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Abstract: Radiotherapy is one of the main treatments for localized head and neck (HN) cancer.
To design a personalized treatment with reduced radio-induced toxicity, accurate delineation of
organs at risk (OAR) is a crucial step. Manual delineation is time- and labor-consuming, as well
as observer-dependent. Deep learning (DL) based segmentation has proven to overcome some of
these limitations, but requires large databases of homogeneously contoured image sets for robust
training. However, these are not easily obtained from the standard clinical protocols as the OARs
delineated may vary depending on the patient’s tumor site and specific treatment plan. This results
in incomplete or partially labeled data. This paper presents a solution to train a robust DL-based
automated segmentation tool exploiting a clinical partially labeled dataset. We propose a two-step
workflow for OAR segmentation: first, we developed longitudinal OAR-specific 3D segmentation
models for pseudo-contour generation, completing the missing contours for some patients; with all
OAR available, we trained a multi-class 3D convolutional neural network (nnU-Net) for final OAR
segmentation. Results obtained in 44 independent datasets showed superior performance of the
proposed methodology for the segmentation of fifteen OARs, with an average Dice score coefficient
and surface Dice similarity coefficient of 80.59% and 88.74%. We demonstrated that the model can be
straightforwardly integrated into the clinical workflow for standard and adaptive radiotherapy.

Keywords: DL; automated segmentation; head and neck radiotherapy; organs-at-risk; partially
labeled; longitudinal data

1. Introduction

Head and neck (HN) cancer is the seventh most common cancer worldwide. In 2020,
931,931 new patients were diagnosed with HN cancer, increasing the prevalence of the
disease to 2,411,687 patients and accounting for 467,125 deaths [1]. Tumors can appear in
various subsites, including the lip, oral cavity, salivary glands, nasopharynx, oropharynx,
hypopharynx, larynx, nasal and paranasal cavity, and ear [2].

Radiotherapy (RT) is currently one of the most common treatment strategies. It
consists of applying high-energy radiation from x-rays, gamma rays, or protons to the
tumor mass and high-risk areas to damage the DNA of cancerous cells and impede their
cellular division. Despite its significant advantages, the main limitation of RT is that the
healthy tissues surrounding the tumor (organs at risk (OAR)) also suffer partial irradiation,
which may lead to diverse complications and toxicities. Thus, one of the most critical
steps during RT treatment planning is accurately contouring the target volume and OARs.
This allows estimating the dose these structures will receive and developing personalized
strategies to mitigate the radio-induced toxicities [3], which is critical in HN cancer due to
the high amount of OARs present in the region.
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1.1. Contouring in HN Radiotherapy

Contouring is often performed manually by trained radiation oncologists [4]. This task,
also referred to as segmentation or delineation, is highly time-consuming and presents a
subjective component [5–8]. An expert can spend over four hours on a single HN case [3,9],
which may delay treatment increasing risks of local recurrence and mortality. Furthermore,
this process is thoroughly subjected to inter- and intra-practitioner variabilities [6,9,10]
driven by diverse factors such as experience, availability, quality, and interpretation of
diagnostic imaging [4]. The limited soft tissue contrast of computed tomography (CT)
images is also a substantial problem in HN delineation [10,11], as many OARs have similar
densities to fat, muscle, or other surrounding tissues. Segmenting these OARs, such as the
parotid or submandibular glands, is particularly challenging [8]. Moreover, various studies
have associated contouring variation with decreased plan quality, worse disease control,
increased toxicity, and inferior survival rates [4,9]. The limitations of manual segmentation
also represent a barrier to adaptive radiotherapy [3]. In this context, automated computer-
performed segmentation (auto-segmentation) has been explored to address all of these
challenges. The following section presents the most important contributions to solving this
problem in HN radiotherapy.

1.2. Literature Review

Until the past years, most of the automatic contouring tools in clinical use were atlas-
based [9,12]. However, the anatomical variability between patients and the low grayscale
contrast in certain HN areas yield errors in the atlas registration and, therefore, in the auto-
matic segmentations [13]. In recent years, DL-based algorithms have proven to overcome
the limitations of manual and atlas-based contouring, boosting performance [12,14,15],
yielding more robust OAR segmentations and, therefore, safer and more efficient treat-
ments [16–18]. Regardless, even if DL-based OAR auto-segmentation becomes the new
standard, an expert must always examine the contours to account for specificities in the
patient’s anatomy and tumor morphology. In this scenario, the clinicians would only need
to review the delineations instead of performing a full segmentation, reducing the time
spent by more than 90% [16]. Several DL methods have been proposed focused on HN
contouring [19], predominantly based on convolutional neural networks (CNNs). Many of
them are based on 3D U-Net [20] and achieve good performance [3,10,13,21,22]. Others are
based on on a two [23–26] or multi-step [27] workflow. The number of structures studied
ranges from 4 to 28 OARs.

