
HAL Id: hal-03886784
https://hal.science/hal-03886784v1

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Proofs of Retrievability using Expander Codes
Françoise Levy-Dit-Vehel, Maxime Roméas

To cite this version:
Françoise Levy-Dit-Vehel, Maxime Roméas. Efficient Proofs of Retrievability using Expander Codes.
CANS 2022 - 21st International Conference on Cryptology and Network Security, Nov 2022, Abu
Dhabi, United Arab Emirates. �hal-03886784�

https://hal.science/hal-03886784v1
https://hal.archives-ouvertes.fr

Efficient Proofs of Retrievability using Expander
Codes

Françoise Levy-dit-Vehel1 and Maxime Roméas2

1 LIX, ENSTA Paris, INRIA, IPP, 91120 Palaiseau, France
levy@ensta.fr

2 LIX, École polytechnique, INRIA, IPP, 91120 Palaiseau, France
romeas@lix.polytechnique.fr

Abstract. Proofs of Retrievability (PoR) protocols ensure that a client
can fully retrieve a large outsourced file from an untrusted server. Good
PoRs should have low communication complexity, small storage overhead
and clear security guarantees. We design a good PoR based on a family
of graph codes called expander codes. We use expander codes based on
graphs derived from point-line incidence relations of finite affine planes.
Høholdt et al. showed that, when using Reed-Solomon codes as inner
codes, these codes have good dimension and minimum distance over a
relatively small alphabet. Moreover, expander codes possess very efficient
unique decoding algorithms. We take advantage of these results to design
a PoR scheme that extracts the outsourced file in quasi-linear time and
features better concrete parameters than state-of-the-art schemes w.r.t
storage overhead and size of the outsourced file.

Keywords: Proofs of Retrievability · Expander Codes · Outsourced
Storage

1 Introduction

1.1 Context and state-of-the-art

With the continuous increase in data creation, individuals and business entities
call upon remote storage providers to outsource their data. This new dependency
raises some issues, as storage providers can try to read or modify the client’s
data. Besides, when a client does not often access his data, service providers
can delete it to make room for another client’s data. In this context, it appears
important to deploy client side protections designed to bring security guarantees
like confidentiality and integrity. In this work, we focus on the following problem:
given a client who stored a file on a server and erased its local copy, how can he
check if he is able to retrieve his file from the server in full? Addressing this issue
is the goal of cryptographic protocols called Proofs of Retrievability (PoRs).

The first PoR scheme was proposed in 2007 by Juels and Kaliski [8] and
was based on checking the integrity of some sentinel symbols secretly placed
by the client before uploading its file. This scheme has low communication but

2 F. Levy-dit-Vehel and M. Roméas

its drawback is that it is bounded-use only. Shacham and Waters [15] proposed
to correct this drawback by appending some authenticator symbols to the file.
Verification consists in checking random linear combinations of file symbols and
authenticators. Then comes a few PoR schemes based on codes. Bowers et al.
[3] proposed a double-layer encoding with the use of an inner code to recover
information symbols and an outer code to correct the remaining erasures. Dodis
et al. [4] formalize the verification process as a request to a code which mod-
els the space of possible answers to a challenge. In 2013, Paterson [13] laid
the foundation for studying PoR schemes using a coding theoretic framework.
Following these ideas, Lavauzelle and Levy-dit-Vehel [9] (2016) used the local
structure of the lifted codes introduced by Guo et al. [5] to build a PoR scheme,
that compares favourably to those presented above w.r.t. storage overhead. In
2022, Levy-dit-Vehel and Roméas [10] proposed a framework for the design of
secure and efficient PoR schemes based on Locally Correctable Codes. They also
reevaluated the security and the parameters of the [9] PoR scheme.

We design a PoR scheme based on expander codes. In 1996, Sipser and Spiel-
man [16] introduced these codes that are based on expander graphs. Expander
codes possess very efficient unique decoding algorithms. We will use an erasure
decoding algorithm derived from [16,19] during the extraction phase of our PoR.

