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Abstract

In this work we introduce a new multi-stock, multi-fleet, multi-species and bioeconomic model for the complex system of a
small-scale fishery. The objective is to study fisheries in order to ensure the renewal of the stock of biomass. This stock represents both
a means of subsistence for fishermen but also contributes to food security. We model the system as a Multi-Agent System using both
Cellular Automata Model (CAM) and Agent-Based Model (ABM) computational modelling approaches. CAM are used to describe the
environment and the dynamics of resources. ABM are used to describe the behaviour of fishing activities. The main interest of the
conceptual model lies in the proposed laws and in its capacity to organize hierarchically all the local interactions and transition rules
within the simulated entities. We report preliminary results showing that our modelling approach facilitates software parameterization
for the specific requirements implied by the context of a small-scale fishery. The main results of this work consist in the creation of a
computer modelling structure CAM and ABM, which constitutes a preliminary for an optimized resources management. In a future

development, we will improve the behavior of economic agents in order to consider the complexity of their decision making.

Keywords: Fishery modelling, Multi-Agent System, NetLogo pattern.

1. Introduction

The deterioration of fishery ecosystems as a consequence
of human activity implies the need to develop an effective
and sustainable management of fisheries. Hence, there
is a need to efficiently manage halieutic resources over
time. This regulation cannot be carried out in a uniform
way across the globe due to the differences between all the
ecosystems.

The development of a sustainable management requires
an accurate study of the location’s characteristics so as
to set appropriate management rules. Given its evolu-
tion, computer technology is a promising tool to under-
stand and predict the behaviour of dynamical complex sys-
tems. Through computer simulations, Information Tech-
nology (IT) tools allow to study numerous cases so as to
develop sustainable fishery management and maintain
biodiversity in the ecosystems considered. In this pre-

liminary work, we present a conceptual model for the de-
sign of a small-scale fishery system in the form of a Multi-
Agent System (MAS) based on both Cellular-Automata Model
(CAM) and Agent-Based Model (ABM) computational mod-
elling approaches (Hogeweg, 1988). As stated in (Lind-
kvist et al., 2020), “small-scale fisheries consist of an
intricate network of individuals, institutions and com-
munities. They are also part of a wider mesh of inter-
national trade, tourism and technological change. This
complexity makes it hard to develop sustainable policies
that would be easily applicable.” Traditional fishery mod-
els in economics are based on strong hypotheses regard-
ing both the fishermen’s decision-making and population
dynamics in space. They are based on emphasised analyt-
ical solutions in terms of equilibrium conditions leading
to adopt simplifying assumptions such as representative
agent approach, a perfect rationality of economic agents,
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the absence of interactions amongst agents and an instan-
taneous adjustment to equilibrium. On the other hand,
modelling a complex fishery system using computational
modelling approaches looks promising to embrace com-
plexity and overcome issues caused by the paucity of infor-
mation (Lindkvist et al., 2020). In this paper, we develop
a MAS of the spatio-temporal dynamics of a small-scale
fishery to deal with the limitations in traditional bioeco-
nomic fishery models. The MAS deals with heterogeneous
behaviours both in economic agents’ decision-making
and in population dynamics in space, shaped by many in-
teracting components. To achieve our modelling purpose,
our main assumption is that the complex multi-scale dy-
namic system is based on a set of local interactions and
transition rules organised hierarchically within enough
simply entities to be simulated on traditional computers.
We obtain an effective model to produce modular and scal-
able experimentation that can serve as a guide for specific
management scenarios. The following sections of this pa-
per are organised as follows: in a second part, we present
the state of the art in both the literature of economics and
the literature of complex systems. In a third part, we de-
fine the dynamic complex system of a fishery. In a fourth
part, we review the modelling concepts that underlie this
work. In a fifth part, we present the conceptual model
and its bioeconomic dynamics. In a sixth part, we detail
the main components of the resulting computer model.
An example of computer simulation is presented in the
seventh part. General preliminary results are commented
and discussed in an eighth part. Finally, we conclude and
present research perspectives in the last part.

