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INDEPENDENCES OF KUMMER LAWS

We prove that if X, Y are positive, independent, non-Dirac random variables and if α, β ≥ 0, α = β, then the random variables U and V defined by

. The result extends earlier characterizations of Kummer and gamma laws by independence of U = Y 1+X and V = X 1 + Y 1+X , which is the case of (α, β) = (1, 0).

Introduction

Consider, for b, c > 0, the gamma distribution G(b, c) with density proportional to y b-1 e -cy I (0,∞) (y), for p ∈ R, a > 0, b > 0, the generalized inverse Gaussian (GIG) distribution GIG(p, a, b) with density proportional to

x p-1 e -(-ax-b/x) I (0,∞) (x) and, for a, c > 0 and b ∈ R, the Kummer distribution K(a, b, c) with density proportional to x a-1 e -cx (1+x) b I (0,∞) (x). Following [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF], we say that a quadruplet of probability measures (µ, ν, μ, ν) on U, V, Ũ, Ṽ, respectively, satisfy the detailed balance equation for a map F :

U × V → Ũ × Ṽ if F (µ ⊗ ν) = μ ⊗ ν, where F (µ ⊗ ν) means (µ ⊗ ν) • F -1 .
The Matsumoto-Yor property is the following: for p, a, b > 0, given two independent, positive random variables X and Y such that X ∼ GIG(-p, a, b) and Y ∼ G(p, a), the random variables 1 X+Y and 1 X -1 

F : (0, ∞) 2 → (0, ∞) 2 (x, y) F → 1 x + y , 1 x - 1 x + y .
This property was discovered by [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functionals. Part II: the role of the generalized inverse Gaussian laws[END_REF] in the case a = b, while studying some functionals of exponential Brownian motion. In [START_REF] Letac | An independence property for the GIG and gamma laws[END_REF] the authors noticed that it is true also if a = b and proved that the independence property to be in fact a characterization: for two non-Dirac, positive and independent random variables X and Y , the random variables 1 X+Y and 1 X -1 X+Y are independent if and only if X ∼ GIG(-p, a, b) while Y ∼ G(p, a) for some p, a, b > 0.

In [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF] the authors studied the question of finding decreasing and bijective functions f : (0, ∞) → (0, ∞) such that there exists a quadruplet of probability measures (µ, ν, μ, ν) on (0, ∞) satifying the detailed balance equation for the map T f : (0, ∞) 2 → (0, ∞) 2 (x, y) → (f (x + y), f (x) -f (x + y)).

This led, at the cost of some regularity assumptions, to other independence properties of the Matsumoto-Yor type (of course, one retrieves the original Matsumoto-Yor case for f (x) = 1/x), among which a property involving the Kummer distribution. More precisely, it was proved in [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF] that if X and Y are independent Kummer and gamma with suitably related parameters then

U = X + Y and V = 1+(X+Y ) -1 1+X -1
are independent Kummer and beta random variables. This was the starting point of a number of works on Matsumoto-Yor type characterizations of the Kummer distribution. Firstly, starting from the latter property and looking for an involutive version of it, i.e. trying to find an involutive map F : (X, Y ) → (U, V ) for which the Kummer distribution is involved in a detailed balance equation, the following interesting property was discovered in [START_REF] Hamza | On Kummer's distribution of type two and a generalized beta distribution[END_REF]: let X and Y be independent, X have the distribution K(a, b, c) and Y have the gamma distribution G(b, c), then

U = Y 1+X and V = X 1+X+Y 1+X are independent, U ∼ K(b, a, c) and V ∼ G(a, c). (1) 
In [START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF] this independence property was proved to give a characterization result with no assumption of existence of densities. Related characterizations were considered in [START_REF] Weso Lowski | On the Matsumoto-Yor type regression characterization of the gamma and Kummer distributions[END_REF] and [START_REF] Piliszek | Kummer and gamma laws through independencies on trees -another parallel with the Matsumoto-Yor property[END_REF]. In [START_REF] Ko Lodziejek | Independence characterization for Wishart and Kummer random matrices[END_REF] an extension to the matrix-variate case was established, while in [START_REF] Piliszek | Regression conditions that characterize free-Poisson and free-Kummer distributions[END_REF] a free probability version of the property and characterization was given. The latter needed a definition of a new distribution, a free analogue of the Kummer distribution.