Several factors still limit the clinical implementation of DL-based auto-segment-
ation [6,9,28], including a lack of standardization of contouring protocols [10,29], trust
among the users, and limited availability of large, labeled databases. Ideally, to train
a robust DL segmentation network, an extensive database of patient CT images would
need to be labeled, reviewed, and curated by several experts following the same delin-
eation guidelines [7,30]. A second labeled database would allow for external validation.
Nonetheless, this ideal scenario is highly unfeasible for most medical centers, as labeling
large databases is incompatible with the daily clinical workload. On the contrary, clini-
cal centers do have many partially labeled and unlabeled datasets [7,9]. In many cases,
longitudinally collected data from the treatment is also available. These data can also be
exploited with DL and, furthermore, used to optimize individual treatment for patients in
an adaptive RT framework [5]. Curating this data may be necessary to ensure homogeneous
learning [8,13,30,31].

Aiming to exploit the available data in a medical center, Liu et al. [11] proposed a
multiview contrastive representative learning framework. They generated 2D CT slices
as the input to a self-supervised 2D CNN outputting three 3D segmentations and using a
contrastive loss to select the correlated predictions. They trained their network with more
than 3D 200 CTs from unique patients, but only 56 were labeled. They used the labeled data
for initial training and then fine-tuned the network using the unlabeled images, evaluating
their results in the labeled dataset, achieving a mean Dice score coefficient (DSC) of 0.86
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over 24 OARs. Although they made direct comparisons with other state-of-the-art methods,
they lacked an external validation on an independent test set. Chi et al. [7] also proposed
a solution to train CNNs with limited labels based on a weakly supervised algorithm
with a pseudo-contouring generation technique. They generated pseudo-labels with a
Demons-based free-form deformable image registration algorithm to transfer contours
from labeled data to new images and then trained a recursive ensemble organ segmentation
model. They segmented 5 OARs training their framework with only 29 labeled images,
achieving DSCs between 0.61 and 0.88. AnatomyNet [32] was also trained with inconsistent
data annotations with missing ground truth for some anatomical structures. As a solution,
they employed a weighted loss function updating and balancing the weights according to
the number of missing annotations, segmenting 9 OARs with a mean DSC of 0.79.

In this context, we propose a two-step solution to exploit the available partially labeled
data in a medical center and train a robust DL-based auto-contouring framework for
HN OAR segmentation. The method takes advantage of the longitudinal character of
our database which allows to: (i) generate pseudo-contours for the missing labels; and
(ii) improve segmentation accuracy by enriching the framework when incorporating a
baseline image from each patient. Our solution performs robust segmentation of fifteen
HN OARs and could be easily implemented for adaptive RT.

2. Materials and Methods
2.1. Database

Data were selected retrospectively from the ARTIX study (Adaptive Radiotherapy
to Decrease Xerostomia in Oropharynx Carcinoma) [33]. All the patients were adults
(>18 and <75 years of age) with locally advanced non-metastatic carcinoma of the orophar-
ynx limited to T3 and T4 and N2-N3 treated with arc-IMRT (Intensity-Modulated Radiation
Therapy). Data comprised HN CT scans from 48 patients treated with RT in the CLCC
Eugène Marquis between 2013 and 2018. For each patient, all contours were delineated by
a single expert radiation oncologist amongst a team of ten who participated in the whole
study. The patients underwent adaptive RT with weekly replanning, with between two
and six CT scans acquired and delineated during the treatment course.

Two hundred and sixty-nine CT scans were included in our study. The standard CT
in-plane pixel spacing was 1.131 mm × 1.131 mm, whereas slice thickness varied between
2 mm and 3 mm. The clinical data comprised inconsistent data annotations with missing
ground truth contours for some anatomical structures. In other words, a different number
of OAR (between 5 and 30) were segmented in each CT image. In some cases, even for the
same patient, particular OARs were delineated in some CT scans but not others. We selected
the fifteen HN OARs with the highest availability throughout the cohort: brain, brainstem,
right/left (R/L) inner ear, R/L parotid glands, R/L temporomandibular joint, mandible,
R/L submandibular glands, lips, larynx, esophagus, and spinal canal. OAR contouring
frequency is depicted in Table 1. From the 24 patients for which the described fifteen
OARs were fully contoured in all CT scans, we randomly selected a subset of 8 patients.
This yielded 44 CT images that were excluded from all training steps and saved as the
independent test group.

2.2. Proposed Framework

We exploited the longitudinal information in our dataset to solve the partial annota-
tions problem with the following two-step workflow (Figure 1). After preprocessing, we
firstly trained a single-class OAR-specific 3D U-Net-based network for each organ. These
trained models were used to generate pseudo-contours for the missing OAR delineations,
obtaining multi-class masks for every CT in the training set. Secondly, a nnU-Net [34] was
trained with the constructed multi-class masks. This final model exploits the anatomical
spatial interdependence among the OARs, yielding the final delineations. We evaluated
the workflow in the independent test group. The experiments were performed on a CUDA-
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enabled Nvidia Quadro RTX 8000 GPU with 48 GB of memory. DL-based models were
implemented in PyTorch 1.11.

Table 1. OAR contouring frequency in the dataset used to train the workflow. # stands for “Number
of”. The first column depicts the OARs segmented in the study. The second and third columns
correspond to the total number of patients for which each OAR segmentation was available in at
least one CT, and the number of CTs contoured for that OAR, respectively. These CTs were then
divided into train/test sets for the OAR-specific models. The division is depicted in the following
two columns.