2. State of the art

The economic literature on fisheries developed signifi-
cantly in the 1950s. The first major works in the field were
from (Gordon, 1954) and (Schaefer, 1957), who are con-
sidered as the first authors of bioeconomic models for the
regulation of fishery resources. They applied these models
to the issues of resource over-exploitation by developing
the maximum sustainable yield concept. Since these pio-
neering works, many advances have been made thanks to
the contributions of game theory and spatial economics. In
this case, agents are considered as perfectly rational indi-
viduals (which implies to model fishermen as individuals
able to perfectly apprehend all the impacts resulting from
the activity of fellow fishermen). These various impacts
are assimilated to negative externalities (Pigou, 1932) that
result from the fact that the exploitation of the fishery re-
source by one agent affects the actions of other fishermen.
Indeed, through the fishing activity, the stock of resources
deteriorates, which affects all fishermen, each of them
seeing their own stock reduced. This effect was examined
by (Levhari and Mirman, 1980) in a Cournot duopoly in
which these authors examine a cod war between Iceland
and Great Britain and highlight this conflict’s inherent
economic implications.

Further improvements in the modelling scope were
achieved thanks to the introduction of dynamics. Sev-
eral authors, among them (Dockner et al., 1989), (Clark,
1990), (Dockner et al., 2000), (Van Long, 2010), (Long,
2011), (Benchekroun and Van Long, 2002), (Jgrgensen
and Zaccour, 2007), (Benchekroun, 2008), (Colombo and
Labrecciosa, 2018) and (Benchekroun et al., 2020), studied
the applications of dynamic and differential game theories
to the management of fishery resources. For the basic an-
alytical framework, dynamic and differential games adopt
assumptions that are similar to those used by static games.
Thus, there is a set of perfectly rational players, each seek-
ing to maximise their own objective. However, these mod-
els have some limitations. Notably, in the real world, fish-
ermen have no perfect knowledge of the state of biomass
stocks or their migration. It is therefore unrealistic to as-
sume that these negative externalities are perfectly taken
into consideration and that fishermen are perfectly ratio-
nal. Moreover, the optimum cannot be reached without
perfect information. Finally, the heterogeneities between
fishermen are poorly considered in this kind of model - if
considered at all.

Concerning the spatial approach, space is generally
considered as homogeneous in the economic literature.
The consideration of its heterogeneous nature led the au-
thors to focus on the impact of biological characteristics
on fishing and species recruitment. The resource is not
uniformly distributed in space, due to the fact that some
fishing patches are more fertile and have higher growth
rates than others. Furthermore, fishery resources are not
static and migrate in time and space. These migration
phenomena are modelled in the following contributions:
(Tuck and Possingham, 2000), (Sanchirico and Wilen,
1999), (Sanchirico and Wilen, 2001) and (Smith et al.,
2009). Although these works brought forward significant
advances regarding the issue of over-exploitation of fish-
ery resources, they suffer from certain limitations. The
decisions regarding locations by fishermen are the result
of an economic computation allowing the optimisation of
their rent. In accordance with the rent dissipation hypothe-
sis in the Gordon and Smith models, fishermen determine
the location of their activity according to the relative prof-
itability of fishing patches until the rent is dissipated over
all patches. This is due to the adoption in these models of
an “open access” fishing hypothesis over the whole space,
which is unrealistic, as is the optimisation of the rent.

Because of all the limitations in these models, we focus
in this work on the spatio-temporal modelling of the com-
plex fishery system using agents. The use of agents will
allow us to gradually introduce the complexity inherent to
this kind of system (Arthur, 2014), (Tesfatsion, 2017). The
fishery’s complex system is composed of a large number
of heterogeneous entities. The behavioural descriptions
that can result from it require modelling multiple inter-
actions between many entities. The modelling process
primarily involves conceptual and computer models for-
mulations which are performed by modellers. The use of
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Figure 1. [llustration of the complex fishery system (Idda et al., 2020).

agents will allow us not to limit our scope to the study of
an equilibrium, and also to understand the different inter-
actions between agents. On the other hand, fishermen are
no longer supposed to be perfectly rational and homoge-
neous, which means that we can simulate scenarios in the
“digital world” closer to the behaviour of fishing activity
in the “real world”.

