collected to get an altimetric profile, matched to a model of the
structure cross profile (see Fig. 3 a). In the case of forest roads, the selected cross
profile is approximated by a nearly horizontal plateau bounded by slope sides.
This model fits well to mountainous context. In case of success, the structure is
extended on both sides of the manual seed using adjacent scans and collected
profiles (see Fig. 3 b). Spatial consistency is checked between successive alti-
metric profiles. All the processing is based on discrete geometry tools: blurred
segments [3] or adaptive directional scans [9]. A several hundred meters long
section can be extracted in a fraction of a second (see Fig. 3 c). Details of the
extraction framework are provided in [7].
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AMREL is focused on the automatic extraction of forest roads from LiDAR
data [8]. Here, input seeds are automatically selected by processing slope-shaded
views of the DTM. First a mathematical morphology operator, RORPO [19],
is applied to enhance elongated shapes. Then straight edges are detected using
FBSD [9], and seeds are arranged across the longest ones at regular intervals.
Finally, each seed is processed by the scanline approach to obtain a collection of
road sections. Performance evaluations showed a recall measure (ratio of correct
detection area on whole detection area) of 70 ± 3 %, and a precision measure (ra-
tio of correct detection area on ground truth area) of 81 ± 7 %. False detections
most often occur at places with similar cross profiles to roads, for instance tal-
wegs or cultivation terraces, and also in flat areas where the road section model
is not well adapted. Undetected road sections correspond (i) to tight changes in
direction where more seeds are needed to cope with the scanline approach direc-
tionality, (ii) to roads with large slope or irregular surface exceeding parameter
thresholds, (iii) to areas with low point density.

Both tools can reliably be used to provide road ground truth maps. Their
main drawback is the large amount of parameters to set. Most are directly con-
nected to application needs, such as high or low bounds of road width, slope
or tilt thresholds, . . . But others take more time to set as they rather control
internal details of the detection process.

2.3 Light DDCM-Net architecture

In [16], a dense dilated convolutions merging network (DDCM-Net) and a joint-
task learning structure with an iterative-random-weighting strategy for the joint-
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loss are proposed for a multi-class segmentation of forest roads from 2-band
LiDAR images. In the proposed architecture, the DDCM-Net uses dilated con-
volutions [26] of stride 2 to learn features at varying dilation rates and merging
by a concatenation of feature map at each layer with the feature maps from
all previous layers. Such densely linked dilated convolutions and the fusion of
feature maps is called a DDCM module and illustrated in Fig. 4. The DDCM
modules allow the network to have very large receptive fields with just a few
layers and to capture scale-invariant features of the detected objects.

The DDCM-Net architecture is composed of multiple DDCM modules with
progressively increasing dilation rates to learn and to capture scale-invariant fea-
tures of the detected objects. In [16], the DDCM-Net is integrated in a joint-task
learning strategy, called an end-to-end pipeline of the Joint-Task DDCM-Net, to
perform road segmentation and mapping tasks. In particular, the proposed ar-
chitecture is composed of two parts: an encoder of low level features encodes
multi-scale contextual information from the initial 2-band LiDAR images by a
DDCM module with 6 different dilation rates (1, 2, 3, 5, 7, 9), and a decoder of
high level features decodes highly abstract representations learned from the deep
residual network (ResNet) pre-trained on ImageNet [21] by 2 DDCM modules,
one with rates 1, 2, 3 and 4, the other with rate 1. The low-level and high-level
feature maps by DDCMs are then fused together to infer pixel-wise full-class
probabilities. The network outputs a multi-class segmentation which predicts
what types of roads are in the input and a binary segmentation which locates all
roads. More details of the Joint-Task DDCM-Net architecture are given in [16].