OAR
# Annotations Used to Train the Workflow # CT Images in OAR-Specific Models
Patients (n = 40) CTs (n = 225) ntrain ntest

Brain 33 165 132 33
Mandible 40 224 179 45
Spinal canal 40 221 176 45
Brainstem 40 225 180 45
Esophagus 34 179 143 36
Larynx 36 198 158 40
Parotid glands 40 217 173 44
Lips 33 181 144 37
Submandibular glands 34 183 146 37
Temporomandibular joints 38 205 164 41
Inner ears 39 217 173 44

The data in the independent set, comprising 44 CT images from 8 patients with all OARs segmented, was kept
aside from all training steps.

Entropy 2022, 24, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 1. Proposed framework. During training, the CT image is first preprocessed and curated. 
Then, the OAR-specific networks are trained to generate the pseudo-contours, which are ensembled 
together with the available ground truth segmentations into a multi-class mask. These fully seg-
mented images are used to train nnU-Net to predict the OAR contours. During inference, it is only 
necessary to preprocess the CT image and predict contours with the trained nnU-Net. The results 
can then be evaluated and compared to the ground-truth delineations (if available). (Ground truth 
contours make up a multi-class mask but are depicted in brown for visualization purposes). 

2.2.2. OAR-Specific Models 
A single-class network was trained to segment each OAR independently (OAR-spe-

cific models), all with the same architecture and training parameters: 3D Residual U-Net 
[37] with six levels; two residual units concatenated in each downsampling and upsam-
pling layer; encoder with strided convolutions of size two and decoder image upsampling 
with strided transpose convolutions; and parametric rectifying linear units [38] and in-
stance normalization to boost segmentation accuracy [37].  

For each OAR-specific network, training, validation, and test sets were randomly 
built following an optimal division of 64%, 16%, and 20%, respectively. As each CT con-
tained a different number of ground truth segmentations, the number of images to train 
each OAR-specific network also differed (Table 1).  

Extensive data augmentation, performed within MONAI [39] (a software framework 
for medical image analysis with deep learning that includes specific functions for medical 
data input, preprocessing, or augmentation), was applied to the CT and segmentation 
map at each epoch of the training to increase data variability and heterogeneity, including 
random 90° rotations, flips, and intensity shifts with a probability of 50%. Four random 
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input image at every epoch. The batch size was set to two, yielding eight samples per 
iteration. During validation, no data augmentation was applied. Inference was calculated 
with a sliding window of size 128 × 128 × 128 with a 25% overlap between scans.  

The loss function was a combination of Dice Coefficient and Cross-Entropy [14]. 
Models were trained and regularized with AdamW, a stochastic optimizer that decouples 
the L2 regularization weight decay in the Adam optimizer from the gradient update [40]. 
Each network was trained for 350 epochs with an initial learning rate of 10−4 and a weight 
decay of 10−5, completed in an average of 3 h and 24 min. The trained OAR-specific models 

Figure 1. Proposed framework. During training, the CT image is first preprocessed and curated. Then,
the OAR-specific networks are trained to generate the pseudo-contours, which are ensembled together
with the available ground truth segmentations into a multi-class mask. These fully segmented images
are used to train nnU-Net to predict the OAR contours. During inference, it is only necessary to
preprocess the CT image and predict contours with the trained nnU-Net. The results can then be
evaluated and compared to the ground-truth delineations (if available). (Ground truth contours make
up a multi-class mask but are depicted in brown for visualization purposes).
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2.2.1. Preprocessing

CT scans were resampled to a standard voxel space of 1 mm × 1 mm × 1 mm.
Then, the maximum patient body size was calculated with a windowing technique that
allowed removing the medical bed from the image and locating body edges. The maxi-
mum body size in each direction was computed and used to crop all CTs to a fixed size of
224 × 224 × 224 voxels, ensuring that all OARs were included in the resulting volume. The
ground truth delineations of four OARs were curated under the supervision of a clinical ex-
pert according to the Brouwer Atlas [35], both in the training and test sets. The spinal canal
and esophagus contours underwent curation to ensure that their cranial and caudal limits
were consistent. Temporomandibular joints and inner ears required more extensive refine-
ment to correct particular contours that deviated from the segmentation protocol. Moreover,
the right and left contours of the symmetric organs (inner ears, temporomandibular joints,
parotid, and submandibular glands) were joined into one single mask and considered
as a single OAR. An ablation study conducted by our group (in artificial intelligence an
ablation study allows to investigate the performance of an overall system when removing
or modifying certain components, demonstrating an increased segmentation accuracy
when dealing with symmetric OARs as a single anatomical structure [31,36]. This yielded
eleven separate OARs to train the framework.

2.2.2. OAR-Specific Models

A single-class network was trained to segment each OAR independently (OAR-specific
models), all with the same architecture and training parameters: 3D Residual U-Net [37]
with six levels; two residual units concatenated in each downsampling and upsampling
layer; encoder with strided convolutions of size two and decoder image upsampling with
strided transpose convolutions; and parametric rectifying linear units [38] and instance
normalization to boost segmentation accuracy [37].