Modelling a complex fishery system in the form of an
ABM has been developed over the recent years (Carrella
et al.,, 2019), (Bailey et al., 2019), (Cenek and Franklin,
2017), (Carrella et al., 2020), and (Burgess et al., 2020).
In these ABM, authors develop algorithms for decision-
making processes within fishing agents. (Carrella et al.,
2019) used 13 different (mostly adaptive) strategies in their
POSEIDON ABM to evaluate the outcome on fishermen’s
profits. They have shown that the bandit strategy is the
most effective in their case. Nevertheless, in their ABM,
agents are not heterogeneous, which limits the scope of
their result. (Carrella et al., 2020) compared predicted to
observed fishing models. They find that ABM with adap-
tive agents perform better predictions. On the other hand,
when the ABM assumes that fishermen are maximisers,
profits will be overestimated. Although these ABM provide
important insights, they include a limited consideration
of space and heterogeneity of the different agents, as well
as the economic model in which fishermen interact. One
of the main difficulties faced by the modeller stems from
the treatment of different scales of time and space. Spatial
scales are particularly difficult to model because most fish
species are highly mobile.

3. The complex fishery system

Fishery science refers to a complex bioeconomic system
characterised by a natural or artificial aquatic environment
exploited by industrial, artisan and recreational fishers.
This general definition is the experimental frame from
which the dynamics of the system are usually observed
(Bommel et al., 2000).

On figure 1, we consider three main entity categories:
- the environment, the locus of stakeholders movements
and interactions; - the biomass exploited for economic pur-
poses and that generally evolves according to a global pop-
ulation law; - fishermen operating in the environment and
interacting by harvesting biomass from different stocks
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(patches in the environment). Consequently, in a com-
puter simulation it is a matter of representing a set of hier-
archically interconnected entities, localised in space and
time, representing “a very large number of fish, a frag-
mented space and fishermen” (Bousquet, 1995, p. 150).
The difficulty of modelling this kind of system is accentu-
ated by the fact that the observations of this system require
perspectives belonging to different disciplinary fields, and
consequently the different modellers perceive this system
in very different ways. Only recognised unifying concepts
such as CAM and ABM allow to work in this direction.

4. Modelling concepts
4.1. MAS paradigm

As often reported in the literature, when dealing with
the simulation of the spatio-temporal dynamics of a com-
plex system of a set of autonomous and interacting con-
stituents, the MAS paradigm is particularly well suited.
This paradigm implies to consider the complex system
through the prism of a set of subsystems that can be
static or dynamic, connected and hierarchically organ-
ised. These are subsystems which interact in a unique
environment which for the observer constitutes a MAS.
The strength of the MAS perspective lies in its capacity to
formulate the explanation of the behavioural dynamics of
the complex system considered, as the result of a set of
autonomous constituents called agents. Agents here are
individual entities that interact in the environment accord-
ing to interaction links. These agents are therefore the key
concepts from the point of view of MAS and are generally
sufficient to formulate an agent-based conceptual model.
Thus, the conceptual model of a MAS is the abstract repre-
sentation of a complex system in which clearly identified
entities, called agents, interact with each other as well as
with an environment. The interaction mechanisms linked
to these interactions can be of different natures and evolve
over time.

They are generally expressed in the form of interaction
rules which describe the mechanisms of interaction be-
tween agents and which are clearly stated. The modelling
process based on the MAS paradigm is illustrated in figure
2. In computer simulation science, the MAS paradigm is
nowadays considered as one of the best methods for mod-
elling complex dynamic systems. It is the source of two
major modelling processes: one leading to the formulation
of CAM and the other leading to the formulation of ABM
(Bonabeau, 2002).