In this work, we are interested in the binary segmentation of forest road lo-
cation from DTM images. For this purpose, we consider only the binary branch
of the Joint-Task DDCM-Net in [16], called L-DDCM-Net (for Light DDCM-
Net). The L-DDCM-Net architecture used in this work is illustrated in Fig. 5 in
which we add a convolution of two 3 × 3 kernels and a concatenation with the
input image, to create an image of 3 channels, followed by a batch normalization
(BN) and a parametric rectified linear unit (PReLU) on top of the pre-trained
ResNet [21]. In compatibility to Tensorflow, we remove the bilinear up-sampling
in DDCM modules and use the dilated convolution of stride 1 with same padding
instead without noticeable performance loss. For the loss function, we consider
the standard binary cross entropy (BCE) loss [11]. More details about the train-
ing of L-DDCM-Net are given in Sec. 3.2.

3 Experimental setup

3.1 Dataset

To our knowledge, no LiDAR test set of forest roads with ground truth is publicly
available. This is certainly due to a large variability between different acquisition
contexts and terrain configurations and maybe also to the huge data storage
required. Many high resolution LiDAR campaigns are designed for archaeological
prospections to reveal small topological details. In regards to sensitive aspects
of cultural heritage material, access to this data is most often restricted. This
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Fig. 5: L-DDCM-Net architecture used for our forest road extraction from LiDAR data.
It is composed of a standard convolution, a concatenation with the input data followed
by BN and PReLU on top of the ResNet50 pre-trained layer, a DDCM module with
rates 1, 2, 3 and 4, a bilinear up-sampling of factor 4, an other DDCM module of rate
1, then a bilinear up-sampling, an 1× 1 convolution and a final bilinear up-sampling.

is the case of the LiDAR acquisition used for this study [15]. Nevertheless, this
set is large enough to test our L-DDCM-Net architecture. It covers the Fossard
mountain area in upper Mosel valley in Eastern France, where four sectors of 4
km2 each have been selected. Two of them include arranged areas for walking
with a large variety of tracks (Saint-Mont and Cuveaux). The other ones (Gris-
Mouton and Grand-Rupt) are mostly wood exploitation sectors, the last one
featuring some large logging roads. Each DTM image resolution is 4000×4000
pixels (0.5 m pixel size). From these four sectors, two ground truth datasets
associated to DTM images are considered:

– Set 1 is a manual annotation of each road centerline on the DTM. This
set serves as a basis to compare with AMREL results.

– Set 2 is a semi-automatic segmentation using AMREL and ILSD sofwares.
This set is used to train our network.

About the set 1, for each sector, most salient roads were carefully delineated
in DTM views. Only the centerline was manually extracted. The achieved poly-
lines constitute the road ground truth [8]. Due to the difficulty to characterize
forest roads and to the long and tedious task of manual annotation, it is impor-
tant to note that this ground truth is not perfect: several road portions have
probably been omitted or wrongly annotated. Besides, the representation with
centerlines does not provide us the width of a road.

For the set 2, we use the existing tools ILSD and AMREL to generate the
forest road ground truth semi-automatically. It allows us to create the data in
a simpler, faster and more efficient way. To that end, AMREL is first used to
automatically extract road sections. The obtained map is then cleaned to remove
obviously bad detections using some image processing tools. Finally, the ground
truth map is completed in supervised mode using ILSD software. In particular,
we can obtain the road width thanks to the detector of AMREL and ILSD.
Contrarily to the set 1, the segmented roads in this dataset are thick objects.
This enables the network to learn more discriminant features and receptive fields
about the detected objects comparing to the centerline representation. Examples
of data from both datasets are given in Fig. 6.
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Fig. 6: Sample from training data. Left: shaded DTM image. Middle: Ground truth
from set 1 of manual segmentation with centerlines of roads. Right: Ground truth from
set 2 of semi-automatic segmentation of forest roads using AMREL and ILSD.

3.2 Network training

We implemented the L-DDCM-Net described in Sec. 2.3 in Python using Ten-
sorflow [23] and Keras [14] libraries which allow to parallelize and optimize many
operations via the use of GPU.

For each sector, the DTM image and its corresponding ground truth are split
into patches of 256× 256 pixels without overlap in order to avoid correlation in
both training and validation data during the training process. After the splitting
process, we obtain 1024 patches in total, about 256 for each sector. Then, data
augmentation operations are applied to the resulting patches to enlarge further
the data: random rotation with angle in range 0◦ to 360◦, horizontal flip with
probability 0.5. Note that this data augmentation is applied only on the training
images and performed on the fly, i.e., during the training process.