For each OAR-specific network, training, validation, and test sets were randomly built
following an optimal division of 64%, 16%, and 20%, respectively. As each CT contained
a different number of ground truth segmentations, the number of images to train each
OAR-specific network also differed (Table 1).

Extensive data augmentation, performed within MONAI [39] (a software framework
for medical image analysis with deep learning that includes specific functions for medical
data input, preprocessing, or augmentation), was applied to the CT and segmentation
map at each epoch of the training to increase data variability and heterogeneity, including
random 90◦ rotations, flips, and intensity shifts with a probability of 50%. Four random
crops of 128 × 128 × 128 voxels, including the ground truth label, were performed for
each input image at every epoch. The batch size was set to two, yielding eight samples per
iteration. During validation, no data augmentation was applied. Inference was calculated
with a sliding window of size 128 × 128 × 128 with a 25% overlap between scans.

The loss function was a combination of Dice Coefficient and Cross-Entropy [14].
Models were trained and regularized with AdamW, a stochastic optimizer that decouples
the L2 regularization weight decay in the Adam optimizer from the gradient update [40].
Each network was trained for 350 epochs with an initial learning rate of 10−4 and a weight
decay of 10−5, completed in an average of 3 h and 24 min. The trained OAR-specific models
were evaluated on their own test set and on the independent test group by computing the
Dice score coefficient (DSC) and average surface distance (ASD) between the predictions
and the ground truth masks. The DSC is defined as the relative spatial overlap between
two binary volumes [41]; whereas the ASD is the average of all the Euclidean distances
between the boundary voxels of two volumes [42].

An ablation study was performed to analyze the impact on the accuracy of having
fewer CT images for training. As depicted in Table 1, the radiologists contoured the
brainstem, spinal canal, mandible, and parotid glands in almost all CTs. On the contrary,
the brain was segmented in only 172 CTs out of 225 samples. To analyze if this could have
downgraded the performance of some OAR-specific models, we randomly removed 10,
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20, 30, 40, and 50 samples from the brainstem, spinal cord, mandible, and parotid glands’
training sets. We trained a new OAR-specific model for each of these scenarios (reduced-
data models) and compared their accuracy on the independent test set to the original
models. The number of training images was different for each reduced-data model, and can
be calculated by subtracting 10, 20, . . . to the values indicated in Table 1 (third column).

2.2.3. Pseudo-Contour Generation

We used the trained OAR-specific models to generate pseudo-contours for the CT
images with missing labels to have a fully segmented training image set. We hypothesized
that all patients would be contoured with enough precision by our networks, especially
those for which a certain OAR was annotated on at least one CT image. After visual
inspection, no meaningful errors or outliers were discovered among the generated pseudo-
contours. The average time for pseudo-contour generation was 8 s per contour on GPU. A
multi-class mask was created for each CT image, ensembling the available ground truth
segmentations with the generated pseudo-contours replacing the missing labels, yielding
labelmaps with eleven classes.

2.2.4. Multi-Class Network

nnU-Net [34] is a deep learning-based segmentation framework. It is a self-configuring
method that optimizes all the steps involved in segmentation for a new given task: prepro-
cessing, network architecture, training parameters, and post-processing. We trained a 3D
full-resolution U-Net within this framework with 5-fold cross-validation for 800 epochs
per fold, not modifying any other default parameter in nnU-Net implementation. As
input, we used the CTs and ensembled multi-class contours, and trained the network in a
multi-class fashion to segment all OARs simultaneously. This allowed the model to learn
and exploit the anatomical spatial relationships between the individual OARs, which was
expected to be highly beneficial for segmentation robustness. The model was trained with
a combination of Dice and cross-entropy losses and the Adam optimizer with an initial
learning rate of 10−4. Each fold was completed in 23 h and 14 min on average.

The inference was implemented using an overlapping sliding window. The Dice
score coefficient (DSC), surface Dice similarity coefficient (sDSC), and average surface
distance (ASD) were computed to evaluate the performance of the trained model. The
sDSC evaluates the overlap between two surfaces at a specified tolerance [3], so a perfect
sDSC would imply that approximately 95% of the surface is correctly outlined whereas
5% must be refined. We implemented the sDSC using pre-computed tolerances presented
in [3]. All the experiments were evaluated before and after data curation in the test set.

We conducted two experimental studies exploiting our longitudinal data. First, we
evaluated the feasibility of adapting the model to new data for adaptive RT, following a
similar approach to [43]. With this aim, we added the first acquired CT of each test patient
to the training set and performed transfer learning with the trained nnU-Net for 100 new
epochs. This model (self-supervised model) was again evaluated in the independent test
set. Secondly, the accuracy of the predicted contours was analyzed per patient with the
semi-supervised and self-supervised models.

3. Results
3.1. OAR-Specific Models

Table 2 depicts the evaluation of each OAR-specific model in its own test and in-
dependent test sets before and after data curation. The results were highly accurate in
the OAR-specific test sets, with the DSC above 81% for all OARs except the lips and
submandibular glands. On the independent test set, the DSC was still higher than 81%
for the brain, mandible, spinal canal, and brainstem. On the contrary, the larynx, lips,
and submandibular glands presented the most substantial deviations (66.73 ± 9.31%,
45.17 ± 18.18%, and 55.40 ± 21.14%, respectively). As expected, the four refined OARs
underwent a substantial increase in performance after data curation, especially significant
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for the temporomandibular joints and inner ears (from 67.26% to 83.34%, and 55.49% to
83.76%, respectively). These results were consistent with the ASD evaluation.