4.2. Cellular Automata

Cellular Automata (CA), initially proposed by Stanislas Ulam
(1909-1984) and by John von Neumann (1903-1957) in the
late 1940s, are multicomponent conceptual models that
are generally organised at two levels of abstraction (Inno-
centi et al., 2016). A first level of abstraction called “local”
or “micro” is structured according to a regular grid of com-
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Figure 2. Formulation of a conceptual model according to the MAS
paradigm, based on (Innocenti et al., 2020).

ponents. A second level of abstraction called “global” or
“macro” is considered to observe the outputs of the model
through the composition of the “local states” of these com-
ponents. In a CA, the components are called cells and each
of them has a finite state that can evolve over time accord-
ing to a deterministic or stochastic transition rule. During
the simulation process, at each time step, the same tran-
sition rule is applied simultaneously to all the cells in the
grid. It generates a new population of cells whose states en-
tirely depend on the states of the previous generation. The
computation of the state of a cell at time t+1 is a function of
the state of this cell at time t and of the states of the finite
subset of cells N called neighborhood. In this paper, the CA
model essentially provides the conceptual foundation used
to represent marine space.

4.3. Cellular Automata Models

CAM:s are specialisations of the basic CA conceptual model.
Thus, in a CAM the fixed agents of the environment play
a prominent role in the mechanisms of interaction. The
vast majority of these models are based on the specifica-
tion of interactions between agents that can extend over
several levels of abstraction, generally two or three. We
consider CAMs as an increasing specialisation of the basic
CA, where space and time are discrete and interactions are
always local but where the environment, cells and interac-
tions are more developed than in CA. Nowadays, they are
usually used as conceptual tools to model spatial spread-
ing dynamics as observed in some complex systems in
physics (Rui et al., 2018), biology (Schimit, 2021), as well
as in economics (Chen et al., 2019). Formally, they group
together in the same entity more complex variations of
the basic conceptual model of the CA. However, the defini-
tion of local transition rules in discrete space must remain

quite simple to implement, even in the case a large num-
ber of components distributed on several abstraction lev-
els. Moreover, the simulation of executable CAMs makes
it possible to exploit the computing parallel (GPGPU and
multi-core processors) and distributed computer hard-
ware architectures (Innocenti et al., 2009). Finally, as CAM
inherit the characteristics of CA, they also benefit from the
emergence phenomenon which appears during some of
the simulation experiments. It should be noted that the CA
model and its CAM extensions also offer many technical
benefits: they are adapted to Object Oriented Programming
(0.0.P.). They also allow the production of computational
models through the expression of modular and scalable
components.

4.4. Agent-Based Models

ABMs are CAM extensions that have additional agents that
can move in the environment. Their basic components are
fixed agents and mobile agents. The environment is also
considered as an agent. Figure 3 illustrates schematically
the difference between a conceptual CAM model and an
ABM type.

Environment Agent ~ Agent

Multi-Agent System (MAS)| ment e
X

Environment Cell Agent

k (fixed)
X k

I
&) x.y)

i
e <

e
N

o A
Interactions

Cellular Automata Model (CAM)
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Figure 3. MAS: CAM versus ABM (Innocenti et al., 2019).

In life sciences, ABMs are called “Individual -Based Mod-
els” (IBMs). CAMs and ABMs often benefit from an intrin-
sic capacity to describe many phenomena from the reality
with great realism, mainly through the expression of tran-
sition rules formulated on very simple mathematical bases.
The scientific literature presents the good performance
of these models in many cases. Thus, the ABM allows to
apprehend the complexity of a natural system according
to a reductionist modeling process, easier to conceptualise.
In the case of fisheries, they allow to use simplified for-
mulations of a local economic behavior. They are based on
the description of local autonomous entities and interac-
tions, leaving the modeller to observe the behaviour of the
system as a whole, from the appearance of new properties,
not known a priori, through the emergence phenomenon.