The expander codes used for our PoR scheme are based on a family of graphs
with excellent expansion. These graphs are derived from point-line incidence rela-
tions in the affine plane F2

q. The expansion of these graphs was studied by Tanner
in 1984 [18]. A line of work of Høholdt et al. [6,7,2] studied the dimension and
minimum distance of expander codes based on the previously mentioned graphs
with Reed-Solomon codes as inner code. Finally, we use an audit procedure
for generic erasure codes adapted from [8,15] in the Constructive Cryptogra-
phy (CC) framework of [11] by Badertscher and Maurer [1]. We also prove the
security of our PoR scheme using the CC security model for PoRs of [1].

1.2 Contributions

We use an audit procedure from [8,15] translated in the CC framework by
Badertscher and Maurer [1] to design a PoR scheme based on expander codes.
Recall that an expander code is constructed using a regular expander graph, a
so-called inner linear code and, for every vertex v of the graph, an ordering on
the edges incident to v. A codeword is a labeling of the edges such that, for every
vertex v of the graph, the vector supported by the edges incident to v is a code-
word of the inner code. By encoding the client’s file with a well-chosen expander
code, we manage to design a PoR scheme with storage overhead linear in the size
of the outsourced file |F | and communication complexity in O(|F |1/3 · log |F | ·σ)
for σ bits of statistical security. Furthermore, we give concrete parameters for
file sizes ranging from a few MB to hundreds of GB. Our parameters are a lot
better than the ones of [9]. When using the same alphabet size and security
parameters as other code-based PoRs [8,15,9], our scheme is capable of reaching
higher rates and storing larger files. We give parameters and comparisons with
other PoRs in sec. 3.4. We optimize the parameters of our scheme using expander

Efficient Proofs of Retrievability using Expander Codes 3

codes based on q-regular graphs derived from point-line incidence relations in
finite geometries. The properties of these graphs and of expander codes based on
these graphs are studied in [18,6,7,2]. We chose these graphs because they have
very good expansion and a good ratio between their regularity q and their num-
ber of edges q3. We show that these two facts when combined permit us to reach
lower communication complexity and storage overhead than previous code-based
PoRs. Moreover, these graphs exist for every prime power q. By choosing q to
be a power of 2 and a Reed-Solomon code of length q as inner code, we can use
the erasure decoder for Reed-Solomon codes of [17] with complexity O(q log2 q).
Using this decoder along with a fast unique erasure decoding algorithm for ex-
pander codes [16,19], we are able to extract the outsourced file in quasi-linear
time O(q3 log2 q) in the input size Rq3 log q, where 0 < R < 1 is the rate of the
code. For q = 512, our PoR stores files of size 124MB vs 35MB for the PoR of
[9] with storage overhead of 21% vs 319% for [9].
Organization of the paper. In sec. 2, we give the required background. In sec. 3,
we describe our audit procedure and we optimize our PoR. Finally, we compare
the performance of our PoR against other schemes in sec. 3.4.

2 Background

2.1 The Constructive Cryptography model

The CC model, introduced by Maurer [12], aims at asserting the real security
of cryptographic primitives. To do so, it redefines them in terms of so-called
resources and converters. Starting from a basic resource (e.g. communication
channel, shared key, memory server...), a converter (a cryptographic protocol)
aims at constructing an enhanced resource, i.e. one with better security guar-
antees. The starting resource, lacking the desired security guarantees, is often
called the real resource and the obtained one is often called the ideal resource,
since it does not exist as is in the real world. An example of ideal resource is a
confidential server, where the data stored by a client is readable by this client
only. The only information that leaks to other parties is its length. This resource
does not exist, but it can be emulated by an insecure server on which the client
uses an encryption protocol where the encryption scheme is IND-CPA secure. We
say that this construction of the confidential server is secure if the real world -
namely, the insecure server together with the protocol - is just as good as the
ideal world - namely, the confidential server. This means that, whatever the
adversary can do in the real world, it could as well do in the ideal world.

We recall the constructions of [1,10] that we will use in this work. The first re-
source is the authenticated server-memory resource denoted by aSMRΣ,n where
Σ is the alphabet and n the memory size. The resource allows the client to read
and write data blocks that are encoded as elements of a finite alphabet Σ via
its interface C. The interface C0 is the initialization interface used to set up the
initial state of the resource. The server can be “honest but curious” by obtaining
the entire history of accesses made by the clients (a log file) and reading their
data at interface SH . The server can also be intrusive by deleting or restoring

4 F. Levy-dit-Vehel and M. Roméas

previously deleted data using its interface SI when the resource is set into a spe-
cial write mode. A deleted data block is indicated by the special symbol ε. Thus,
if we store a codeword on the aSMR, the adversary can only introduce erasures
and not errors. We use the aSMR specification of [10] because it is tailored for
code-based PoRs with its O(log n) communication complexity per read query.
Indeed, code-based PoRs require a large number of read queries and only one
write query to outsource the encoded file. The aSMR resource is described in
fig. 1 and is constructed in [10] using a simple MAC-based protocol. Each symbol
is stored alongside a MAC tag, this yields a storage overhead of κn where κ is
the length of a MAC tag.