Table 2. Dice score coefficient (DSC) and average surface distance (ASD) from evaluating the OAR-
specific models in each individual test set, uncurated and curated independent test group. The
number of CT images (nCT) used for training and testing each network is also depicted. (PG: parotid
glands; SMG: submandibular glands; TMJ: temporomandibular joints).

OAR
Test Independent Test (nCT = 44)

DSC (%) ASD (mm) DSC (%)
Uncurated

DSC (%)
Curated

ASD (mm)
Uncurated

ASD (mm)
Curated

Brain 98.04 ± 1.19 0.440 ± 0.070 98.16 ± 0.29 0.494 ± 0.088
Mandible 91.09 ± 1.75 0.411 ± 0.078 88.31 ± 3.42 0.553 ± 0.132
Spinal canal 88.87 ± 4.54 0.903 ± 1.302 80.21 ± 6.53 84.11 ± 5.67 1.007 ± 0.454 0.833 ± 0.401
Brainstem 89.07 ± 4.19 0.636 ± 0.225 81.86 ± 2.76 1.084 ± 0.214
Esophagus 81.39 ± 4.61 0.844 ± 0.492 63.07 ± 11.87 73.50 ± 10.36 2.818 ± 3.178 1.116 ± 0.743
Larynx 82.64 ± 9.11 0.990 ± 0.545 66.73 ± 9.31 2.026 ± 0.753
PG 86.05 ± 5.79 1.162 ± 2.701 75.22 ± 3.55 1.113 ± 0.246
Lips 71.88 ± 15.11 2.177 ± 3.801 45.17 ± 18.18 2.346 ± 1.748
SMG 79.39 ± 7.72 0.782 ± 0.331 55.40 ± 21.14 2.489 ± 2.475
TMJ 87.31 ± 3.57 0.430 ± 0.201 67.26 ± 12.36 83.34 ± 4.72 0.916 ± 0.467 0.523 ± 0.132
Inner ears 87.39 ± 3.03 0.514 ± 0.703 55.49 ± 12.98 83.76 ± 3.69 1.414 ± 0.398 0.531 ± 0.129

Figure 2 shows the results from the ablation study with the reduced-data models:
a comparison between the DSC obtained with the original OAR-specific models of the
brainstem, spinal canal, mandible, and parotid glands, and the reduced-data ones. For all
OARs, removing up to 40 training images did not affect the models’ performance in the
independent test group. After extracting 50 images, a slight decrease in the DSC could be
observed for the brainstem and the parotid glands, concurrently with a higher presence
of outliers.
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3.2. Multi-Class Network

Table 3 (a) shows the evaluation of our trained nnU-Net on the independent test group.
The average DSC was 73.74 ± 18.61% for the uncurated data, and 80.59 ± 16.41% after
curation of the ground truth contours. The four curated OARs experienced a substantial
improvement after data homogenization (Figure 3), especially the temporomandibular
joint and inner ear contours (the DSC improved from 67.92% to 89.73%, and from 54.74%
to 86.03%, respectively). After data curation, all OARs presented a mean DSC above
81% except for the larynx, lips, and submandibular glands. The submandibular glands’
delineations comprised the more noticeable outliers, with a standard deviation in the DSC
of 25.61%. Other significant outliers disappeared after data refinement, as in the case of the
esophagus and the temporomandibular joints (Figure 3).

Table 3. Dice score coefficient (DSC), surface Dice similarity coefficient (sDSC), and average surface
distance (ASD) corresponding to the evaluation of trained nnU-Net in the independent test with
the (a) semi-supervised model; (b) self-supervised model. For the four refined OARs, the results are
shown for the uncurated data (U) and curated one (C). (PG: parotid glands; SMG: submandibular
glands; TMJ: temporomandibular joints).

OAR
(a) Semi-Supervised Model (b) Self-Supervised Model

DSC (%) sDSC (%) ASD (mm) DSC (%) sDSC (%) ASD (mm)

Brain 97.99 ± 0.29 96.68 ± 1.27 0.475 ± 0.067 98.02 ± 0.29 96.97 ± 1.17 0.470 ± 0.068
Mandible 90.10 ± 2.76 96.46 ± 1.72 0.465 ± 0.108 90.60 ± 2.34 97.21 ± 1.38 0.440 ± 0.082

Spinal canal U 82.03 ± 6.74 84.33 ± 10.61 0.864 ± 0.364 83.53 ± 6.03 87.26 ± 8.58 0.822 ± 0.354
C 85.95 ± 6.25 89.75 ± 10.29 0.696 ± 0.339 86.92 ± 5.04 91.86 ± 7.29 0.669 ± 0.287

Brainstem 86.14 ± 3.32 98.15 ± 4.27 0.827 ± 0.184 87.05 ± 3.63 98.33 ± 4.71 0.776 ± 0.194