5. Conceptual modelling

In this model we chose to focus on the interaction between
fish population dynamics (ecological dynamics) and fleet
dynamics associated with fishing decision processes (eco-
nomic dynamics), as is usually the case in fishery science
(Bousquet, 1995). In a fishery model conceptualised as a
MAS, the entities of interest, i.e. economic agents (fisher-
men) and biological agents (biomass, fish), are spatially
distributed in an environment consisting of fixed cells
(CAM). Some of the agents are modelling individuals who
move and interact in the fishery environment, especially
considering different temporal granularity (ABM). The
integration of the economic rules of fishing is obtained
through the formulation of interaction rules between fish-
ing agents (and biological agents) in subsets of cells de-
scribing different fishing patches (stocks).

5.1. Agents’ biological dynamics

Our biological agents are based on a metapopulation model
defined as a group of subpopulations distributed in spa-
tially discrete habitats and interconnected via dispersion
rates. Since the spatial dynamics of the population is de-
scribed in a CAM, the evolution of the biomass in discrete
time By , ; of different patches of the discrete space N is
given by:

Bi)wrt+1 = Biyw:t + F(Bivat) - H(Biywlt’ Ei:pxt)
; &)
+D(Bi,w,t) Z Bm,w,t)

m=1

mi

Index i corresponds to a fishing patch, i = {1,...,N}.
Index m corresponds to the adjacent cells that constitute
a patch i. Index w represents the different fish species
present in the patch i. p = {1, ..., P} is the set of fishermen
agents in the model.

F(B; ) is the instantaneous biomass evolution func-
tion in a patch i, such that:

B;
F(Biyo,t) = 1By, )(1 = =) (2)
1

This corresponds to the logistic function of the (Ver-
hulst, 1838) model in which r is the intrinsic growth rate
and K; is the carrying capacity in the patch i.

We assume that the fishing function H(B; , 1, Ej p 1) in i
canbe represented inlinear form. It depends on the fishing
effort E; , ; in i and the quantity of biomass (B; , ;) in i. gp
is the catchability coefficient of a fishing agent p. This co-
efficient describes the level of technology of the agent, i.e.
the higher qp, the greater the quantity of biomass caught
for the same level of effort. Furthermore, we assume that
all species fished can be caught with the same fishing gear.
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Thus, the fishing effort and the catchability coefficient are
not dependent on the species w. So, we express H, such
that:

p o _
ApBi w,t >_p=1Eip,t Si Zt = Z;
0 otherwise

H(Bj ot Eip,t) = { (3)

where Z; = [px;;py;] and Z; = [px;py;] respectively
represent the coordinates of the patch i and of the fishing
agent p.

A fisherman agent only fishes if it reaches the patch
i it chose during its internal decision process. Biomass
migration occurs in Moore’s neighborhood from the cor-
responding 8 adjacent cells, i.e.:

8
D(Bi,w,ty Z Bm,w,t) = Ini,t - OUti,t (ll-)

m=1
mi

With

_ 8
* Injy =dpyie > m=1Bmw,t
mi

- Outj; = di,m,tzsm;% Bi »,sm=11,..,8}

In; ; corresponds to the entries in the patch i at a percentage
dpm i+ and Out; ; represents the exits from the patch i to the
8 cells of the neighborhood at a percentage d; i, ;-

Departures from a patch must coincide with arrivals in
the destination patch, as long as the K carrying capacity
of the destination patch has not been reached. Otherwise,
the excess biomass is considered zero at destination in the
patch.

Temporal granularity At of the model (time step) corre-
sponds to one hour, which makes it possible to take into
account the fleet’s travel time in a more refined way. Fur-
thermore, we assume that a fishing trip does not exceed 24
hours. In other words, we only consider fishing campaigns
of the “small-scale” type (artisan fishing). Our model can
be adapted to be extended seamlessly to other types of
fishing (coastal fishing, offshore fishing or large-scale
fishing) by adapting temporal granularity. We assume
that during a trip a fisherman only exploits one patch per
fishing decision from the home port. A fisherman has a
fixed effort that he entirely deploys in the chosen fishing
patch. The decision process related to the choice of a fish-
ing patch is exclusively based on the location of this fishing
patch.
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5.2. Agents’ economic dynamics

The computation of the fishing rent of a fishing agent is
given by:

o]

R(Bi,w,t)Ei,p,t) = Z[pwH(Bi,w,t)Ei,p,t)] (5)
w=1

—CpH(Bj o, 1> Eipt)> = ¥Si

withpe > 0 corresponding to the sale price of w species.
We assume that the selling price of a given species is a re-
gional price. Since biomass is considered to be homoge-
neous throughout the entire territory;, its selling price is
also identical. This assumption is usual in bioeconomic
models in which a world price is generally assumed for
simplification purposes.