Let us come back to the definition of the detailed balance equation and recall its context as described in [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF], which considers models assuming the following dynamics: for (n, t) in Z 2 , n is the spatial coordinate and t the temporal one. For fixed t ∈ Z, (x t n ) n∈Z ∈ (0, ∞) Z is the configuration of the system at time t, and (y t n ) n∈Z ∈ (0, ∞) Z a collection of auxiliary variables through which the dynamics from t to t + 1 are defined. Namely, (x t n , y t n ) depends on (x t-1 n , y t n-1 ) only, through the formula

(x t n , y t n ) = G(x t-1 n , y t n-1 )
, where for a bijection F : X × Y → X × Ỹ either G = F , when n + t is even or G = F -1 when n + t is odd. The case when F is involutive is referred to as type I model, while the general case is referred to as type II model. Let x = (x n ) n∈Z be such that the above recursion with the initial condition x 0 n = x n , n ∈ Z, has a unique solution (x t n (x), y t n (x)) n,t∈Z . Let X * denote set of all such x's. According to Theorem 1.1 in [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF] in type I model for a sequence of iid random variables X = (X n ) n∈Z with X 1 ∼ µ we have that

X d = x 1
n (X) n∈Z iff there exists a probability measure ν such that the pair (µ, ν) satisfies the detailed balance condition with respect to F . In this sense µ⊗ν is the invariant measure for this lattice recurssion. In case of the type II model similar alternating invariance holds for pairs µ ⊗ ν and μ ⊗ ν. In [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF] the authors identified four such type I and/or type II models:

(1) ultra-discrete KdV (Korteweg-de Vries) type I model for

F (x, y) := F (J,K) udK = (y -(x + y -J) + + (x + y -K) + , x -(x + y -K) + + (x + y -J) +
) with µ and ν the shifted truncated exponential or shifted scaled truncated geometric laws;

(2) discrete KdV type I model for

F (x, y) := F (α,β) dK (x, y) = y(1+βxy)
1+αxy , x(1+αxy) 1+βxy with µ the GIG law and ν the GIG (gamma) law which, when αβ = 0, has a direct reference to the Matsumoto-Yor property and related characterization of the GIG and gamma laws; In the context of the discrete KdV model in [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF] the authors observed that if the laws of X and Y , as well as U and V , are independent GIG with suitable parameters, then (X, Y ) and (U, V ) satisfy the detailed balance equation for the map F (α,β) dK , and they conjectured that the GIG distributions are the only possible ones which let this F (α,β) dK -detailed balance equation be satisfied. Recently, in [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF] this conjecture was proved without the assumptions of existence and regularity of densities made by [START_REF] Bao | Characterizations of the generalized inverse Gaussian, asymmetric Laplace, and shifted (truncated) exponential laws via independence properties[END_REF] in their proof of the same conjecture. More precisely, [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF] established the following extension of the Matsumoto-Yor property: if A and B are non-degenerate, positive and independent random variables, and if α and β are two positive and distinct numbers, then the random variables

S = 1 B βA + B αA + B , T = 1 A
βA + B αA + B are independent if and only if A and B have GIG distributions with suitable parameters.

In this paper we reveal one more candidate for invariant measure for the lattice recursion model. We derive the detailed balance equation for the Kummer distributions. Our main result (Theorem 3.3) gives a characterization of the Kummer laws, which is a result of a similar nature as the one in [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF] for the GIG laws, i.e. it says that the Kummer distributions are the only possible ones which let the detailed balance equation be satisfied for the map [START_REF] Bao | Characterizations of the generalized inverse Gaussian, asymmetric Laplace, and shifted (truncated) exponential laws via independence properties[END_REF] F (x, y) = y 1+β(x+y) 1+αx+βy , x 1+α(x+y) 1+αx+βy . The proof uses a suitably designed "Laplace-type" transform and leads to a special second order linear differential equation for an unknown function of such form. In this sense the general methodology (a Laplace type transform and a second order ordinary linear differential equation) resembles one of the proof from [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF]. However, at the technical level, the challenges to overcome were of quite a different nature. Interpreting this result in the context of the lattice system of recursions described above, it says that the Kummer distibutions are the only relevant invariant measures for the type I model governed by F defined in [START_REF] Bao | Characterizations of the generalized inverse Gaussian, asymmetric Laplace, and shifted (truncated) exponential laws via independence properties[END_REF].

The paper is organized as follows: in Section 2 we introduce a scaled version of the Kummer distribution, we express and prove the considered independence property in terms of that scaled Kummer distribution (Theorem 2.1). In Section 3 we define and analyze the Kummer transform, an extended Laplace transform that will help us to prove the chacterization theorem formulated at the end of this section. Sections 4 contains the proof of the characterization splitted in several steps (subsections) of the proof, among which the crucial observation is that the unknown Kummer transform satisfies the Kummer differential equation (see [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF]).

The independence property

For the purpose of this paper it will be convenient to introduce a scaled version of the Kummer distribution.