Esophagus U 65.83 ± 12.19 76.86 ± 12.25 2.694 ± 3.552 66.04 ± 13.92 77.11 ± 14.15 2.987 ± 3.929
C 83.92 ± 4.56 92.35 ± 4.27 0.569 ± 0.156 86.77 ± 4.43 95.24 ± 3.53 0.507 ± 0.139

Larynx 71.57 ± 7.00 73.73 ± 12.15 1.630 ± 0.779 79.47 ± 6.50 85.67 ± 11.16 1.254 ± 0.719
PG 82.56 ± 2.81 96.29 ± 2.37 0.802 ± 0.142 83.70 ± 2.20 97.48 ± 1.84 0.753 ± 0.118
Lips 51.20 ± 15.80 58.05 ± 18.76 1.449 ± 0.420 68.96 ± 9.09 78.83 ± 13.28 0.957 ± 0.301
SMG 61.29 ± 25.61 78.44 ± 26.64 2.245 ± 2.690 65.80 ± 22.34 83.79 ± 22.04 1.912 ± 2.223

TMJ
U 67.92 ± 14.16 79.89 ± 15.96 0.877 ± 0.489 67.83 ± 14.92 79.16 ± 16.18 0.882 ± 0.546
C 89.73 ± 3.81 99.27 ± 1.62 0.321 ± 0.119 91.38 ± 2.17 99.59 ± 1.02 0.256 ± 0.073

Inner ears
U 54.74 ± 12.69 65.43 ± 14.35 1.446 ± 0.378 53.12 ± 13.42 61.71 ± 16.18 1.534 ± 0.416
C 86.03 ± 2.88 96.98 ± 2.77 0.467 ± 0.097 88.16 ± 2.56 98.18 ± 2.03 0.414 ± 0.094

The sDSC was higher than the DSC for all OARs except the brain, for which the
average sDSC and DSC were 96.66% and 97.99%, respectively. All OARs achieved a mean
sDSC above 90%, except for the larynx, lips, and submandibular glands. The sDSC was
particularly higher than the DSC for the parotid glands, temporomandibular joints, and
inner ears, with mean values of 96.29%, 99.27%, and 96.98% after data curation.

The predictions of the four refined OARs experienced a large reduction in their mean
ASDs compared to the ground truth contours after curation (Figure 3). For the spinal canal,
ASD decreased from 0.864 to 0.696 mm, and from 2.694 to 0.569 mm in the esophagus. The
submandibular glands also showed significant outliers in the ASD, in agreement with the
obtained DSC and sDSC.

The numerical results of the self-supervised study conducted by retraining our model
after including the first acquired CT image from the eight test patients are gathered in
Table 3 (b). Compared to the semi-supervised model, the average DSC and sDSC increased
for all OARs (84.26% and 93.01%, respectively). This improvement was especially noticeable
in the larynx, lips, and submandibular glands, which were the OARs that obtained the worst
performance with the original semi-supervised model. The larynx sDSC reached 85.67%,
whereas the lips and submandibular glands increased to 78.83% and 83.79%, respectively.
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Figure 3. Box and whiskers plots of the performance metrics between the predicted and ground truth
contours: (a) Dice score coefficient (DSC); (b) surface Dice similarity coefficient (sDSC); (c) average
surface distance (ASD). In each plot, the comparison between the results with the uncurated (red)
and curated (blue) data can be observed for the four OARs that underwent clinical curation. (SC:
spinal canal; TMJ: temporomandibular joints).

Figures S1 and S2 (Supplementary Materials) show the individualized patient analysis,
which was possible as we had a longitudinal cohort. They depict the DSC variation for
all OARs in each one of the eight patients in the independent test group with the semi-
supervised model (Figure S1) and self-supervised model (Figure S2). For most OARs, the
models performed slightly better for some patients than for others. On the contrary, the
DSC of the larynx, lips, and submandibular glands showed large variations in performance
depending on the CT and patient. For the submandibular glands, there was one patient
for which the contours delineated by the radiation oncologists and the ones predicted
by the model overlapped by less than 10% (Figure 4e–h). Figure S2 also illustrates the
improvement in DSC with the self-supervised model compared to the semi-supervised one
(Figure S1).
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Figure 4. The first row corresponds to the best-segmented patient (Test 01) in the independent test
set: (a) 3D ground truth (GT) contours, (b) 3D predicted contours, and comparison between them in
(c) the sagittal and (d) coronal planes. The second row shows the worst segmented patient (Test 03):
(e) 3D GT contours, (f) 3D predicted contours, and comparison between them in the (g) sagittal and
(h) coronal planes. For this patient, the DSC was lower than 10% for the submandibular glands
between the GT and model’s predictions. In (c,d,g,h), the shaded segmentations correspond to the
predictions, and the outlined borders to the GT delineations. The visualization was performed in
3DSlicer 4.10.2.
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4. Discussion

This paper proposes a DL-based workflow to automatically delineate fifteen OARs
for HN radiotherapy treatment planning. We exploited a longitudinal partially labeled
database to (i) generate accurate OAR segmentations, and (ii) demonstrate the possibility
of enriching the model robustness with a baseline image from each patient.