There are two components in the cost function. (1)
¢pH(B; 1, Ei p,1)* represents the direct fishing cost. This
cost is assumed to be quadratic and convex. Thus, an in-
crease in fishing is associated with a higher cost at an in-
creasing rate, due to the fact that a large fishery implies a
decrease in the biomass stock which becomes more and
more costly to harvest. (2) vS; represents the portion of the
cost related to the travel of a fishing agent. It is assumed to
be linear with the distance S; travelled to reach the chosen
patch i (number of cells to reach the patch i from the home
port of the fishing agent).

Furthermore, we assume that if a fisherman fails to
earn a positive rent, he leaves the market after a certain
number of periods (fixed at three months). The logic move-
ment of a fisherman agent is illustrated in figure 4.

waiting
At=24 - 241"2 Aje

navigating
At<10

loading
Agt=2

fishing
Ast=2

Figure 4. Status diagram of the fishing agents.

The travel logic of the fishing agents is modelled ac-
cording to four finite states of activity over a period cor-

responding to the working week of the French legislation
such as:

- Waiting — Waiting: activity state Waiting symbolises
periods of fishing inactivity related to the presence of
the fishing agent in the home port (e.g. when leaving
and after returning from a fishing activity). Between
two trips, the period of inactivity of a fishing agent is
givenby: A, ¢ = 24— Z?:z Aje

- Waiting — Navigating: activity state Navigating corre-
sponds to the agent’s travel activity from his home port
to the target fishing patch or vice versa. The behaviours
related to this state of activity imply taking into account
travel times between home ports and fishing patches.
We assume that the fishing agents’ travel time does not
exceed 24 units of time and remains strictly inferior to
10 units of time, i.e. A, ¢ < 10.

- Fishing : this state corresponds to the fishing activity,
time of setting the nets in the patch i. The fishing time
A3t is fixed at two time steps.

- Loading : the latter is the time of nets removal. This
timeis givenby A, ; = 2.

Each state transition is done in one hour, i.e. in one time
step.

As for the four sequences mentioned above, they are
repeated every week with the following recurrence:

« Waiting — Navigating — Fishing — Navigating: This se-
quence takes place at each restart of the activity, i.e. on
the first day of each week. At the beginning of a week of
fishing, each fisherman leaves the home port to reach
the fishing patch they have chosen, throw nets and then
return to the home port.

- Waiting — Navigating — Loading — Navigating — Fishing
— Navigating: This sequence is repeated over the next
four days/outings. Fishermen leave the home port, go
to the first fishing patch, take up their nets, go back to
the second fishing patch, throw their nets again and
return to the home port.

+ Waiting — Navigating — Loading — Navigating: This se-
quence corresponds to the last fishing day of the week.
Fishermen leave the home port for their previous fish-
ing patch, take up their nets and return directly to the
port.

- Waiting: This last one represents a day of rest for fish-
ermen. They stay in the home port for one day.

The fishing automaton can be represented by the fol-
lowing state-transition table:

Current state | Input | Next state Output

Waiting 5y Navigating | Move

Navigating 5 Fishing Throwing of the nets
Fishing 83 Navigating | Move

Navigating I Waiting Return to home port
Navigating 85 Loading Recover the fish
Loading 6 Navigating | Move

