
HAL Id: hal-03886498
https://hal.science/hal-03886498v1

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cayley graph for F 2 x F 2 which is not minimally
almost convex
Andrew Elvey Price

To cite this version:
Andrew Elvey Price. A Cayley graph for F 2 x F 2 which is not minimally almost convex. International
Journal of Algebra and Computation, 2022, 32 (1), pp.115-126. �10.1142/S0218196722500059�. �hal-
03886498�

https://hal.science/hal-03886498v1
https://hal.archives-ouvertes.fr


A Cayley graph for F2 × F2 which is not minimally almost
convex.

Andrew Elvey Price1

LaBRI, Université de Bordeaux,
351 cours de la Libération, 33405 Talence, France

Abstract

mkmkmk We give an example of a Cayley graph Γ for the group F2 × F2 which is
not minimally almost convex (MAC). On the other hand, the standard Cayley graph
for F2 × F2 does satisfy the falsification by fellow traveler property (FFTP), which is
strictly stronger. As a result, any Cayley graph property K lying between FFTP and
MAC (i.e., FFTP ⇒ K ⇒ MAC) is dependent on the generating set. This includes
the well known properties FFTP and almost convexity, which were already known to
depend on the generating set as well as Poénaru’s condition P (2) and the basepoint
loop shortening property for which dependence on the generating set was previously
unknown. We also show that the Cayley graph Γ does not have the loop shortening
property, so this property also depends on the generating set.

1 Introduction

Due to the unsolvability of even the word problem on general Cayley graphs or finitely
generated groups, numerous classes of Cayley graphs have been considered in the literature
which simple sounding problems like this can be easily solved. Typically these classes are
defined by geometric properties of the Cayley graphs, such as all triangles being thin in
the case of hyperbolic-groups. Whenever such a new class is defined a natural question
arises: Is the Cayley graph property independent of the generating set? In this article we
use the group F2×F2 to show that the answer is no for the falsification by fellow traveller
property (FFTP), the loop shortening property and every non-trivial almost-convexity
condition. In order to prove this, we consider two different presentations for the group
F2 × F2, whose Cayley graphs exhibit quite different geometry. First we consider the
standard presentation

(G,S1) = 〈x, y, c, d|xc = cx, yc = cy, xd = dx, yd = dy〉.

Note that this is a right angled Artin group (with standard presentation), so by [5, Theorem
3.1], the pair (G,S1) satisfies the falsification by fellow traveller property. The other
presentation that we will consider is

(G,S2) = 〈a, b, c, d|ac = ca, bc = cb, acd = dac, bcd = dbc〉,
1website: https://www.idpoisson.fr/elveyprice/en/
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which can be seen to define the same group due to the Tietze transformations y = bc and
x = ac. Our main theorem is that the pair (G,S2) is not minimally almost convex. As a
corollary, the following properties all depend on the generating set:

� The falsification by fellow traveler property

� The basepoint loop shortening property

� Every non-trivial almost convexity condition. This includes almost convexity, Poénaru’s
condition P (2), minimal almost convexity (MAC) and the slightly stronger condition
M′AC.

In the final section we show that (G,S2) does not satisfy the loop shortening property, so
this property also depends on the generating set.

There are many known examples of groups which satisfy FFTP with respect to one
generating set but not others. For example, Neumann and Shapiro gave an example
in [7] when they introduced the property, and Elder gave another example in [3]. To the
author’s knowledge, the only previous example for almost convexity was given by Theil [9].
Elder and Hermiller used solvable Baumslag-Solitar groups to show that minimal almost
convexity is not a quasi-isometry invariant, nor is M′AC [4], so it is not surprising that
these both depend on the generating set. It was previously unknown, however, whether
Poénaru’s condition P(2) or either of the loop shortening properties were dependent on
the generating set.

2 Almost convexity conditions

The properties considered in this article require us to interpret the Cayley graph Γ as a
metric space, which we denote Γ̃. Edges are then considered to be segments of length 1
between the vertices that they join and the points in this metric space are the vertices
of Γ as well the interior points of the edges. Assuming Γ is a connected graph, any two
points u, v in Γ̃ are joined by at least one continuous path, so the distance d(u, v) between
u and v is defined to be the shortest such path. This is sometimes called the path metric.

Since the elements of the underlying group G are precisely the vertices of Γ, these are
also points in the metric space Γ̃. In particular the identity 1 of G is a point in Γ̃.