In the pseudo-contouring step, we trained eleven OAR-specific models to generate
pseudo-contours to complete the missing labels in the dataset (Table 1). As our data were
longitudinal, including images from a patient in the training group was highly beneficial for
robustly segmenting missing labels for that patient. The models showed high performance
in the independent test for most OARs except the larynx, lips, and submandibular glands
(DSC < 70% and ASD > 2 mm). Four OARs (spinal canal, esophagus, temporomandibular
joints, and inner ears), showed a meaningful improvement in performance after data
curation (Table 2), as the DSC increased by an average of 14.67% and the ASD decreased
by a mean of 0.788 mm. Even if the models’ performances were not entirely satisfactory
for some OARs, it must be considered that the goal of this workflow step was to complete
the database by generating pseudo-contours with a simple training architecture. The
reduced-data experiments demonstrated similar performance in the independent test
between the original and reduced-data models (Figure 2). Therefore, we demonstrated that
our approach for this first segmentation step was feasible in longitudinal databases with
between 30 and 40 patients.

The generated pseudo-contours were then ensembled together with the available
ground truth delineations, building a multi-class segmentation for each CT scan to train
nnU-Net. After data refinement, the average DSC, sDSC, and ASD were 80.59%, 88.74%, and
0.904 mm, respectively (Table 3 (a)). These values supported the robustness of the generated
pseudo-contours and the advantages of integrating spatial anatomical relationships during
training. The OARs with the largest differences between the DSC and sDSC were the smaller
structures: brainstem, parotid glands, temporomandibular joints, and inner ears. These
OARs reached an average sDSC above 96%, indicating that almost all contour surfaces
were within the specified tolerance and, therefore, would be exempted from corrections.
These examples indicate the limitations of the commonly employed volumetric DSC [3,4]
and support why we should start to asses OAR segmentation performance with other
metrics such as sDSC, dosimetric calculations, time-based measurements, and clinical
acceptability. The DSC does not assess the surface fraction that needs to be redrawn, as
it does not account for whether there are numerous minor surface deviations across the
volume or only a significant deviation at a single point, largely penalizing small volumes.
Thus, comparing the results for large HN OARs, such as the brain of the spinal canal, with
smaller OARs, such as the inner ears or the temporomandibular joints, results in unfair
assessments. The sDSC was therefore of great aid to contrast the results of the DSC and
get a broader evaluation. The larynx, lips, and submandibular glands obtained the worst
performance overall, in agreement with other published papers (Table 4).

These results showed that our model was comparable to previously published studies
for HN OAR segmentation regarding the DSC [19] (Table 4), and also to other studies using
partially labeled or unlabeled datasets and following similar approaches to ours [7,11,25].
Almost all OARs reached a performance close to the maximum DSC reported in the
literature, outstanding in some cases such as the temporomandibular joints and inner
ears. The lips were the only OAR that showed a clear underperformance. However, the
only study that has evaluated this organ obtained a DSC of 71%, which demonstrates the
difficulties in segmenting that region.

Performance boost after data curation was evident in Figure 3, supporting the need
for homogeneity in the segmentation protocol as also seen in previous works [30,31]. This
problem was solved in most studies by requesting a single radiation oncologist to perform
or review all the ground truth segmentations. Nonetheless, this is a highly time-consuming
process, and not all medical centers have the resources to do it. As our objective was to use
and exploit the available longitudinal partially labeled data in a hospital, we only reviewed
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and curated the contours that initially showed visual inconsistencies. Regardless, two
other OARs revealed significant variations in performance during evaluation: larynx and
lips. These OARs are especially complicated to segment (Table 4) and exceptionally in our
cohort. On the one hand, many patients had massive tumors near the larynx, hindering its
delineation. On the other, some patients were also intubated (Figure 4g), which modified
lips shape and hampered their segmentation. Differences in these OARs’ ground truth
segmentation protocol were also noted.

Table 4. Mean volumetric Dice score coefficient (DSC) performance of previously published deep-
learning models for HN segmentation on CT and our model. Due to the large volume of publications,
this overview includes only meaningful results. The datasets and ground truth segmentations used
vary between studies making comparison difficult. We include the results for our self-supervised
model in the last row of the table. (PG: parotid glands; SMG: submandibular glands; TMJ: temporo-
mandibular joints).
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Nikolov (2018) [3] 99 96 95 88 85 85 85 85 65 75
Zhu (2019) [32] 93 87 88 87 81 81
Liang (2019) [23] 91 90 87 85 85 85 84
van Rooij (2019) [13] 64 60 78 83 83 82
Tang * (2019) [25] 93 86 89 85 85 81
Zhong (2019) [22] 92
van Dijk (2020) [15] 95 1 83 1 84 1 83 1 77 1 78 1