Definition 2.1. Let K α (a, b; c) for α ≥ 0, a, c > 0 and b ∈ R be the probability distribution defined by the density

f (x) ∝ x a-1 e -cx (1+αx) b I (0,∞) (x) Remark 2.1. Note that K 0 (a, b; c) = G(a; c). Also K α (a, 0; c) = G(a; c) -see e.g. Remark 3.1 below.
Moreover, for α > 0 and

X ∼ K α (a, b; c) we have αX ∼ K(a, b; c/α). Theorem 2.1. Assume that (X, Y ) ∼ K α (a, b; c) ⊗ K β (b, a; c) for a, b, c > 0 and α, β ≥ 0, α = β. Let (3) U = Y 1+β(X+Y ) 1+αX+βY and V = X 1+α(X+Y ) 1+αX+βY . Then (U, V ) ∼ K α (b, a; c) ⊗ K β (a, b; c).
Remark 2.2. Note that in view of Remark 2.1 the above result gives a straightforward extension of the property observed in [START_REF] Hamza | On Kummer's distribution of type two and a generalized beta distribution[END_REF] and recalled in the begining, see [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF]. It suffices to take

(α, β) = (1, 0). Proof of Theorem 2.1. Denote ψ(x, y) = y 1+β(x+y) 1+αx+βy , x 1+α(x+y) 1+αx+βy =: (u, v), x, y > 0.
Note that ψ : (0, ∞) 2 → (0, ∞) 2 is an involution. Moreover, the following identities hold true:

x + y = u + v, (4) 
x 1+βy = v 1+αu , (5) 
y 1+αx = u 1+βv . (6)
Now we compute the Jacobian J ψ -1 (u, v) of ψ -1 = ψ. Note that (4) implies [START_REF] Letac | An independence property for the GIG and gamma laws[END_REF] ∂x ∂u + ∂y ∂u = 1 and ∂x ∂v + ∂y ∂v = 1. Therefore, (8) 1+αu+βv .

J ψ -1 (u, v) = ∂(x,y) ∂(u,v) = ∂x ∂u ∂x ∂v 1 -∂x ∂u 1 -∂x ∂v = ∂x ∂u -∂x ∂v Rewrite (5) as x(1 + αu) = v(1 + βv)
Now we insert ( 9) and ( 10) into ( 8) getting (11) J ψ -1 (u, v) = 1+αx+βy 1+αu+βv . Multiplying ( 5) and ( 6) sidewise after cancellation we get

1+αx+βy xy = 1+αu+βv uv .
Referring to [START_REF] Piliszek | Regression conditions that characterize free-Poisson and free-Kummer distributions[END_REF] we get (12) J ψ -1 (u, v) = xy uv . Now we are ready to find the joint density of (U, V ). We have

f (U,V ) (u, v) = J ψ -1 (u, v) f X (x(u, v)) f Y (y(u, v)) ∝ xy uv x a-1 (1+αx) b e -cx y b-1 (1+βy) a e -cy I (0,∞) 2 (u, v) = 1 uv x 1+βy a y 1+αx b e -c(x+y) I (0,∞) 2 (u, v).
In view of ( 4), ( 5) and ( 6) we thus get

f (U,V ) (u, v) ∝ 1 uv v 1+αu a u 1+βv b e -c(u+v) I (0,∞) 2 (u, v)
and the result follows.

For α, β = 0 denote X = αX, Ỹ = βY , Ũ = αU , Ṽ = βV . Then, for γ = α/β = 1, in view of Remark 2.1, Theorem 2.1 yields the following independence property for pure (i.e. α = β = 1) Kummer variables.

Corollary 2.2. Let ( X, Ỹ ) ∼ K(a, b; c) ⊗ K(b, a; γc) for 1 = γ > 0. Then ( Ũ , Ṽ ) := Ỹ X+γ(1+ Ỹ ) 1+ X+ Ỹ , X Ỹ +γ -1 (1+ X) 1+ X+ Ỹ ∼ K(b, a; c) ⊗ K(a, b; γc).

The Kummer transform and the characterization

For a positive random variable W and γ ≥ 0 consider an extended Laplace transform L (γ)

W of the form

L (γ) W (s, t, z) = E W s (1+γW
) t e -zW . We will call it the Kummer transform. Note that the Kummer tranform is well defined at least for s, z > 0 and t ∈ R. Moreover, for any fixed s > 0, t ∈ R, the Kummer transform as a function of z > 0, is just the Laplace transform of the measure w s (1+γw) t P W (dw), so it uniquely determines the distribution of W . Note also that ( 13)

L (γ) W (s, t, z) + γL (γ) W (s + 1, t, z) = L (γ)
W (s, t -1, z) and for any k = 1, 2, . . .

(14) ∂ k L (γ) W (s,t,z) ∂z k = -L (γ) W (s + k, t, z). Proposition 3.1. Let X ∼ K α (a, b, c), a, c > 0, b ∈ R. Then (15) L (α) X (s, t, z) = Γ(a+s)U a+s,a+s-b-t+1, c+z α α s Γ(a)U (a,a-b+1, c α ) , s > 0, t ∈ R, z > -c
, where U is the Kummer function (see 13.2.5 in [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF]) defined by

(16) U (a, b, z) = 1 Γ(a) ∞ 0 x a-1 (1+x) a-b+1 e -zx dx, a, z > 0, b ∈ R.
Proof. It is a simple consequence of that fact that due to the definition of the Kummer function U in (16) the normalizing constant of the Kummer distribution K α (a, b, c) has the form α a Γ(a)U (a,a-b+1, c α )

.