We perform a k-fold cross-validation, with k = 4, to estimate the performance
of the L-DDCM-Net on the available data. It consists in training k models by
varying the data used for training and testing in such way that the model is
tested once on k different folds. In other words, a sector is evaluated on a model
trained with the other three sectors. Four models are trained on groups of patches
with a ratio of 80% to the training set and 20% to the validation set.

The whole training process was done on GPU (NVIDIA GeForce RTX 3060
Laptop GPU graphics card with 16Go RAM). We used the Adam optimization
algorithm with weight decay (AdamW) [18] with the two parameters β1 = 0.9
and β2 = 0.990 (default values in Tensorflow), and set the weight decay at
0.00005 and the learning rate at 0.00012.

We trained our network for 80 epochs, each epoch being comprised of 76
steps with 8 images per batch. Several values have been tested, and we come out
with those values for the smallest BCE loss function on the validation. It should
be mentioned that our training is quite fast. It takes about 15 minutes the whole
process, and the interference time is about 5 s for each 4 km2-wide sector.

From the predicted probability maps, a threshold of 0.5 is applied to retrieve
a binary image in which the white pixels correspond to forest roads and black
otherwise. This hyper-parameter can be let to user control according to task
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(a) Input (b) Predicted map (c) Binary output (t=0.5)
Fig. 7: Example of output of the trained L-DDCM-Net on a part of Gris-Mouton sector.

requirements, as it sets a balance between detecting as many roads as possible
and reducing the rate of false detections. We can see in Fig. 7 an example of
output of the trained network.

4 Results and discussions

This section shows the experimental results of L-DCMM-Net for forest road
segmentation. Experiments are divided into two parts. Firstly, we compare the
performance of L-DCMM-Net with other CNN architectures: U-Net [20] and
convolutional block attention module (CBAM) [25] on the data of set 2. Secondly,
we evaluate the improving performance of L-DDCM-Net to forest road extraction
in comparison with the previous work of AMREL on the manual data of set 1.

U-Net [20] is a fully convolutional network. It is originally designed for bio-
medical image segmentation, and widely used in other fields. This architecture
is well-known for its performance when trained with very few images which is
the case of our forest road extraction.

Recently, in many CNN architectures, attention mechanism is usually added
in order to make CNNs learn and focus more on important information, rather
than learning non-useful background information. Among the different attention
modules, convolutional block attention module (CBAM) [25] is well-known for
its performance, light-weight and general module. It can be integrated into any
CNN architecture seamlessly with negligible overhead and is end-to-end trainable
along with the CNN. In order to check whether CBAM modules could help to
improve the segmentation results of forest road extraction, they are combined
with L-DDCM-Net in two different ways.

– L-DDCM+3-CBAM: a CBAM module is placed at the convolution output
of the ResNet block and of both DDCM blocks,

– L-DDCM+8-CBAM: five other CBAM modules are added at the level of
each DC module (four for the first DDCM block, one for the second block).
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Sector Method Time (s) R (%) P (%) F (%)

Saint-Mont
U-Net 7.28 79.40 81.56 80.47
L-DDCM-Net 5.13 78.47 82.04 80.21
L-DDCM-Net + 3-CBAM 5.52 80.98 79.99 80.48
L-DDCM-Net + 8-CBAM 5.89 75.87 82.97 79.26

Gris-Mouton
U-Net 7.49 76.82 98.33 86.25
L-DDCM-Net 4.86 79.74 95.37 86.85
L-DDCM-Net + 3-CBAM 5.29 77.19 97.69 86.24
L-DDCM-Net + 8-CBAM 5.79 77.18 97.55 86.18

Grand-Rupt
U-Net 7.30 76.32 87.89 81.70
L-DDCM-Net 4.83 78.87 88.77 83.53
L-DDCM-Net + 3-CBAM 5.26 73.61 91.56 81.61
L-DDCM-Net + 8-CBAM 5.71 72.05 92.20 80.89

Cuveaux
U-Net 7.50 84.58 86.50 85.53
L-DDCM-Net 5.08 83.73 89.00 86.28
L-DDCM-Net + 3-CBAM 5.45 82.91 89.39 86.03
L-DDCM-Net + 8-CBAM 5.65 86.01 87.55 86.77

Table 1: Comparison of different CNN architectures on data of set 2.