In the following, we define the sphere Sph(r) and the ball B(r) of radius r around 1 in
the following standard way:

Sph(r) = {z ∈ Γ̃ : d(z, 1) = r} and B(r) = {z ∈ Γ̃ : d(z, 1) ≤ r}.

We are now ready to define almost convexity.

Definition 2.1. Let G be a group and let S be a finite generating set for G. Let r0 ∈ N
be a positive integer and let f : N → N be a function. The pair (G,S) is said to satisfy
the almost convexity condition ACf,r0 if the following holds: If r > r0 and u, v ∈ Sph(r)
satisfy d(u, v) ≤ 2, then there is some path p between u and v such that p is contained in
B(r) and p has length at most f(r).

The pair (G,S) is said to satisfy
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� Almost Convexity (AC) if it satisfies ACf,r0 for some constant function f and some
r0 > 0,

� Poénaru’s condition P (2) if it satisfies ACf,r0 for some sub-linear function f and
some r0 > 0,

� Minimal Almost Convexity (MAC) if it satisfies ACf,r0 for some r0 > 0, where
f(x) = 2x− 1,

� M’AC if it satisfies ACf,r0 for some r0 > 0, where f(x) = 2x− 2.

Using this definition, almost convexity (AC) imposes the strongest possible restriction
on f , namely that f is a constant function.

Note that the points u and v in the definition above are joined via the origin by a path
of length 2r, so every finitely generated group trivially satisfies any almost convexity condi-
tion where f(r) ≥ 2r. Hence, the requirement that f(r) = 2r − 1 for MAC is the weakest
possible non-trivial almost convexity condition. Due to the successive strengthening of
these conditions, we have the implication chain

AC⇒ P(2)⇒ M′AC⇒ MAC.

The last two conditions M′AC and MAC were introduced by I. Kapovich in [6], where
they are called K(2) and K ′(2), respectively. These conditions are discussed in greater
detail in [4], where Elder and Hermiller show that M′AC does not imply P (2). It is still
an open question, however, whether the properties M′AC and MAC are equivalent. The
property AC was introduced by Cannon in [1], and remains the most widely studied almost
convexity condition. references??

3 The pair (G,S2) does not satisfy MAC

The main theorem in this section is that the group (G,S2) with presentation

〈a, b, c, t|ac = ca, bc = cb, act = tac, bct = tbc〉

does not satisfy MAC. As a consequence it does not satisfy AC, P (2) or M’AC.
We start by interpreting (G,S2) as a HNN extension, as this will allow us to understand

the paths in the Cayley graph using Britton’s Lemma, which we state below. Consider
the group P = F2 × C∞ = 〈a, b, c|ac = ca, bc = cb〉 and let H be the subgroup generated
by ac and bc. Then G is the HNN extension P∗φ where φ : H → H is the identity.

Lemma 3.1. (Britton’s Lemma) Assume w ∈ G is given by the product

w = p0t
ε1p1t

ε2 · · · tεnpn,

where n ≥ 1, each pj ∈ P and each εj = ±1. Assume further that there is no 1 ≤ j ≤ n
satisfying both pj ∈ H and εj = −εj+1. Then w 6= 1.

Note that if some j satisfied both pj ∈ H and εj = −εj+1, then the word defining w
could be reduced, as we would have tεjpjt

εj+1 = pj . Hence Britton’s Lemma gives a simple
way to determine whether a word represents the identity in G.

In order to use Britton’s Lemma to understand the metric d in Γ̃, we first need to
understand the subgroup H of P , which we do in the following Lemma:
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Lemma 3.2. H is the subgroup of G consisting of all elements wck, where w is a word
in {a, b, a−1, b−1}∗ and k is the sum of the exponents in w.

Proof. Let w be a word in {a, b, a−1, b−1}∗ and let k be the sum of the exponents in w.
We will show that wck ∈ H. Let w = sp11 s

p2
2 . . . spnn , where each si ∈ {a, b} and each

pi ∈ {−1, 1}. Then

wck = wcp1+...+pn = (s1c)
p1(s2c)

p2 . . . (snc)
pn ∈ H.