Remark 3.1. Note that when b = a + 1 in view of (16) we have

U (a, a + 1, z) = z -a , whence (15) gives L (α) X (0, 0, z) = c a (c+z) a , which implies that X is a Gamma random variable, G(a, c). Proposition 3.2. Let b ∈ R, a, c, α > 0. Assume that for some fixed (s, t) ∈ (0, ∞) × R and all z > 0 (17) L (α) X (s, t, z) = k(s, t)U a + s, a + s -b -t + 1, c+z α ,
where k(s, t) is a constant (depending also on α, a, b, c) Then X ∼ K α (a, b, c).

Proof. Fix some z 0 > 0. Then (18)

L (α) X (s,t,z+z0) L (α) X (s,t,z0) = U a+s,a+s-b-t+1, c+z0+z α U a+s,a+s-b-t+1, c+z0 α , z ≥ 0,
implies that it is the Laplace transform of a random variable Y with distribution

(19) P Y (dy) = y s (1+αy) t e -z 0 y P X (dy) L (α) X (s,t ,z0) 
.

In view of Proposition 3.1, by (15), the random variable Y has the Kummer distribution K α (a + s, b + t, c + z 0 ), i.e.

P Y (dy) ∝ y a+s-1 (1+αy) b+t e -(c+z0)y dy. The result follows by comparing the last formula with (19). Remark 3.2. Let X and Y be independent. Assume also that U and V as defined in (3) are also independent. In view of (4), ( 5) and (6) we then have

(20) L (α) X (s, t, z) L (β) Y (t, s, z) = L (α) U (t, s, z) L (β)
V (s, t, z), (s, t, z) ∈ (0, ∞) × R × (0, ∞). Due to the result of Theorem 2.1 equation (20) has to hold true in case when (X, Y ) ∼ K α (a, b; c) ⊗ K β (b, a; c) and (U, V ) ∼ K α (b, a; c) ⊗ K β (a, b; c). Indeed, using (15) we see that (20) reduces to

(21) U a+s,a+s-b-t+1, c+z α U b+t,b+t-a-s+1, c+z β α s β t U (a,a-b+1, c α ) U b,b-a+1, c β = U b+t,b+t-a-s+1, c+z α U a+s,a+s-b-t+1, c+z β α t β s U (b,b-a+1, c α ) U a,a-b+1, c β .
To see that the above equality holds true we rely on the following identity for the Kummer function U (see (13.1.29) in [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF])

(22) U (a, b, z) = z 1-b U (1 + a -b, 2 -b, z).
Note also, that in view of (20) and (15) of Proposition 3.1 we have

L (α) X (s,t,z) L (α) U (t,s,z) = L (β) V (s,t,z) L (β) Y (t,s,z) = c a-b Γ(b) Γ(a) Γ(a+s) Γ(b+t) (c + z) b-a+t-s .
Now we are ready to formulate the main result which is a characterization of Kummer laws by the detailed balance condition with respect to the function F given in (2). Due to the second part of Remark 2.1 and symmetry with respect to α and β we conclude that the cases β = 0, α > 0 and β > 0, α = 0 also follow immediately from Theorem 2.6. of [START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF]. That is, we need only to prove Theorem 3.3 for α > 0 and β > 0. The proof of this case is given in several steps in the next section.

4. The proof of the characterization for α > 0 and β > 0 4.1. Independence through Kummer transforms. In view of Remark 3.2 the equality ( 20) is equivalent to independence of X, Y and of U, V . We work below with (s, t, z) ∈ (0, ∞) × R × (0, ∞). Differentiating (20) with respect to z and dividing side-wise by (20) we get ( 23)

L (α) X (s+1,t,z) L (α) X (s,t,z) + L (β) Y (t+1,s,z) L (β) Y (t,s,z) = L (α) U (t+1,s,z) L (α) U (t,s,z) + L (β) V (s+1,t,z) L (β) Y (s,t,z)
.

Using identity [START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF] we obtain

β L (α) X (s,t-1,z) L (α) X (s,t,z) + α L (β) Y (t,s-1,z) L (β) Y (t,s,z) = β L (α) U (t,s-1,z) L (α) U (t,s,z) + α L (β) V (s,t-1,z) L (β) Y (s,t,z)
.