Guo (2020) [27] 95 88 88 88 84 84
Brunenberg (2020) [44] 90 78 83 83 79 78
Sultana (2020) [24] 87 86 87 85
Oktay (2020) [10] 94 85 84 85 83 78
Chi * (2020) [7] 88 73 73 63 61
Zhang (2021) [26] 89 87 71 77 70 70
Liu * (2021) [11] 97 92 89 86 90 84 87 90 90
Dai (2021) [45] 89 90 85 88 83 82 67 67
Zhang (2021) [46] 95 92 86 88 87 85
Li (2022) [12] 84
Tappeiner (2022) [47] 94 88 88 87
Siciarz (2022) [48] 97 89 86 87 84 86 80 81 71 77 76 72 74
Koo (2022) [21] 87 88 82 82 83 83 81 83
Gibbons (2022) [49] 91 2 83 2 48 2 80 2 80 2 69 2 67 2

Asbach (2022) [50] 93 85 43 81 81 72 70 45 47

OURS 98 90 86 86 84 72 83 51 61 90 86
OURS—Self-Supervised 98 91 87 87 87 77 84 69 66 91 88

1 Values estimated from figures; actual values not reported. 2 Values correspond to median DSC. Mean DSC not
reported. * Studies using partially labeled and unlabeled datasets.

We analyzed the results per patient (Figures S1 and S2), which was only possible as
our data was longitudinal, allowing us to compare the contours in several CT scans for
each patient. This demonstrated meaningful differences in performance between patients
for particular OARs and even between CTs from the same patient. This was probably a
consequence of the anatomical changes caused by the presence of large tumors or common
secondary effects of RT treatment, which could be another source of underperformance in
our DL models. For the submandibular glands, there was a patient for which the predicted
and ground truth contours overlapped by less than 10% (Figure 4e–h). The question, in
this case, was which one of the delineations is actually the more precise one. In the future,
we aim to conduct a blinded test with an expert radiation oncologist from a different
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medical center to evaluate the ground truth and predicted contours for the patients in the
independent test set and analyze which segmentations are more clinically acceptable.

Previous works [10,44] have shown how implementing DL-based OAR segmentation
algorithms in new medical centers without retraining renders less agreement between
predictions and ground truth segmentations. These discrepancies usually come from
deviations in segmentation protocol [14], medical imaging machines with different technical
characteristics [44], and overfitting to the training data. Therefore, it is evident that training
DL-based models with data from the hospital where they will be implemented is very
advantageous. To avoid the high computational cost of training a DL network from
the beginning and the restricted sizes of homogenized labeled datasets, a more efficient
approach would be performing transfer learning with pre-trained DL models. This reduces
the computational requirements and includes additional data variability in the model. A
further step, particularly valuable in adaptive radiation therapy, is to retrain the last epochs
of a model with fully labeled CT scans from new patients being treated to teach the model to
segment future CT scans from those patients with higher accuracy. Tables 3b and 4 illustrate
the significant performance improvements with this self-supervised approach, especially
for the larynx, lips, and submandibular glands, which were the most difficult OARs to
segment. Figure S2 also depicts the DSC improvement when using the self-supervised
model (Figure S1), demonstrating the capability of the self-supervised model to yield more
robust and personalized predictions.

The proposed DL-based workflow can automatically contour fifteen OARs in the clinic.
It has proven to be an efficient way to exploit the available partially labeled data from
a medical center and presented a more realistic solution than studies that rely on large
databases segmented from the beginning. Our model showed comparable performance
to the literature, with a more straightforward and pragmatic implementation in new
scenarios. Our solution was developed using CT scans derived from routine clinical practice,
belonging to patients with advanced local tumors, and therefore should be applicable in a
hospital setting. Moreover, we demonstrated the feasibility of integrating our workflow
for adaptive RT, yielding robust patient-adapted contours requiring fewer human and
computational resources.

However, there were some limitations to this study. First, the cohort included only
48 unique patients. Although we applied numerous data augmentation tools to increase
data variability, only 40 unique patients were used for training. Moreover, the contours
of the larynx and lips were not refined to ensure homogenization in the segmentation
protocol, possibly downgrading model performance. Another limitation is that we reused
the tolerances to compute the sDSC described by Nikolov et al. [3] instead of calculating
our own values.

For future studies, we would like to extend the proposed workflow to segment more
HN OARs, such as the oral cavity, constrictor muscles of the pharynx, or optic nerves.
We believe that a mandatory step prior to training must be to curate the data under a
homogeneous protocol and evaluate if there are any changes in already segmented OARs
such as the lips or larynx. Furthermore, we would like to conduct a blinded test with an
expert radiation oncologist from a different medical center to analyze which segmentations
are clinically acceptable, comparing both ground truth and predicted contours.

5. Conclusions

This paper presents a novel DL-based weakly supervised workflow for HN OAR
segmentation exploiting partially labeled datasets and longitudinal data. Experimental
results showed its superior performance for fast segmentation of fifteen OARs of the head
and neck anatomy. The model can be easily integrated into the clinical environment as
it has been trained with data derived from clinical practice. Our results also show the
feasibility of implementing the workflow for adaptive radiotherapy, contributing to the
availability of DL-based auto-segmentation tools for clinical users in the near future.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24111661/s1, Figure S1: Analysis of the DSC per OAR and
patient obtained with the trained semi-supervised nnU-Net.; Figure S2: Analysis of the DSC per OAR
and patient obtained with the trained self-supervised nnU-Net (including a baseline CT image from
each patient in the training).
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