To evaluate the different architectures, we consider the same evaluation met-
rics as in [8]: recall R, precision P , F-measure F as the harmonic mean of R and
P . These metrics are given in Eq. 1.

R = D ∩GL

GL

, P = D ∩GW

D
, F = 2 ∗R ∗ P

R+ P
(1)

with D the set of pixels predicted as forest roads, GW the set of pixels corre-
sponding to a 20 pixels dilation of ground truth data in set 2, GL the set of pixels
corresponding to the centerlines of GW obtained by Zhang-Suen skeletonization
algorithm [27]. The dilated set GW is assumed to enclose the real road set and
to take into account possible inaccuracy in the detection method.

Tab. 1 summarizes the performance measures of the different architectures
on the four test sectors for cross validation. Overall the experiments, L-DDCM-
Net gives the fastest inference time. On average, it is about 33% faster than
U-Net. This is consistent to the lower complexity of L-DDCM-Net (10.4 × 106

trainable parameters) compared to U-Net (18.9 × 106). Adding CBAM blocks
to L-DDCM-Net slightly increases the inference time and the model complexity
(12.5 × 106 trainable parameters). Note that the training time is divided by 3
with L-DDCM-Net (' 15 minutes) compared to U-Net or L-DDCM-Net with
CBAM blocks (' 45 minutes).

Regarding the evaluation measures, U-Net and L-DDCM-Net show similar
results, with small variations depending on the test area. There is not a clear
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(a) U-net (b) L-DDCM-Net
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(d) L-DDCM-Net+8-CBAM
Fig. 8: Binary predicted maps obtained by different network architectures on Gris-
Mouton sector. The networks are trained and tested with data from set 2. Hard con-
figuration examples of Fig. 9 are located in green.

difference when adding CBAM blocks to L-DDCM-Net. On wood exploitation
sectors, Gris-Mouton and Grand-Rupt, achieved higher precision is balanced
with recall decrease. But this observation does not hold anymore on the two
other sectors, where both tested architectures for CBAM show contradictory
results. However, better tuning for hyper-parameters could possibly be found to
draw more benefits from attention modules for this task of forest road detection.

Fig. 8 gives an example of prediction maps. We can observe that these maps,
produced by the trained models, give a plausible forest road network. Some false
positives match well visible road-like objects, that were not selected as ground
truth because considered as short isolated sections or impracticable roads. Many
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(a) (b) (c)
Fig. 9: Hard configurations for the detection task: a) DTM interpolations due to point
lack, b) steep section at road junction, c) undisclosed road in flat area.

Sector Method R (%) P (%) F (%)

Saint-Mont AMREL 67.46 74.90 70.99
L-DDCM-Net 76.72 79.01 77.85

Gris-Mouton AMREL 69.87 88.13 77.94
L-DDCM-Net 77.46 91.74 84.00

Grand-Rupt AMREL 73.01 78.37 75.60
L-DDCM-Net 78.44 86.94 82.47

Cuveaux AMREL 68.73 80.49 74.14
L-DDCM-Net 80.61 87.32 83.83

Table 2: Comparison between AMREL [8] and L-DDCM-Net using data in set 1 of
manual road annotation with centerlines for the evaluation.

undetected parts are connected to blurred areas in the DTM image possibly due
to a lack of ground points (see Fig. 9 a). Others correspond to narrow steep
or damaged roads left back to erosion or vegetation (see Fig. 9 b). Moreover,
roads crossing flat areas at almost the same height are undisclosed in this low
contrasted part of the slope-shaded map (see Fig. 9 c). Already hard to de-
limit during manual digitization, such objects have few chance to be retrieved
successfully by the network.