Changing in the above formula s to s + 1 and t to t + 1 we arrive at

(24) β L (α) X (s+1,t,z) L (α) X (s+1,t+1,z) + α L (β) Y (t+1,s,z) L (β) Y (t+1,s+1,z) = β L (α) U (t+1,s,z) L (α) U (t+1,s+1,z) + α L (β) V (s+1,t,z) L (β) Y (s+1,t+1,z) .
Subtracting side-wise (23) (multiplied by αβ) from (24), in view of (13), we get

(25) β M X (s, t, z) + α M Y (t, s, z) = β M U (t, s, z) + α M V (s, t, z),
where

M W (s, t, z) = L (γ) W (s+1,t,z)L (γ) W (s,t+1,z) L (γ) W (s,t,z)L (γ) W (s+1,t+1,z) . Note also that (20) implies (26) M X (s, t, z)M Y (t, s, z) = M U (t, s, z)M V (s, t, z).
Combining ( 25) with (26) we get

(β M X (s, t, z) -α M V (s, t, z)) (M X (s, t, z) -M U (t, s, z)) = 0 (27) (β M U (t, s, z) -α M Y (t, s, z)) (M V (s, t, z) -M Y (t, s, z)) = 0. (28) Since M X , M Y , M U , M V all extend uniquely to meromorphic functions in a common domain in C 3 it follows from (27) that either β M X ≡ α M V or M X ≡ M U and from (28) that either β M U ≡ α M Y or M V ≡ M Y .
In Section 4.2 we will prove that β M X ≡ α M V is impossible. It will follow by symmetry that also β M U ≡ α M Y is impossible. Then, in Section 4.3 we will consider the case M X ≡ M U . The case M V ≡ M Y will follow by the analogous approach.

The case βM

X ≡ αM V is impossible. Assume (29) βM X (s, t, z) = αM V (s, t, z), s, t ≥ 0, z > 0. Define (30) A(s, t, z) := L X (s+1,t)L V (s,t) L X (s,t)L V (s+1,t)
and (31) C(s, t, z) := L X (s,t)L V (s,t+1) L X (s,t+1)L V (s,t) , where we suppressed the argument z and superscripts (α) and (β) in L X and L V , respectively. Note that (29) implies

A(s, t + 1, z) = β α A(s, t, z) and C(s + 1, t, z) = α β C(s, t, z), s, t ∈ N. Consequently, A(s, t, z) = β α t a(s, z), and C(s, t, z) = α β s c(t, z),
where a(s, z) = A(s, 0, z) and c(t, z) = C(0, t, z).

Note that (29) implies also

αA(s, t, z) L X (s,t) L X (s+1,t+1) = βC(s, t, z) L V (s,t) L V (s+1,t+1) . Consequently, h(s, t, z) := a(s,z) c(t,z) = α β t-s-1 L X (s,t)L V (s+1,t+1) L X (s+1,t+1)L V (s,t) . Then α β s-t+1 ∂h(s,t,z) ∂z = Num [L X (s+1,t+1)L V (s,t)] 2 , where the numerator Num = -[L X (s + 1, t)L V (s + 1, t + 1) + L X (s, t)L V (s + 2, t + 1)] L X (s + 1, t + 1)L V (s, t) + L X (s, t)L V (s + 1, t + 1) [L X (s + 2, t + 1)L V (s, t) + L X (s + 1, t + 1)L V (s + 1, t)] =L X (s, t)L V (s, t) [L X (s + 2, t + 1)L V (s + 1, t + 1) -L X (s + 1, t + 1)L V (s + 2, t + 1)] + L X (s, t)L X (s + 1, t + 1)L V (s + 1, t)L v (s + 1, t + 1) -L X (s + 1, t)L X (s + 1, t + 1)L V (s, t)L V (s + 1, t + 1) = I 1 + I 2 -I 3 .
Note that the last two summands in the above expression can be rewritten with the help of (13) as follows:

I 2 = 1 β L X (s, t)L X (s + 1, t + 1)L V (s + 1, t) [L V (s, t) -L V (s, t + 1)] and I 3 = 1 α L X (s + 1, t) [L X (s, t) -L X (s, t + 1)] L V (s, t)L V (s + 1, t + 1
). Consequently,

I 1 + I 2 -I 3 = L X (s, t)L V (s, t) 1 α L V (s + 1, t + 1) [αL X (s + 2, t + 1) -L X (s + 1, t)] -1 β L X (s + 1, t + 1) [βL V (s + 2, t + 1) -L V (s + 1, t)] + 1 α L X (s + 1, t)L X (s, t + 1)L V (s, t)L V (s + 1, t + 1) -1 β L X (s, t)L X (s + 1, t + 1)L V (s + 1, t)L V (s, t + 1).
Note that (29) implies that the two last terms cancel. Therefore referring again to [START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF] in the first two expressions above we get