Resource aSMRΣ,n

The aSMR definition is identical to SMR of [1] except for the influence of an
adversary at interface SI and the addition of a version number ctr.
Interface C

Input: (read, i) ∈ [1, n]
if Active and not Intrusion
then

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]×Σ
if Active and not Intrusion
then

ctr ← ctr + 1
Hist← Hist || (W, i, x, ctr)
M[i]← x

Interface SI

Input: (delete, i) ∈ [1, n]
if Intrusion then

M[i]← ε

Input: (restore, i) ∈ [1, n]
if Intrusion then

if ∃k, x : Hist[k] = (W, i, x, ctr)
then

M[i]← x

Fig. 1: The authentic SMR of [10] (only interfaces C and SI are shown)

2.2 Proofs of Retrievability

Proofs of Retrievability (PoR) are cryptographic protocols whose goal is to guar-
antee that a file stored by a client on a server remains retrievable in full. PoRs
thus involve two parties: a client who owns a file F and a server, here modelled as
an SMR, on which F is stored. We use the CC based definition of PoR security
as presented in [1]. Namely, a PoR scheme is composed of a pair of converters
por := (por_init, por_audit) and works in three phases:
• An initialization phase. The client converter init encodes the file F into
Init(F) = (F̃ , data). The converter sends data (e.g. keys, etc.) to the client,
then it sends F̃ to the SMR with a write query and erases F from the client’s
memory.
• An audit phase. The client converter audit probes some symbols of the

server’s memory and outputs accept if it believes that the file is retriev-
able in full and reject otherwise.

Efficient Proofs of Retrievability using Expander Codes 5

• An extraction phase. If the client has been convinced by the audit phase, he
can send read to recover his whole file with high probability.

A PoR scheme is considered secure if it constructs an ideal abstraction of a
PoR (introduced in [1]). This abstraction consists of an ideal SMR aSMRaudit

Σ,n

that considers the client’s interface augmented with an audit mechanism. On
an audit request, the resource checks whether the current memory content is
indeed the newest version that the client wrote to the storage. If a single data
block has changed, the ideal audit will detect this and output reject to the
client. In case of a successful audit (returning accept), this guarantee holds
until the server gains write-access to the storage, in which case a new audit has
to reveal whether modifications have been made.

2.3 Expander graphs and expander codes

We recall the definitions and well known properties of expander graphs and
expander codes. We follow the presentation of [14]. Let G := (V,E) be an undi-
rected d-regular graph on n vertices. The expansion of G is λ := max{λ2, |λn|},
where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of the adjacency matrix of G.
We say that G is a Ramanujan graph if λ ≤ 2

√
d− 1. For a vertex v ∈ V , let

Γ (v) be the set of vertices adjacent to v. Let C0 ⊆ Fdq be a linear code, called
the inner code. Fix an order on the edges incident to each vertex of G, and let
Γi(v) be the i-th neighbor of v. Using the graph G and the inner code C0 we can
construct a new code, called an expander code. The expander code C := C(G, C0)
is defined as the set of all labelings of the edges of G that respect the inner code
C0. It has length nd/2. More precisely, we have the following definition.

Definition 1 (Expander Code). Let C0 ⊆ Fdq be a linear code, and let G =
(V,E) be a d-regular expander graph on n vertices. The expander code C(G, C0) ⊆
FEq is a linear code of length nd/2, so that for c ∈ FEq , c ∈ C if and only if, for
all v ∈ V , (c(v,Γ1(v)), . . . , c(v,Γd(v))) ∈ C0.