It must be noted that the measured performance values should be taken with
caution. Many processes during the training of a deep network model are based
on random selections, so that this step is certainly not reproducible. For each
tested configuration, only the best model obtained on a small series of trials was
kept. Therefore, we mostly conclude that among the 4 network architectures
evaluated, L-DDCM-Net provides faster inference speed while maintaining high
accuracy in detection. Hereafter, we use L-DDCM-Net as reference model for
the next experiments.

To evaluate the improvement and the efficiency of the L-DDCM-Net for forest
road extraction, we compare the results of the trained models with those of
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(a) AMREL (b) L-DDCM-Net
Fig. 10: Comparison between AMREL (a) and L-DDCM-Net (b) using the ground truth
data from set 1. Precision maps: dilated ground truth in black, good detection in green,
false detection in red.

AMREL on the data in set 1. For this, we consider the same evaluation metrics
as in previous experiments (see Eq. 1). In particular, the set GL is the centerlines
of data in set 1 andGW corresponds to a 28 pixels dilation ofGL. The comparison
of both methods is reported in Tab. 2. L-DDCM-Net outperforms AMREL. L-
DDCM-Net presents, on average, a performance increase of 8.5% in recall and
5.8% in precision on the four sectors. It takes 5 s to process a sector using L-
DDCM-Net. Although it is not possible to compare this execution time with the
30 s reported for AMREL in [7] run on slower hardware, up to now, it is not
guaranteed that this last could be adapted to GPU programming.

Fig. 10 illustrates the results on one of the sectors. We observe less disconti-
nuities and false detection in L-DDCM-Net results than in AMREL. This makes
the results more favorable and complete in this task of forest road detection.

All implementation of L-DDCM-Net and execution procedure to reproduce
the test results of Gris-Mouton sector in Tab. 1 and 2 are available at:

https://github.com/paulgeorges1998/Light-DDCM-Net.
Because other sectors cross well-known archaeological areas, it is unfortunately
not possible to let a full access to the whole data set. For the test of the three
other sectors and the training on all sectors, access to relevant DTM tiles may
be requested to the LiDAR data owner.

5 Conclusion

This paper addresses the forest road detection in LiDAR data using deep learn-
ing approaches. More precisely, we consider digital terrain model (DTM) im-
ages computed from an interpolated surface of the 3D LiDAR point cloud. Two

https://github.com/paulgeorges1998/Light-DDCM-Net
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datasets, one from manual annotation with centerline and the other from a semi-
automatic extraction using two softwares AMREL and IDSL, are used for train-
ing, validating and testing the method. Different convolution neural networks
(CNNs) are considered in this work: L-DDCM-Net, U-Net and CBAM attention
blocks. The trained network models are also compared with the AMREL results
to show the improvement and the efficiency of the deep learning approaches for
the problem of forest road detection.

In general, the CNNs provide high detection accuracy in addition to a fast
prediction time. However, they also have several limitations in the present case.
Firstly, we do not observe significant improvements by modifying the different ar-
chitectures: adding attention modules, modifying the hyper-parameters, . . . This
may be due to the restricted amount of data used for training the CNN. In order
to improve the CNN performance, we may need to provide more meaningful in-
formation to the network. Observing the false negative results, undetected forest
roads often correspond to narrow steep sections, that are less contrasted in slope
images. For traffic convenience, most of forest roads do not deviate significantly
from isolines. In order to guide the networks to learn such behavior, we suggest
providing not only the slope intensity, but also its direction as additional training
data. The slope direction can be computed from the triangulated mesh used to
build the DTM, and represented as a second input image. Furthermore, bigger
size of training images could be considered to better capture the global con-
text of the forest roads. Next availability of more general purpose LiDAR data
at country-wide scale [13] will hopefully facilitate a complete reproducibility of
this kind of work, including training stages. Combined with digitization facilities
brought by AMREL and ILSD softwares, it will contribute to the production of
such a wider training dataset.

Acknowledgements: DTM images are derived from Fossard LiDAR data ac-
quired in scope of the PCR AGER project (Projet collectif de recherche ”Archéo-
logie et GEoarchéologie du premier Remiremont et de ses abords”), dir. Charles
Kraemer, HISCANT Laboratory, Université de Lorraine.
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