Now let h ∈ H. We will show that h = wck for some word w ∈ {a, b, a−1, b−1}∗, where k
is the sum of the exponents in w. Since h ∈ H = 〈ac, bc〉, we can write

h = (s1c)
p1(s2c)

p2 . . . (snc)
pn ,

where each si ∈ {a, b} and each pi ∈ {−1, 1}. Then we have

h = sp11 s
p2
2 . . . spnn c

p1+p2+...+pn = wck,

where w = sp11 s
p2
2 . . . spnn and k is the sum of the exponents in w.

Before proving the main theorem, we will prove some Lemmas regarding distances in
the metric space Γ̃:

Lemma 3.3. Let ε1, ε2, ε3, ε4 ∈ {−1, 1}, let w be a word of length n on the alphabet
{aε1 , bε2 , cε3 , tε4}, and let w ∈ G be the element represented by w. Then d(1, w) = n.

Proof. Since the word w itself determines a path of length n between 1 and w, it is clear
that d(1, w) ≤ n.

To prove a lower bound on d(1, w), we consider a homorphism h : G→ 〈x〉 from G to
the infinite cyclic group 〈x〉 defined by h(a) = xε1 , h(b) = xε2 , h(c) = xε3 and h(t) = xε4 .
To check that this is a homomorphism it suffices to verify that it satisfies the relations of
(G,S2), that is h(ac) = h(ca), h(bc) = h(cb), h(act) = h(tac) and h(bct) = h(tbc). Indeed
these all follow from the fact that 〈x〉 is a commutative group. Now, by the definition of
this homomorphism, h(w) = xn.

Now suppose w1 = α1α2 · · ·αm is another word representing w, where each αj ∈
{a, a−1, b, b−1, c, c−1, t, t−1}. Then by applying h, we find

h(α1)h(α2) · · ·h(αm) = xn.

Since each term h(αj) ∈ {x, x−1}, we must have m ≥ n. Since this is true for any word
representing w, it follows that d(1, w) ≥ n

Theorem 3.4. The pair (G,S2) does not satisfy MAC.

Proof. Consider the elements anb−n and tanb−n+1 in G (See Figure 1). Then

|anb−n| = 2n = |tanb−n+1|
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Figure 1: Part of the Cayley graph Γ(G,S2). The bold vertices and edges are those within
the ball of radius 8.

and
d(anb−n, tanb−n+1) = |bna−ntanb−n+1| = |tbna−nanb−n+1| = |tb| = 2.

So it suffices to prove that if p is a path in B(2n) between anb−n and tanb−n+1, then p
has length at least 4n.

Let p be a path in B(2n) between anb−n and tanb−n+1.
Then let h and ht be adjacent vertices in p, such that h is in the same sheet of the

HNN extension as 1 and ht is in the same sheet as t. Then h ∈ H. Moreover, since p is
contained in B(2n), the length |h|+ 1 = |ht| ≤ 2n, so |h| ≤ 2n− 1. Let h = wck where w
is a word in {a, b, a−1, b−1}∗ and k is the sum of the exponents in w. Then

d(anb−n, h) = |bna−nh| = |bna−nwck| = |bna−nw|+ |k|.

Let x ∈ Z≥0 be maximal such that the word w splits as w = axw1. In other words, x
is the number of a’s at the start of w. Then the sum of the exponents in w1 is k − x, so
|w1| ≥ |k − x|. Therefore,

2n− 1 ≥ |h| = |w|+ |k| = x+ |w1|+ |k| ≥ x+ |k − x|+ |k| ≥ 2x,

so x < n. Therefore, bnax−nw1 is freely reduced, so

|bna−naxw1| = |bnax−nw1| = 2n− x+ |w1|.

Therefore,

d(anb−n, h) = |bna−nw|+ |k| = 2n− x+ |w1|+ |k| ≥ 2n− x+ x = 2n.

Hence, the path p satisfies

|p| ≥ d(anb−n, h) + 1 + d(tanb1−n, ht) ≥ d(anb−n, h) + d(tanb−n, ht) = 2d(anb−n, h) ≥ 4n,

as required. So (G,S2) does not satisfy MAC.
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4 loop shortening properties

In [2] Elder introduced the loop shortening and basepoint loop shortening properties as a
natural generalisation of the falsification by fellow traveller property. Where FFTP gives
a simple way to check if a word is a geodesic, each of the loop shortening properties gives
a somewhat simple way to check if a word represents the identity in the group.