Num = L X (s, t)L V (s, t)L X (s + 1, t + 1)L V (s + 1, t + 1) β-α αβ whence ∂ h(s,t,z) ∂ z = h(s, t, z) β-α αβ , i.e. h(s, t, z) = C(s, t) exp β-α
αβ z , where C(s, t) does not depend on z. Consequently,

a(s,z) c(t,z) = a(s) c(t) e z β-α αβ ,
where a(s) = a(s, 0) and c(t) = c(0, t). Therefore, for s = t = 0 we obtain

(32) e - 1 α - 1 β z (0,∞) 2 x 1+αx e -z(x+v) P X (dx)P V (dv) = βc(0) αa(0) (0,∞) 2 v 1+βv e -z(x+v) P X (dx)P V (dv).
Note that the support of X + V , where P X (dx) ∝ x 1+αx P X (dx) for X and V independent is the same as the support W of X + V , where X and V are independent, X d = X and V d = V . Similarly, the support of X + Ṽ , where P Ṽ (dv) ∝ v 1+βv P V (dv), is W. But (32) implies that W + 1 α -1 β = W which is impossible since inf W ≥ 0 and α = β.

4.3.

The case of M X ≡ M U and functions a, b and f . We consider the equation (33) M X (s, t, z) = M U (t, s, z), s, t ∈ {0, 1, . . .}, z > 0.

Denote (34)

A(s, t, z) := L X (s+1,t)L U (t,s) L X (s,t)L U (t,s+1) , and (35) B(t, s, z) := L U (t+1,s)L X (s,t) L U (t,s)L X (s,t+1) ,

where we skipped the superscript (α) and the argument z in L X and L U . Note that (33) implies that for all s, t ∈ N = {0, 1, . . .} we have A(s, t, z) = A(s, t + 1, z) and B(t, s, z) = B(t, s + 1, z).

Consequently, for (s, t) ∈ N 2 we have A(s, t, z) = A(s, 0, z) =: A(s, z) and B(t, s, z) = B(t, 0, z) =: B(t, z). Now (33) can be written as ,s+1) . Consider now the quotient 

(36) A(s, z) L X (s,t) L X (s+1,t+1) = B(t, z) L U (t,s) L U (t+1
A(s,z) B(t,z) = L X (s+1,t+1)L U (t,s) L X (s,t)L U (t+1,s+1
(t + 1, s) 1 α [L U (t, s) -L U (t, s + 1)] -L X (s + 1, t) 1 α [L X (s, t) -L X (s, t + 1)]L U (t, s)L U (t + 1, s + 1)
, where we twice used [START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF]. Referring again to (33), after cancellation, we get

α Num L X (s,t)L U (t,s) =L U (t + 1, s + 1) [αL X (s + 2, t + 1) -L X (s + 1, t)] -L X (s + 1, t + 1) [αL U (t + 2, s + 1) -L U (t + 1, s)] .
Note that (13) applied to the expressions in square brackets above gives L X (s + 1, t + 1) for the first square bracket and L U (t + 1, s + 1) for the second. Consequently, Num = 0 and thus A(s,z) B(t,z) = a(s) b(t) , where a(s) := A(s, 0) and b(t) := B(t, 0). Consequently, we have the representations:

(37) A(s, z) = f (z)a(s) and B(t, z) = f (z)b(t), z > 0, s, t ∈ N,
where f = A(0,z) a(0) = B(0,z) b(0) . Note that (36) can be rewritten as (38) a(s) L X (s,t,z) L X (s+1,t+1,z) = b(t) L U (t,s,z) L U (t+1,s+1,z) .

4.4.

Computing a, b and f . Taking logarithms of (34) sidewise and differentiating with respect to z, in view of ( 14), we obtain

f f = -L X (s+2,t) L X (s+1,t) + L X (s+1,t) L X (s,t) -L U (t+1,s) L U (t,s) + L U (t+1,s+1) L U (t,s+1) . Note that ∂ 2 ∂z 2 log L X (s, t) = L X (s+2,t) L X (s,t) -L X (s+1,t) L X (s,t) 2 .
Using the above formula, the identity ( 14) and recalling the definition of M U we finally get

f f ∂ ∂z log L X (s, t) = ∂ 2 ∂z 2 log L X (s, t) + L X (s+1,t)L U (t+1,s) L X (s,t)L U (t,s)
(1 -M -1 U (t, s, z)). Starting with (35), in a similar way, we obtain the analogue of the above

f f ∂ ∂z log L U (t, s) = ∂ 2 ∂z 2 log L U (t, s) + L U (t+1,s)L X (s+1,t) L U (t,s)L X (s,t)
(1 -M -1 X (s, t, z)). Subtracting the last two equalities sidewise we obtain

f f = g g , where g = ∂ ∂z log L U (t,s) L X (s,t) . Consequently, (39) K(s, t)f = ∂ ∂z log L U (t,s) L X (s,t) = L X (s+1,t) L X (s,t) -L U (t+1,s) L U (t,s)
for some function K which does not depend on z. Referring to (34) and (35) again we get t) . Now, (13) applied to L U (t, s + 1) and L X (s, t + 1) gives

K(s, t) = a(s) L U (t,s+1) L U (t,s) -b(t) L X (s,t+1) L X (s,
K(s, t) = a(s) -b(t) + α a(s) L U (t+1,s+1) L U (t,s) -b(t) L X (s+1,t+1) L X (s,t)
.