If C0 is a linear code of rate R0, then C(G, C0) is a linear code of rate at least
2R0 − 1. We say that an undirected graph G = (L ∪ R,E) is bipartite if, for
all vertices v ∈ L, we have Γ (v) ∩ L = ∅ and, for all vertices v ∈ R, we have
Γ (v)∩R = ∅. It is known that expander codes constructed from bipartite graphs
have good distance [16,19]:

Proposition 1. Let C0 ⊆ Fdq be a linear code with relative distance δ, and let
G = (L ∪ R,E) be a d-regular bipartite expander graph with expansion λ. Then
the expander code C(G, C0) has distance at least δ(δ − λ/d).

Moreover, C can be efficiently decoded up to this fraction of erasures [16,19].

Proposition 2. Let C0 ⊆ Fdq be a linear code with relative distance δ. Let D(d)
be the time needed to uniquely decode C0 from δ−1/d erasures. Let G = (L∪R,E)
be a d-regular bipartite expander graph on n vertices with expansion λ. Let ε > 0
and suppose that λd <

δ
2 . Then, the decoder of [14] uniquely decodes the expander

code C(G, C0) from up to (1− ε)δ(δ − λ/d) erasures in time n · D(d)/ε.

6 F. Levy-dit-Vehel and M. Roméas

3 PoR with expander codes

3.1 Audit

Our scheme will use a generic audit for erasure codes presented in the CC frame-
work by Badertscher and Maurer in [1]. We describe how [1] implemented the
ideas of [8,15] to construct an aSMRaudit

Σk,1 from an aSMRΣ,n. Let (enc, dec) be an
(n, k, d) erasure code and F ∈ Σk be the client’s file. We describe the PoR scheme
ecPor := (ecInit, ecAudit) for erasure codes. On input init to ecInit, the converter
sends init to aSMRΣ,n and computes the encoding F̄ := enc(F) ∈ Σn. Then,
for all i ∈ [n], the converter sends (write, i, F̄i) to aSMRΣ,n.

On input (read) to either ecInit or ecAudit, the converter retrieves the whole
memory content via (read, i) requests and obtains for each location, either a
symbol vi ∈ Σ or the erasure symbol ⊥. If vi is returned, set Wi := vi, else set
Wi :=⊥. If |{i ∈ [n] | Wi =⊥}| > d − 1, the converter outputs ε at its outside
interface, otherwise it computes F := dec(W), and outputs F .

Finally, on a query audit, the converter ecAudit chooses a random subset
S ⊆ [n] of size t and outputs (read, i) to aSMR for each i ∈ S. If all read in-
structions for i ∈ S returned a non-erased symbol, the converter outputs accept.
Otherwise, it outputs reject. The integer t is chosen according to the security
level we want to achieve. The security of the scheme is given by:

Theorem 1 ([1]). Let n, k, d ∈ N. Let (enc, dec) be an (n, k, d) erasure code
for alphabet Σ and erasure symbol ⊥. Let ρ := 1 − d−1

n be the minimum frac-
tion of symbols needed to recover the file. Then, the above protocol ecPor :=
(ecInit, ecAudit) that chooses a random subset of size t during the audit, con-
structs the aSMRaudit

Σk,1 from the aSMRΣ,n. More specifically, there exists a
simulator sim such that for all distinguishers D performing at most q audits,

∆D(ecInitC0
ecAuditC aSMRΣ,n, sim

S aSMRaudit
Σk,1) ≤ q · ρt

3.2 Description of our PoR with expander codes: the general case

Let C0 be a linear code of length d, relative distance δ0 and rate R0. Using
the Singleton bound, we have δ0 ≤ 1 + 1

d − R0. Let G be a d-regular bipartite
graph on n vertices with expansion λ. We instantiate the PoR scheme ecPor :=
(ecInit, ecAudit) with the expander code C(G, C0).

In the following, we determine the number t of edges probed during the
audit needed to reach a given security level. If we suppose that λ

d <
δ0
2 , using

the Singleton bound, we must have R0 < 1+ 1
d−

2λ
d . Moreover, if C0 is Maximum

Distance Separable, this implication becomes an equivalence. This is why, from
now on, we will suppose that the inner code C0 is MDS. We take G to be a
bipartite expander graph with expansion λ such that λ

d <
δ0
2 . Using prop. 1, the

minimum distance δC of C(G, C0) is at least δ0(δ0 − λ/d) > 2λ2/d2.
Let ε > 0. If we want to correct a (1− ε)δC fraction of erasures, the minimum