Waiting 57 Waiting Nothing




6. Computer model
6.1. Design patterns and Netlogo pattern

The Design Pattern (DP) concept comes from A pattern lan-
guage: towns, building, construction dealing with the work
of building architects Christopher Alexander, Sara Ishikawa
and Murray Silverstein. These authors worked on architec-
tural design in the 1970s and defined the notion of pattern,
such as: “Each pattern describes a problem which occurs over
and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever do-
ing it the same way twice.” This sentence defines a DP as
the description of a recurring problem associated to its
solution, a specific context, an architecture and the ex-
pression of the associated generic solution. However, it is
only in 1995 that the use of DP boomed with 0.0.P. and
the famous work by “GoF” (Gang of Four) of Erich Gamma,
Richard Helm, Ralph Johnson and Jhon Vlissides (Johnson
etal., 1995). Since then, the use of DP has progressively
been spreading and allowed the unambiguous expression
of generic and reusable computer code. Thus, DP will make
it possible to disseminate good design practices, in partic-
ular those related to the know-how of specialists on the
basis of a precise language and vocabulary that is common
to all designers and developers. Many books dealing with
DP have been published, including (Hunt, 2016; Buck and
Yacktman, 2010; Buschmann et al., 1996). In computer
simulation, DP offer the opportunity to capitalise on valu-
able knowledge acquired from the know-how of experts in
the field.

S 1

1Netlogo Design Pattern

1
! 1
! 1
: AgentSet k1  Agent ;
i 1
! 1
: = :
! | | | | :
1 Observer . "
: Environment g Link (|PatchL- Turtle g E
1
Y i
i | :
<< Turtle agent >> << Turtle agent >>
Stock Fisherman

<< Turtle agent >>

HomePort

Figure 5. The main agents of the computer model.

The NetLogo Design Pattern is derived from the generic
ABM proposed by Uri Wilensky and implemented in the Net-
Logo simulation environment (Wilensky and Rand, 2015;
Tisue and Wilensky, 2004). It provides a simple and effi-
cient mechanism for simulating the behaviour of agents
in CAMs or ABMs with four categories of abstract compo-
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nents: an omniscient observer (Observer), cells (Patches),
turtles (Turtles) and links (Links). In this pattern, the Ob-
server component is a single agent whose role consists in
observing the environment and giving orders to other var-
ious agents of the model (whether mobile or not). Patches
are agents which model fixed locations in space. For ex-
ample, they can implement the cells of a CAM (Innocenti
etal., 2016). Turtles are mobile agents that move on the
patches of the environment, as for example on the cells of
an ABM (Innocenti et al., 2020). Links are special agents
that are used to link Turtles agents together. They are es-
sentially used to integrate conceptual models based on
graphs into agent-based computer models. According to
the Netlogo Design Pattern, we describe the agents of our
ABM in the light of the three groups of generic agents: ob-
server, patches and turtles. For that, as mentioned on figure
5, turtle agents will have to be specialised using the inheri-
tance mechanism of 0.0.P (Banos et al., 2015). Thus, using
the NetLogo simulation environment this process will be
very much simplified.

6.2. Agents organisation

In our ABM, the fishery consists of fishing patches (Stock
agents) which are composed of one or many locations
(Patch agents). Patch agents are linked to Stock agents and
produce the biomass from each species each year. Particu-
lar patches are placed in the environment at the boundary
of a stock determining the outer edges of the Moore neigh-
borhoods of a stock location. Fishermen agents are at the
source of the biomass harvesting behaviour in stocks.

Agent <l Environ
1.1
i Place of sale
Spatialstock,.A........|.,..A...,. P J_ e e e e e J_.O.n.]ar.)d.
3 L — — = = !
\_<< Turtle agent >> o, <<Turtle agent >> '_<< Turtle agent >>/ -«
I | Stock | -.] Fisherman | HomePort | ]
‘ f . 1 ]
__________________ J
3 ish e
A set of species e f sell
<< Patch agent >> B Dfec‘lsn(')n»makmg unit . )
Patch - of fishing I__I Mobile agent
‘ s D Fixed agent
¥ -> Interaction
1% .. Group of individuals of the same species
<< Patch agent >> ! belonging to the same age group.
Biomass
- Biological comp t: . Ec ic ¢ t )

P

Figure 6. Organisation and interactions of the objects of the computer
model.