Referring to (38) we see that the expression in parenthesis above is zero, whence K(s, t) = a(s) -b(t).

It is well known that the general solution is of the form

g(z) = c 1 M (b(t), b(t) -a(s), z) + c 2 U (b(t), b(t) -a(s), z),
where (see 13. (1-t) a-b+1 e zt dt.

Recall that M (a, b, z) is unbounded when z → ∞ (see e.g. 13.1.4 in [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF]) and U (a, b, z) → 0 as z → ∞. Since g, as a Laplace transform of a probability measure, is bounded, we necessarily have

g(z) = c U (s, t)U (b(t), b(t) -a(s), z).
Returning to L U (t, s) (recall that g was defined through L U (t, s + 1)) we get

L U (t, s, z) = c U (s, t)U (b + t, b + t -a -s + 1, c+z α ), with a, b > 0 and c ≥ 0.
Changing the roles of L X and L U in the above argument starting with (40) we obtain

L X (s, t, z) = c X (s, t)U (a + s, a + s -b -t + 1, c+z α ). Assume that c = 0. Recalling (16) we see that: (1) if a = b then either U (a, a -b + 1, 0) = ∞ or U (b, b-a+1, 0) = ∞;
(2) if a = b then U (a, 1, 0) = U (1, 1-a, 0) = ∞. Since L X (0, 0, 0) = L U (0, 0, 0) = 1 we obtain thus a contradiction. Therefore c > 0 and Proposition 3.2 implies that X ∼ K α (a, b, c) and U ∼ K α (b, a, c).

In case κ = 0 we have f (z) = C = 0 and A(s, z) = a > 0 and B(t, z) = b > 0 where a = ãC and b = b/C. We now show that this is impossible. Indeed, (39) then yields a -b = L X (s+1,t) L X (s,t) -L U (t+1,s) L U (t,s) . Combining this with (35) we get (a -b)L X (s, t) = L X (s + 1, t) -bL X (s, t + 1).

For s = t = 0 we thus get E((X -a + b)e -zX = bE 1 1+αX e -zX . Consequently, (x -a + b)P X (dx) = b 1+αx P X d(x). Equivalently, (1+αx)(x-a+b) b P X (dx) = P X (dx).

Since (1 + αx)(x -a + b) = b is equivalent to αx 2 + (α(b -a) + 1)u -a = 0, so its roots have different signs. Since X is nonnegative this would imply that its support degenerates to a point, which contradicts our assumptions. 

X+Y

  are independent (and follow the GIG(-p, b, a) and G(p, b), respectively). Using the terminology of [3], the Matsumoto-Yor property says that the quadruplet of probability measures µ = GIG(-p, a, b), ν = G(p, a), μ = GIG(-p, b, a), ν = G(p, b) satisfy the detailed balance equation for the map

( 3 )

 3 ultra-discrete Toda type II model for F (x, y) := F udT * (x ∧ y, x -y) with µ, ν μ the shifted exponential, ν asymmetric Laplace or µ, ν μ shifted scaled geometric, ν scaled discrete Laplace laws; (4) discrete Toda type II model for F (x, y) := F dT * (x, y) = x + y, x x+y with µ, ν μ the gamma, ν beta laws having a direct reference to Lukacs (1955) characterization of the gamma distribution.

  and differentiate it with respect to u to get ∂x ∂u (1 + αu) + αx = βv ∂y ∂u Combining the latter equality with (7) we get (9) ∂x ∂u = βv-αx 1+αu+βv . Similarly, rewrite (6) as y(1 + βv) = u(1 + αx) and differentiate with respect to v to get ∂y ∂v (1 + βv) + βy = αu ∂x ∂v . Combining the latter equality with (7) we get (10) ∂x ∂v = 1+β(v+y)

Theorem 3 . 3 .Remark 3 . 3 .

 3333 Let α, β ≥ 0, α = β. Let X, Y be positive, independent, non-Dirac random variables and define U = Y 1+β(X+Y ) 1+αX+βY and V = X 1+α(X+Y ) 1+αX+βY . If U and V are independent, then there exist a, b, c > 0 such that(X, Y ) ∼ K α (a, b; c) ⊗ K β (b, a; c).We then have (U, V ) ∼ K α (b, a; c) ⊗ K β (a, b; c). Recall that Theorem 2.6 of[START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF] says that for independent, positive, non-Dirac random variables X and Y if U and V given by (1) are also independent that X ∼ K(a, b, c) and Y ∼ G(b, c). (Note the change of parametrization of the Kummer distribution: instead of b -a in[START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF] we write here just b.) In view of the first part of Remark 2.1 this result covers the case (α, β) = (1, 0) in Theorem 3.3.