fraction of valid edges needed to recover our file is

ρ = 1 +
1

nd
− (1− ε)δC ≤ 1 +

1

nd
− (1− ε)2λ2

d2

Efficient Proofs of Retrievability using Expander Codes 7

Let σ be a statistical security parameter and t be the number of edges probed
during the audit. Our scheme is considered secure if ρt ≤ 2−σ. We want to choose
t such that t ≥ −σ/ log ρ. Approximation: If 1

nd − (1− ε) 2λ2

d2 ≈ 0, we have

−σ
log ρ

≈ nd2σ

2(1− ε)nλ2 − d
=

d2σ

2(1− ε)λ2 − d
n

Moreover, if G is Ramanujan, we have λ ≤ 2
√
d− 1 and −σ

log ρ ≈
dσ

8(1−ε) . If G
has expansion

√
d instead, we have −σ

log ρ ≈
dσ

2(1−ε) .
Note that our scheme requires the adversary to only introduce erasures (and

not errors). We enforce this using an aSMR. After a successful audit, the client
can extract its file by running the decoder of prop. 2 which runs in time O(n ·
D(d)/ε), where D(d) is the complexity of C0’s decoder.

3.3 Instantiation with the point-line incidence graph of the plane

Let Γ be the point-line incidence graph of the affine plane over Fq without the
vertical lines. This graph is q-regular, has 2q2 vertices and expansion √q (see
the work of Tanner [18]). We have Γ := (V1 ∪ V2, E) where

V1 := {(x, y) | x, y ∈ Fq}, V2 := {(a, b) | a, b ∈ Fq}, and
E := {((x, y), (a, b)) | (x, y) ∈ V1, (a, b) ∈ V2, ax+ b− y = 0}

This graph is an excellent choice for our PoR scheme. Recall that the rate
of the inner code is upper bounded by 1 + 1

d −
2λ
d and the rate of the expander

code is lower bounded by 2R0−1. The graph Γ also has a nice ratio between its
regularity q and its number of edges q3. Since we need to probe a number of edges
linear in q, this ensures that our PoR scheme has communication complexity of
order cubic root of the size of the outsourced file. This is in line with or even
better than other code-based PoR schemes, such as [9] (which has communication
complexity of order square root of the file size for m = 2). Our inner code C0 will
be a Reed-Solomon code of rate R0 < 1 + 1

d −
2λ
d . This code is MDS, and thus

we can use the decoder of prop. 2 for our extraction phase. Moreover, because
our inner code is a Reed-Solomon code, we can use the following result of Beelen
et al. [2]. Let Fq := {α1, α2, . . . , αq}. We use the following labeling (of [2]) for
the edges of Γ : if (x, y) ∈ V1, Φ(x,y)(i) := (x, y, αi, y − xαi) and, if (a, b) ∈ V2,
Φ(a,b)(i) := (αi, aαi + b, a, b). When q is a power of 2 or a prime, Beelen et al. [2]
showed that when using this labeling on the graph Γ with a Reed-Solomon code
of rate 1/2 < R0 ≤ 1 as inner code, we obtain an expander code of rate exactly
R := R3

0 +R0(1−R0)(2R0 − 1).

3.4 Parameters

Let σ be the statistical security parameter (σ = 40) and κ be the computational
security parameter3 (κ = 128). Set q, a power of 2. Let G be the q-regular point-
line incidence graph over F2

q. This graph has 2q2 vertices, q3 edges and expansion
3 of the MAC used to construct the aSMR

8 F. Levy-dit-Vehel and M. Roméas

λ :=
√
q. Let the inner code C0 be a Reed-Solomon code of length q and rate

R0 = max{kq | k ∈ N and k
q < 1 + 1

q −
2λ
q }. We take R0 to be as big as possible

to reduce the storage overhead of the PoR while still having a quasi-linear time
decoder for the expander code. Indeed, since q is a power of 2, C0 can be erasure
decoded in time O(q log2 q) thanks to the decoder of Tang and Lin [17].