Definition 4.1. Let G be a group with finite generating set S. (G,S) has the (syn-
chronous) loop shortening property (LSP) if there is a constant k such that for any loop
v0, v1, . . . , vn in Γ(G,S) with n ≥ 1, there is a shorter loop u0, u1, . . . , um such that
d(uj , vj) < k for each j ≤ m, and d(um, vj) < k for m ≤ j ≤ n. In other words, the
paths (synchronously) k-fellow travel.

Definition 4.2. Let G be a group with finite generating set S. (G,S) has the (syn-
chronous) basepoint loop shortening property (BLSP) if there is a constant k such that for
any loop v0, v1, . . . , vn in Γ(G,S) with n ≥ 1, there is a shorter loop (v0 = u0), u1, . . . , um
such that d(uj , vj) < k for each j ≤ m, and d(um, vj) < k for m ≤ j ≤ n. In other words,
the paths (synchronously) k-fellow travel.

Note that the only difference between these two properties is that for the basepoint
loop shortening property, the initial loop is around a basepoint which the shorter loop has
to pass through, whereas for the loop shortening property no such restriction is imposed.
Hence, it is clear that

BLSP⇒ LSP.

Elder also showed that the basepoint loop shortening property is strictly stronger than
almost convexity and strictly weaker than the falsification by fellow traveller property
(FFTP), so we have the long implication chain

FFTP⇒ BLSP⇒ AC⇒ P(2)⇒ M′AC⇒ MAC.

Elder asked two questions about the two loop shortening properties. The first is
whether they are equivalent, and this remains an open problem. The second is whether
either or both of these properties depend on the generating set. We have already shown
that the group G = F2 × F2 satisfies FFTP with respect to one generating set, but fails
MAC with another, which implies that BLSP depends on the generating set. Our final
theorem settles the other half of this question, namely that the loop shortening property
also depends on the generating set.

Theorem 4.3. The group (G,S2) with presentation

〈a, b, c, t|ac = ca, bc = cb, act = tac, bct = tbc〉

does not satisfy the loop shortening property.

Proof. Let k ∈ Z>0. We will show that there is a loop ` in Γ(G,S2) such that there is
no shorter loop `′ in Γ(G,S2) which k-fellow travels with `. Hence this will show that
Γ(G,S2) does not satisfy the loop shortening property. Let ` be the loop given by the
word

w = a2kb−4ka2kta−2kb4ka−2kt−1.
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We can easily check algebraically that w = 1, so this is indeed a loop. Now let `′ be a loop
which k-fellow travels with `. Then we just need to show that the length of `′ is at least
the length of `, which is 16k + 2. Since the four vertices

u1 = ak, u2 = a2kb−4kak, u3 = ta2kb−4kak and u4 = tak,

appear in ` in that order, there must be vertices v1, v2, v3 and v4 appearing in `′ in that
order which satisfy d(ui, vi) ≤ k for each i ∈ {1, 2, 3, 4}(See Figure 2). Hence it suffices to
prove that

d(v1, v2) + d(v2, v3) + d(v3, v4) + d(v4, v1) ≥ 16k + 2.

For each i, let wi be a word of minimal length from ui to vi. So |wi| ≤ k and wi = u−1i vi.
For each i ∈ {1, 2, 3, 4}, let xi, yi, zi be the sums of the powers of a, b and c, respectively
in the word wi. Then we will show the following four inequalities, from which the desired
result follows:

d(v1, v2) ≥ 6k − x1 + x2 + |y1|+ |y2|+ |z1 − z2|,

d(v2, v3) ≥ 2k + 1− x2 − x3 − y2 − y3 + z2 + z3,

d(v3, v4) ≥ 6k − x4 + x3 + |y4|+ |y3|+ |z4 − z3|,

d(v4, v1) ≥ 2k + 1 + x1 + x4 + y1 + y4 − z1 − z4.

t t t t

u1

u2

u3

u4

v1

v5

v6

v4
v3

v2

a2kb−4ka2kt

t

a2kb−4ka2k1

t

`

`′

Figure 2: The loop ` in red and a k-fellow travelling loop `′ in blue.

Let w be a word of minimal length from v1 to v2. So

w = w1
−1u−11 u2w2 = w−11 akb−4kakw2.