  2.1 in [1]), for b > a, M (a, b, z) =

4. 6 ..

 6 Identifying the parameters. We have proved that X ∼ K α (a, b, c), U ∼ K α (b, a, c), Y ∼ K β (ã, b, c) and V ∼ K β (ã, b, c) for some a, b, c, ã, b, c > 0. Using (15) for each of the variables X, Y, U, V , equation (20) reads:Γ(a+s)U a+s,a+s-b-t+1, c+z α α s Γ(a)U (a,a-b+1, c α ) × Γ(ã+t)U ã+t,ã+t-b-s+1, c+z β β t Γ(ã)U ã,ã-b+1, c β = Γ(b+t)U b+t,b+t-a-s+1, c+z α α t Γ(b)U (b,b-a+1, c α ) × Γ(b+s)U b+s, b+s-ã-t+1, c+z β β s Γ( b)U b, b-ã+1, c β which, by applying identity (22) to the left-hand side, gives )U b+t,b+t-a-s+1, c+z α α t Γ(b)U (b,b-a+1, c α ) × Γ( b+s)U b+s, b+s-ã-t+1, c+z β β s Γ( b)U b, b-ã+1, c βAfter cancellations we obtain (45)(c+z) b+t-a-s (c+z) b+s-ã-t c b-a cb -ã × Γ(a+s) Γ(a) × Γ(ã+t) Γ(ã) = Γ(b+t) Γ(b) × Γ(b+s) Γ( b) . Taking the logarithm and differentiating in z gives b+t-a-s c+z + b+s-ã-t c+z = 0. Since this holds for any z > 0, we conclude that c = c and b -a = ã -b. Returning to (45) we have Γ(a+s) Γ(a) × Γ(ã+t) Γ(ã) = Γ(b+t) Γ(b) × Γ( b+s) Γ( b) , which, applied to s = t = 1, yields aã = b b. Since we also had b -a = ã -b, we get a = ã and b = b.

  ) . X (s + 2, t + 1)L U (t, s) + L X (s + 1, t + 1)L U (t + 1, s)]L X (s, t)L U (t + 1, s + 1)

	assumes the form	
	Num =[L -L X (s + 1, t + 1)L U (t, s)[L X (s + 1, t)L U (t + 1, s + 1) + L X (s, t)L U (t + 2, s + 1)]
	=L X (s, t)L U (t, s)[L X (s + 2, t + 1)L U (t + 1, s + 1) -L X (s + 1, t + 1)L U (t + 2, s + 1)]
	+L X (s, t)L X (s + 1, t + 1)L U	
	Then the numerator Num of the derivative	
	∂	A(s,z) B(t,z)
		∂z

Now we write (39) for s + 1 and t, which gives K(s + 1, t)f = ∂ ∂z log L U (t,s+1) L X (s+1,t) . Substracting sidewise this equality from (39) we get (a(s) -a(s + 1))f = ∂ ∂z log L X (s+1,t)L U (t,s) L X (s,t)L U (t,s+1) = d log f dz . Similarly, using (39) with s and t + 1 we get

In case κ = 0 we have A(s, z) = a+s c+z and B(t, z) = b+t c+z , where a := ã/κ, b := b/κ and c = C/κ. Since A(s, z) and B(t, z) are strictly positive for all s ≥ 0, t ≥ 0 and z > 0, we conclude that a, b > 0 and c ≥ 0. 4.5. The Kummer ode and identification (up to parameters) of L X , L U , L Y and L V . Note that (39) can be rewritten as t) , where c(s, t) not depend on z.

Rewrite the above as

and for s + 1 and t as (41) (z + c) K(s+1,t) L X (s + 1, t) = c(s + 1, t)L U (t, s + 1).

Since K(s + 1, t) -K(s, t) = 1, dividing (41) by ( 40) and referring to (34) we get (42) c(s+1,t) c(s,t) = L X (s+1,t)L U (t,s) L X (s,t)L U (t,s+1) (z + s) = a(s). Now we differentiate (40) with respect to z and get

For L X (s, t) and L X (s + 1, t) in (43) insert proper expression from (40) and (41), respectively. Together with (42) it yields a(s)L U (t, s + 1) -K(s, t)L U (t, s) = (c + z)L U (t + 1, s). Regarding L U (t, s) and L U (t + 1, s) as the right hand side of identities [START_REF] Weso Lowski | On the Matsumoto-Yor type regression characterization of the gamma and Kummer distributions[END_REF] with suitable s and t we get