Our expander code C(G, C0) has length q3, rate R := R3
0+R0(1−R0)(2R0−1)

and alphabet Fq. Let |F | be the size of the outsourced file in bits. It is such
that |F | = Rq3 log(q). Using prop. 2, we get a decoder for C(G, C0) (and thus an
extraction phase) running in time O(2q3 log2 q) which is quasi-linear in the input
size q3 log q. The storage overhead is given by 1/R− 1, which is the redundancy
of the code. The parameters of our PoR and their asymptotic behavior are given
in table 1. Even though our PoR has the same asymptotic behavior than the
PoR of [9], we show in table 2 that we get much better parameters in practice.

Exact value Asymptotics (|F | → ∞)

C. storage overhead κ O(1)
S. storage overhead (1

R
− 1)|F |+ q3κ O(|F |)

comm. C. → S. qσ
2
log(q3) O(|F |

1
3 log |F |)

comm. S. → C. qσ
2
(κ+ log q) O(|F |

1
3 log |F |)

Table 1: The parameters of our scheme when using the point-line incidence graph
over F2

q and a Reed-Solomon code as inner code.

In table 2, we give concrete parameters of our PoR scheme for different
values of q. We compare our scheme with the PoR of [9]. For q = 512, [9, Fig.
6] and its new security analysis by [10] gives a PoR with codewords of length q3
that stores 35.9MB files with storage overhead of 319%. In table 2, we see that
for q = 512 and codeword length q3, our PoR stores 124MB files with storage
overhead of 21%, the same communication complexity as [9] and a quasi-linear
time extraction phase. Do note that using any Ramanujan graph instead of the
point-line incidence graph yields substantially worse parameters.

q R0 R 2q2 |F | 1
R
− 1 comm./|F |

256 0.878 0.758 131, 072 12MB 0.320 2× 10-4

512 0.913 0.827 524, 288 124MB 0.210 6× 10-5

1024 0.938 0.876 2, 097, 152 1.176GB 0.141 1× 10-5

2048 0.956 0.912 8, 388, 608 10.772GB 0.096 3× 10-6

4096 0.968 0.936 33, 554, 432 96.485GB 0.068 8× 10-7

8192 0.978 0.956 134, 217, 728 854.055GB 0.046 2× 10-7

Table 2: Effective parameters of our PoR using the point-line incidence graph
over F2

q for different values of q and Reed-Solomon codes as inner code. The
graph is q-regular with 2q2 vertices. We choose the largest possible rate yielding
a quasi-linear time decoder. The statistical security parameter is 40.

Efficient Proofs of Retrievability using Expander Codes 9

References

1. Badertscher, C., Maurer, U.: Composable and robust outsourced storage. In: Topics
in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference
2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings. pp. 354–373 (2018).
https://doi.org/10.1007/978-3-319-76953-0_19

2. Beelen, P., Høholdt, T., Piñero, F., Justesen, J.: On the dimension of graph codes
with reed-solomon component codes. In: 2013 IEEE International Symposium
on Information Theory. pp. 1227–1231 (2013). https://doi.org/10.1109/ISIT.
2013.6620422

3. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: Theory and im-
plementation. In: Proceedings of the 2009 ACM Workshop on Cloud Comput-
ing Security. pp. 43–54. CCSW ’09, ACM, New York, NY, USA (2009). https:
//doi.org/10.1145/1655008.1655015

4. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Proceedings of the 6th Theory of Cryptography Conference on Theory of
Cryptography. pp. 109–127. TCC ’09, Springer-Verlag, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5_8

5. Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In:
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science.
pp. 529–540. ITCS ’13, ACM, New York, NY, USA (2013). https://doi.org/10.
1145/2422436.2422494

6. Høholdt, T., Justesen, J.: Graph codes with reed-solomon component codes. In:
2006 IEEE International Symposium on Information Theory. pp. 2022–2026 (2006).
https://doi.org/10.1109/ISIT.2006.261904

7. Høholdt, T., Justesen, J.: The minimum distance of graph codes. In: Proceedings
of the Third International Conference on Coding and Cryptology. p. 201âĂŞ212.
IWCC’11, Springer-Verlag, Berlin, Heidelberg (2011)

8. Juels, A., Kaliski, Jr., B.S.: Pors: Proofs of retrievability for large files. In: Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security.
pp. 584–597. CCS ’07, ACM, New York, NY, USA (2007). https://doi.org/10.
1145/1315245.1315317