Consider the quotient map f : G → G defined by f(a) = a, f(b) = b, f(c) = c and
f(t) = 1. Note that this is well defined since f(ac) = f(ca), f(bc) = f(cb), f(act) = f(tac)
and f(bct) = f(tbc). Since c commutes with a and b, we can write f(w1) = cz1r1, where
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r1 is a reduced word over the alphabet {a, b, a−1, b−1}. Then x1 and y1 are the sums of
the powers of a and b, respectively, in r1 and

k ≥ |w1| ≥ |r1|.

Similarly we can write f(w2) = cz2r2. Now,

d(v1, v2) = |w| ≥ d(1, f(w)) = d(1, f(w1)
−1akb−4kakf(w2)) = d(1, cz2−z1r1

−1akb−4kakr2).

Since r1 and r2 each have length at most k, they can only cancel with letters in ak on
either side of the last expression, and not the b−4k term in the middle. In other words,
if s1 is a reduced word for r1

−1ak and s2 is a reduced word for akr2, then cz2−z1s1b
−4ks2

is a reduced word for cz2−z1r1
−1akb−4kakr2. Moreover, the sums of the powers of a in s1

and s2 are k−x1 and k+x2 respectively, and the sums of the powers of b in s1 and s2 are
−y1 and y2 respectively. Hence, |s1| ≥ k − x1 + |y1| and |s2| ≥ k + x2 + |y2|. Therefore,

d(v1, v2) ≥d(1, cz2−z1r1
−1akb−4kakr2)

=|cz2−z1s1b−4ks2|
=4k + |z2 − z1|+ |s1|+ |s2|
≥4k + |z2 − z1|+ k − x1 + |y1|+ k + x2 + |y2|
=6k − x1 + x2 + |y1|+ |y2|+ |z1 − z2|.

Similarly,
d(v3, v4) ≥ 6k − x4 + x3 + |y4|+ |y3|+ |z4 − z3|.

Now let r be a word of minimal length between v2 and v3. Then w2rw
−1
3 forms a path

p from u2 to u3. Since u2 is in the sheet of the HNN extension containing 1 and u3 is in the
sheet containing t, there must be vertices v5 and v6 which are adjacent in p and such that
v5 is in the sheet containing 1 and v6 is in the sheet containig t. So v6 = v5t and v5 ∈ H,
the subgroup generated by ac and bc. Let C1 = 〈e〉 be the one generator cyclic group, and
let h : G → C1 be the group homomorphism defined by h(a) = h(b) = e, h(c) = e−1 and
h(t) = 1. Then H is in the kernel of h, so h(v5) = h(v6) = 1. Since h(u2) = h(u3) = e−k,
the distances d(u2, v5) and d(u3, v6) are both at least k. But the sections of p joining u2
and v2 and v3 to u3 both have length at most k. Hence v5 and v6 lie on the section of p
between v2 and v3. Hence, the distance

d(v2, v3) = d(v2, v5) + 1 + d(v3, v6).

Now h(v2) = h(u2)h(w2) = e−kex2ey2e−z2 = e−k+x2+y2−z2 . Therefore,

d(v2, v5) ≥ k − x2 − y2 + z2.

Similarly,
d(v3, v6) ≥ k − x3 − y3 + z3.

Putting these together gives

d(v2, v3) = d(v2, v5) + 1 + d(v3, v6) ≥ 2k + 1− x2 − x3 − y2 − y3 + z2 + z3.
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In exactly the same way, we deduce the final inequality,

d(v4, v1) ≥ 2k + 1 + x1 + x4 + y1 + y4 − z1 − z4.

So we now have lower bounds for all four of the distances d(v1, v2), d(v2, v3), d(v3, v4), d(v4, v1).
Therefore, the length of the loop `′ is at least

d(v1, v2) + d(v2, v3) + d(v3, v4) + d(v4, v1)

≥6k − x1 + x2 + |y1|+ |y2|+ |z1 − z2|+ 2k + 1− x2 − x3 − y2 − y3 + z2 + z3

+6k − x4 + x3 + |y4|+ |y3|+ |z4 − z3|+ 1 + x1 + x4 + y1 + y4 − z1 − z4
=16k + 2 + |y1|+ y1 + |y2| − y2 + |y3| − y3 + |y4|+ y4

+|z1 − z2| − (z1 − z2) + |z4 − z3| − (z4 − z3)
≥16k + 2,

which is the same as the length of `. Hence the pair (G,S2) does not enjoy the loop
shortening property.
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