The interactions and organisation of agents in the com-
puter model are illustrated in figure 6. We define 5 spe-
cialised classes of agents and three classes of mobile agents:
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Stock, Fisherman and HomePort agents (inheritance from
turtles) as well as two classes of fixed agents Patch and
Biomass agents. Stock agents are defined in order to or-
ganise the temporality of the biomass growing evolution
during the discrete time simulation phase.

7. Materials and Methods
7.1. Netlogo simulation platform

By organising the computer model’s objects according to
the Netlogo Design Pattern, it is easy to very quickly pro-
totype an executable ABM that can be run on the Netlogo
simulation environment (Tisue and Wilensky, 2004). Net-
logo is also an effective tool for setting and visualising the
results from observation. It also facilitates the calibra-
tion process from experimental data. We can thus verify
the validity of the modelling hypotheses by quickly im-
plementing them (Prunetti et al., 2021; Beauchemin et al.,
2018).

Fishery's world

Figure 7. The digital world of the executable model under Netlogo.

Figure 7 is an illustration of the parameterisation of
the model in Netlogo with 5 fish population species, 10
fishermen (white arrows), 4 home ports (white houses)
and 21 stocks (red circles).

7.2. Simulation algorithm

The context of the study is the marine resources manage-
ment in Corsica, where artisan fishing is the most widely
spread. Indeed, Corsica only has 195 professional reported
fishing units among which 182 are small units (“Petits
Métiers Cotiers”, PMC) called “pointus” (pointed-shaped
fishing boats), 5 are longliner units (PML), and 8 are large
trawlers (CHA). Fishing activity takes place along the en-
tire coastline of Corsica, up to 3 nautical miles away from
the shore, and along 1,045 km of coasts. Fishing areas
are grouped in four corporations (“prud’homie”): Ajac-
cio/Propriano/Cargese, Bonifacio, Bastia/Cap Corse and
Balagne. In this work, the agents’ transitions are simu-
lated sequentially, performing the main steps depicted in
Figure 8.

Each day, fisherman agents proceed to a fishing action
in stock agents. Fishermen agents only relate fish in au-

' Initialization |
' (setup) )

clock-update

| transition-fct-fishermen |

biomass-mvt
Y

| update-stock-population |

Y

| output-fct-fishermen |

transition-fct-stocks |

output-fct-stock

Figure 8. The Discrete-Time Simulation algorithm.

thorised locations, i.e. stock agents that are assigned to
them, as in Corsica where the fishing areas are regulated
at a local level by the fishermen corporations. The species
renewing occurs once in a year.

8. Results and Discussion

We have reported here preliminary results showing that
our modelling approach facilitates software parameteri-
sation for specific requirements implied by the Corsican
coastal fisheries context. Unlike other fields of study, when
it comes to gain experimental data on fisheries, only ob-
servations of a real system allow to acquire this data. This
mainly relates the observation of fishing activity provided
by fishermen (fishing form, logbook data, sell sheet, etc.)
or observations acquired by sampling throughout research
campaigns. In this work, we have partly received this data
in the context of the Moonfish research project (University
of Corsica, 2016) that we initiated in 2016 and from the
literature (Le Manacha et al., 2011). In the future, we hope
to be able to integrate this data further into the model to
improve it and remove random parameters. Experimental
data will be acquired later during scientific field campaigns
and will help to improve the computer model. This data
can also provide calibration elements for the computer
model.



9. Conclusion

In this preliminary work, we have presented a multi-stock,
multi-fleet, multi-species and bioeconomic model for
small-scale fisheries. As an example, Corsican coastal fish-
eries are described as a MAS. The model’s structure com-
plies with both CAM and ABM computational modelling
approaches. Discrete time simulations are performed
with the NetLogo simulation environment to evaluate our
model’s capabilities and deficiencies. Regarding the im-
provement of the behaviour of economic agents, our next
step will consist in considering decision-making processes
based on bandit-like reinforcement learning (Sutton and
Barto, 2018). On the basis of the work of (Hanaki et al.,
2018), we will use multi-armed bandit-like reinforcement
strategies to determine the location chosen by fishermen
for their fishing activity based on conditional probabilities.
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