9. Lavauzelle, J., Levy-Dit-Vehel, F.: New proofs of retrievability using locally de-
codable codes. In: International Symposium on Information Theory ISIT 2016.
pp. 1809 – 1813. Barcelona, Spain (2016). https://doi.org/10.1109/ISIT.2016.
7541611

10. Levy-Dit-Vehel, F., Roméas, M.: A framework for the design of secure and efficient
proofs of retrievability. Cryptology ePrint Archive, Report 2022/064 (2022), https:
//ia.cr/2022/064

11. Maurer, U.: Constructive Cryptography - A New Paradigm for Security Defini-
tions and Proofs, pp. 33–56. Theory of Security and Applications, Springer Berlin
Heidelberg (2012)

12. Maurer, U., Renner, R.: Abstract cryptography. In: In Innovations In Computer
Science. Tsinghua University Press (2011)

13. Paterson, M., Stinson, D., Upadhyay, J.: A coding theory foundation for the analy-
sis of general unconditionally secure proof-of-retrievability schemes for cloud stor-
age. Journal of Mathematical Cryptology 7(3), 183–216 (2013). https://doi.org/
doi:10.1515/jmc-2013-5002, https://doi.org/10.1515/jmc-2013-5002

14. Ron-Zewi, N., Wootters, M., Zémor, G.: Linear-time erasure list-decoding of ex-
pander codes. In: 2020 IEEE International Symposium on Information Theory
(ISIT). pp. 379–383 (2020). https://doi.org/10.1109/ISIT44484.2020.9174325

https://doi.org/10.1007/978-3-319-76953-0_19
https://doi.org/10.1007/978-3-319-76953-0_19
https://doi.org/10.1109/ISIT.2013.6620422
https://doi.org/10.1109/ISIT.2013.6620422
https://doi.org/10.1109/ISIT.2013.6620422
https://doi.org/10.1109/ISIT.2013.6620422
https://doi.org/10.1145/1655008.1655015
https://doi.org/10.1145/1655008.1655015
https://doi.org/10.1145/1655008.1655015
https://doi.org/10.1145/1655008.1655015
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1109/ISIT.2006.261904
https://doi.org/10.1109/ISIT.2006.261904
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1109/ISIT.2016.7541611
https://doi.org/10.1109/ISIT.2016.7541611
https://doi.org/10.1109/ISIT.2016.7541611
https://doi.org/10.1109/ISIT.2016.7541611
https://ia.cr/2022/064
https://ia.cr/2022/064
https://doi.org/doi:10.1515/jmc-2013-5002
https://doi.org/doi:10.1515/jmc-2013-5002
https://doi.org/doi:10.1515/jmc-2013-5002
https://doi.org/doi:10.1515/jmc-2013-5002
https://doi.org/10.1515/jmc-2013-5002
https://doi.org/10.1109/ISIT44484.2020.9174325
https://doi.org/10.1109/ISIT44484.2020.9174325

10 F. Levy-dit-Vehel and M. Roméas

15. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
Advances in Cryptology - ASIACRYPT 2008. pp. 90–107. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2008)

16. Sipser, M., Spielman, D.: Expander codes. IEEE Transactions on Information The-
ory 42(6), 1710–1722 (1996). https://doi.org/10.1109/18.556667

17. Tang, N., Lin, Y.: Fast encoding and decoding algorithms for arbitrary (n, k) Reed-
Solomon codes over F2m . IEEE Communications Letters 24(4), 716–719 (2020).
https://doi.org/10.1109/LCOMM.2020.2965453

18. Tanner, R.M.: Explicit concentrators from generalized n-gons. SIAM Journal on
Algebraic Discrete Methods 5(3), 287–293 (1984). https://doi.org/10.1137/
0605030, https://doi.org/10.1137/0605030

19. Zémor, G.: On expander codes. IEEE Transactions on Information Theory 47(2),
835–837 (2001), https://doi.org/10.1109/18.910593

https://doi.org/10.1109/18.556667
https://doi.org/10.1109/18.556667
https://doi.org/10.1109/LCOMM.2020.2965453
https://doi.org/10.1109/LCOMM.2020.2965453
https://doi.org/10.1137/0605030
https://doi.org/10.1137/0605030
https://doi.org/10.1137/0605030
https://doi.org/10.1137/0605030
https://doi.org/10.1137/0605030
https://doi.org/10.1109/18.910593

	Efficient Proofs of Retrievability using Expander Codes

